1
|
Moro-Bulnes A, Bosch-Navarrete C, Antequera-Parrilla P, Castanys S, Vidal AE, Ruiz-Pérez LM, Pérez-Moreno G, González-Pacanowska D, Pacanowska DG, Moreno GP. A cytidine deaminase-like protein modulates pyrimidine nucleotide homeostasis in Trypanosoma brucei. Sci Rep 2025; 15:16160. [PMID: 40346127 PMCID: PMC12064671 DOI: 10.1038/s41598-025-00942-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
Pyrimidine nucleotide homeostasis is critical for DNA replication and cell viability, yet its regulation in Trypanosoma brucei, the causative agent of African trypanosomiasis, remains poorly understood. Here, we characterize a T. brucei cytidine deaminase-like protein (TbCDA-like), a kinetoplastid-specific enzyme absent in mammals, that harbors a deaminase domain and a zinc-finger CCCH motif. Using RNA interference (RNAi) and overexpression approaches, we demonstrate that TbCDA-like modulates pyrimidine nucleotide pools, influencing both ribonucleotide and deoxyribonucleotide profiles. Overexpression of TbCDA-like resulted in a substantial reduction of dCTP and CTP levels while elevating dTTP and UTP pools, suggesting a role in cytidine derivative deamination. Conversely, RNAi-mediated depletion of TbCDA-like caused CMP accumulation and reduced dTTP levels. Notably, overexpression induced severe cytotoxicity, growth arrest, DNA damage and cell cycle defects, evidenced by sub-G1 populations, increased nuclear H2A phosphorylation and aberrant kinetoplast and nuclear morphologies. Localization studies revealed that TbCDA-like is primarily cytosolic and relocalizes to stress granules upon nutrient deprivation, suggesting a role in RNA metabolism. These findings establish TbCDA-like as a key regulator of pyrimidine nucleotide homeostasis in T. brucei, linking nucleotide imbalances to DNA replication stress and genome instability. Given its absence in mammals, TbCDA-like presents an attractive target for therapeutic intervention against trypanosomiasis.
Collapse
Affiliation(s)
- Ana Moro-Bulnes
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, 17, Armilla, Granada, 18016, Spain
| | - Cristina Bosch-Navarrete
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, 17, Armilla, Granada, 18016, Spain
| | - Pablo Antequera-Parrilla
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, 17, Armilla, Granada, 18016, Spain
| | - Santiago Castanys
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, 17, Armilla, Granada, 18016, Spain
| | - Antonio E Vidal
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, 17, Armilla, Granada, 18016, Spain
| | - Luis Miguel Ruiz-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, 17, Armilla, Granada, 18016, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, 17, Armilla, Granada, 18016, Spain.
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, 17, Armilla, Granada, 18016, Spain.
| | - Dolores González Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, 17, Armilla, Granada, 18016, Spain
| | - Guiomar Pérez Moreno
- Instituto de Parasitología y Biomedicina "López-Neyra" (IPBLN), CSIC, Parque Tecnológico de Ciencias de la Salud, Avda. del Conocimiento, 17, Armilla, Granada, 18016, Spain
| |
Collapse
|
2
|
Carnie CJ, Götz MJ, Palma-Chaundler CS, Weickert P, Wanders A, Serrano-Benitez A, Li HY, Gupta V, Awwad SW, Blum CJ, Sczaniecka-Clift M, Cordes J, Zagnoli-Vieira G, D'Alessandro G, Richards SL, Gueorguieva N, Lam S, Beli P, Stingele J, Jackson SP. Decitabine cytotoxicity is promoted by dCMP deaminase DCTD and mitigated by SUMO-dependent E3 ligase TOPORS. EMBO J 2024; 43:2397-2423. [PMID: 38760575 PMCID: PMC11183266 DOI: 10.1038/s44318-024-00108-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/19/2024] Open
Abstract
The nucleoside analogue decitabine (or 5-aza-dC) is used to treat several haematological cancers. Upon its triphosphorylation and incorporation into DNA, 5-aza-dC induces covalent DNA methyltransferase 1 DNA-protein crosslinks (DNMT1-DPCs), leading to DNA hypomethylation. However, 5-aza-dC's clinical outcomes vary, and relapse is common. Using genome-scale CRISPR/Cas9 screens, we map factors determining 5-aza-dC sensitivity. Unexpectedly, we find that loss of the dCMP deaminase DCTD causes 5-aza-dC resistance, suggesting that 5-aza-dUMP generation is cytotoxic. Combining results from a subsequent genetic screen in DCTD-deficient cells with the identification of the DNMT1-DPC-proximal proteome, we uncover the ubiquitin and SUMO1 E3 ligase, TOPORS, as a new DPC repair factor. TOPORS is recruited to SUMOylated DNMT1-DPCs and promotes their degradation. Our study suggests that 5-aza-dC-induced DPCs cause cytotoxicity when DPC repair is compromised, while cytotoxicity in wild-type cells arises from perturbed nucleotide metabolism, potentially laying the foundations for future identification of predictive biomarkers for decitabine treatment.
Collapse
Affiliation(s)
- Christopher J Carnie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | - Maximilian J Götz
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Pedro Weickert
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Amy Wanders
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Almudena Serrano-Benitez
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Hao-Yi Li
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Vipul Gupta
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Samah W Awwad
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Jacqueline Cordes
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Guido Zagnoli-Vieira
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Giuseppina D'Alessandro
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Sean L Richards
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Nadia Gueorguieva
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Simon Lam
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Petra Beli
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Developmental Biology and Neurobiology (IDN), Johannes Gutenberg-Universität, Mainz, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| | - Stephen P Jackson
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- The Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Liang H, Mower JP, Chia CP. Functional Prokaryotic-Like Deoxycytidine Triphosphate Deaminases and Thymidylate Synthase in Eukaryotic Social Amoebae: Vertical, Endosymbiotic, or Horizontal Gene Transfer? Mol Biol Evol 2023; 40:msad268. [PMID: 38064674 PMCID: PMC10733785 DOI: 10.1093/molbev/msad268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/22/2023] [Accepted: 11/30/2023] [Indexed: 12/22/2023] Open
Abstract
The de novo synthesis of deoxythymidine triphosphate uses several pathways: gram-negative bacteria use deoxycytidine triphosphate deaminase to convert deoxycytidine triphosphate into deoxyuridine triphosphate, whereas eukaryotes and gram-positive bacteria instead use deoxycytidine monophosphate deaminase to transform deoxycytidine monophosphate to deoxyuridine monophosphate. It is then unusual that in addition to deoxycytidine monophosphate deaminases, the eukaryote Dictyostelium discoideum has 2 deoxycytidine triphosphate deaminases (Dcd1Dicty and Dcd2Dicty). Expression of either DcdDicty can fully rescue the slow growth of an Escherichia coli dcd knockout. Both DcdDicty mitigate the hydroxyurea sensitivity of a Schizosaccharomyces pombe deoxycytidine monophosphate deaminase knockout. Phylogenies show that Dcd1Dicty homologs may have entered the common ancestor of the eukaryotic groups of Amoebozoa, Obazoa, Metamonada, and Discoba through an ancient horizontal gene transfer from a prokaryote or an ancient endosymbiotic gene transfer from a mitochondrion, followed by horizontal gene transfer from Amoebozoa to several other unrelated groups of eukaryotes. In contrast, the Dcd2Dicty homologs were a separate horizontal gene transfer from a prokaryote or a virus into either Amoebozoa or Rhizaria, followed by a horizontal gene transfer between them. ThyXDicty, the D. discoideum thymidylate synthase, another enzyme of the deoxythymidine triphosphate biosynthesis pathway, was suggested previously to be acquired from the ancestral mitochondria or by horizontal gene transfer from alpha-proteobacteria. ThyXDicty can fully rescue the E. coli thymidylate synthase knockout, and we establish that it was obtained by the common ancestor of social amoebae not from mitochondria but from a bacterium. We propose horizontal gene transfer and endosymbiotic gene transfer contributed to the enzyme diversity of the deoxythymidine triphosphate synthesis pathway in most social amoebae, many Amoebozoa, and other eukaryotes.
Collapse
Affiliation(s)
- Heng Liang
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Jeffrey P Mower
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Catherine P Chia
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
4
|
Liang YY, Bacanu S, Sreekumar L, Ramos AD, Dai L, Michaelis M, Cinatl J, Seki T, Cao Y, Coffill CR, Lane DP, Prabhu N, Nordlund P. CETSA interaction proteomics define specific RNA-modification pathways as key components of fluorouracil-based cancer drug cytotoxicity. Cell Chem Biol 2022; 29:572-585.e8. [PMID: 34265272 DOI: 10.1016/j.chembiol.2021.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/14/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022]
Abstract
The optimal use of many cancer drugs is hampered by a lack of detailed understanding of their mechanism of action (MoA). Here, we apply a high-resolution implementation of the proteome-wide cellular thermal shift assay (CETSA) to follow protein interaction changes induced by the antimetabolite 5-fluorouracil (5-FU) and related nucleosides. We confirm anticipated effects on the known main target, thymidylate synthase (TYMS), and enzymes in pyrimidine metabolism and DNA damage pathways. However, most interaction changes we see are for proteins previously not associated with the MoA of 5-FU, including wide-ranging effects on RNA-modification and -processing pathways. Attenuated responses of specific proteins in a resistant cell model identify key components of the 5-FU MoA, where intriguingly the abrogation of TYMS inhibition is not required for cell proliferation.
Collapse
Affiliation(s)
- Ying Yu Liang
- Institute of Molecular and Cell Biology, A∗STAR, Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Smaranda Bacanu
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lekshmy Sreekumar
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Anderson Daniel Ramos
- Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Lingyun Dai
- Institute of Molecular and Cell Biology, A∗STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Martin Michaelis
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Jindrich Cinatl
- Institute for Medical Virology, Goethe-University, Frankfurt am Main, Germany
| | - Takahiro Seki
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden; Kagoshima University Graduate School of Medical and Dental Sciences 8 Chome-35-1 Sakuragaoka, Kagoshima 890-8520, Japan
| | - Yihai Cao
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Cynthia R Coffill
- p53Lab, A∗STAR, 8A Biomedical Groove, Immunos, #06-06, Singapore 138648, Singapore
| | - David P Lane
- p53Lab, A∗STAR, 8A Biomedical Groove, Immunos, #06-06, Singapore 138648, Singapore
| | - Nayana Prabhu
- Institute of Molecular and Cell Biology, A∗STAR, Singapore 138673, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Pär Nordlund
- Institute of Molecular and Cell Biology, A∗STAR, Singapore 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, 171 77 Stockholm, Sweden; School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore.
| |
Collapse
|
5
|
Vines AJ, Cox K, Leland BA, King MC. Homology-directed repair involves multiple strand invasion cycles in fission yeast. Mol Biol Cell 2022; 33:ar30. [PMID: 35080989 PMCID: PMC9250353 DOI: 10.1091/mbc.e20-07-0433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Homology-directed repair of DNA double-strand breaks (DSBs) represents a highly faithful pathway. Non–crossover repair dominates in mitotically growing cells, likely through a preference for synthesis-dependent strand annealing (SDSA). How homology-directed repair mechanism choice is orchestrated in time and space is not well understood. Here, we develop a microscopy-based assay in living fission yeast to determine the dynamics and kinetics of an engineered, site-specific interhomologue repair event. We observe highly efficient homology search and homology-directed repair in this system. Surprisingly, the initial distance between the DSB and the donor sequence does not correlate with the duration of repair. Instead, we observe that repair often involves multiple site-specific and Rad51-dependent colocalization events between the DSB and donor sequence. Upon loss of the RecQ helicase Rqh1 (BLM in humans) we observe rapid repair possibly involving a single strand invasion event, suggesting that multiple strand invasion cycles antagonized by Rqh1 could reflect ongoing SDSA. However, failure to colocalize with the donor sequence and execute repair is also more likely in rqh1Δ cells, possibly reflecting erroneous strand invasion. This work has implications for the molecular etiology of Bloom syndrome, caused by mutations in BLM and characterized by aberrant sister chromatid crossovers and inefficient repair.
Collapse
Affiliation(s)
- Amanda J Vines
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Kenneth Cox
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Bryan A Leland
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut, USA, 06520
| |
Collapse
|
6
|
Martínez-Arribas B, Requena CE, Pérez-Moreno G, Ruíz-Pérez LM, Vidal AE, González-Pacanowska D. DCTPP1 prevents a mutator phenotype through the modulation of dCTP, dTTP and dUTP pools. Cell Mol Life Sci 2020; 77:1645-1660. [PMID: 31377845 PMCID: PMC7162842 DOI: 10.1007/s00018-019-03250-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/05/2019] [Accepted: 07/23/2019] [Indexed: 12/02/2022]
Abstract
To maintain dNTP pool homeostasis and preserve genetic integrity of nuclear and mitochondrial genomes, the synthesis and degradation of DNA precursors must be precisely regulated. Human all-alpha dCTP pyrophosphatase 1 (DCTPP1) is a dNTP pyrophosphatase with high affinity for dCTP and 5'-modified dCTP derivatives, but its contribution to overall nucleotide metabolism is controversial. Here, we identify a central role for DCTPP1 in the homeostasis of dCTP, dTTP and dUTP. Nucleotide pools and the dUTP/dTTP ratio are severely altered in DCTPP1-deficient cells, which exhibit an accumulation of uracil in genomic DNA, the activation of the DNA damage response and both a mitochondrial and nuclear hypermutator phenotype. Notably, DNA damage can be reverted by incubation with thymidine, dUTPase overexpression or uracil-DNA glycosylase suppression. Moreover, DCTPP1-deficient cells are highly sensitive to down-regulation of nucleoside salvage. Our data indicate that DCTPP1 is crucially involved in the provision of dCMP for thymidylate biosynthesis, introducing a new player in the regulation of pyrimidine dNTP levels and the maintenance of genomic integrity.
Collapse
Affiliation(s)
- Blanca Martínez-Arribas
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Cristina E Requena
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Luis M Ruíz-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Antonio E Vidal
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 17, 18016, Armilla, Granada, Spain.
| |
Collapse
|
7
|
Liu LL, You J, Zhu Z, Chen KY, Hu MM, Gu H, Liu ZW, Wang ZY, Wang YH, Liu SJ, Chen LM, Liu X, Tian YL, Zhou SR, Jiang L, Wan JM. WHITE STRIPE LEAF8, encoding a deoxyribonucleoside kinase, is involved in chloroplast development in rice. PLANT CELL REPORTS 2020; 39:19-33. [PMID: 31485784 DOI: 10.1007/s00299-019-02470-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
WSL8 encoding a deoxyribonucleoside kinase (dNK) that catalyzes the first step in the salvage pathway of nucleotide synthesis plays an important role in early chloroplast development in rice. The chloroplast is an organelle that converts light energy into chemical energy; therefore, the normal differentiation and development of chloroplast are pivotal for plant survival. Deoxyribonucleoside kinases (dNKs) play an important role in the salvage pathway of nucleotides. However, the relationship between dNKs and chloroplast development remains elusive. Here, we identified a white stripe leaf 8 (wsl8) mutant that exhibited a white stripe leaf phenotype at seedling stage (before the four-leaf stage). The mutant showed a significantly lower chlorophyll content and defective chloroplast morphology, whereas higher reactive oxygen species than the wild type. As the leaf developed, the chlorotic mutant plants gradually turned green, accompanied by the restoration in chlorophyll accumulation and chloroplast ultrastructure. Map-based cloning revealed that WSL8 encodes a dNK on chromosome 5. Compared with the wild type, a C-to-G single base substitution occurred in the wsl8 mutant, which caused a missense mutation (Leu 349 Val) and significantly reduced dNK enzyme activity. A subcellular localization experiment showed the WSL8 protein was targeted in the chloroplast and its transcripts were expressed in various tissues, with more abundance in young leaves and nodes. Ribosome and RNA-sequencing analysis indicated that some components and genes related to ribosome biosynthesis were down-regulated in the mutant. An exogenous feeding experiment suggested that the WSL8 performed the enzymic activity of thymidine kinase, especially functioning in the salvage synthesis of thymidine monophosphate. Our results highlight that the salvage pathway mediated by the dNK is essential for early chloroplast development in rice.
Collapse
Affiliation(s)
- L L Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - J You
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - K Y Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - M M Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - H Gu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z W Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Z Y Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y H Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - S J Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - L M Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - X Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Y L Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - S R Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - L Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - J M Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Schmidt TT, Sharma S, Reyes GX, Gries K, Gross M, Zhao B, Yuan JH, Wade R, Chabes A, Hombauer H. A genetic screen pinpoints ribonucleotide reductase residues that sustain dNTP homeostasis and specifies a highly mutagenic type of dNTP imbalance. Nucleic Acids Res 2019; 47:237-252. [PMID: 30462295 PMCID: PMC6326808 DOI: 10.1093/nar/gky1154] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
The balance and the overall concentration of intracellular deoxyribonucleoside triphosphates (dNTPs) are important determinants of faithful DNA replication. Despite the established fact that changes in dNTP pools negatively influence DNA replication fidelity, it is not clear why certain dNTP pool alterations are more mutagenic than others. As intracellular dNTP pools are mainly controlled by ribonucleotide reductase (RNR), and given the limited number of eukaryotic RNR mutations characterized so far, we screened for RNR1 mutations causing mutator phenotypes in Saccharomyces cerevisiae. We identified 24 rnr1 mutant alleles resulting in diverse mutator phenotypes linked in most cases to imbalanced dNTPs. Among the identified rnr1 alleles the strongest mutators presented a dNTP imbalance in which three out of the four dNTPs were elevated (dCTP, dTTP and dGTP), particularly if dGTP levels were highly increased. These rnr1 alleles caused growth defects/lethality in DNA replication fidelity-compromised backgrounds, and caused strong mutator phenotypes even in the presence of functional DNA polymerases and mismatch repair. In summary, this study pinpoints key residues that contribute to allosteric regulation of RNR’s overall activity or substrate specificity. We propose a model that distinguishes between different dNTP pool alterations and provides a mechanistic explanation why certain dNTP imbalances are particularly detrimental.
Collapse
Affiliation(s)
- Tobias T Schmidt
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden
| | - Gloria X Reyes
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Kerstin Gries
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Maike Gross
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| | - Boyu Zhao
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany.,Faculty of Bioscience, Heidelberg University, Heidelberg D-69120, Germany
| | - Jui-Hung Yuan
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany
| | - Rebecca Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg D-69118, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg D-69120, Germany.,Center for Molecular Biology of the University of Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg D-69120, Germany
| | - Andrei Chabes
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå SE-901 87 Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå SE-901 87, Sweden
| | - Hans Hombauer
- DNA Repair Mechanisms and Cancer, German Cancer Research Center (DKFZ), Heidelberg D-69120, Germany
| |
Collapse
|
9
|
Oluwajuyitan TD, Ijarotimi OS. Nutritional, antioxidant, glycaemic index and Antihyperglycaemic properties of improved traditional plantain-based ( Musa AAB) dough meal enriched with tigernut ( Cyperus esculentus) and defatted soybean ( Glycine max) flour for diabetic patients. Heliyon 2019; 5:e01504. [PMID: 31025013 PMCID: PMC6475862 DOI: 10.1016/j.heliyon.2019.e01504] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/23/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022] Open
Abstract
The study aimed at determining nutritional, antioxidant and blood glucose lowering potentials of improved plantain-based dough meals enriched with defatted soybean and tigernut flour. The constituted dough meals [PSB (plantain 64.46, defatted soybean 35.54%), TNS (tigernut 59.83, defatted soybean 40.17%); PTS (plantain 51.07, tigernut, 11.50, defatted soybean, 37.43%); TNT (100% tigernuts); PLT (100% plantain) and CNT (a commercial flour)] were evaluated for nutritional, antioxidant and blood glucose concentration in streptozotocin-induced diabetics rats. The improved dough meals contained appreciable amount of protein, energy value, and high in antioxidative activity than PLT. Blood glucose reducing potential of improved plantain-based dough meals (60.5-71.9%) in streptozotocin-induced diabetic rats was higher than PLT, but comparable to acarbose (anti-diabetic drug) (69%). The present study established that improved traditional plantain-based dough meals (particularly PTS) was high in essential nutrients, antioxidative activities, and blood glucose reducing potentials. Hence, the dough-meals may be suitable for diabetes management.
Collapse
|
10
|
The Antibiotic Trimethoprim Displays Strong Mutagenic Synergy with 2-Aminopurine. Antimicrob Agents Chemother 2019; 63:AAC.01577-18. [PMID: 30509944 DOI: 10.1128/aac.01577-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/23/2018] [Indexed: 11/20/2022] Open
Abstract
We show that trimethoprim (TMP), an antibiotic in current use, displays a strong synergistic effect on mutagenesis in Escherichia coli when paired with the base analog 2-aminopurine (2AP), resulting in a 35-fold increase in mutation frequencies in the rpoB-Rifr system. Combination therapies are often employed both as antibiotic treatments and in cancer chemotherapy. However, mutagenic effects of these combinations are rarely examined. An analysis of the mutational spectra of TMP, 2AP, and their combination indicates that together they trigger a response via an alteration in deoxynucleoside triphosphate (dNTP) ratios that neither compound alone can trigger. A similar, although less strong, response is seen with the frameshift mutagen ICR191 and 2AP. These results underscore the need for testing the effects on mutagenesis of combinations of antibiotics and chemotherapeutics.
Collapse
|
11
|
The etiology of uracil residues in the Saccharomyces cerevisiae genomic DNA. Curr Genet 2018; 65:393-399. [PMID: 30328489 PMCID: PMC6420880 DOI: 10.1007/s00294-018-0895-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/11/2018] [Accepted: 10/13/2018] [Indexed: 11/29/2022]
Abstract
Non-canonical residue in DNA is a major and conserved source of genome instability. The appearance of uracil residues in DNA accompanies a significant mutagenic consequence and is regulated at multiple levels, from the concentration of available dUTP in the nucleotide pool to the excision repair for removal from DNA. Recently, an interesting phenomenon of transcription-associated elevation in uracil-derived mutations was described in Saccharomyces cerevisiae genome. While trying to understand the variability in mutagenesis, we uncovered that the frequency of uracil incorporation into DNA can vary depending on the transcription rate and that the non-replicative, repair-associated DNA synthesis underlies the higher uracil density of the actively transcribed genomic loci. This novel mechanism brings together the chemical vulnerability of DNA under transcription and the uracil-associated mutagenesis, and has the potential to apply to other non-canonical residues of mutagenic importance.
Collapse
|
12
|
Mekuchi M, Asakura T, Sakata K, Yamaguchi T, Teruya K, Kikuchi J. Intestinal microbiota composition is altered according to nutritional biorhythms in the leopard coral grouper (Plectropomus leopardus). PLoS One 2018; 13:e0197256. [PMID: 29856743 PMCID: PMC5983564 DOI: 10.1371/journal.pone.0197256] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
Aquaculture is currently a major source of fish and has the potential to become a major source of protein in the future. These demands require efficient aquaculture. The intestinal microbiota plays an integral role that benefits the host, providing nutrition and modulating the immune system. Although our understanding of microbiota in fish gut has increased, comprehensive studies examining fish microbiota and host metabolism remain limited. Here, we investigated the microbiota and host metabolism in the coral leopard grouper, which is traded in Asian markets as a superior fish and has begun to be produced via aquaculture. We initially examined the structural changes of the gut microbiota using next-generation sequencing and found that the composition of microbiota changed between fasting and feeding conditions. The dominant phyla were Proteobacteria in fasting and Firmicutes in feeding; interchanging the dominant bacteria required 12 hours. Moreover, microbiota diversity was higher under feeding conditions than under fasting conditions. Multivariate analysis revealed that Proteobacteria are the key bacteria in fasting and Firmicutes and Fusobacteria are the key bacteria in feeding. Subsequently, we estimated microbiota functional capacity. Microbiota functional structure was relatively stable throughout the experiment; however, individual function activity changed according to feeding conditions. Taken together, these findings indicate that the gut microbiota could be a key factor to understanding fish feeding conditions and play a role in interactions with host metabolism. In addition, the composition of microbiota in ambient seawater directly affects the fish; therefore, it is important to monitor the microbiota in rearing tanks and seawater circulating systems.
Collapse
Affiliation(s)
- Miyuki Mekuchi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
- National Fishery Research Institute of Fishery Sciences, Fishery Research and Education Organization, Kanazawa-ku, Yokohama, Japan
| | - Taiga Asakura
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Kenji Sakata
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | | | | | - Jun Kikuchi
- RIKEN Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, Kanagawa, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa-ku, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
13
|
Miller JH. Mutagenesis: Interactions with a parallel universe. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 776:78-81. [PMID: 29807579 DOI: 10.1016/j.mrrev.2018.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/10/2018] [Indexed: 12/13/2022]
Abstract
Unexpected observations in mutagenesis research have led to a new perspective in this personal reflection based on years of studying mutagenesis. Many mutagens have been thought to operate via a single principal mechanism, with secondary effects usually resulting in only minor changes in the observed mutation frequencies and spectra. For example, we conceive of base analogs as resulting in direct mispairing as their main mechanism of mutagenesis. Recent studies now show that in fact even these simple mutagens can cause very large and unanticipated effects both in mutation frequencies and in the mutational spectra when used in certain pair-wise combinations. Here we characterize this leap in mutation frequencies as a transport to an alternate universe of mutagenesis.
Collapse
Affiliation(s)
- Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular, Biology Institute, and The David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
14
|
Roguev A, Ryan CJ, Hartsuiker E, Krogan NJ. High-Throughput Quantitative Genetic Interaction Mapping in the Fission Yeast Schizosaccharomyces pombe. Cold Spring Harb Protoc 2018; 2018:pdb.top079905. [PMID: 28733404 DOI: 10.1101/pdb.top079905] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epistasis mapping, in which the phenotype that emerges from combining pairs of mutations is measured quantitatively, is a powerful tool for unbiased study of gene function. When performed at a large scale, this approach has been used to assign function to previously uncharacterized genes, define functional modules and pathways, and study their cross talk. These experiments rely heavily on methods for rapid sampling of binary combinations of mutant alleles by systematic generation of a series of double mutants. Epistasis mapping technologies now exist in various model systems. Here we provide an overview of different epistasis mapping technologies, including the pombe epistasis mapper (PEM) system designed for the collection of quantitative genetic interaction data in fission yeast Schizosaccharomyces pombe Comprising a series of high-throughput selection steps for generation and characterization of double mutants, the PEM system has provided insight into a wide range of biological processes as well as facilitated evolutionary analysis of genetic interactomes across different species.
Collapse
Affiliation(s)
- Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94518
| | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Edgar Hartsuiker
- North West Cancer Research Institute, Bangor University, Bangor LL57 2UW, United Kingdom
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California 94518
| |
Collapse
|
15
|
Zhang S, Tang S, Tang C, Luo M, Jia G, Zhi H, Diao X. SiSTL2 Is Required for Cell Cycle, Leaf Organ Development, Chloroplast Biogenesis, and Has Effects on C 4 Photosynthesis in Setaria italica (L.) P. Beauv. FRONTIERS IN PLANT SCIENCE 2018; 9:1103. [PMID: 30105043 PMCID: PMC6077218 DOI: 10.3389/fpls.2018.01103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/09/2018] [Indexed: 05/20/2023]
Abstract
Deoxycytidine monophosphate deaminase (DCD) is a key enzyme in the de novo dTTP biosynthesis pathway. Previous studies have indicated that DCD plays key roles in the maintenance of the balance of dNTP pools, cell cycle progression, and plant development. However, few studies have elucidated the functions of the DCD gene in Panicoideae plants. Setaria has been proposed as an ideal model of Panicoideae grasses, especially for C4 photosynthesis research. Here, a Setaria italica stripe leaf mutant (sistl2) was isolated from EMS-induced lines of "Yugu1," the wild-type parent. The sistl2 mutant exhibited semi-dwarf, striped leaves, abnormal chloroplast ultrastructure, and delayed cell cycle progression compared with Yugu1. High-throughput sequencing and map-based cloning identified the causal gene SiSTL2, which encodes a DCD protein. The occurrence of a single-base G to A substitution in the fifth intron introduced alternative splicing, which led to the early termination of translation. Further physiological and transcriptomic investigation indicated that SiSTL2 plays an essential role in the regulation of chloroplast biogenesis, cell cycle, and DNA replication, which suggested that the gene has conserved functions in both foxtail millet and rice. Remarkably, in contrast to DCD mutants in C3 rice, sistl2 showed a significant reduction in leaf cell size and affected C4 photosynthetic capacity in foxtail millet. qPCR showed that SiSTL2 had a similar expression pattern to typical C4 genes in response to a low CO2 environment. Moreover, the loss of function of SiSTL2 resulted in a reduction of leaf 13C content and the enrichment of DEGs in photosynthetic carbon fixation. Our research provides in-depth knowledge of the role of DCD in the C4 photosynthesis model S. italica and proposed new directions for further study of the function of DCD.
Collapse
Affiliation(s)
- Shuo Zhang
- These authors have contributed equally to this work
| | - Sha Tang
- These authors have contributed equally to this work
| | | | | | | | - Hui Zhi
- *Correspondence: Hui Zhi, Xianmin Diao,
| | | |
Collapse
|
16
|
Niu M, Wang Y, Wang C, Lyu J, Wang Y, Dong H, Long W, Wang D, Kong W, Wang L, Guo X, Sun L, Hu T, Zhai H, Wang H, Wan J. ALR encoding dCMP deaminase is critical for DNA damage repair, cell cycle progression and plant development in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5773-5786. [PMID: 29186482 DOI: 10.1093/jxb/erx380] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Deoxycytidine monophosphate deaminase (dCMP deaminase, DCD) is crucial to the production of dTTP needed for DNA replication and damage repair. However, the effect of DCD deficiency and its molecular mechanism are poorly understood in plants. Here, we isolated and characterized a rice albinic leaf and growth retardation (alr) mutant that is manifested by albinic leaves, dwarf stature and necrotic lesions. Map-based cloning and complementation revealed that ALR encodes a DCD protein. OsDCD was expressed ubiquitously in all tissues. Enzyme activity assays showed that OsDCD catalyses conversion of dCMP to dUMP, and the ΔDCD protein in the alr mutant is a loss-of-function protein that lacks binding ability. We report that alr plants have typical DCD-mediated imbalanced dNTP pools with decreased dTTP; exogenous dTTP recovers the wild-type phenotype. A comet assay and Trypan Blue staining showed that OsDCD deficiency causes accumulation of DNA damage in the alr mutant, sometimes leading to cell apoptosis. Moreover, OsDCD deficiency triggered cell cycle checkpoints and arrested cell progression at the G1/S-phase. The expression of nuclear and plastid genome replication genes was down-regulated under decreased dTTP, and together with decreased cell proliferation and defective chloroplast development in the alr mutant this demonstrated the molecular and physiological roles of DCD-mediated dNTP pool balance in plant development.
Collapse
Affiliation(s)
- Mei Niu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Jia Lyu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Hui Dong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Di Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Weiyi Kong
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Liwei Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Xiuping Guo
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Liting Sun
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Tingting Hu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
| | - Huqu Zhai
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Haiyang Wang
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, China
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, China
| |
Collapse
|
17
|
Multi-BRCT Domain Protein Brc1 Links Rhp18/Rad18 and γH2A To Maintain Genome Stability during S Phase. Mol Cell Biol 2017; 37:MCB.00260-17. [PMID: 28784724 DOI: 10.1128/mcb.00260-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/04/2017] [Indexed: 12/17/2022] Open
Abstract
DNA replication involves the inherent risk of genome instability, since replisomes invariably encounter DNA lesions or other structures that stall or collapse replication forks during the S phase. In the fission yeast Schizosaccharomyces pombe, the multi-BRCT domain protein Brc1, which is related to budding yeast Rtt107 and mammalian PTIP, plays an important role in maintaining genome integrity and cell viability when cells experience replication stress. The C-terminal pair of BRCT domains in Brc1 were previously shown to bind phosphohistone H2A (γH2A) formed by Rad3/ATR checkpoint kinase at DNA lesions; however, the putative scaffold interactions involving the N-terminal BRCT domains 1 to 4 of Brc1 have remained obscure. Here, we show that these domains bind Rhp18/Rad18, which is an E3 ubiquitin protein ligase that has crucial functions in postreplication repair. A missense allele in BRCT domain 4 of Brc1 disrupts binding to Rhp18 and causes sensitivity to replication stress. Brc1 binding to Rhp18 and γH2A are required for the Brc1 overexpression suppression of smc6-74, a mutation that impairs the Smc5/6 structural maintenance of chromosomes complex required for chromosome integrity and repair of collapsed replication forks. From these findings, we propose that Brc1 provides scaffolding functions linking γH2A, Rhp18, and Smc5/6 complex at damaged replication forks.
Collapse
|
18
|
Sanchez A, Gadaleta MC, Limbo O, Russell P. Lingering single-strand breaks trigger Rad51-independent homology-directed repair of collapsed replication forks in the polynucleotide kinase/phosphatase mutant of fission yeast. PLoS Genet 2017; 13:e1007013. [PMID: 28922417 PMCID: PMC5626526 DOI: 10.1371/journal.pgen.1007013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 10/03/2017] [Accepted: 09/08/2017] [Indexed: 11/19/2022] Open
Abstract
The DNA repair enzyme polynucleotide kinase/phosphatase (PNKP) protects genome integrity by restoring ligatable 5'-phosphate and 3'-hydroxyl termini at single-strand breaks (SSBs). In humans, PNKP mutations underlie the neurological disease known as MCSZ, but these individuals are not predisposed for cancer, implying effective alternative repair pathways in dividing cells. Homology-directed repair (HDR) of collapsed replication forks was proposed to repair SSBs in PNKP-deficient cells, but the critical HDR protein Rad51 is not required in PNKP-null (pnk1Δ) cells of Schizosaccharomyces pombe. Here, we report that pnk1Δ cells have enhanced requirements for Rad3 (ATR/Mec1) and Chk1 checkpoint kinases, and the multi-BRCT domain protein Brc1 that binds phospho-histone H2A (γH2A) at damaged replication forks. The viability of pnk1Δ cells depends on Mre11 and Ctp1 (CtIP/Sae2) double-strand break (DSB) resection proteins, Rad52 DNA strand annealing protein, Mus81-Eme1 Holliday junction resolvase, and Rqh1 (BLM/WRN/Sgs1) DNA helicase. Coupled with increased sister chromatid recombination and Rad52 repair foci in pnk1Δ cells, these findings indicate that lingering SSBs in pnk1Δ cells trigger Rad51-independent homology-directed repair of collapsed replication forks. From these data, we propose models for HDR-mediated tolerance of persistent SSBs with 3' phosphate in pnk1Δ cells.
Collapse
Affiliation(s)
- Arancha Sanchez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Mariana C. Gadaleta
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Oliver Limbo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Paul Russell
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Alterations in cellular metabolism triggered by URA7 or GLN3 inactivation cause imbalanced dNTP pools and increased mutagenesis. Proc Natl Acad Sci U S A 2017; 114:E4442-E4451. [PMID: 28416670 DOI: 10.1073/pnas.1618714114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eukaryotic DNA replication fidelity relies on the concerted action of DNA polymerase nucleotide selectivity, proofreading activity, and DNA mismatch repair (MMR). Nucleotide selectivity and proofreading are affected by the balance and concentration of deoxyribonucleotide (dNTP) pools, which are strictly regulated by ribonucleotide reductase (RNR). Mutations preventing DNA polymerase proofreading activity or MMR function cause mutator phenotypes and consequently increased cancer susceptibility. To identify genes not previously linked to high-fidelity DNA replication, we conducted a genome-wide screen in Saccharomyces cerevisiae using DNA polymerase active-site mutants as a "sensitized mutator background." Among the genes identified in our screen, three metabolism-related genes (GLN3, URA7, and SHM2) have not been previously associated to the suppression of mutations. Loss of either the transcription factor Gln3 or inactivation of the CTP synthetase Ura7 both resulted in the activation of the DNA damage response and imbalanced dNTP pools. Importantly, these dNTP imbalances are strongly mutagenic in genetic backgrounds where DNA polymerase function or MMR activity is partially compromised. Previous reports have shown that dNTP pool imbalances can be caused by mutations altering the allosteric regulation of enzymes involved in dNTP biosynthesis (e.g., RNR or dCMP deaminase). Here, we provide evidence that mutations affecting genes involved in RNR substrate production can cause dNTP imbalances, which cannot be compensated by RNR or other enzymatic activities. Moreover, Gln3 inactivation links nutrient deprivation to increased mutagenesis. Our results suggest that similar genetic interactions could drive mutator phenotypes in cancer cells.
Collapse
|
20
|
Leija C, Rijo-Ferreira F, Kinch LN, Grishin NV, Nischan N, Kohler JJ, Hu Z, Phillips MA. Pyrimidine Salvage Enzymes Are Essential for De Novo Biosynthesis of Deoxypyrimidine Nucleotides in Trypanosoma brucei. PLoS Pathog 2016; 12:e1006010. [PMID: 27820863 PMCID: PMC5098729 DOI: 10.1371/journal.ppat.1006010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023] Open
Abstract
The human pathogenic parasite Trypanosoma brucei possess both de novo and salvage routes for the biosynthesis of pyrimidine nucleotides. Consequently, they do not require salvageable pyrimidines for growth. Thymidine kinase (TK) catalyzes the formation of dTMP and dUMP and is one of several salvage enzymes that appear redundant to the de novo pathway. Surprisingly, we show through analysis of TK conditional null and RNAi cells that TK is essential for growth and for infectivity in a mouse model, and that a catalytically active enzyme is required for its function. Unlike humans, T. brucei and all other kinetoplastids lack dCMP deaminase (DCTD), which provides an alternative route to dUMP formation. Ectopic expression of human DCTD resulted in full rescue of the RNAi growth phenotype and allowed for selection of viable TK null cells. Metabolite profiling by LC-MS/MS revealed a buildup of deoxypyrimidine nucleosides in TK depleted cells. Knockout of cytidine deaminase (CDA), which converts deoxycytidine to deoxyuridine led to thymidine/deoxyuridine auxotrophy. These unexpected results suggested that T. brucei encodes an unidentified 5'-nucleotidase that converts deoxypyrimidine nucleotides to their corresponding nucleosides, leading to their dead-end buildup in TK depleted cells at the expense of dTTP pools. Bioinformatics analysis identified several potential candidate genes that could encode 5'-nucleotidase activity including an HD-domain protein that we show catalyzes dephosphorylation of deoxyribonucleotide 5'-monophosphates. We conclude that TK is essential for synthesis of thymine nucleotides regardless of whether the nucleoside precursors originate from the de novo pathway or through salvage. Reliance on TK in the absence of DCTD may be a shared vulnerability among trypanosomatids and may provide a unique opportunity to selectively target a diverse group of pathogenic single-celled eukaryotes with a single drug.
Collapse
Affiliation(s)
- Christopher Leija
- Department of Pharmacology University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Filipa Rijo-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Department of Neuroscience, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Lisa N. Kinch
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Nick V. Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jennifer J. Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Zeping Hu
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Margaret A. Phillips
- Department of Pharmacology University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| |
Collapse
|
21
|
Mutagen Synergy: Hypermutability Generated by Specific Pairs of Base Analogs. J Bacteriol 2016; 198:2776-83. [PMID: 27457718 DOI: 10.1128/jb.00391-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 01/21/2023] Open
Abstract
UNLABELLED We tested pairwise combinations of classical base analog mutagens in Escherichia coli to study possible mutagen synergies. We examined the cytidine analogs zebularine (ZEB) and 5-azacytidine (5AZ), the adenine analog 2-aminopurine (2AP), and the uridine/thymidine analog 5-bromodeoxyuridine (5BrdU). We detected a striking synergy with the 2AP plus ZEB combination, resulting in hypermutability, a 35-fold increase in mutation frequency (to 53,000 × 10(-8)) in the rpoB gene over that with either mutagen alone. A weak synergy was also detected with 2AP plus 5AZ and with 5BrdU plus ZEB. The pairing of 2AP and 5BrdU resulted in suppression, lowering the mutation frequency of 5BrdU alone by 6.5-fold. Sequencing the mutations from the 2AP plus ZEB combination showed the predominance of two new hot spots for A·T→G·C transitions that are not well represented in either single mutagen spectrum, and one of which is not found even in the spectrum of a mismatch repair-deficient strain. The strong synergy between 2AP and ZEB could be explained by changes in the dinucleoside triphosphate (dNTP) pools. IMPORTANCE Although mutagens have been widely studied, the mutagenic effects of combinations of mutagens have not been fully researched. Here, we show that certain pairwise combinations of base analog mutagens display synergy or suppression. In particular, the combination of 2-aminopurine and zebularine, analogs of adenine and cytidine, respectively, shows a 35-fold increased mutation frequency compared with that of either mutagen alone. Understanding the mechanism of synergy can lead to increased understanding of mutagenic processes. As combinations of base analogs are used in certain chemotherapy regimens, including those involving ZEB and 5AZ, these results indicate that testing the mutagenicity of all drug combinations is prudent.
Collapse
|
22
|
Danilova N, Gazda HT. Ribosomopathies: how a common root can cause a tree of pathologies. Dis Model Mech 2016; 8:1013-26. [PMID: 26398160 PMCID: PMC4582105 DOI: 10.1242/dmm.020529] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Defects in ribosome biogenesis are associated with a group of diseases called the ribosomopathies, of which Diamond-Blackfan anemia (DBA) is the most studied. Ribosomes are composed of ribosomal proteins (RPs) and ribosomal RNA (rRNA). RPs and multiple other factors are necessary for the processing of pre-rRNA, the assembly of ribosomal subunits, their export to the cytoplasm and for the final assembly of subunits into a ribosome. Haploinsufficiency of certain RPs causes DBA, whereas mutations in other factors cause various other ribosomopathies. Despite the general nature of their underlying defects, the clinical manifestations of ribosomopathies differ. In DBA, for example, red blood cell pathology is especially evident. In addition, individuals with DBA often have malformations of limbs, the face and various organs, and also have an increased risk of cancer. Common features shared among human DBA and animal models have emerged, such as small body size, eye defects, duplication or overgrowth of ectoderm-derived structures, and hematopoietic defects. Phenotypes of ribosomopathies are mediated both by p53-dependent and -independent pathways. The current challenge is to identify differences in response to ribosomal stress that lead to specific tissue defects in various ribosomopathies. Here, we review recent findings in this field, with a particular focus on animal models, and discuss how, in some cases, the different phenotypes of ribosomopathies might arise from differences in the spatiotemporal expression of the affected genes. Summary: This paper reviews recent data on Diamond Blackfan anemia and discusses them in connection with other ribosomopathies.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Hanna T Gazda
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA 02115, USA Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA Broad Institute, Cambridge, MA 02142, USA
| |
Collapse
|
23
|
Comparing mutation rates under the Luria–Delbrück protocol. Genetica 2016; 144:351-9. [DOI: 10.1007/s10709-016-9904-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022]
|
24
|
Trading in cooperativity for specificity to maintain uracil-free DNA. Sci Rep 2016; 6:24219. [PMID: 27063406 PMCID: PMC4827122 DOI: 10.1038/srep24219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/22/2016] [Indexed: 11/21/2022] Open
Abstract
Members of the dUTPase superfamily play an important role in the maintenance of the pyrimidine nucleotide balance and of genome integrity. dCTP deaminases and the bifunctional dCTP deaminase-dUTPases are cooperatively regulated by dTTP. However, the manifestation of allosteric behavior within the same trimeric protein architecture of dUTPases, the third member of the superfamily, has been a question of debate for decades. Therefore, we designed hybrid dUTPase trimers to access conformational states potentially mimicking the ones observed in the cooperative relatives. We studied how the interruption of different steps of the enzyme cycle affects the active site cross talk. We found that subunits work independently in dUTPase. The experimental results combined with a comparative structural analysis of dUTPase superfamily enzymes revealed that subtile structural differences within the allosteric loop and the central channel in these enzymes give rise to their dramatically different cooperative behavior. We demonstrate that the lack of allosteric regulation in dUTPase is related to the functional adaptation to more efficient dUTP hydrolysis which is advantageous in uracil-DNA prevention.
Collapse
|
25
|
Tse L, Kang TM, Yuan J, Mihora D, Becket E, Maslowska KH, Schaaper RM, Miller JH. Extreme dNTP pool changes and hypermutability in dcd ndk strains. Mutat Res 2015; 784-785:16-24. [PMID: 26789486 DOI: 10.1016/j.mrfmmm.2015.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/10/2015] [Accepted: 12/17/2015] [Indexed: 11/16/2022]
Abstract
Cells lacking deoxycytidine deaminase (DCD) have been shown to have imbalances in the normal dNTP pools that lead to multiple phenotypes, including increased mutagenesis, increased sensitivity to oxidizing agents, and to a number of antibiotics. In particular, there is an increased dCTP pool, often accompanied by a decreased dTTP pool. In the work presented here, we show that double mutants of Escherichia coli lacking both DCD and NDK (nucleoside diphosphate kinase) have even more extreme imbalances of dNTPs than mutants lacking only one or the other of these enzymes. In particular, the dCTP pool rises to very high levels, exceeding even the cellular ATP level by several-fold. This increased level of dCTP, coupled with more modest changes in other dNTPs, results in exceptionally high mutation levels. The high mutation levels are attenuated by the addition of thymidine. The results corroborate the critical importance of controlling DNA precursor levels for promoting genome stability. We also show that the addition of certain exogenous nucleosides can influence replication errors in DCD-proficient strains that are deficient in mismatch repair.
Collapse
Affiliation(s)
- Lawrence Tse
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Tina Manzhu Kang
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Jessica Yuan
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Danielle Mihora
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Elinne Becket
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States
| | - Katarzyna H Maslowska
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Roel M Schaaper
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, United States
| | - Jeffrey H Miller
- Department of Microbiology, Immunology, and Molecular Genetics, The Molecular Biology Institute, University of California and the David Geffen School of Medicine, Los Angeles, CA 90095, United States.
| |
Collapse
|
26
|
Xu J, Zhang L, Yang DL, Li Q, He Z. Thymidine kinases share a conserved function for nucleotide salvage and play an essential role in Arabidopsis thaliana growth and development. THE NEW PHYTOLOGIST 2015; 208:1089-1103. [PMID: 26139575 DOI: 10.1111/nph.13530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/23/2015] [Indexed: 06/04/2023]
Abstract
Thymidine kinases (TKs) are important components in the nucleotide salvage pathway. However, knowledge about plant TKs is quite limited. In this study, the molecular function of TKs in Arabidopsis thaliana was investigated. Two TKs were identified and named AtTK1 and AtTK2. Expression of both genes was ubiquitous, but AtTK1 was strongly expressed in high-proliferation tissues. AtTK1 was localized to the cytosol, whereas AtTK2 was localized to the mitochondria. Mutant analysis indicated that the two genes function coordinately to sustain normal plant development. Enzymatic assays showed that the two TK proteins shared similar catalytic specificity for pyrimidine nucleosides. They were able to complement an Escherichia coli strain lacking TK activity. 5'-Fluorodeoxyuridine (FdU) resistance and 5-ethynyl 2'-deoxyuridine (EdU) incorporation assays confirmed their activity in vivo. Furthermore, the tk mutant phenotype could be alleviated by nucleotide feeding, establishing that the biosynthesis of pyrimidine nucleotides was disrupted by the TK deficiency. Finally, both human and rice (Oryza sativa) TKs were able to rescue the tk mutants, demonstrating the functional conservation of TKs across organisms. Taken together, our findings clarify the specialized function of two TKs in A. thaliana and establish that the salvage pathway mediated by the kinases is essential for plant growth and development.
Collapse
Affiliation(s)
- Jing Xu
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Lin Zhang
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Dong-Lei Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qun Li
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics and National Center of Plant Gene Research, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
27
|
Managing Single-Stranded DNA during Replication Stress in Fission Yeast. Biomolecules 2015; 5:2123-39. [PMID: 26393661 PMCID: PMC4598791 DOI: 10.3390/biom5032123] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/27/2023] Open
Abstract
Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts) mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron) causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.
Collapse
|
28
|
Sánchez A, Russell P. Ku stabilizes replication forks in the absence of Brc1. PLoS One 2015; 10:e0126598. [PMID: 25965521 PMCID: PMC4428774 DOI: 10.1371/journal.pone.0126598] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/05/2015] [Indexed: 11/21/2022] Open
Abstract
DNA replication errors are a major source of genome instability in all organisms. In the fission yeast Schizosaccharomyces pombe, the DNA damage response protein Brc1 binds phospho-histone H2A (γH2A)-marked chromatin during S-phase, but how Brc1 protects genome integrity remains unclear. Here we report that the non-homologous end-joining (NHEJ) protein Ku becomes critical for survival of replication stress in brc1∆ cells. Ku’s protective activity in brc1∆ cells does not involve its canonical NHEJ function or its roles in protecting telomeres or shielding DNA ends from Exo1 exonuclease. In brc1∆ pku80∆ cells, nuclear foci of Rad52 homologous recombination (HR) protein increase and Mus81-Eme1 Holliday junction resolvase becomes critical, indicating increased replication fork instability. Ku’s localization at a ribosomal DNA replication fork barrier associated with frequent replisome-transcriptosome collisions increases in brc1∆ cells and increased collisions correlate with an enhanced requirement for Brc1. These data indicate that Ku stabilizes replication forks in the absence of Brc1.
Collapse
Affiliation(s)
- Arancha Sánchez
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Paul Russell
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
29
|
Genetic Interaction Landscape Reveals Critical Requirements for Schizosaccharomyces pombe Brc1 in DNA Damage Response Mutants. G3-GENES GENOMES GENETICS 2015; 5:953-62. [PMID: 25795664 PMCID: PMC4426379 DOI: 10.1534/g3.115.017251] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brc1, which was first identified as a high-copy, allele-specific suppressor of a mutation impairing the Smc5-Smc6 holocomplex in Schizosaccharomyces pombe, protects genome integrity during normal DNA replication and when cells are exposed to toxic compounds that stall or collapse replication forks. The C-terminal tandem BRCT (BRCA1 C-terminus) domain of fission yeast Brc1 docks with phosphorylated histone H2A (γH2A)-marked chromatin formed by ATR/Rad3 checkpoint kinase at arrested and damaged replication forks; however, how Brc1 functions in relation to other genome protection modules remains unclear. Here, an epistatic mini-array profile reveals critical requirements for Brc1 in mutants that are defective in multiple DNA damage response pathways, including checkpoint signaling by Rad3-Rad26/ATR-ATRIP kinase, DNA repair by Smc5-Smc6 holocomplex, replication fork stabilization by Mrc1/claspin and Swi1-Swi3/Timeless-Tipin, and control of ubiquitin-regulated proteolysis by the COP9 signalosome (CSN). Exogenous genotoxins enhance these negative genetic interactions. Rad52 and RPA foci are increased in CSN-defective cells, and loss of γH2A increases genotoxin sensitivity, indicating a critical role for the γH2A-Brc1 module in stabilizing replication forks in CSN-defective cells. A negative genetic interaction with the Nse6 subunit of Smc5-Smc6 holocomplex indicates that the DNA repair functions of Brc1 and Smc5-Smc6 holocomplex are at least partially independent. Rtt107, the Brc1 homolog in Saccharomyces cerevisiae, has a very different pattern of genetic interactions, indicating evolutionary divergence of functions and DNA damage responses.
Collapse
|
30
|
Mathews CK. Deoxyribonucleotides as genetic and metabolic regulators. FASEB J 2014; 28:3832-40. [PMID: 24928192 DOI: 10.1096/fj.14-251249] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/02/2014] [Indexed: 01/12/2023]
Abstract
For >35 yr, we have known that the accuracy of DNA replication is controlled in large part by the relative concentrations of the 4 canonical deoxyribonucleoside 5'-triphosphates (dNTPs) at the replisome. Since this field was last reviewed, ∼8 yr ago, there has been increased understanding of the mutagenic pathways as they occur in living cells. At the same time, aspects of deoxyribonucleotide metabolism have been shown to be critically involved in processes as diverse as cell cycle control, protooncogene expression, cellular defense against HIV infection, replication rate control, telomere length control, and mitochondrial function. Evidence supports a relationship between dNTP pools and microsatellite repeat instability. Relationships between dNTP synthesis and breakdown in controlling steady-state pools have become better defined. In addition, new experimental approaches have allowed definitive analysis of mutational pathways induced by dNTP pool abnormalities, both in Escherichia coli and in yeast. Finally, ribonucleoside triphosphate (rNTP) pools have been shown to be critical determinants of DNA replication fidelity. These developments are discussed in this review article.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
31
|
Danilova N, Bibikova E, Covey TM, Nathanson D, Dimitrova E, Konto Y, Lindgren A, Glader B, Radu CG, Sakamoto KM, Lin S. The role of the DNA damage response in zebrafish and cellular models of Diamond Blackfan anemia. Dis Model Mech 2014; 7:895-905. [PMID: 24812435 PMCID: PMC4073278 DOI: 10.1242/dmm.015495] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Ribosomal biogenesis involves the processing of pre-ribosomal RNA. A deficiency of some ribosomal proteins (RPs) impairs processing and causes Diamond Blackfan anemia (DBA), which is associated with anemia, congenital malformations and cancer. p53 mediates many features of DBA, but the mechanism of p53 activation remains unclear. Another hallmark of DBA is the upregulation of adenosine deaminase (ADA), indicating changes in nucleotide metabolism. In RP-deficient zebrafish, we found activation of both nucleotide catabolism and biosynthesis, which is consistent with the need to break and replace the faulty ribosomal RNA. We also found upregulation of deoxynucleotide triphosphate (dNTP) synthesis - a typical response to replication stress and DNA damage. Both RP-deficient zebrafish and human hematopoietic cells showed activation of the ATR/ATM-CHK1/CHK2/p53 pathway. Other features of RP deficiency included an imbalanced dNTP pool, ATP depletion and AMPK activation. Replication stress and DNA damage in cultured cells in non-DBA models can be decreased by exogenous nucleosides. Therefore, we treated RP-deficient zebrafish embryos with exogenous nucleosides and observed decreased activation of p53 and AMPK, reduced apoptosis, and rescue of hematopoiesis. Our data suggest that the DNA damage response contributes to p53 activation in cellular and zebrafish models of DBA. Furthermore, the rescue of RP-deficient zebrafish with exogenous nucleosides suggests that nucleoside supplements could be beneficial in the treatment of DBA.
Collapse
Affiliation(s)
- Nadia Danilova
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA.
| | - Elena Bibikova
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA
| | - Todd M Covey
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA
| | - David Nathanson
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Elizabeth Dimitrova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Yoan Konto
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA
| | - Anne Lindgren
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Bertil Glader
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA
| | - Caius G Radu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA
| | - Kathleen M Sakamoto
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA
| | - Shuo Lin
- Department of Molecular, Cell & Developmental Biology, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Wu D, Chen L, Sun Q, Wu X, Jia S, Meng A. Uracil-DNA glycosylase is involved in DNA demethylation and required for embryonic development in the zebrafish embryo. J Biol Chem 2014; 289:15463-73. [PMID: 24739389 PMCID: PMC4140902 DOI: 10.1074/jbc.m114.561019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Uracil-DNA glycosylase (Ung) is a component of the base excision repair process and has the ability to remove uracil from U:G mispairs in DNA. However, its implications in development of vertebrate embryos are poorly understood. In this study, we found that zebrafish uracil-DNA glycosylase a (Unga) is maternally expressed at high levels and accumulated in nuclei during cleavage and blastulation periods. Knockdown of unga in zebrafish embryos causes an increase of the global DNA methylation level concomitantly with a reduction of overall transcriptional activity in the nucleus, ultimately resulting in embryonic lethality during segmentation period. Conversely, unga overexpression is sufficient to reduce the global DNA methylation level, to increase H3K4me3 and H3K27me3 marks, and to activate genome transcription. Furthermore, overexpression of unga(D132A) mRNA, encoding a mutant Unga without DNA glycosylase activity, does not affect global DNA methylation level, indicating that its involvement in DNA demethylation is dependent on its glycosylase activity. These results together suggest that Unga is implicated in postfertilization genomic DNA demethylation, zygotic gene transcription, and normal embryonic development in zebrafish.
Collapse
Affiliation(s)
- Di Wu
- From the State-Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Luxi Chen
- From the State-Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qingrui Sun
- From the State-Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaotong Wu
- From the State-Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Shunji Jia
- From the State-Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anming Meng
- From the State-Key Laboratory of Biomembrane and Membrane Engineering, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
33
|
Deoxycytidine deaminase-deficient Escherichia coli strains display acute sensitivity to cytidine, adenosine, and guanosine and increased sensitivity to a range of antibiotics, including vancomycin. J Bacteriol 2014; 196:1950-7. [PMID: 24633874 DOI: 10.1128/jb.01383-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show here that deoxycytidine deaminase (DCD)-deficient mutants of Escherichia coli are hypersensitive to killing by exogenous cytidine, adenosine, or guanosine, whereas wild-type cells are not. This hypersensitivity is reversed by exogenous thymidine. The mechanism likely involves the allosteric regulation of ribonucleotide reductase and severe limitations of the dTTP pools, resulting in thymineless death, the phenomenon of cell death due to thymidine starvation. We also report here that DCD-deficient mutants of E. coli are more sensitive to a series of different antibiotics, including vancomycin, and we show synergistic killing with the combination of vancomycin and cytidine. One possibility is that a very low, subinhibitory concentration of vancomycin enters Gram-negative cells and that this concentration is potentiated by chromosomal lesions resulting from the thymineless state. A second possibility is that the metabolic imbalance resulting from DCD deficiency affects the assembly of the outer membrane, which normally presents a barrier to drugs such as vancomycin. We consider these findings with regard to ideas of rendering Gram-negative bacteria sensitive to drugs such as vancomycin.
Collapse
|
34
|
Abstract
Nucleoside analogs are frequently used to label newly synthesized DNA. These analogs are toxic in many cells, with the exception of the budding yeast. We show that Schizosaccharomyces pombe behaves similarly to metazoans in response to analogs 5-bromo-2'-deoxyuridine (BrdU) and 5-ethynyl-2'-deoxyuridine (EdU). Incorporation causes DNA damage that activates the damage checkpoint kinase Chk1 and sensitizes cells to UV light and other DNA-damaging drugs. Replication checkpoint mutant cds1Δ shows increased DNA damage response after exposure. Finally, we demonstrate that the response to BrdU is influenced by the ribonucleotide reductase inhibitor, Spd1, suggesting that BrdU causes dNTP pool imbalance in fission yeast, as in metazoans. Consistent with this, we show that excess thymidine induces G1 arrest in wild-type fission yeast expressing thymidine kinase. Thus, fission yeast responds to nucleoside analogs similarly to mammalian cells, which has implications for their use in replication and damage research, as well as for dNTP metabolism.
Collapse
|