1
|
Sun J, Liu HR, Zhu YX, Zhang W, Shi JS, Wu Q, Xu RX. Dendrobium nobile Lindl. alkaloids improve lipid metabolism by increasing LDL uptake through regulation of the LXRα/IDOL/LDLR pathway and inhibition of PCSK9 expression in HepG2 cells. Exp Ther Med 2025; 29:46. [PMID: 39885913 PMCID: PMC11775753 DOI: 10.3892/etm.2025.12796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 10/11/2024] [Indexed: 02/01/2025] Open
Abstract
Dendrobium nobile Lindl. alkaloids (DNLA) are active ingredients that can be extracted from the traditional Chinese herb Dendrobium Nobile Lindl. DNLA exhibits hypoglycemic and antihyperlipidemia effects. However, to the best of our knowledge, the specific molecular mechanism by which DNLA can regulate lipid metabolism remains unclear. The aim of the present study was to investigate the effect of DNLA on lipopolysaccharide (LPS)-induced lipid metabolism in HepG2 cells and its potential mechanism. HepG2 cells were treated with LPS with or without different concentrations of DNLA (0, 0.035, 0.35 and 3.5 µg/ml) for 48 h. Cell viability was then detected using the Cell Counting Kit-8 assay. The 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanideperchlorate-low-density lipoprotein (LDL) uptake assay was used to examine LDL uptake. In addition, possible mechanisms were explored using western blot analysis. The effect of the combination of DNLA with rosuvastatin calcium on the expression levels of the LDL receptor (LDLR) and proprotein convertase subtilisin/Kexin type 9 (PCSK9) was examined. The results indicated that LPS stimulation reduced the uptake of LDL by HepG2 cells, decreased the intracellular LDLR content, and increased the expression levels of inducible degrader of the LDLR (IDOL) and liver X receptor (LXR)α. DNLA intervention reversed all of the aforementioned LPS-induced effects in HepG2 cells. Additional mechanistic experiments revealed that DNLA exerted its effects mainly by regulating the LXRα/IDOL/LDLR pathway. It was shown that DNLA also reduced the expression levels of PCSK9, sterol regulatory element binding protein 2 and hepatocyte nuclear factor 1α. In addition, DNLA decreased the expression levels of PCSK9 in rosuvastatin calcium-induced HepG2 cells. Notably, DNLA was able to decrease 3-hydroxy-3-methylglutaryl-coenzyme A reductase and increase cytochrome p450 7A1 expression at the protein level, which are rate-limiting enzymes in cholesterol synthesis and metabolism. Collectively, these data suggested that DNLA could enhance LDL uptake of HepG2 cells by increasing LDLR expression through the LXRα/IDOL/LDLR pathway to alleviate the effects induced by LPS, suggesting the potential benefit of DNLA in improving lipid metabolism disorders.
Collapse
Affiliation(s)
- Jian Sun
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Hao-Rui Liu
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Ya-Xin Zhu
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Wei Zhang
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Jing-Shan Shi
- Cardiometabolic Center, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, P.R. China
| | - Qin Wu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| | - Rui-Xia Xu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou 563006, P.R. China
| |
Collapse
|
2
|
Wang W, Chen X, Chen J, Xu M, Liu Y, Yang S, Zhao W, Tan S. Engineering lentivirus envelope VSV-G for liver targeted delivery of IDOL-shRNA to ameliorate hypercholesterolemia and atherosclerosis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102115. [PMID: 38314097 PMCID: PMC10835450 DOI: 10.1016/j.omtn.2024.102115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
Lentiviral vectors (LVs) have been widely used as a tool for gene therapies. However, tissue-selective transduction after systemic delivery remains a challenge. Inducible degrader of low-density lipoprotein receptor is an attractive target for treating hypercholesterolemia. Here, a liver-targeted LV, CS8-LV-shIDOL, is developed by incorporating a hepatocyte-targeted peptide derived from circumsporozoite protein (CSP) into the lentivirus envelope for liver-targeted delivery of IDOL-shRNA (short hairpin RNA) to alleviate hypercholesterolemia. Tail-vein injection of CS8-LV-shIDOL results in extremely high accumulation in liver and nearly undetectable levels in other organs in mice. In addition, it shows superior therapeutic efficacy in lowering serum low-density lipoprotein cholesterol (LDL-C) and reducing atherosclerotic lesions over unmodified LV-shIDOL in hyperlipidemic mice. Mechanically, the envelope-engineered CS8-LV-shIDOL can enter liver cells via low-density lipoprotein receptor-related protein (LRP). Thus, this study provides a novel approach for liver-targeted delivery of IDOL-shRNA to treat hypercholesterolemia by using an envelope-engineered LV, and this delivery system has great potential for liver-targeted transgene therapy.
Collapse
Affiliation(s)
- Wei Wang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Xuemei Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Jiali Chen
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Menglong Xu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Ying Liu
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Shijie Yang
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Wenfeng Zhao
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Shuhua Tan
- Department of Cell and Molecular Biology, School of Life Science and Technology, State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Huang Y, Liu FY, Yang JT, Zhao Q, Zhu MQ, Wang J, Long SY, Tuo QH, Zhang CP, Lin LM, Liao DF. Curcumin nicotinate increases LDL cholesterol uptake in hepatocytes through IDOL/LDL-R pathway regulation. Eur J Pharmacol 2024; 966:176352. [PMID: 38290567 DOI: 10.1016/j.ejphar.2024.176352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Curcumin nicotinate (Curtn), derived from curcumin and niacin, reduces serum LDL-C levels, partly due to its influence on PCSK9. This study investigates IDOL's role in Curtn's lipid-lowering effects. OBJECTIVE To elucidate Curtn's regulation of the IDOL/LDLR pathway and potential molecular mechanisms in hepatocytes. METHODS Differential metabolites in Curtn-treated HepG2 cells were identified via LC-MS. Molecular docking assessed Curtn's affinity with IDOL. Cholesterol content and LDLR expression effects were studied in high-fat diet Wistar rats. In vitro evaluations determined Curtn's influence on IDOL overexpression's LDL-C uptake and LDLR expression in hepatocytes. RESULTS Lipids were the main differential metabolites in Curtn-treated HepG2 cells. Docking showed Curtn's higher affinity to IDOL's FERM domain compared to curcumin, suggesting potential competitive inhibition of IDOL's binding to LDLR. Curtn decreased liver cholesterol in Wistar rats and elevated LDLR expression. During in vitro experiments, Curtn significantly enhanced the effects of IDOL overexpression in HepG2 cells, leading to increased LDL-C uptake and elevated expression of LDL receptors. CONCLUSION Curtn modulates the IDOL/LDLR pathway, enhancing LDL cholesterol uptake in hepatocytes. Combined with its PCSK9 influence, Curtn emerges as a potential hyperlipidemia therapy.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Med-icine, Changsha, 410208, Hunan, China; Shenzhen Samii Medical Center, Shenzhen, 518118, Guangdong, China.
| | - Fang-Yuan Liu
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jia-Tao Yang
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qian Zhao
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Mei-Qi Zhu
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Jing Wang
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Shi-Yin Long
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Med-icine, Changsha, 410208, Hunan, China.
| | - Cai-Ping Zhang
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Li-Mei Lin
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Med-icine, Changsha, 410208, Hunan, China.
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Med-icine, Changsha, 410208, Hunan, China.
| |
Collapse
|
4
|
Nguyen C, Saint-Pol J, Dib S, Pot C, Gosselet F. 25-Hydroxycholesterol in health and diseases. J Lipid Res 2024; 65:100486. [PMID: 38104944 PMCID: PMC10823077 DOI: 10.1016/j.jlr.2023.100486] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Cholesterol is an essential structural component of all membranes of mammalian cells where it plays a fundamental role not only in cellular architecture, but also, for example, in signaling pathway transduction, endocytosis process, receptor functioning and recycling, or cytoskeleton remodeling. Consequently, intracellular cholesterol concentrations are tightly regulated by complex processes, including cholesterol synthesis, uptake from circulating lipoproteins, lipid transfer to these lipoproteins, esterification, and metabolization into oxysterols that are intermediates for bile acids. Oxysterols have been considered for long time as sterol waste products, but a large body of evidence has clearly demonstrated that they play key roles in central nervous system functioning, immune cell response, cell death, or migration and are involved in age-related diseases, cancers, autoimmunity, or neurological disorders. Among all the existing oxysterols, this review summarizes basic as well as recent knowledge on 25-hydroxycholesterol which is mainly produced during inflammatory or infectious situations and that in turn contributes to immune response, central nervous system disorders, atherosclerosis, macular degeneration, or cancer development. Effects of its metabolite 7α,25-dihydroxycholesterol are also presented and discussed.
Collapse
Affiliation(s)
- Cindy Nguyen
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Julien Saint-Pol
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Shiraz Dib
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France
| | - Caroline Pot
- Department of Clinical Neurosciences, Laboratories of Neuroimmunology, Service of Neurology and Neuroscience Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Fabien Gosselet
- UR 2465, Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Univ. Artois, Lens, France.
| |
Collapse
|
5
|
Mlera L, Collins-McMillen D, Zeltzer S, Buehler JC, Moy M, Zarrella K, Caviness K, Cicchini L, Tafoya DJ, Goodrum F. Liver X Receptor-Inducible Host E3 Ligase IDOL Targets a Human Cytomegalovirus Reactivation Determinant. J Virol 2023; 97:e0075823. [PMID: 37338407 PMCID: PMC10373547 DOI: 10.1128/jvi.00758-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/21/2023] Open
Abstract
Liver X receptor (LXR) signaling broadly restricts virus replication; however, the mechanisms of restriction are poorly defined. Here, we demonstrate that the cellular E3 ligase LXR-inducible degrader of low-density lipoprotein receptor (IDOL) targets the human cytomegalovirus (HMCV) UL136p33 protein for turnover. UL136 encodes multiple proteins that differentially impact latency and reactivation. UL136p33 is a determinant of reactivation. UL136p33 is targeted for rapid turnover by the proteasome, and its stabilization by mutation of lysine residues to arginine results in a failure to quiet replication for latency. We show that IDOL targets UL136p33 for turnover but not the stabilized variant. IDOL is highly expressed in undifferentiated hematopoietic cells where HCMV establishes latency but is sharply downregulated upon differentiation, a stimulus for reactivation. We hypothesize that IDOL maintains low levels of UL136p33 for the establishment of latency. Consistent with this hypothesis, knockdown of IDOL impacts viral gene expression in wild-type (WT) HCMV infection but not in infection where UL136p33 has been stabilized. Furthermore, the induction of LXR signaling restricts WT HCMV reactivation from latency but does not affect the replication of a recombinant virus expressing a stabilized variant of UL136p33. This work establishes the UL136p33-IDOL interaction as a key regulator of the bistable switch between latency and reactivation. It further suggests a model whereby a key viral determinant of HCMV reactivation is regulated by a host E3 ligase and acts as a sensor at the tipping point between the decision to maintain the latent state or exit latency for reactivation. IMPORTANCE Herpesviruses establish lifelong latent infections, which pose an important risk for disease particularly in the immunocompromised. Our work is focused on the betaherpesvirus human cytomegalovirus (HCMV) that latently infects the majority of the population worldwide. Defining the mechanisms by which HCMV establishes latency or reactivates from latency is important for controlling viral disease. Here, we demonstrate that the cellular inducible degrader of low-density lipoprotein receptor (IDOL) targets a HCMV determinant of reactivation for degradation. The instability of this determinant is important for the establishment of latency. This work defines a pivotal virus-host interaction that allows HCMV to sense changes in host biology to navigate decisions to establish latency or to replicate.
Collapse
Affiliation(s)
- Luwanika Mlera
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Donna Collins-McMillen
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Sebastian Zeltzer
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Jason C. Buehler
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Melissa Moy
- Graduate Interdisciplinary Program in Cancer Biology, University of Arizona, Tucson, Arizona, USA
| | - Kristen Zarrella
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
| | - Katie Caviness
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Genetics, University of Arizona, Tucson, Arizona, USA
| | - Louis Cicchini
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| | - David J. Tafoya
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Felicia Goodrum
- Department of Immunobiology, University of Arizona, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
- Graduate Interdisciplinary Program in Cancer Biology, University of Arizona, Tucson, Arizona, USA
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
6
|
Griffett K, Burris TP. Development of LXR inverse agonists to treat MAFLD, NASH, and other metabolic diseases. Front Med (Lausanne) 2023; 10:1102469. [PMID: 36817797 PMCID: PMC9932051 DOI: 10.3389/fmed.2023.1102469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Activation of LXR activity by synthetic agonists has been the focus of many drug discovery efforts with a focus on treatment of dyslipidemia and atherosclerosis. Many agonists have been developed, but all have been hindered due to their ability to efficaciously stimulate de novo lipogenesis. Here, we review the development of LXR inverse agonists that were originally optimized for their ability to enable recruitment of corepressors leading to silencing of genes that drive de novo lipogenesis. Such compounds have efficacy in animal models of MAFLD, dyslipidemia, and cancer. Several classes of LXR inverse agonists have been identified and one is now in clinical trials for treatment of severe dyslipidemia.
Collapse
Affiliation(s)
- Kristine Griffett
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Thomas P. Burris
- The University of Florida Genetics Institute, Gainesville, FL, United States,*Correspondence: Thomas P. Burris,
| |
Collapse
|
7
|
Qin Y, Medina MW. Mechanism of the Regulation of Plasma Cholesterol Levels by PI(4,5)P 2. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:89-119. [PMID: 36988878 DOI: 10.1007/978-3-031-21547-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Elevated low-density lipoprotein (LDL) cholesterol (LDLc) is one of the most well-established risk factors for cardiovascular disease, while high levels of high-density lipoprotein (HDL) cholesterol (HDLc) have been associated with protection from cardiovascular disease. Cardiovascular disease remains one of the leading causes of death worldwide; thus it is important to understand mechanisms that impact LDLc and HDLc metabolism. In this chapter, we will discuss molecular processes by which phosphatidylinositol-(4,5)-bisphosphate, PI(4,5)P2, is thought to modulate LDLc or HDLc. Section 1 will provide an overview of cholesterol in the circulation, discussing processes that modulate the various forms of lipoproteins (LDL and HDL) carrying cholesterol. Section 2 will describe how a PI(4,5)P2 phosphatase, transmembrane protein 55B (TMEM55B), impacts circulating LDLc levels through its ability to regulate lysosomal decay of the low-density lipoprotein receptor (LDLR), the primary receptor for hepatic LDL uptake. Section 3 will discuss how PI(4,5)P2 interacts with apolipoprotein A-I (apoA1), the key apolipoprotein on HDL. In addition to direct mechanisms of PI(4,5)P2 action on circulating cholesterol, Sect. 4 will review how PI(4,5)P2 may indirectly impact LDLc and HDLc by affecting insulin action. Last, as cholesterol is controlled through intricate negative feedback loops, Sect. 5 will describe how PI(4,5)P2 is regulated by cholesterol.
Collapse
Affiliation(s)
- Yuanyuan Qin
- Department of Pediatrics, Division of Cardiology, University of California, San Francisco, Oakland, CA, USA
| | - Marisa W Medina
- Department of Pediatrics, Division of Cardiology, University of California, San Francisco, Oakland, CA, USA.
| |
Collapse
|
8
|
Tchéoubi SER, Akpovi CD, Coppée F, Declèves AE, Laurent S, Agbangla C, Burtea C. Molecular and cellular biology of PCSK9: impact on glucose homeostasis. J Drug Target 2022; 30:948-960. [PMID: 35723066 DOI: 10.1080/1061186x.2022.2092622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proprotein convertase substilisin/kexin 9 (PCSK9) inhibitors (PCSK9i) revolutionised the lipid-lowering therapy. However, a risk of type 2 diabetes mellitus (T2DM) is evoked under PCSK9i therapy. In this review, we summarise the current knowledge on the link of PCSK9 with T2DM. A significant correlation was found between PCSK9 and insulin, homeostasis model assessment (HOMA) of insulin resistance and glycated haemoglobin. PCSK9 is also involved in inflammation. PCSK9 loss-of-function variants increased T2DM risk by altering insulin secretion. Local pancreatic low PCSK9 regulates β-cell LDLR expression which in turn promotes intracellular cholesterol accumulation and hampers insulin secretion. Nevertheless, the association of PCSK9 loss-of-function variants and T2DM is inconsistent. InsLeu and R46L polymorphisms were associated with T2DM, low HOMA for β-cell function and impaired fasting glucose, while the C679X polymorphism was associated with low fasting glucose in Black South African people. Hence, we assume that the impact of these variants on glucose homeostasis may vary depending on the genetic background of the studied populations and the type of effect caused by those genetic variants on the PCSK9 protein. Accordingly, these factors should be considered when choosing a genetic variant of PCSK9 to assess the impact of long-term use of PCSK9i on glucose homeostasis.
Collapse
Affiliation(s)
- Sègbédé E R Tchéoubi
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium.,Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Casimir D Akpovi
- Non-Communicable Diseases and Cancer Research Unit, Laboratory of Applied Biology Research, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Frédérique Coppée
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Anne-Emilie Declèves
- Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Sophie Laurent
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| | - Clément Agbangla
- Laboratory of Molecular Genetics and Genome Analyzes, Faculty of Sciences and Technics, University of Abomey-Calavi - UAC, Abomey-Calavi, Benin
| | - Carmen Burtea
- General, Organic and Biomedical Chemistry Unit, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons - UMONS, Mons, Belgium
| |
Collapse
|
9
|
Juhl AD, Wüstner D. Pathways and Mechanisms of Cellular Cholesterol Efflux-Insight From Imaging. Front Cell Dev Biol 2022; 10:834408. [PMID: 35300409 PMCID: PMC8920967 DOI: 10.3389/fcell.2022.834408] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/04/2022] [Indexed: 12/24/2022] Open
Abstract
Cholesterol is an essential molecule in cellular membranes, but too much cholesterol can be toxic. Therefore, mammalian cells have developed complex mechanisms to remove excess cholesterol. In this review article, we discuss what is known about such efflux pathways including a discussion of reverse cholesterol transport and formation of high-density lipoprotein, the function of ABC transporters and other sterol efflux proteins, and we highlight their role in human diseases. Attention is paid to the biophysical principles governing efflux of sterols from cells. We also discuss recent evidence for cholesterol efflux by the release of exosomes, microvesicles, and migrasomes. The role of the endo-lysosomal network, lipophagy, and selected lysosomal transporters, such as Niemann Pick type C proteins in cholesterol export from cells is elucidated. Since oxysterols are important regulators of cellular cholesterol efflux, their formation, trafficking, and secretion are described briefly. In addition to discussing results obtained with traditional biochemical methods, focus is on studies that use established and novel bioimaging approaches to obtain insight into cholesterol efflux pathways, including fluorescence and electron microscopy, atomic force microscopy, X-ray tomography as well as mass spectrometry imaging.
Collapse
Affiliation(s)
| | - Daniel Wüstner
- Department of Biochemistry and Molecular Biology, PhyLife, Physical Life Sciences, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
10
|
Bonfili L, Cuccioloni M, Gong C, Cecarini V, Spina M, Zheng Y, Angeletti M, Eleuteri AM. Gut microbiota modulation in Alzheimer’s disease: focus on lipid metabolism. Clin Nutr 2022; 41:698-708. [DOI: 10.1016/j.clnu.2022.01.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 12/03/2021] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
|
11
|
Li H, Yu XH, Ou X, Ouyang XP, Tang CK. Hepatic cholesterol transport and its role in non-alcoholic fatty liver disease and atherosclerosis. Prog Lipid Res 2021; 83:101109. [PMID: 34097928 DOI: 10.1016/j.plipres.2021.101109] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a quickly emerging global health problem representing the most common chronic liver disease in the world. Atherosclerotic cardiovascular disease represents the leading cause of mortality in NAFLD patients. Cholesterol metabolism has a crucial role in the pathogenesis of both NAFLD and atherosclerosis. The liver is the major organ for cholesterol metabolism. Abnormal hepatic cholesterol metabolism not only leads to NAFLD but also drives the development of atherosclerotic dyslipidemia. The cholesterol level in hepatocytes reflects the dynamic balance between endogenous synthesis, uptake, esterification, and export, a process in which cholesterol is converted to neutral cholesteryl esters either for storage in cytosolic lipid droplets or for secretion as a major constituent of plasma lipoproteins, including very-low-density lipoproteins, chylomicrons, high-density lipoproteins, and low-density lipoproteins. In this review, we describe decades of research aimed at identifying key molecules and cellular players involved in each main aspect of hepatic cholesterol metabolism. Furthermore, we summarize the recent advances regarding the biological processes of hepatic cholesterol transport and its role in NAFLD and atherosclerosis.
Collapse
Affiliation(s)
- Heng Li
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 460106, China
| | - Xiang Ou
- Department of Endocrinology, the First Hospital of Changsha, Changsha, Hunan 410005, China
| | - Xin-Ping Ouyang
- Department of Physiology, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
12
|
The Cholesterol-Lowering Effect of Capsella Bursa-Pastoris Is Mediated via SREBP2 and HNF-1α-Regulated PCSK9 Inhibition in Obese Mice and HepG2 Cells. Foods 2021; 10:foods10020408. [PMID: 33673187 PMCID: PMC7918551 DOI: 10.3390/foods10020408] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of the present study was to investigate the mechanism by which capsella bursa-pastoris ethanol extract (CBE), containing 17.5 milligrams of icaritin per kilogram of the extract, and icaritin, mediate hypocholesterolemic activity via the low-density lipoprotein receptor (LDLR) and pro-protein convertase subtilisin/kexin type 9 (PCSK9) in obese mice and HepG2 cells. CBE significantly attenuated serum total and LDL cholesterol levels in obese mice, which was associated with significantly decreased PCSK9 gene expression. HepG2 cells were cultured using delipidated serum (DLPS), and CBE significantly reduced PCSK9 and maintained the LDLR level. CBE co-treatment with rosuvastatin attenuated statin-mediated PCSK9 expression, and further increased LDLR. The icaritin contained in CBE decreased intracellular PCSK9 and LDLR levels by suppressing transcription factors SREBP2 and HNF-1α. Icaritin also significantly suppressed the extracellular PCSK9 level, which likely contributed to post-translational stabilization of LDLR in the HepG2 cells. PCSK9 inhibition by CBE is actively attributed to icaritin, and the use of CBE and icaritin could be an alternative therapeutic approach in the treatment of hypercholesterolemia.
Collapse
|
13
|
Choi YJ, Lee SJ, Kim HI, Lee HJ, Kang SJ, Kim TY, Cheon C, Ko SG. Platycodin D enhances LDLR expression and LDL uptake via down-regulation of IDOL mRNA in hepatic cells. Sci Rep 2020; 10:19834. [PMID: 33199761 PMCID: PMC7670405 DOI: 10.1038/s41598-020-76224-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 10/16/2020] [Indexed: 02/07/2023] Open
Abstract
The root of Platycodon grandiflorum (PG) has long been used as a traditional herbal medicine in Asian country. Platycondin D (PD), triterpenoid saponin that is a main constituent of PG, exhibits various biological activities such as anti-inflammatory, anti-oxidant, anti-diabetic, and anti-cancer effects. A previous study showed that PD had cholesterol-lowering effects in mice that develop hypercholesterolemia, but the underlying molecular mechanisms have not been elucidated during the last decade. Here, we demonstrated that both PG and PD markedly increased levels of cell surface low-density lipoprotein receptor (LDLR) by down-regulation of the E3 ubiquitin ligase named inducible degrader of the LDLR (IDOL) mRNA, leading to the enhanced uptake of LDL-derived cholesterol (LDL-C) in hepatic cells. Furthermore, cycloheximide chase analysis and in vivo ubiquitination assay revealed that PD increased the half-life of LDLR protein by reducing IDOL-mediated LDLR ubiquitination. Finally, we demonstrated that treatment of HepG2 cells with simvastatin in combination with PG and PD had synergistic effects on the improvement of LDLR expression and LDL-C uptake. Together, these results provide the first molecular evidence for anti-hypercholesterolemic activity of PD and suggest that PD alone or together with statin could be a potential therapeutic option in the treatment of atherosclerotic cardiovascular disease.
Collapse
Affiliation(s)
- Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sol Ji Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea
| | - Hyo In Kim
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hee Jung Lee
- Department Global Public Health and Korean Medicine Management, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - So Jung Kang
- Department of Clinical Koeran Medicine, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Tai Young Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, 34126, Republic of Korea. .,Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul, 130-701, Korea.
| | - Chunhoo Cheon
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul, 130-701, Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, 1 Hoegi, Seoul, 130-701, Korea.
| |
Collapse
|
14
|
Piceatannol reduces resistance to statins in hypercholesterolemia by reducing PCSK9 expression through p300 acetyltransferase inhibition. Pharmacol Res 2020; 161:105205. [DOI: 10.1016/j.phrs.2020.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/04/2020] [Accepted: 09/11/2020] [Indexed: 01/06/2023]
|
15
|
Salerno AG, van Solingen C, Scotti E, Wanschel ACBA, Afonso MS, Oldebeken SR, Spiro W, Tontonoz P, Rayner KJ, Moore KJ. LDL Receptor Pathway Regulation by miR-224 and miR-520d. Front Cardiovasc Med 2020; 7:81. [PMID: 32528976 PMCID: PMC7256473 DOI: 10.3389/fcvm.2020.00081] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/15/2020] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRNA) have emerged as important post-transcriptional regulators of metabolic pathways that contribute to cellular and systemic lipoprotein homeostasis. Here, we identify two conserved miRNAs, miR-224, and miR-520d, which target gene networks regulating hepatic expression of the low-density lipoprotein (LDL) receptor (LDLR) and LDL clearance. In silico prediction of miR-224 and miR-520d target gene networks showed that they each repress multiple genes impacting the expression of the LDLR, including the chaperone molecules PCSK9 and IDOL that limit LDLR expression at the cell surface and the rate-limiting enzyme for cholesterol synthesis HMGCR, which is the target of LDL-lowering statin drugs. Using gain- and loss-of-function studies, we tested the role of miR-224 and miR-520d in the regulation of those predicted targets and their impact on LDLR expression. We show that overexpression of miR-224 or miR-520d dose-dependently reduced the activity of PCSK9, IDOL, and HMGCR 3'-untranslated region (3'-UTR)-luciferase reporter constructs and that this repression was abrogated by mutation of the putative miR-224 or miR-520d response elements in the PCSK9, IDOL, and HMGCR 3'-UTRs. Compared to a control miRNA, overexpression of miR-224 or miR-520d in hepatocytes inhibited PCSK9, IDOL, and HMGCR mRNA and protein levels and decreased PCSK9 secretion. Furthermore, miR-224 and miR-520d repression of PCSK9, IDOL, and HMGCR was associated with an increase in LDLR protein levels and cell surface expression, as well as enhanced LDL binding. Notably, the effects of miR-224 and miR-520d were additive to the effects of statins in upregulating LDLR expression. Finally, we show that overexpression of miR-224 in the livers of Ldlr +/- mice using lipid nanoparticle-mediated delivery resulted in a 15% decrease in plasma levels of LDL cholesterol, compared to a control miRNA. Together, these findings identify roles for miR-224 and miR-520d in the posttranscriptional control of LDLR expression and function.
Collapse
Affiliation(s)
- Alessandro G Salerno
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Coen van Solingen
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Elena Scotti
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Amarylis C B A Wanschel
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Milessa S Afonso
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Scott R Oldebeken
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Westley Spiro
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States
| | - Peter Tontonoz
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katey J Rayner
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Kathryn J Moore
- Leon H. Charney Division of Cardiology, NYU Cardiovascular Research Center, Department of Medicine, New York University School of Medicine, New York, NY, United States.,Department of Cell Biology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
16
|
Identification of novel genetic variants associated with cardiorespiratory fitness. Prog Cardiovasc Dis 2020; 63:341-349. [DOI: 10.1016/j.pcad.2020.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/06/2023]
|
17
|
Mechanisms and regulation of cholesterol homeostasis. Nat Rev Mol Cell Biol 2019; 21:225-245. [DOI: 10.1038/s41580-019-0190-7] [Citation(s) in RCA: 450] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 12/14/2022]
|
18
|
Yang HX, Zhang M, Long SY, Tuo QH, Tian Y, Chen JX, Zhang CP, Liao DF. Cholesterol in LDL receptor recycling and degradation. Clin Chim Acta 2019; 500:81-86. [PMID: 31770510 DOI: 10.1016/j.cca.2019.09.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 11/26/2022]
Abstract
The SREBP2/LDLR pathway is sensitive to cholesterol content in the endoplasmic reticulum (ER), while membrane low-density lipoprotein receptor (LDLR) is influenced by sterol response element binding protein 2 (SREBP2), pro-protein convertase subtilisin/kexin type 9 (PCSK9) and inducible degrader of LDLR (IDOL). LDL-C, one of the risk factors in cardiovascular disease, is cleared through endocytosis recycling of LDLR. Therefore, we propose that a balance between LDLR endocytosis recycling and PCSK9-mediated and IDOL-mediated lysosomal LDLR degradation is responsible for cholesterol homeostasis in the ER. For statins that decrease serum LDL-C levels via cholesterol synthesis inhibition, the mechanism by which the statins increase the membrane LDLR may be regulated by cholesterol homeostasis in the ER.
Collapse
Affiliation(s)
- Hui-Xian Yang
- Institute of Cardiovascular Disease, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China; Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Min Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Shi-Yin Long
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Qin-Hui Tuo
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China
| | - Ying Tian
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China
| | - Jian-Xiong Chen
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China; Department Pharmacology & Toxicology, University of Mississippi Medical Center, USA
| | - Cai-Ping Zhang
- Department of Biochemistry and Molecular Biology, Medical College, University of South China, 28# W Changsheng Rd, Hengyang 421001, Hunan, China.
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, State Key Laboratory of Chinese Medicine Powder and Medicine Innovation in Hunan (incubation), Hunan University of Chinese Medicine, 300# Xueshi Rd., Hanpu Science & Education District, Changsha 410208, Hunan, China.
| |
Collapse
|
19
|
Lee SD, Priest C, Bjursell M, Gao J, Arneson DV, Ahn IS, Diamante G, van Veen JE, Massa MG, Calkin AC, Kim J, Andersén H, Rajbhandari P, Porritt M, Carreras A, Ahnmark A, Seeliger F, Maxvall I, Eliasson P, Althage M, Åkerblad P, Lindén D, Cole TA, Lee R, Boyd H, Bohlooly-Y M, Correa SM, Yang X, Tontonoz P, Hong C. IDOL regulates systemic energy balance through control of neuronal VLDLR expression. Nat Metab 2019; 1:1089-1100. [PMID: 32072135 PMCID: PMC7028310 DOI: 10.1038/s42255-019-0127-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Liver X receptors limit cellular lipid uptake by stimulating the transcription of Inducible Degrader of the LDL Receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of diet-induced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose, endothelium, intestine, skeletal muscle), but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to control of metabolism. Finally, we identify VLDLR rather than LDLR as the primary mediator of IDOL effects on energy balance. These studies identify a role for the neuronal IDOL-VLDLR pathway in metabolic homeostasis and diet-induced obesity.
Collapse
Affiliation(s)
- Stephen D Lee
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christina Priest
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mikael Bjursell
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jie Gao
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Douglas V Arneson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Graciel Diamante
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - J Edward van Veen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Megan G Massa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna C Calkin
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason Kim
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harriet Andersén
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michelle Porritt
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Alba Carreras
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Andrea Ahnmark
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Pathology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Ingela Maxvall
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Pernilla Eliasson
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Åkerblad
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Daniel Lindén
- Research and Early Development Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tracy A Cole
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Richard Lee
- Central Nervous System Group, Antisense Drug Discovery, Ionis Pharmaceuticals, Inc, Carlsbad, CA, USA
| | - Helen Boyd
- Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca; Cambridge Science Park, Cambridge, UK
| | | | - Stephanie M Correa
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Cynthia Hong
- Department of Pathology and Laboratory Medicine, Department of Biological Chemistry, and Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
van Loon NM, Lindholm D, Zelcer N. The E3 ubiquitin ligase inducible degrader of the LDL receptor/myosin light chain interacting protein in health and disease. Curr Opin Lipidol 2019; 30:192-197. [PMID: 30896554 DOI: 10.1097/mol.0000000000000593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW The RING E3 ubiquitin ligase inducible degrader of the LDL receptor (IDOL, also known as MYLIP) promotes ubiquitylation and subsequent lysosomal degradation of the LDL receptor (LDLR), thus acting to limit uptake of lipoprotein-derived cholesterol into cells. Next to the LDLR, IDOL also promotes degradation of two related receptors, the very LDL receptor (VLDLR) and apolipoprotein E receptor 2 (APOER2), which have important signaling functions in the brain. We review here the emerging role of IDOL in lipoprotein and energy metabolism, neurodegenerative diseases, and the potential for therapeutic targeting of IDOL. RECENT FINDINGS Genetic studies suggest an association between IDOL and lipoprotein metabolism in humans. Studies in rodents and nonhuman primates support an in-vivo role for IDOL in lipoprotein metabolism, and also uncovered an unexpected role in whole-body energy metabolism. Recent evaluation of IDOL function in the brain revealed a role in memory formation and progression of Alzheimer's disease. The report of the first IDOL inhibitor may facilitate further investigations on therapeutic strategies to target IDOL. SUMMARY IDOL is emerging as an important determinant of lipid and energy metabolism in metabolic disease as well as in Alzheimer's disease. IDOL targeting may be beneficial in treating these conditions.
Collapse
Affiliation(s)
- Nienke M van Loon
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| | - Dan Lindholm
- Medicum, Department of Biochemistry and Developmental Biology, Medical Faculty, University of Helsinki
- Minerva Foundation Institute for Medical Research, Biomedicum-2, Helsinki, Finland
| | - Noam Zelcer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, Amsterdam, the Netherlands
| |
Collapse
|
21
|
Ma S, Sun W, Gao L, Liu S. Therapeutic targets of hypercholesterolemia: HMGCR and LDLR. Diabetes Metab Syndr Obes 2019; 12:1543-1553. [PMID: 31686875 PMCID: PMC6709517 DOI: 10.2147/dmso.s219013] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Cholesterol homeostasis is critical and necessary for the body's functions. Hypercholesterolemia can lead to significant clinical problems, such as cardiovascular disease (CVD). 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and low-density lipoprotein cholesterol receptor (LDLR) are major points of control in cholesterol homeostasis. We summarize the regulatory mechanisms of HMGCR and LDLR, which may provide insight for new drug design and development.
Collapse
Affiliation(s)
- Shizhan Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
| | - Wenxiu Sun
- Department of Pharmacy, Taishan Vocational College of Nursing, Taian271000, People’s Republic of China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan250021, People’s Republic of China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan250021, People’s Republic of China
- Correspondence: Ling GaoScientific Center, Shandong Provincial Hospital Affiliated to Shandong University, 324 Jing 5 Road, Jinan, Shandong Province250021, People’s Republic of ChinaTel +86 531 6877 6910Email
| | - Shudong Liu
- Department of Endocrinology, Shandong Rongjun General Hospital, Jinan250013, People’s Republic of China
- Shudong LiuDepartment of Endocrinology, Shandong Rongjun General Hospital, 23 Jiefang Road, Jinan, Shandong Province250013, People’s Republic of ChinaTel +86 531 8238 2351Email
| |
Collapse
|
22
|
Leitch EK, Elumalai N, Fridén-Saxin M, Dahl G, Wan P, Clarkson P, Valeur E, Pairaudeau G, Boyd H, Tavassoli A. Inhibition of low-density lipoprotein receptor degradation with a cyclic peptide that disrupts the homodimerization of IDOL E3 ubiquitin ligase. Chem Sci 2018; 9:5957-5966. [PMID: 30079210 PMCID: PMC6050537 DOI: 10.1039/c8sc01186a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 06/14/2018] [Indexed: 12/26/2022] Open
Abstract
Cellular uptake of circulating cholesterol occurs via the low density lipoprotein receptor (LDLR). The E3 ubiquitin ligase IDOL is a mediator of LDLR degradation, with IDOL homodimerization thought to be required for its activity. To probe the possibility of modulating LDLR levels with an inhibitor of IDOL homodimerization, we screened a SICLOPPS library of 3.2 million cyclic peptides for compounds that disrupt this protein-protein interaction. We identified cyclo-CFFLYT as the lead inhibitor, and improved its activity through the incorporation of non-natural amino acids. The activity of the optimized cyclic peptide was assessed in hepatic cells, with a dose-dependent increase in LDLR levels observed in the presence of our IDOL homodimerization inhibitor.
Collapse
Affiliation(s)
- Eilidh K Leitch
- Chemistry , University of Southampton , Southampton , SO17 1RE , UK .
| | | | - Maria Fridén-Saxin
- Medicinal Chemistry , Cardiovascular and Metabolic Diseases , IMED Biotech Unit , AstraZeneca , Pepparedsleden 1 , Mölndal , 43150 , Sweden
| | - Göran Dahl
- Structure and Biophysics , Discovery Sciences , IMED Biotech Unit , AstraZeneca , Pepparedsleden 1 , Mölndal , 43150 , Sweden
| | - Paul Wan
- Structure and Biophysics , Discovery Sciences , IMED Biotech Unit , AstraZeneca , Pepparedsleden 1 , Mölndal , 43150 , Sweden
| | - Paul Clarkson
- AstraZeneca , Cambridge Science Park, 310 Milton Rd , Cambridge , CB4 0FZ , UK
| | - Eric Valeur
- Medicinal Chemistry , Cardiovascular and Metabolic Diseases , IMED Biotech Unit , AstraZeneca , Pepparedsleden 1 , Mölndal , 43150 , Sweden
| | - Garry Pairaudeau
- AstraZeneca , Cambridge Science Park, 310 Milton Rd , Cambridge , CB4 0FZ , UK
| | - Helen Boyd
- Drug Safety and Metabolism , IMED Biotech Unit , AstraZeneca , Pepparedsleden 1 , Mölndal , 43150 , Sweden
| | - Ali Tavassoli
- Chemistry , University of Southampton , Southampton , SO17 1RE , UK .
- Institute for Life Sciences , University of Southampton , Southampton , SO17 1BJ , UK
| |
Collapse
|
23
|
Keating MF, Calkin AC. The CCC Complex COMManDs Control of LDL Cholesterol Levels. Circ Res 2018; 122:1629-1631. [PMID: 29880494 DOI: 10.1161/circresaha.118.313074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael F Keating
- From the Lipid Metabolism and Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (M.F.K., A.C.C.)
- Central Clinical School, Monash University, Melbourne, Australia (M.F.K., A.C.C.)
| | - Anna C Calkin
- From the Lipid Metabolism and Cardiometabolic Disease Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia (M.F.K., A.C.C.)
- Central Clinical School, Monash University, Melbourne, Australia (M.F.K., A.C.C.)
| |
Collapse
|
24
|
Zhang L, Rajbhandari P, Priest C, Sandhu J, Wu X, Temel R, Castrillo A, de Aguiar Vallim TQ, Sallam T, Tontonoz P. Inhibition of cholesterol biosynthesis through RNF145-dependent ubiquitination of SCAP. eLife 2017; 6:e28766. [PMID: 29068315 PMCID: PMC5656429 DOI: 10.7554/elife.28766] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/05/2017] [Indexed: 12/25/2022] Open
Abstract
Cholesterol homeostasis is maintained through concerted action of the SREBPs and LXRs. Here, we report that RNF145, a previously uncharacterized ER membrane ubiquitin ligase, participates in crosstalk between these critical signaling pathways. RNF145 expression is induced in response to LXR activation and high-cholesterol diet feeding. Transduction of RNF145 into mouse liver inhibits the expression of genes involved in cholesterol biosynthesis and reduces plasma cholesterol levels. Conversely, acute suppression of RNF145 via shRNA-mediated knockdown, or chronic inactivation of RNF145 by genetic deletion, potentiates the expression of cholesterol biosynthetic genes and increases cholesterol levels both in liver and plasma. Mechanistic studies show that RNF145 triggers ubiquitination of SCAP on lysine residues within a cytoplasmic loop essential for COPII binding, potentially inhibiting its transport to Golgi and subsequent processing of SREBP-2. These findings define an additional mechanism linking hepatic sterol levels to the reciprocal actions of the SREBP-2 and LXR pathways.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Prashant Rajbhandari
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Christina Priest
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Jaspreet Sandhu
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| | - Xiaohui Wu
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Ryan Temel
- Saha Cardiovascular Research CenterUniversity of KentuckyLexingtonUnited States
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonUnited States
| | - Antonio Castrillo
- Instituto de Investigaciones Biomédicas Alberto SolsCSIC-Universidad Autónoma de Madrid, Unidad de Biomedicina-Universidad de Las Palmas de Gran Canaria (Unidad asociada al CSIC)Las Palmas de Gran CanariaSpain
- Instituto Universitario de Investigaciones Biomédicas y SanitariasUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
| | - Thomas Q de Aguiar Vallim
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Tamer Sallam
- Department of Medicine, Division of CardiologyUniversity of California, Los AngelesLos AngelesUnited States
| | - Peter Tontonoz
- Department of Pathology and Laboratory MedicineHoward Hughes Medical Institute, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
25
|
Chen SF, Chen PY, Hsu HJ, Wu MJ, Yen JH. Xanthohumol Suppresses Mylip/Idol Gene Expression and Modulates LDLR Abundance and Activity in HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7908-7918. [PMID: 28812343 DOI: 10.1021/acs.jafc.7b02282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Xanthohumol, a prenylated flavonoid found in hops (Humulus lupulus L.), exhibits multiple biological activities such as antiatherosclerosis and hypolipidemic activities. In this study, we aim to investigate the hypocholesterolemic effects and molecular mechanisms of xanthohumol in hepatic cells. We found that xanthohumol (10 and 20 μM) increased the amount of cell-surface low-density lipoprotein receptor (LDLR) from 100.0 ± 2.1% to 115.0 ± 1.3% and 135.2 ± 2.7%, and enhanced the LDL uptake activity from 100.0 ± 0.9% to 139.1 ± 13.2% in HepG2 cells (p < 0.01). The mRNA levels of LDLR, HMGCR, and PCSK9 were not altered. Xanthohumol (20 μM) reduced the expression of inducible degrader of the LDL receptor (Mylip/Idol) mRNA and protein by approximately 45% (p < 0.01), which was reported to be associated with increases of LDLR level. We demonstrated that xanthohumol suppressed hepatic Mylip/Idol expression via counteracting liver X receptor (LXR) activation. The molecular docking results predicted that xanthohumol has a high binding affinity to interact with the LXRα ligand-binding domain, which may result in attenuation of LXRα-induced Mylip/Idol expression. Finally, we demonstrated that the Mylip/Idol expression and LDLR activity were synergistically changed by a combination of xanthohumol and simvastatin treatment. Our findings indicated that xanthohumol may regulate the LXR-Mylip/Idol axis to modulate hepatic LDLR abundance and activity.
Collapse
Affiliation(s)
- Shih-Fen Chen
- Department of Molecular Biology and Human Genetics, Tzu Chi University , Hualien 970, Taiwan
| | - Pei-Yi Chen
- Center of Medical Genetics, Buddhist Tzu Chi General Hospital , Hualien 970, Taiwan
| | - Hao-Jen Hsu
- Department of Life Science, Tzu Chi University , Hualien 970, Taiwan
| | - Ming-Jiuan Wu
- Department of Biotechnology, Chia-Nan University of Pharmacy and Science , Tainan 717, Taiwan
| | - Jui-Hung Yen
- Department of Molecular Biology and Human Genetics, Tzu Chi University , Hualien 970, Taiwan
| |
Collapse
|
26
|
Gao J, Marosi M, Choi J, Achiro JM, Kim S, Li S, Otis K, Martin KC, Portera-Cailliau C, Tontonoz P. The E3 ubiquitin ligase IDOL regulates synaptic ApoER2 levels and is important for plasticity and learning. eLife 2017; 6:29178. [PMID: 28891791 PMCID: PMC5593505 DOI: 10.7554/elife.29178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/30/2017] [Indexed: 12/12/2022] Open
Abstract
Neuronal ApoE receptors are linked to learning and memory, but the pathways governing their abundance, and the mechanisms by which they affect the function of neural circuits are incompletely understood. Here we demonstrate that the E3 ubiquitin ligase IDOL determines synaptic ApoER2 protein levels in response to neuronal activation and regulates dendritic spine morphogenesis and plasticity. IDOL-dependent changes in ApoER2 abundance modulate dendritic filopodia initiation and synapse maturation. Loss of IDOL in neurons results in constitutive overexpression of ApoER2 and is associated with impaired activity-dependent structural remodeling of spines and defective LTP in primary neuron cultures and hippocampal slices. IDOL-deficient mice show profound impairment in experience-dependent reorganization of synaptic circuits in the barrel cortex, as well as diminished spatial and associative learning. These results identify control of lipoprotein receptor abundance by IDOL as a post-transcriptional mechanism underlying the structural and functional plasticity of synapses and neural circuits.
Collapse
Affiliation(s)
- Jie Gao
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Mate Marosi
- Departments of Neurology and Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Jinkuk Choi
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Jennifer M Achiro
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Sangmok Kim
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Sandy Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Klara Otis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Kelsey C Martin
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Carlos Portera-Cailliau
- Departments of Neurology and Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Peter Tontonoz
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States.,Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, United States.,Howard Hughes Medical Institute, David Geffen School of Medicine, University of California, Los Angeles, United States
| |
Collapse
|
27
|
Hypercholesterolemia: The role of PCSK9. Arch Biochem Biophys 2017; 625-626:39-53. [DOI: 10.1016/j.abb.2017.06.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/29/2017] [Accepted: 06/02/2017] [Indexed: 01/06/2023]
|
28
|
Van Loon NM, Zelcer N. Idolizing the clearance of Amyloid-β by microglia. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:536. [PMID: 28149897 DOI: 10.21037/atm.2016.11.63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Nienke Marlies Van Loon
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| | - Noam Zelcer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105AZ, Amsterdam, The Netherlands
| |
Collapse
|
29
|
Update on the molecular biology of dyslipidemias. Clin Chim Acta 2016; 454:143-85. [DOI: 10.1016/j.cca.2015.10.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/24/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
|
30
|
Nelson JK, Cook ECL, Loregger A, Hoeksema MA, Scheij S, Kovacevic I, Hordijk PL, Ovaa H, Zelcer N. Deubiquitylase Inhibition Reveals Liver X Receptor-independent Transcriptional Regulation of the E3 Ubiquitin Ligase IDOL and Lipoprotein Uptake. J Biol Chem 2015; 291:4813-25. [PMID: 26719329 DOI: 10.1074/jbc.m115.698688] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 01/05/2023] Open
Abstract
Cholesterol metabolism is subject to complex transcriptional and nontranscriptional regulation. Herein, the role of ubiquitylation is emerging as an important post-translational modification that regulates cholesterol synthesis and uptake. Similar to other post-translational modifications, ubiquitylation is reversible in a process dependent on activity of deubiquitylating enzymes (DUBs). Yet whether these play a role in cholesterol metabolism is largely unknown. As a first step to test this possibility, we used pharmacological inhibition of cellular DUB activity. Short term (2 h) inhibition of DUBs resulted in accumulation of high molecular weight ubiquitylated proteins. This was accompanied by a dramatic decrease in abundance of the LDLR and attenuated LDL uptake into hepatic cells. Importantly, this occurred in the absence of changes in the mRNA levels of the LDLR or other SREBP2-regulated genes, in line with this phenotype being a post-transcriptional event. Mechanistically, we identify transcriptional induction of the E3 ubiquitin ligase IDOL in human and rodent cells as the underlying cause for ubiquitylation-dependent lysosomal degradation of the LDLR following DUB inhibition. In contrast to the established transcriptional regulation of IDOL by the sterol-responsive liver X receptor (LXR) transcription factors, induction of IDOL by DUB inhibition is LXR-independent and occurs in Lxrαβ(-/-) MEFs. Consistent with the role of DUBs in transcriptional regulation, we identified a 70-bp region in the proximal promoter of IDOL, distinct from that containing the LXR-responsive element, which mediates the response to DUB inhibition. In conclusion, we identify a sterol-independent mechanism to regulate IDOL expression and IDOL-mediated lipoprotein receptor degradation.
Collapse
Affiliation(s)
- Jessica Kristine Nelson
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Emma Clare Laura Cook
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anke Loregger
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marten Anne Hoeksema
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Saskia Scheij
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Igor Kovacevic
- the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands, and
| | - Peter Lodewijk Hordijk
- the Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, 1066 CX Amsterdam, The Netherlands, and
| | - Huib Ovaa
- the Department of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Noam Zelcer
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands,
| |
Collapse
|
31
|
Nelson JK, Sorrentino V, Avagliano Trezza R, Heride C, Urbe S, Distel B, Zelcer N. The Deubiquitylase USP2 Regulates the LDLR Pathway by Counteracting the E3-Ubiquitin Ligase IDOL. Circ Res 2015; 118:410-9. [PMID: 26666640 DOI: 10.1161/circresaha.115.307298] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/14/2015] [Indexed: 12/26/2022]
Abstract
RATIONALE The low-density lipoprotein (LDL) receptor (LDLR) is a central determinant of circulating LDL-cholesterol and as such subject to tight regulation. Recent studies and genetic evidence implicate the inducible degrader of the LDLR (IDOL) as a regulator of LDLR abundance and of circulating levels of LDL-cholesterol in humans. Acting as an E3-ubiquitin ligase, IDOL promotes ubiquitylation and subsequent lysosomal degradation of the LDLR. Consequently, inhibition of IDOL-mediated degradation of the LDLR represents a potential strategy to increase hepatic LDL-cholesterol clearance. OBJECTIVE To establish whether deubiquitylases counteract IDOL-mediated ubiquitylation and degradation of the LDLR. METHODS AND RESULTS Using a genetic screening approach, we identify the ubiquitin-specific protease 2 (USP2) as a post-transcriptional regulator of IDOL-mediated LDLR degradation. We demonstrate that both USP2 isoforms, USP2-69 and USP2-45, interact with IDOL and promote its deubiquitylation. IDOL deubiquitylation requires USP2 enzymatic activity and leads to a marked stabilization of IDOL protein. Paradoxically, this also markedly attenuates IDOL-mediated degradation of the LDLR and the ability of IDOL to limit LDL uptake into cells. Conversely, loss of USP2 reduces LDLR protein in an IDOL-dependent manner and limits LDL uptake. We identify a tri-partite complex encompassing IDOL, USP2, and LDLR and demonstrate that in this context USP2 promotes deubiquitylation of the LDLR and prevents its degradation. CONCLUSIONS Our findings identify USP2 as a novel regulator of lipoprotein clearance owing to its ability to control ubiquitylation-dependent degradation of the LDLR by IDOL.
Collapse
Affiliation(s)
- Jessica Kristine Nelson
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands (J.K.N., V.S., R.A.T., B.D., N.Z.); and Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom (C.H., S.U.)
| | - Vincenzo Sorrentino
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands (J.K.N., V.S., R.A.T., B.D., N.Z.); and Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom (C.H., S.U.)
| | - Rossella Avagliano Trezza
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands (J.K.N., V.S., R.A.T., B.D., N.Z.); and Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom (C.H., S.U.)
| | - Claire Heride
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands (J.K.N., V.S., R.A.T., B.D., N.Z.); and Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom (C.H., S.U.)
| | - Sylvie Urbe
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands (J.K.N., V.S., R.A.T., B.D., N.Z.); and Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom (C.H., S.U.)
| | - Ben Distel
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands (J.K.N., V.S., R.A.T., B.D., N.Z.); and Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom (C.H., S.U.)
| | - Noam Zelcer
- From the Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands (J.K.N., V.S., R.A.T., B.D., N.Z.); and Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool, United Kingdom (C.H., S.U.).
| |
Collapse
|
32
|
IDOL, inducible degrader of low-density lipoprotein receptor, serves as a potential therapeutic target for dyslipidemia. Med Hypotheses 2015; 86:138-42. [PMID: 26601593 DOI: 10.1016/j.mehy.2015.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/19/2015] [Accepted: 11/08/2015] [Indexed: 11/24/2022]
Abstract
Low-density lipoprotein cholesterol (LDL-C) is the hall marker for the atherosclerotic cardiovascular disease (ASCVD). It has been shown that over 70% of circulating LDL-C is metabolized through binding and activation of hepatic LDL receptor (LDLR). Genetic LDLR mutations cause hypercholesterolemia in the patients. Therefore, elevation of LDLR levels is beneficial for the treatment of dyslipidemia. LDLR expression is regulated by the SREBP2/PCSK9 pathways. Targeting SREBP2/PCSK9 pathways by statins and human monoclonal PCSK9 antibody has been shown to reduce the progression of ASVCD. Recent studies identified that inducible degrader of LDLR (IDOL) is a novel regulator of LDLR. IDOL is an E3-ubiquitin ligase regulated via liver X receptors (LXRs) binding to the upstream of translation start site of IDOL. IDOL modulates LDLR distribution through ubiquitination and degradation of LDLR in lysosomes. Genome-wide association studies (GWAS) have revealed that the nonsynonymous substitution rs9370867 of IDOL probably contributes to the variability of circulating LDL levels. Recently studies also demonstrated that IDOL influences PCSK9 expression in a LDLR/SREBP2-dependent manner. Based upon these novel findings, we hypothesize that IDOL and PCSK9 would have a synergistic effect on LDLR distribution. Specifically, loss of IDOL increases LDLR distribution in the hepatic cell, and subsequently reduces serum LDL-C levels in dyslipidemic patients. IDOL might be a potential therapeutic target for the treatment of ASCVD.
Collapse
|
33
|
Basu D, Huq A, Iqbal J, Hussain MM, Jiang XC, Jin W. Hepatic S1P deficiency lowers plasma cholesterol levels in apoB-containing lipoproteins when LDLR function is compromised. Nutr Metab (Lond) 2015; 12:35. [PMID: 26495026 PMCID: PMC4613744 DOI: 10.1186/s12986-015-0031-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023] Open
Abstract
Background Site-1 protease (S1P) is the key enzyme required for activation of the sterol regulatory element binding proteins (SREBPs) that govern lipid synthesis. While S1P has been speculated to influence plasma apoB-containing lipoprotein (Blp) metabolism, there has been little investigative work. LDL receptor (LDLR) is the major receptor for clearing plasma LDL cholesterol (LDL-c). Proprotein convertase subtilisin kexin type 9 (PCSK9) modulates LDL-c through post-translational degradation of the LDLR. Methods A hepatic-specific knockdown (KD) of S1P was achieved using floxed S1P mouse models (S1Pf/f and LDLR-/-S1Pf/f) and hepatic expression of Cre recombinase. Lipids were measured in total plasma and size fractionated plasma using colorimetric assays. Realtime polymerase chain reaction, western blotting and ELISA were used to determine hepatic expression of key genes/protein. Plasmid mediated overexpression and siRNA mediated knockdown of genes were performed in mouse primary hepatocytes to determine the mechanistic basis of PCSK9 gene regulation. Results A hepatic-specific KD of S1P resulted in a 45 % and 38 % reduction in plasma total cholesterol and triglyceride levels, respectively. Hepatic S1P KD had a minimal effect on plasma Blp cholesterol (Blp-c) in S1Pf/f mice, despite significantly reducing VLDL secretion. Notably, hepatic S1P KD decreased the LDL receptor (LDLR) mRNA expression by 50 %. However, the reduction in LDLR protein levels was less than that of mRNA expression, especially under fed conditions. Further assessment of hepatic S1P deficiency revealed that it increased LDLR protein stability in vivo. Mechanistically, hepatic S1P KD was shown to decrease the liver and plasma levels of the protein proprotein convertase subtilisin/kexin type 9 (PCSK9), which degrades LDLR protein. This effect was more prominent in the fed condition and sufficient to account for the discordance in LDLR mRNA and protein levels. Furthermore, hepatic S1P was shown to regulate PCSK9 expression through activation of the SREBPs. In the LDLR-/- background, hepatic S1P KD significantly reduced Blp-c levels. Conclusion Hepatic S1P is a physiological modulator of plasma Blp metabolism through its regulation of LDLR and PCSK9. Hepatic S1P is a valid target for lowering plasma Blp-c levels in the situation where LDLR function is compromised.
Collapse
Affiliation(s)
- Debapriya Basu
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Afroza Huq
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Jahangir Iqbal
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203 USA ; Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY 11203 USA
| | - M Mahmood Hussain
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203 USA ; Department of Pediatrics, State University of New York, Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Xian-Cheng Jiang
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203 USA
| | - Weijun Jin
- Department of Cell Biology, State University of New York, Downstate Medical Center, Brooklyn, NY 11203 USA
| |
Collapse
|
34
|
Lee SD, Tontonoz P. Liver X receptors at the intersection of lipid metabolism and atherogenesis. Atherosclerosis 2015; 242:29-36. [PMID: 26164157 PMCID: PMC4546914 DOI: 10.1016/j.atherosclerosis.2015.06.042] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/19/2015] [Accepted: 06/22/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Stephen D Lee
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Howard Hughes Medical Institute, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
35
|
Ramasamy I. Recent advances in physiological lipoprotein metabolism. Clin Chem Lab Med 2015; 52:1695-727. [PMID: 23940067 DOI: 10.1515/cclm-2013-0358] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/08/2013] [Indexed: 01/21/2023]
Abstract
Research into lipoprotein metabolism has developed because understanding lipoprotein metabolism has important clinical indications. Lipoproteins are risk factors for cardiovascular disease. Recent advances include the identification of factors in the synthesis and secretion of triglyceride rich lipoproteins, chylomicrons (CM) and very low density lipoproteins (VLDL). These included the identification of microsomal transfer protein, the cotranslational targeting of apoproteinB (apoB) for degradation regulated by the availability of lipids, and the characterization of transport vesicles transporting primordial apoB containing particles to the Golgi. The lipase maturation factor 1, glycosylphosphatidylinositol-anchored high density lipoprotein binding protein 1 and an angiopoietin-like protein play a role in lipoprotein lipase (LPL)-mediated hydrolysis of secreted CMs and VLDL so that the right amount of fatty acid is delivered to the right tissue at the right time. Expression of the low density lipoprotein (LDL) receptor is regulated at both transcriptional and post-transcriptional level. Proprotein convertase subtilisin/kexin type 9 (PCSK9) has a pivotal role in the degradation of LDL receptor. Plasma remnant lipoproteins bind to specific receptors in the liver, the LDL receptor, VLDL receptor and LDL receptor-like proteins prior to removal from the plasma. Reverse cholesterol transport occurs when lipid free apoAI recruits cholesterol and phospholipid to assemble high density lipoprotein (HDL) particles. The discovery of ABC transporters (ABCA1 and ABCG1) and scavenger receptor class B type I (SR-BI) provided further information on the biogenesis of HDL. In humans HDL-cholesterol can be returned to the liver either by direct uptake by SR-BI or through cholesteryl ester transfer protein exchange of cholesteryl ester for triglycerides in apoB lipoproteins, followed by hepatic uptake of apoB containing particles. Cholesterol content in cells is regulated by several transcription factors, including the liver X receptor and sterol regulatory element binding protein. This review summarizes recent advances in knowledge of the molecular mechanisms regulating lipoprotein metabolism.
Collapse
|
36
|
Schulz R, Schlüter KD, Laufs U. Molecular and cellular function of the proprotein convertase subtilisin/kexin type 9 (PCSK9). Basic Res Cardiol 2015; 110:4. [PMID: 25600226 PMCID: PMC4298671 DOI: 10.1007/s00395-015-0463-z] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/04/2015] [Accepted: 01/07/2015] [Indexed: 12/16/2022]
Abstract
The proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a promising treatment target to lower serum cholesterol, a major risk factor of cardiovascular diseases. Gain-of-function mutations of PCSK9 are associated with hypercholesterolemia and increased risk of cardiovascular events. Conversely, loss-of-function mutations cause low-plasma LDL-C levels and a reduction of cardiovascular risk without known unwanted effects on individual health. Experimental studies have revealed that PCSK9 reduces the hepatic uptake of LDL-C by increasing the endosomal and lysosomal degradation of LDL receptors (LDLR). A number of clinical studies have demonstrated that inhibition of PCSK9 alone and in addition to statins potently reduces serum LDL-C concentrations. This review summarizes the current data on the regulation of PCSK9, its molecular function in lipid homeostasis and the emerging evidence on the extra-hepatic effects of PCSK9.
Collapse
Affiliation(s)
- Rainer Schulz
- Physiologisches Institut, Justus-Liebig Universität Giessen, Aulweg 129, 35392, Giessen, Germany,
| | | | | |
Collapse
|
37
|
Affiliation(s)
- Murray W Huff
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada.
| | - Julia M Assini
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Robert A Hegele
- From the Department of Medicine, Robarts Research Institute, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
38
|
Hong C, Marshall SM, McDaniel AL, Graham M, Layne JD, Cai L, Scotti E, Boyadjian R, Kim J, Chamberlain BT, Tangirala RK, Jung ME, Fong L, Lee R, Young SG, Temel RE, Tontonoz P. The LXR-Idol axis differentially regulates plasma LDL levels in primates and mice. Cell Metab 2014; 20:910-918. [PMID: 25440061 PMCID: PMC4261644 DOI: 10.1016/j.cmet.2014.10.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/22/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022]
Abstract
The LXR-regulated E3 ubiquitin ligase IDOL controls LDLR receptor stability independent of SREBP and PCSK9, but its relevance to plasma lipid levels is unknown. Here we demonstrate that the effects of the LXR-IDOL axis are both tissue and species specific. In mice, LXR agonist induces Idol transcript levels in peripheral tissues but not in liver, and does not change plasma LDL levels. Accordingly, Idol-deficient mice exhibit elevated LDLR protein levels in peripheral tissues, but not in the liver. By contrast, LXR activation in cynomolgus monkeys induces hepatic IDOL expression, reduces LDLR protein levels, and raises plasma LDL levels. Knockdown of IDOL in monkeys with an antisense oligonucleotide blunts the effect of LXR agonist on LDL levels. These results implicate IDOL as a modulator of plasma lipid levels in primates and support further investigation into IDOL inhibition as a potential strategy for LDL lowering in humans.
Collapse
Affiliation(s)
- Cynthia Hong
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephanie M Marshall
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Allison L McDaniel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Mark Graham
- Cardiovascular Antisense Drug Discovery Group, Isis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Joseph D Layne
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Lei Cai
- Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA
| | - Elena Scotti
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rima Boyadjian
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Kim
- Division of Endocrinology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brian T Chamberlain
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajendra K Tangirala
- Division of Endocrinology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael E Jung
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Loren Fong
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard Lee
- Cardiovascular Antisense Drug Discovery Group, Isis Pharmaceuticals, Carlsbad, CA 92010, USA
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan E Temel
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; Saha Cardiovascular Research Center, University of Kentucky, Lexington, KY 40536, USA.
| | - Peter Tontonoz
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
39
|
Calkin AC, Lee SD, Kim J, Van Stijn CMW, Wu XH, Lusis AJ, Hong C, Tangirala RI, Tontonoz P. Transgenic expression of dominant-active IDOL in liver causes diet-induced hypercholesterolemia and atherosclerosis in mice. Circ Res 2014; 115:442-9. [PMID: 24935961 DOI: 10.1161/circresaha.115.304440] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
RATIONALE The E3 ubiquitin ligase inducible degrader of the low-density lipoprotein receptor (IDOL) triggers lysosomal degradation of the low-density lipoprotein receptor. The tissue-specific effects of the IDOL pathway on plasma cholesterol and atherosclerosis have not been examined. OBJECTIVE Given that the liver is the primary determinant of plasma cholesterol levels, we sought to examine the consequence of effect of chronic liver-specific expression of a dominant-active form of IDOL in mice. METHODS AND RESULTS We expressed a degradation-resistant, dominant-active form of IDOL (super IDOL [sIDOL]) in C57Bl/6J mice from the liver-specific albumin promoter (L-sIDOL transgenics). L-sIDOL mice were fed a Western diet for 20 or 30 weeks and then analyzed for plasma lipid levels and atherosclerotic lesion formation. L-sIDOL mice showed dramatic reductions in hepatic low-density lipoprotein receptor protein and increased plasma low-density lipoprotein cholesterol levels on both chow and Western diets. Moreover, L-sIDOL mice developed marked atherosclerotic lesions when fed a Western diet. Lesion formation in L-sIDOL mice was more robust than in apolipoprotein E*3 Leiden mice and did not require the addition of cholate to the diet. Western diet-fed L-sIDOL mice had elevated expression of liver X receptor target genes and proinflammatory genes in their aortas. CONCLUSIONS Liver-specific expression of dominant-active IDOL is associated with hypercholesterolemia and a marked elevation in atherosclerotic lesions. Our results show that increased activity of the IDOL pathway in the liver can override other low-density lipoprotein receptor regulatory pathways leading to cardiovascular disease. L-sIDOL mice are a robust, dominantly inherited, diet-inducible model for the study of atherosclerosis.
Collapse
Affiliation(s)
- Anna C Calkin
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Stephen D Lee
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Jason Kim
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Caroline M W Van Stijn
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Xiao-Hui Wu
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Aldons J Lusis
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Cynthia Hong
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Rajendra I Tangirala
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.)
| | - Peter Tontonoz
- From the Departments of Pathology and Laboratory Medicine (A.C.C., S.D.L., X.-H.W., C.H., P.T.), Department of Medicine, Division of Endocrinology (J.K., C.M.W.V.S., R.I.T.), Department of Medicine, Division of Cardiology (X.-H.W., A.J.L.), and Departments of Human Genetics and Microbiology Immunology and Molecular Genetics (A.J.L.), David Geffen School of Medicine, University of California, Los Angeles; Howard Hughes Medical Institute, Los Angeles, CA (A.C.C., S.D.L., C.H., P.T.); and Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia (A.C.C.).
| |
Collapse
|
40
|
An iron-regulated and glycosylation-dependent proteasomal degradation pathway for the plasma membrane metal transporter ZIP14. Proc Natl Acad Sci U S A 2014; 111:9175-80. [PMID: 24927598 DOI: 10.1073/pnas.1405355111] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Protein degradation is instrumental in regulating cellular function. Plasma membrane proteins targeted for degradation are internalized and sorted to multivesicular bodies, which fuse with lysosomes, where they are degraded. ZIP14 is a newly identified iron transporter with multitransmembrane domains. In an attempt to dissect the molecular mechanisms by which iron regulates ZIP14 levels, we found that ZIP14 is endocytosed, extracted from membranes, deglycosylated, and degraded by proteasomes. This pathway did not depend on the retrograde trafficking to the endoplasmic reticulum and thus did not involve the well-defined endoplasmic reticulum-associated protein degradation pathway. Iron inhibited membrane extraction of internalized ZIP14, resulting in higher steady-state levels of ZIP14. Asparagine-linked (N-linked) glycosylation of ZIP14, particularly the glycosylation at N102, was required for efficient membrane extraction of ZIP14 and therefore is necessary for its iron sensitivity. These findings highlight the importance of proteasomes in the degradation of endocytosed plasma membrane proteins.
Collapse
|
41
|
Abstract
To maintain cholesterol homeostasis, the processes of cholesterol metabolism are regulated at multiple levels including transcription, translation, and enzymatic activity. Recently, the regulation of protein stability of some key players in cholesterol metabolism has been characterized. More and more ubiquitin ligases have been identified including gp78, Hrd1, TRC8, TEB4, Fbw7, and inducible degrader of low density lipoprotein receptor. Their working mechanisms and physiological functions are becoming revealed. Here, we summarize the structure, substrates and function of these ubiquitin ligases. Their potential application in drug discovery is also discussed.
Collapse
Affiliation(s)
- Wei Jiang
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bao-Liang Song
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
42
|
Affiliation(s)
- Noam Zelcer
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (N.Z., M.W.); and Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W.)
| | - Marit Westerterp
- From the Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands (N.Z., M.W.); and Division of Molecular Medicine, Department of Medicine, Columbia University, New York, NY (M.W.).
| |
Collapse
|
43
|
Hong C, Tontonoz P. Liver X receptors in lipid metabolism: opportunities for drug discovery. Nat Rev Drug Discov 2014; 13:433-44. [DOI: 10.1038/nrd4280] [Citation(s) in RCA: 401] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Sasaki M, Terao Y, Ayaori M, Uto-Kondo H, Iizuka M, Yogo M, Hagisawa K, Takiguchi S, Yakushiji E, Nakaya K, Ogura M, Komatsu T, Ikewaki K. Hepatic overexpression of idol increases circulating protein convertase subtilisin/kexin type 9 in mice and hamsters via dual mechanisms: sterol regulatory element-binding protein 2 and low-density lipoprotein receptor-dependent pathways. Arterioscler Thromb Vasc Biol 2014; 34:1171-8. [PMID: 24675665 DOI: 10.1161/atvbaha.113.302670] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Low-density lipoprotein receptor (LDLR) is degraded by inducible degrader of LDLR (Idol) and protein convertase subtilisin/kexin type 9 (PCSK9), thereby regulating circulating LDL levels. However, it remains unclear whether, and if so how, these LDLR degraders affect each other. We therefore investigated effects of liver-specific expression of Idol on LDL/PCSK9 metabolism in mice and hamsters. APPROACH AND RESULTS Injection of adenoviral vector expressing Idol (Ad-Idol) induced a liver-specific reduction in LDLR expression which, in turn, increased very-low-density lipoprotein/LDL cholesterol levels in wild-type mice because of delayed LDL catabolism. Interestingly, hepatic Idol overexpression markedly increased plasma PCSK9 levels. In LDLR-deficient mice, plasma PCSK9 levels were already elevated at baseline and unchanged by Idol overexpression, which was comparable with the observation for Ad-Idol-injected wild-type mice, indicating that Idol-induced PCSK9 elevation depended on LDLR. In wild-type mice, but not in LDLR-deficient mice, Ad-Idol enhanced hepatic PCSK9 expression, with activation of sterol regulatory element-binding protein 2 and subsequently increased expression of its target genes. Supporting in vivo findings, Idol transactivated PCSK9/LDLR in sterol regulatory element-binding protein 2/LDLR-dependent manners in vitro. Furthermore, an in vivo kinetic study using (125)I-labeled PCSK9 revealed delayed clearance of circulating PCSK9, which could be another mechanism. Finally, to extend these findings into cholesteryl ester transfer protein-expressing animals, we repeated the above in vivo experiments in hamsters and obtained similar results. CONCLUSIONS A vicious cycle in LDLR degradation might be generated by PCSK9 induced by hepatic Idol overexpression via dual mechanisms: sterol regulatory element-binding protein 2/LDLR. Furthermore, these effects would be independent of cholesteryl ester transfer protein expression.
Collapse
Affiliation(s)
- Makoto Sasaki
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| | - Yoshio Terao
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| | - Makoto Ayaori
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan.
| | - Harumi Uto-Kondo
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| | - Maki Iizuka
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| | - Makiko Yogo
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| | - Kosuke Hagisawa
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| | - Shunichi Takiguchi
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| | - Emi Yakushiji
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| | - Kazuhiro Nakaya
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| | - Masatsune Ogura
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| | - Tomohiro Komatsu
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| | - Katsunori Ikewaki
- From the Division of Anti-aging and Vascular Medicine, Department of Internal Medicine (M.S., Y.T., M.A., H.U.-K., M.I., M.Y., S.T., E.Y., K.N., M.O., T.K., K.I.) and Department of Physiology (K.H.), National Defense Medical College, Tokorozawa, Japan
| |
Collapse
|
45
|
Liu S, Vaziri ND. Role of PCSK9 and IDOL in the pathogenesis of acquired LDL receptor deficiency and hypercholesterolemia in nephrotic syndrome. Nephrol Dial Transplant 2013; 29:538-43. [PMID: 24166456 DOI: 10.1093/ndt/gft439] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nephrotic syndrome (NS) leads to elevation of serum total and LDL cholesterol. This is largely due to impaired LDL clearance, which is caused by hepatic LDL receptor (LDLR) deficiency despite normal LDLR mRNA expression, pointing to a post-transcriptional process. The mechanism(s) by which NS causes LDLR deficiency is not known. By promoting degradation of LDLR, Proprotein Convertase Subtilisin/Kexin type 9 (PCSK9) and inducible degrader of the LDL receptor (IDOL) play a major role in post-translational regulation of LDLR. We, therefore, tested the hypothesis that LDLR deficiency despite its normal gene expression in NS may be due to upregulation of hepatic PCSK9 and IDOL. METHODS LDLR, IDOL and PCSK9 expressions and nuclear translocation of liver X receptor (LXR) that regulates IDOL expression were determined in the liver of rats with puromycin-induced NS and control (CTL) rats. RESULTS Compared with the CTLs, the NS rats showed marked elevation of serum total and LDL cholesterol and a significant reduction in hepatic LDLR protein expression. This was accompanied by marked upregulation of hepatic PCSK9 and IDOL expressions and heightened LXR activation. CONCLUSIONS LDLR deficiency, hypercholesterolemia and elevated plasma LDL in NS are associated with upregulation of PCSK9 and IDOL. Interventions targeting these pathways may be effective in the management of hypercholesterolemia and the associated cardiovascular and other complications of NS.
Collapse
Affiliation(s)
- Shuman Liu
- Division of Nephrology and Hypertension, Department of Medicine, University of California, Irvine, CA, USA
| | | |
Collapse
|
46
|
Pietiäinen V, Vassilev B, Blom T, Wang W, Nelson J, Bittman R, Bäck N, Zelcer N, Ikonen E. NDRG1 functions in LDL receptor trafficking by regulating endosomal recycling and degradation. J Cell Sci 2013; 126:3961-71. [PMID: 23813961 DOI: 10.1242/jcs.128132] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) mutations cause Charcot-Marie-Tooth disease type 4D (CMT4D). However, the cellular function of NDRG1 and how it causes CMT4D are poorly understood. We report that NDRG1 silencing in epithelial cells results in decreased uptake of low-density lipoprotein (LDL) due to reduced LDL receptor (LDLR) abundance at the plasma membrane. This is accompanied by the accumulation of LDLR in enlarged EEA1-positive endosomes that contain numerous intraluminal vesicles and sequester ceramide. Concomitantly, LDLR ubiquitylation is increased but its degradation is reduced and ESCRT (endosomal sorting complex required for transport) proteins are downregulated. Co-depletion of IDOL (inducible degrader of the LDLR), which ubiquitylates the LDLR and promotes its degradation, rescues plasma membrane LDLR levels and LDL uptake. In murine oligodendrocytes, Ndrg1 silencing not only results in reduced LDL uptake but also in downregulation of the oligodendrocyte differentiation factor Olig2. Both phenotypes are rescued by co-silencing of Idol, suggesting that ligand uptake through LDLR family members controls oligodendrocyte differentiation. These findings identify NDRG1 as a novel regulator of multivesicular body formation and endosomal LDLR trafficking. The deficiency of functional NDRG1 in CMT4D might impair lipid processing and differentiation of myelinating cells.
Collapse
Affiliation(s)
- Vilja Pietiäinen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Sorrentino V, Nelson JK, Maspero E, Marques ARA, Scheer L, Polo S, Zelcer N. The LXR-IDOL axis defines a clathrin-, caveolae-, and dynamin-independent endocytic route for LDLR internalization and lysosomal degradation. J Lipid Res 2013; 54:2174-2184. [PMID: 23733886 DOI: 10.1194/jlr.m037713] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Low density lipoprotein (LDL) cholesterol is taken up into cells via clathrin-mediated endocytosis of the LDL receptor (LDLR). Following dissociation of the LDLR-LDL complex, LDL is directed to lysosomes whereas the LDLR recycles to the plasma membrane. Activation of the sterol-sensing nuclear receptors liver X receptors (LXRs) enhances degradation of the LDLR. This depends on the LXR target gene inducible degrader of the LDLR (IDOL), an E3-ubiquitin ligase that promotes ubiquitylation and lysosomal degradation of the LDLR. How ubiquitylation of the LDLR by IDOL controls its endocytic trafficking is currently unknown. Using genetic- and pharmacological-based approaches coupled to functional assessment of LDL uptake, we show that the LXR-IDOL axis targets a LDLR pool present in lipid rafts. IDOL-dependent internalization of the LDLR is independent of clathrin, caveolin, macroautophagy, and dynamin. Rather, it depends on the endocytic protein epsin. Consistent with LDLR ubiquitylation acting as a sorting signal, degradation of the receptor can be blocked by perturbing the endosomal sorting complex required for transport (ESCRT) or by USP8, a deubiquitylase implicated in sorting ubiquitylated cargo to multivesicular bodies. In summary, we provide evidence for the existence of an LXR-IDOL-mediated internalization pathway for the LDLR that is distinct from that used for lipoprotein uptake.
Collapse
Affiliation(s)
- Vincenzo Sorrentino
- Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Jessica K Nelson
- Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Elena Maspero
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy; and
| | - André R A Marques
- Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Lilith Scheer
- Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, 1105AZ Amsterdam, The Netherlands
| | - Simona Polo
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milan, Italy; and; Dipartimento di Scienze della Salute, Universita' degli Studi di Milano, 20122 Milan, Italy
| | - Noam Zelcer
- Department of Medical Biochemistry, Academic Medical Center of the University of Amsterdam, 1105AZ Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Nagy ZS, Czimmerer Z, Nagy L. Nuclear receptor mediated mechanisms of macrophage cholesterol metabolism. Mol Cell Endocrinol 2013; 368:85-98. [PMID: 22546548 DOI: 10.1016/j.mce.2012.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/05/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
Abstract
Macrophages comprise a family of multi-faceted phagocytic effector cells that differentiate "in situ" from circulating monocytes to exert various functions including clearance of foreign pathogens as well as debris derived from host cells. Macrophages also possess the ability to engulf and metabolize lipids and this way connect lipid metabolism and inflammation. The molecular link between these processes is provided by certain members of the nuclear receptor family. For instance, peroxisome proliferator activated receptors (PPAR) and liver X receptors (LXR) are able to sense the dynamically changing lipid environment and translate it to gene expression changes in order to modulate the cellular phenotype. Atherosclerosis embodies both sides of this coin: it is a disease in which macrophages with altered cholesterol metabolism keep the arteries in a chronically inflamed state. A large body of publications has accumulated during the past few decades describing the role of nuclear receptors in the regulation of macrophage cholesterol homeostasis, their contribution to the formation of atherosclerotic plaques and their crosstalk with inflammatory pathways. This review will summarize the most recent findings from this field narrowly focusing on the contribution of various nuclear receptors to macrophage cholesterol metabolism.
Collapse
Affiliation(s)
- Zsuzsanna S Nagy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen Medical and Health Science Center, H-4032 Debrecen, Nagyerdei krt 98, Hungary.
| | | | | |
Collapse
|
49
|
YAMAMOTO HIDEYUKI, OKUZAKI DAISUKE, YAMANISHI KYOSUKE, XU YUNFENG, WATANABE YUKO, YOSHIDA MOMOKO, YAMASHITA AKIFUMI, GOTO NAOHISA, NISHIGUCHI SEIJI, SHIMADA KAZUNORI, NOJIMA HIROSHI, YASUNAGA TERUO, OKAMURA HARUKI, MATSUNAGA HISATO, YAMANISHI HIROMICHI. Genetic analysis of genes causing hypertension and stroke in spontaneously hypertensive rats. Int J Mol Med 2013; 31:1057-65. [DOI: 10.3892/ijmm.2013.1304] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 02/22/2013] [Indexed: 11/05/2022] Open
|
50
|
Zhang L, Xu M, Scotti E, Chen ZJ, Tontonoz P. Both K63 and K48 ubiquitin linkages signal lysosomal degradation of the LDL receptor. J Lipid Res 2013; 54:1410-20. [PMID: 23419260 PMCID: PMC3653405 DOI: 10.1194/jlr.m035774] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Linkage-specific ubiquitination often leads to distinct cellular events. It has been difficult to establish definitively the requirement for a particular linkage in mammalian degradation pathways due to the inability to deplete endogenous ubiquitin while maintaining cell viability. The E3 ubiquitin ligase inducible degrader of the LDL receptor (IDOL) targets the low density lipoprotein receptor (LDLR) for degradation. The nature of the linkages employed to signal lysosomal degradation of the LDLR, and to signal proteasomal autodegradation of IDOL, have not been determined. We used an inducible RNAi strategy to replace endogenous ubiquitin with mutants lacking K48 or K63. We found that IDOL catalyzes the transfer of ubiquitin chains to itself and to the LDLR that do not contain exclusively K48 or K63 linkages. Thus, LDLR can be targeted to the lysosome by either K48 or K63 linkages. We further demonstrate that although both ubiquitin conjugating enzyme E2 (UBE2)Ds and UBE2N/V1 can catalyze LDLR ubiquitination in a cell-free system, UBE2Ds appear to be the major E2 enzymes employed by IDOL in cells, consistent with their ability to catalyze both K48 and K63 linkages. The results reveal mechanistic insight into the posttranscriptional control of lipoprotein uptake and provide a test of the requirement of linkage-specific ubiquitination for specific lysosomal and proteasomal degradation pathways in mammalian cells.
Collapse
Affiliation(s)
- Li Zhang
- Howard Hughes Medical Institute and Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|