1
|
Zaher A, Stephens SB. Breaking the Feedback Loop of β-Cell Failure: Insight into the Pancreatic β-Cell's ER-Mitochondria Redox Balance. Cells 2025; 14:399. [PMID: 40136648 PMCID: PMC11941261 DOI: 10.3390/cells14060399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/01/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Pancreatic β-cells rely on a delicate balance between the endoplasmic reticulum (ER) and mitochondria to maintain sufficient insulin stores for the regulation of whole animal glucose homeostasis. The ER supports proinsulin maturation through oxidative protein folding, while mitochondria supply the energy and redox buffering that maintain ER proteostasis. In the development of Type 2 diabetes (T2D), the progressive decline of β-cell function is closely linked to disruptions in ER-mitochondrial communication. Mitochondrial dysfunction is a well-established driver of β-cell failure, whereas the downstream consequences for ER redox homeostasis have only recently emerged. This interdependence of ER-mitochondrial functions suggests that an imbalance is both a cause and consequence of metabolic dysfunction. In this review, we discuss the regulatory mechanisms of ER redox control and requirements for mitochondrial function. In addition, we describe how ER redox imbalances may trigger mitochondrial dysfunction in a vicious feed forward cycle that accelerates β-cell dysfunction and T2D onset.
Collapse
Affiliation(s)
- Amira Zaher
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA;
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
| | - Samuel B. Stephens
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52246, USA;
- Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Iowa, Iowa City, IA 52246, USA
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City, IA 52246, USA
| |
Collapse
|
2
|
Zavarzadeh PG, Panchal K, Bishop D, Gilbert E, Trivedi M, Kee T, Ranganathan S, Arunagiri A. Exploring proinsulin proteostasis: insights into beta cell health and diabetes. Front Mol Biosci 2025; 12:1554717. [PMID: 40109403 PMCID: PMC11919908 DOI: 10.3389/fmolb.2025.1554717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 02/13/2025] [Indexed: 03/22/2025] Open
Abstract
Proinsulin misfolding is central to diabetes. This review examines the cellular mechanisms regulating proinsulin proteostasis in pancreatic β-cells, encompassing genetic factors such as insulin gene mutations, and exploring the roles of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), ER redox balance, mitochondrial function, and the influence of extrinsic factors. Mutations in the INS gene, particularly those affecting cysteine residues, impair folding and disulfide bond formation, often exhibiting dominant-negative effects on the wild-type proinsulin. The importance of ER quality control mechanisms, including chaperones and oxidoreductases, in facilitating proper folding and degradation of misfolded proinsulin is emphasized. Disruptions in these systems, due to genetic mutations, ER stress, or impaired ER-to-Golgi trafficking, lead to proinsulin accumulation and β-cell dysfunction. The unfolded protein response (UPR), especially the PERK and IRE1α-XBP1 pathways, emerges as a central regulator of protein synthesis and ER stress management. The review also discusses the role of mitochondrial health, ER redox state, and extrinsic factors such as diet and medications in influencing proinsulin proteostasis. Finally, the structural insights from NMR and molecular dynamics simulations are discussedhighlighting the dynamics of misfolding and underscoring the importance of disulfide bonds. These mechanistic insights suggest innovative strategies targeting thiol/disulfide redox systems in cells to mitigate protein misfolding diseases including diabetes.
Collapse
Affiliation(s)
| | - Kathigna Panchal
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Dylan Bishop
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Elizabeth Gilbert
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Mahi Trivedi
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | - Tovaria Kee
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| | | | - Anoop Arunagiri
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN, United States
| |
Collapse
|
3
|
Grenko CM, Taylor HJ, Bonnycastle LL, Xue D, Lee BN, Weiss Z, Yan T, Swift AJ, Mansell EC, Lee A, Robertson CC, Narisu N, Erdos MR, Chen S, Collins FS, Taylor DL. Single-cell transcriptomic profiling of human pancreatic islets reveals genes responsive to glucose exposure over 24 h. Diabetologia 2024; 67:2246-2259. [PMID: 38967666 PMCID: PMC11447040 DOI: 10.1007/s00125-024-06214-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/08/2024] [Indexed: 07/06/2024]
Abstract
AIMS/HYPOTHESIS Disruption of pancreatic islet function and glucose homeostasis can lead to the development of sustained hyperglycaemia, beta cell glucotoxicity and subsequently type 2 diabetes. In this study, we explored the effects of in vitro hyperglycaemic conditions on human pancreatic islet gene expression across 24 h in six pancreatic cell types: alpha; beta; gamma; delta; ductal; and acinar. We hypothesised that genes associated with hyperglycaemic conditions may be relevant to the onset and progression of diabetes. METHODS We exposed human pancreatic islets from two donors to low (2.8 mmol/l) and high (15.0 mmol/l) glucose concentrations over 24 h in vitro. To assess the transcriptome, we performed single-cell RNA-seq (scRNA-seq) at seven time points. We modelled time as both a discrete and continuous variable to determine momentary and longitudinal changes in transcription associated with islet time in culture or glucose exposure. Additionally, we integrated genomic features and genetic summary statistics to nominate candidate effector genes. For three of these genes, we functionally characterised the effect on insulin production and secretion using CRISPR interference to knock down gene expression in EndoC-βH1 cells, followed by a glucose-stimulated insulin secretion assay. RESULTS In the discrete time models, we identified 1344 genes associated with time and 668 genes associated with glucose exposure across all cell types and time points. In the continuous time models, we identified 1311 genes associated with time, 345 genes associated with glucose exposure and 418 genes associated with interaction effects between time and glucose across all cell types. By integrating these expression profiles with summary statistics from genetic association studies, we identified 2449 candidate effector genes for type 2 diabetes, HbA1c, random blood glucose and fasting blood glucose. Of these candidate effector genes, we showed that three (ERO1B, HNRNPA2B1 and RHOBTB3) exhibited an effect on glucose-stimulated insulin production and secretion in EndoC-βH1 cells. CONCLUSIONS/INTERPRETATION The findings of our study provide an in-depth characterisation of the 24 h transcriptomic response of human pancreatic islets to glucose exposure at a single-cell resolution. By integrating differentially expressed genes with genetic signals for type 2 diabetes and glucose-related traits, we provide insights into the molecular mechanisms underlying glucose homeostasis. Finally, we provide functional evidence to support the role of three candidate effector genes in insulin secretion and production. DATA AVAILABILITY The scRNA-seq data from the 24 h glucose exposure experiment performed in this study are available in the database of Genotypes and Phenotypes (dbGap; https://www.ncbi.nlm.nih.gov/gap/ ) with accession no. phs001188.v3.p1. Study metadata and summary statistics for the differential expression, gene set enrichment and candidate effector gene prediction analyses are available in the Zenodo data repository ( https://zenodo.org/ ) under accession number 11123248. The code used in this study is publicly available at https://github.com/CollinsLabBioComp/publication-islet_glucose_timecourse .
Collapse
Affiliation(s)
- Caleb M Grenko
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, USA
| | - Henry J Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- Heart and Lung Research Institute, University of Cambridge, Cambridge, UK.
| | - Lori L Bonnycastle
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Brian N Lee
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zoe Weiss
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tingfen Yan
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Amy J Swift
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Erin C Mansell
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Angela Lee
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Catherine C Robertson
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Narisu Narisu
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Michael R Erdos
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Francis S Collins
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| | - D Leland Taylor
- Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Sharifi S, Yamamoto T, Zeug A, Elsner M, Avezov E, Mehmeti I. Non-esterified fatty acid palmitate facilitates oxidative endoplasmic reticulum stress and apoptosis of β-cells by upregulating ERO-1α expression. Redox Biol 2024; 73:103170. [PMID: 38692092 PMCID: PMC11070623 DOI: 10.1016/j.redox.2024.103170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024] Open
Abstract
Adipose tissue-derived non-esterified saturated long-chain fatty acid palmitate (PA) decisively contributes to β-cell demise in type 2 diabetes mellitus in part through the excessive generation of hydrogen peroxide (H2O2). The endoplasmic reticulum (ER) as the primary site of oxidative protein folding could represent a significant source of H2O2. Both ER-oxidoreductin-1 (ERO-1) isoenzymes, ERO-1α and ERO-1β, catalyse oxidative protein folding within the ER, generating equimolar amounts of H2O2 for every disulphide bond formed. However, whether ERO-1-derived H2O2 constitutes a potential source of cytotoxic luminal H2O2 under lipotoxic conditions is still unknown. Here, we demonstrate that both ERO-1 isoforms are expressed in pancreatic β-cells, but interestingly, PA only significantly induces ERO-1α. Its specific deletion significantly attenuates PA-mediated oxidative ER stress and subsequent β-cell death by decreasing PA-mediated ER-luminal and mitochondrial H2O2 accumulation, by counteracting the dysregulation of ER Ca2+ homeostasis, and by mitigating the reduction of mitochondrial membrane potential and lowered ATP content. Moreover, ablation of ERO-1α alleviated PA-induced hyperoxidation of the ER redox milieu. Importantly, ablation of ERO-1α did not affect the insulin secretory capacity, the unfolded protein response, or ER redox homeostasis under steady-state conditions. The involvement of ERO-1α-derived H2O2 in PA-mediated β-cell lipotoxicity was corroborated by the overexpression of a redox-active ERO-1α underscoring the proapoptotic activity of ERO-1α in pancreatic β-cells. Overall, our findings highlight the critical role of ERO-1α-derived H2O2 in lipotoxic ER stress and β-cell failure.
Collapse
Affiliation(s)
- Sarah Sharifi
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Tomoko Yamamoto
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Andre Zeug
- Institute for Neurophysiology, Hannover Medical School, 30625, Hannover, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany
| | - Edward Avezov
- Department of Clinical Neurosciences and UK Dementia Research Institute, University of Cambridge, CB2 0AH Cambridge, UK
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Hayashi Y, Hyodo F, Tana, Nakagawa K, Ishihara T, Matsuo M, Shimohata T, Nishihira J, Kobori M, Nakagawa T. Continuous intake of quercetin-rich onion powder may improve emotion but not regional cerebral blood flow in subjects with cognitive impairment. Heliyon 2023; 9:e18401. [PMID: 37533986 PMCID: PMC10391933 DOI: 10.1016/j.heliyon.2023.e18401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/04/2023] Open
Abstract
Depression in later life is associated with dementia. Changes in motivated behavior are an important mechanism contributing to dysfunctional cognitive control in depression. Although continuous intake of quercetin-rich onion suppresses cognitive decline in aged people by improving their emotional condition, the effect of quercetin-rich onion on emotional condition in people living with cognitive impairment remains unclear. In this randomized, double-blind, placebo-controlled study of subjects with cognitive impairment, we found that subjects wrote more adjectives and adverbs per sentence on the Mini-Mental State Examination after intake of quercetin-rich onion powder than before intake, although regional cerebral blood flow on n-isopropyl-4-[123]iodoamphetamine hydrochloride single-photon emission computed tomography was not changed. In the EPM, mice that had received a quercetin-supplemented chow diet made a significantly increased number of exploratory head dips from the open arms of the maze. Moreover, the 3-methoxycarbonyl-2,2,5,5-tetramethyl-pyrrolidine-1-oxyl decay rate, reflecting redox activity, was increased in mice fed a quercetin-added diet. These results indicate that quercetin-rich onion may affect motivated behavior in subjects with cognitive impairment, for whom quercetin intake may preserve redox homeostasis in the brain.
Collapse
Affiliation(s)
- Yuichi Hayashi
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Fuminori Hyodo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, Japan
- Institute for Advanced Study Gifu University, Gifu, Japan
| | - Tana
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyomi Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Nursing, University of Tokyo Health Science, Tokyo, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Japan
| | - Masayuki Matsuo
- Department of Radiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Jun Nishihira
- Department of Medical Management and Informatics, Hokkaido Information University, Hokkaido, Japan
| | - Masuko Kobori
- Institute of Food Research, National Agriculture and Food Research Organization, Ibaraki, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, Japan
| |
Collapse
|
6
|
Jha V, Xiong B, Kumari T, Brown G, Wang J, Kim K, Lee J, Asquith N, Gallagher J, Asherman L, Lambert T, Bai Y, Du X, Min JK, Sah R, Javaheri A, Razani B, Lee JM, Italiano JE, Cho J. A Critical Role for ERO1α in Arterial Thrombosis and Ischemic Stroke. Circ Res 2023; 132:e206-e222. [PMID: 37132383 PMCID: PMC10213138 DOI: 10.1161/circresaha.122.322473] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/12/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Platelet adhesion and aggregation play a crucial role in arterial thrombosis and ischemic stroke. Here, we identify platelet ERO1α (endoplasmic reticulum oxidoreductase 1α) as a novel regulator of Ca2+ signaling and a potential pharmacological target for treating thrombotic diseases. METHODS Intravital microscopy, animal disease models, and a wide range of cell biological studies were utilized to demonstrate the pathophysiological role of ERO1α in arteriolar and arterial thrombosis and to prove the importance of platelet ERO1α in platelet activation and aggregation. Mass spectrometry, electron microscopy, and biochemical studies were used to investigate the molecular mechanism. We used novel blocking antibodies and small-molecule inhibitors to study whether ERO1α can be targeted to attenuate thrombotic conditions. RESULTS Megakaryocyte-specific or global deletion of Ero1α in mice similarly reduced platelet thrombus formation in arteriolar and arterial thrombosis without affecting tail bleeding times and blood loss following vascular injury. We observed that platelet ERO1α localized exclusively in the dense tubular system and promoted Ca2+ mobilization, platelet activation, and aggregation. Platelet ERO1α directly interacted with STIM1 (stromal interaction molecule 1) and SERCA2 (sarco/endoplasmic reticulum Ca2+-ATPase 2) and regulated their functions. Such interactions were impaired in mutant STIM1-Cys49/56Ser and mutant SERCA2-Cys875/887Ser. We found that ERO1α modified an allosteric Cys49-Cys56 disulfide bond in STIM1 and a Cys875-Cys887 disulfide bond in SERCA2, contributing to Ca2+ store content and increasing cytosolic Ca2+ levels during platelet activation. Inhibition of Ero1α with small-molecule inhibitors but not blocking antibodies attenuated arteriolar and arterial thrombosis and reduced infarct volume following focal brain ischemia in mice. CONCLUSIONS Our results suggest that ERO1α acts as a thiol oxidase for Ca2+ signaling molecules, STIM1 and SERCA2, and enhances cytosolic Ca2+ levels, promoting platelet activation and aggregation. Our study provides evidence that ERO1α may be a potential target to reduce thrombotic events.
Collapse
Affiliation(s)
- Vishwanath Jha
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bei Xiong
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China
| | - Tripti Kumari
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gavriel Brown
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jinzhi Wang
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyungho Kim
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Jingu Lee
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nathan Asquith
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - John Gallagher
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lillian Asherman
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taylor Lambert
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yanyan Bai
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago College of Medicine, IL 60612, USA
| | - Xiaoping Du
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago College of Medicine, IL 60612, USA
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rajan Sah
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- John Cochran VA Medical Center, St. Louis, MO 63106, USA
| | - Ali Javaheri
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Babak Razani
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- John Cochran VA Medical Center, St. Louis, MO 63106, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph E. Italiano
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Vascular Biology Program, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Havranek T, Mihalj D, Bacova Z, Bakos J. Oxytocin action on components of endoplasmic reticulum in hippocampal neuronal cells. Neurosci Lett 2023; 792:136971. [PMID: 36414131 DOI: 10.1016/j.neulet.2022.136971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Despite the known importance of the endoplasmic reticulum (ER) in protein synthesis and vesicular transport, it is not clear whether neuropeptide and neuromodulator oxytocin can directly affect components of the ER in neuronal cells. Therefore, in the present study, we hypothesize that incubation of hippocampal neuronal cells in a presence of oxytocin 1) plays a role in the regulation of the expression of selected ER chaperone components and molecules involved in unfolded protein response pathway 2) affects distribution of the intracellular fluorescence signal highly selective for the ER. We found that oxytocin (1 μM) after 60 min significantly decreased the gene expression of oxidoreductase Ero1β, chaperone glucose-regulated proteins (Grp) 78 and Grp94. A significant decrease in GRP78 protein levels in response to oxytocin treatment occurred after 30, 60 and 120 min. We also observed a time-dependent increase in calreticulin protein levels with a statistically significant increase observed after 360 min. We found that the dynamics of the ER network changes significantly within 2 h of incubation under the influence of oxytocin. In conclusion we have shown that ER chaperones, oxidoreductases and trafficking molecules in neuronal cells are changing in response to oxytocin treatment in a short-term scenario potentially relevant for growth of dendrites and axons.
Collapse
Affiliation(s)
- T Havranek
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Slovakia
| | - D Mihalj
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Z Bacova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - J Bakos
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia; Faculty of Medicine, Comenius University in Bratislava, Slovakia.
| |
Collapse
|
8
|
SARS-CoV-2 Pattern Provides a New Scoring System and Predicts the Prognosis and Immune Therapeutic Response in Glioma. Cells 2022; 11:cells11243997. [PMID: 36552760 PMCID: PMC9777143 DOI: 10.3390/cells11243997] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Glioma is the most common primary malignancy of the adult central nervous system (CNS), with a poor prognosis and no effective prognostic signature. Since late 2019, the world has been affected by the rapid spread of SARS-CoV-2 infection. Research on SARS-CoV-2 is flourishing; however, its potential mechanistic association with glioma has rarely been reported. The aim of this study was to investigate the potential correlation of SARS-CoV-2-related genes with the occurrence, progression, prognosis, and immunotherapy of gliomas. METHODS SARS-CoV-2-related genes were obtained from the human protein atlas (HPA), while transcriptional data and clinicopathological data were obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. Glioma samples were collected from surgeries with the knowledge of patients. Differentially expressed genes were then identified and screened, and seven SARS-CoV-2 related genes were generated by LASSO regression analysis and uni/multi-variate COX analysis. A prognostic SARS-CoV-2-related gene signature (SCRGS) was then constructed based on these seven genes and validated in the TCGA validation cohort and CGGA cohort. Next, a nomogram was established by combining critical clinicopathological data. The correlation between SCRGS and glioma related biological processes was clarified by Gene set enrichment analysis (GSEA). In addition, immune infiltration and immune score, as well as immune checkpoint expression and immune escape, were further analyzed to assess the role of SCRGS in glioma-associated immune landscape and the responsiveness of immunotherapy. Finally, the reliability of SCRGS was verified by quantitative real-time polymerase chain reaction (qRT-PCR) on glioma samples. RESULTS The prognostic SCRGS contained seven genes, REEP6, CEP112, LARP4B, CWC27, GOLGA2, ATP6AP1, and ERO1B. Patients were divided into high- and low-risk groups according to the median SARS-CoV-2 Index. Overall survival was significantly worse in the high-risk group than in the low-risk group. COX analysis and receiver operating characteristic (ROC) curves demonstrated excellent predictive power for SCRGS for glioma prognosis. In addition, GSEA, immune infiltration, and immune scores indicated that SCRGS could potentially predict the tumor microenvironment, immune infiltration, and immune response in glioma patients. CONCLUSIONS The SCRGS established here can effectively predict the prognosis of glioma patients and provide a potential direction for immunotherapy.
Collapse
|
9
|
Atla G, Bonàs-Guarch S, Cuenca-Ardura M, Beucher A, Crouch DJM, Garcia-Hurtado J, Moran I, Irimia M, Prasad RB, Gloyn AL, Marselli L, Suleiman M, Berney T, de Koning EJP, Kerr-Conte J, Pattou F, Todd JA, Piemonti L, Ferrer J. Genetic regulation of RNA splicing in human pancreatic islets. Genome Biol 2022; 23:196. [PMID: 36109769 PMCID: PMC9479353 DOI: 10.1186/s13059-022-02757-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 08/23/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown. RESULTS We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B, a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and lncRNA MEG3. CONCLUSIONS These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.
Collapse
Affiliation(s)
- Goutham Atla
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Silvia Bonàs-Guarch
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - Mirabai Cuenca-Ardura
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
| | - Anthony Beucher
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Daniel J M Crouch
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Javier Garcia-Hurtado
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain
| | - Ignasi Moran
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
- Present Address: Life Sciences Department, Barcelona Supercomputing Center (BSC), 08034, Barcelona, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Clinical Research Center, Malmö, Sweden
- Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Anna L Gloyn
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Pediatrics, Division of Endocrinology, Stanford School of Medicine, Stanford, CA, USA
| | - Lorella Marselli
- Department of Clinical and Experimental Medicine, AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Mara Suleiman
- Department of Clinical and Experimental Medicine, AOUP Cisanello University Hospital, University of Pisa, Pisa, Italy
| | - Thierry Berney
- Cell Isolation and Transplantation Center, University of Geneva, Geneva, Switzerland
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Hubrecht Institute/KNAW, Utrecht, the Netherlands
| | - Julie Kerr-Conte
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000, Lille, France
| | - Francois Pattou
- University of Lille, Institut National de la Santé et de la Recherche Médicale (INSERM), Centre Hospitalier Universitaire de Lille (CHU Lille), Institute Pasteur Lille, U1190 -European Genomic Institute for Diabetes (EGID), F59000, Lille, France
| | - John A Todd
- JDRF/Wellcome Diabetes and Inflammation Laboratory, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele and Università Vita-Salute San Raffaele, Milan, Italy
| | - Jorge Ferrer
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.
- Centro de Investigación Biomédica en red Diabetes y enfermedades metabólicas asociadas (CIBERDEM), Barcelona, Spain.
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
10
|
Ghanbari F, Yazdanpanah N, Yazdanpanah M, Richards JB, Manousaki D. Connecting Genomics and Proteomics to Identify Protein Biomarkers for Adult and Youth-Onset Type 2 Diabetes: A Two-Sample Mendelian Randomization Study. Diabetes 2022; 71:1324-1337. [PMID: 35234851 DOI: 10.2337/db21-1046] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/24/2022] [Indexed: 11/13/2022]
Abstract
Type 2 diabetes shows an increasing prevalence in both adults and children. Identification of biomarkers for both youth and adult-onset type 2 diabetes is crucial for development of screening tools or drug targets. In this study, using two-sample Mendelian randomization (MR), we identified 22 circulating proteins causally linked to adult type 2 diabetes and 11 proteins with suggestive evidence for association with youth-onset type 2 diabetes. Among these, colocalization analysis further supported a role in type 2 diabetes for C-type mannose receptor 2 (MR odds ratio [OR] 0.85 [95% CI 0.79-0.92] per genetically predicted SD increase in protein level), MANS domain containing 4 (MR OR 0.90 [95% CI 0.88-0.92]), sodium/potassium-transporting ATPase subunit β2 (MR OR 1.10 [95% CI 1.06-1.15]), endoplasmic reticulum oxidoreductase 1β (MR OR 1.09 [95% CI 1.05-1.14]), spermatogenesis-associated protein 20 (MR OR 1.12 [95% CI 1.06-1.18]), haptoglobin (MR OR 0.96 [95% CI 0.94-0.98]), and α1-3-N-acetylgalactosaminyltransferase and α1-3-galactosyltransferase (MR OR 1.04 [95% CI 1.03-1.05]). Our findings support a causal role in type 2 diabetes for a set of circulating proteins, which represent promising type 2 diabetes drug targets.
Collapse
Affiliation(s)
- Faegheh Ghanbari
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Nahid Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - Mojgan Yazdanpanah
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
| | - J Brent Richards
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology and Biostatistics, McGill University, Montreal, Quebec, Canada
- Department of Twin Research, King's College London, London, U.K
| | - Despoina Manousaki
- Research Center of the Sainte-Justine University Hospital, University of Montreal, Montreal, Quebec, Canada
- Departments of Pediatrics, Biochemistry and Molecular Medicine, University of Montreal, Montreal, Canada
| |
Collapse
|
11
|
Brown MR, Matveyenko AV. It's What and When You Eat: An Overview of Transcriptional and Epigenetic Responses to Dietary Perturbations in Pancreatic Islets. Front Endocrinol (Lausanne) 2022; 13:842603. [PMID: 35355560 PMCID: PMC8960041 DOI: 10.3389/fendo.2022.842603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Our ever-changing modern environment is a significant contributor to the increased prevalence of many chronic diseases, and particularly, type 2 diabetes mellitus (T2DM). Although the modern era has ushered in numerous changes to our daily living conditions, changes in "what" and "when" we eat appear to disproportionately fuel the rise of T2DM. The pancreatic islet is a key biological controller of an organism's glucose homeostasis and thus plays an outsized role to coordinate the response to environmental factors to preserve euglycemia through a delicate balance of endocrine outputs. Both successful and failed adaptation to dynamic environmental stimuli has been postulated to occur due to changes in the transcriptional and epigenetic regulation of pathways associated with islet secretory function and survival. Therefore, in this review we examined and evaluated the current evidence elucidating the key epigenetic mechanisms and transcriptional programs underlying the islet's coordinated response to the interaction between the timing and the composition of dietary nutrients common to modern lifestyles. With the explosion of next generation sequencing, along with the development of novel informatic and -omic approaches, future work will continue to unravel the environmental-epigenetic relationship in islet biology with the goal of identifying transcriptional and epigenetic targets associated with islet perturbations in T2DM.
Collapse
Affiliation(s)
- Matthew R. Brown
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Aleksey V. Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
- Division of Endocrinology, Metabolism, Diabetes, and Nutrition, Department of Medicine, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
12
|
Nakagawa K, Islam S, Ueda M, Nakagawa T. Endoplasmic reticulum stress contributes to the decline in doublecortin expression in the immature neurons of mice with long-term obesity. Sci Rep 2022; 12:1022. [PMID: 35046482 PMCID: PMC8770636 DOI: 10.1038/s41598-022-05012-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 01/03/2022] [Indexed: 12/25/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) plays an important role in hippocampus-dependent function. The number of doublecortin (Dcx)-positive immature neurons in the dentate gyrus decreases over time, especially in the early stages of Alzheimer’s disease (AD), and is further reduced in later stages of AD. Obesity in midlife is associated with dementia later in life; however, the underlying mechanisms by which obesity results in the development of dementia later in life remain unknown. Here, we show that endoplasmic reticulum (ER) stress was activated in the hippocampus and processes of Dcx-expressing immature neurons were shortened, coexpressing CHOP in APP23 AD model mice with high-fat diet-induced long-term obesity and in aged Leprdb/db (db/db) mice. Moreover, in cells differentiating from hippocampal neurospheres, Dcx mRNA was rapidly degraded via a microRNA (miRNA) pathway after thapsigargin treatment in vitro. These results indicate that loss of Dcx mRNA induced by ER stress during AHN may cause memory impairment in obese individuals later in life.
Collapse
Affiliation(s)
- Kiyomi Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Saiful Islam
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram Laboratories, Chattogram, 4220, Bangladesh
| | - Masashi Ueda
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Tokyo, 187-8502, Japan
| | - Toshiyuki Nakagawa
- Department of Neurobiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| |
Collapse
|
13
|
Jha V, Kumari T, Manickam V, Assar Z, Olson KL, Min JK, Cho J. ERO1-PDI Redox Signaling in Health and Disease. Antioxid Redox Signal 2021; 35:1093-1115. [PMID: 34074138 PMCID: PMC8817699 DOI: 10.1089/ars.2021.0018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Significance: Protein disulfide isomerase (PDI) and endoplasmic reticulum oxidoreductase 1 (ERO1) are crucial for oxidative protein folding in the endoplasmic reticulum (ER). These enzymes are frequently overexpressed and secreted, and they contribute to the pathology of neurodegenerative, cardiovascular, and metabolic diseases. Recent Advances: Tissue-specific knockout mouse models and pharmacologic inhibitors have been developed to advance our understanding of the cell-specific functions of PDI and ERO1. In addition to their roles in protecting cells from the unfolded protein response and oxidative stress, recent studies have revealed that PDI and ERO1 also function outside of the cells. Critical Issues: Despite the well-known contributions of PDI and ERO1 to specific disease pathology, the detailed molecular and cellular mechanisms underlying these activities remain to be elucidated. Further, although PDI and ERO1 inhibitors have been identified, the results from previous studies require careful evaluation, as many of these agents are not selective and may have significant cytotoxicity. Future Directions: The functions of PDI and ERO1 in the ER have been extensively studied. Additional studies will be required to define their functions outside the ER.
Collapse
Affiliation(s)
- Vishwanath Jha
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tripti Kumari
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Vijayprakash Manickam
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zahra Assar
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Kirk L Olson
- Cayman Chemical Company, Inc., Ann Arbor, Michigan, USA
| | - Jeong-Ki Min
- Biotherapeutics Translational Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Jaehyung Cho
- Division of Hematology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
14
|
Hypoxia and the integrated stress response promote pulmonary hypertension and preeclampsia: Implications in drug development. Drug Discov Today 2021; 26:2754-2773. [PMID: 34302972 DOI: 10.1016/j.drudis.2021.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/31/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022]
Abstract
Chronic hypoxia is a common cause of pulmonary hypertension, preeclampsia, and intrauterine growth restriction (IUGR). The molecular mechanisms underlying these diseases are not completely understood. Chronic hypoxia may induce the generation of reactive oxygen species (ROS) in mitochondria, promote endoplasmic reticulum (ER) stress, and result in the integrated stress response (ISR) in the pulmonary artery and uteroplacental tissues. Numerous studies have implicated hypoxia-inducible factors (HIFs), oxidative stress, and ER stress/unfolded protein response (UPR) in the development of pulmonary hypertension, preeclampsia and IUGR. This review highlights the roles of HIFs, mitochondria-derived ROS and UPR, as well as their interplay, in the pathogenesis of pulmonary hypertension and preeclampsia, and their implications in drug development.
Collapse
|
15
|
Liu G, Li Y, Zhang T, Li M, Li S, He Q, Liu S, Xu M, Xiao T, Shao Z, Shi W, Li W. Single-cell RNA Sequencing Reveals Sexually Dimorphic Transcriptome and Type 2 Diabetes Genes in Mouse Islet β Cells. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 19:408-422. [PMID: 34571259 PMCID: PMC8864195 DOI: 10.1016/j.gpb.2021.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/02/2021] [Accepted: 08/01/2021] [Indexed: 12/25/2022]
Abstract
Type 2 diabetes (T2D) is characterized by the malfunction of pancreatic β cells. Susceptibility and pathogenesis of T2D can be affected by multiple factors, including sex differences. However, the mechanisms underlying sex differences in T2D susceptibility and pathogenesis remain unclear. Using single-cell RNA sequencing (scRNA-seq), we demonstrate the presence of sexually dimorphic transcriptomes in mouse β cells. Using a high-fat diet-induced T2D mouse model, we identified sex-dependent T2D altered genes, suggesting sex-based differences in the pathological mechanisms of T2D. Furthermore, based on islet transplantation experiments, we found that compared to mice with sex-matched islet transplants, sex-mismatched islet transplants in healthy mice showed down-regulation of genes involved in the longevity regulating pathway of β cells. Moreover, the diabetic mice with sex-mismatched islet transplants showed impaired glucose tolerance. These data suggest sexual dimorphism in T2D pathogenicity, indicating that sex should be considered when treating T2D. We hope that our findings could provide new insights for the development of precision medicine in T2D.
Collapse
Affiliation(s)
- Gang Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Yana Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tengjiao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mushan Li
- Department of Statistics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Sheng Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Qing He
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Shuxin Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Minglu Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Tinghui Xiao
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Weiyang Shi
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Weida Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Tsingtao Advanced Research Institute, Tongji University, Qingdao 266073, China.
| |
Collapse
|
16
|
Fan J, Wang X, Xiao R, Li M. Detecting cell-type-specific allelic expression imbalance by integrative analysis of bulk and single-cell RNA sequencing data. PLoS Genet 2021; 17:e1009080. [PMID: 33661921 PMCID: PMC7963069 DOI: 10.1371/journal.pgen.1009080] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/16/2021] [Accepted: 02/09/2021] [Indexed: 12/27/2022] Open
Abstract
Allelic expression imbalance (AEI), quantified by the relative expression of two alleles of a gene in a diploid organism, can help explain phenotypic variations among individuals. Traditional methods detect AEI using bulk RNA sequencing (RNA-seq) data, a data type that averages out cell-to-cell heterogeneity in gene expression across cell types. Since the patterns of AEI may vary across different cell types, it is desirable to study AEI in a cell-type-specific manner. Although this can be achieved by single-cell RNA sequencing (scRNA-seq), it requires full-length transcript to be sequenced in single cells of a large number of individuals, which are still cost prohibitive to generate. To overcome this limitation and utilize the vast amount of existing disease relevant bulk tissue RNA-seq data, we developed BSCET, which enables the characterization of cell-type-specific AEI in bulk RNA-seq data by integrating cell type composition information inferred from a small set of scRNA-seq samples, possibly obtained from an external dataset. By modeling covariate effect, BSCET can also detect genes whose cell-type-specific AEI are associated with clinical factors. Through extensive benchmark evaluations, we show that BSCET correctly detected genes with cell-type-specific AEI and differential AEI between healthy and diseased samples using bulk RNA-seq data. BSCET also uncovered cell-type-specific AEIs that were missed in bulk data analysis when the directions of AEI are opposite in different cell types. We further applied BSCET to two pancreatic islet bulk RNA-seq datasets, and detected genes showing cell-type-specific AEI that are related to the progression of type 2 diabetes. Since bulk RNA-seq data are easily accessible, BSCET provides a convenient tool to integrate information from scRNA-seq data to gain insight on AEI with cell type resolution. Results from such analysis will advance our understanding of cell type contributions in human diseases. Detection of allelic expression imbalance (AEI), a phenomenon where the two alleles of a gene differ in their expression magnitude, is a key step towards the understanding of phenotypic variations among individuals. Existing methods detect AEI using bulk RNA sequencing (RNA-seq) data and ignore AEI variations among different cell types. Although single-cell RNA sequencing (scRNA-seq) has enabled the characterization of cell-to-cell heterogeneity in gene expression, the high costs have limited its application in AEI analysis. To overcome this limitation, we developed BSCET to characterize cell-type-specific AEI using the widely available bulk RNA-seq data by integrating cell-type composition information inferred from scRNA-seq samples. Since the degree of AEI may vary with disease phenotypes, we further extended BSCET to detect genes whose cell-type-specific AEIs are associated with clinical factors. Through extensive benchmark evaluations and analyses of two pancreatic islet bulk RNA-seq datasets, we demonstrated BSCET’s ability to refine bulk-level AEI to cell-type resolution, and to identify genes whose cell-type-specific AEIs are associated with the progression of type 2 diabetes. With the vast amount of easily accessible bulk RNA-seq data, we believe BSCET will be a valuable tool for elucidating cell type contributions in human diseases.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Xuran Wang
- Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Rui Xiao
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RX); (ML)
| | - Mingyao Li
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail: (RX); (ML)
| |
Collapse
|
17
|
Liu M, Huang Y, Xu X, Li X, Alam M, Arunagiri A, Haataja L, Ding L, Wang S, Itkin-Ansari P, Kaufman RJ, Tsai B, Qi L, Arvan P. Normal and defective pathways in biogenesis and maintenance of the insulin storage pool. J Clin Invest 2021; 131:142240. [PMID: 33463547 PMCID: PMC7810482 DOI: 10.1172/jci142240] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Both basal and glucose-stimulated insulin release occur primarily by insulin secretory granule exocytosis from pancreatic β cells, and both are needed to maintain normoglycemia. Loss of insulin-secreting β cells, accompanied by abnormal glucose tolerance, may involve simple exhaustion of insulin reserves (which, by immunostaining, appears as a loss of β cell identity), or β cell dedifferentiation, or β cell death. While various sensing and signaling defects can result in diminished insulin secretion, somewhat less attention has been paid to diabetes risk caused by insufficiency in the biosynthetic generation and maintenance of the total insulin granule storage pool. This Review offers an overview of insulin biosynthesis, beginning with the preproinsulin mRNA (translation and translocation into the ER), proinsulin folding and export from the ER, and delivery via the Golgi complex to secretory granules for conversion to insulin and ultimate hormone storage. All of these steps are needed for generation and maintenance of the total insulin granule pool, and defects in any of these steps may, weakly or strongly, perturb glycemic control. The foregoing considerations have obvious potential relevance to the pathogenesis of type 2 diabetes and some forms of monogenic diabetes; conceivably, several of these concepts might also have implications for β cell failure in type 1 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Yumeng Huang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xiaoxi Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Xin Li
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Maroof Alam
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Li Ding
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Shusen Wang
- Organ Transplant Center, Tianjin First Central Hospital, Tianjin, China
| | | | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Billy Tsai
- Department of Cell and Developmental Biology, and
| | - Ling Qi
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Piñeros AR, Gao H, Wu W, Liu Y, Tersey SA, Mirmira RG. Single-Cell Transcriptional Profiling of Mouse Islets Following Short-Term Obesogenic Dietary Intervention. Metabolites 2020; 10:metabo10120513. [PMID: 33353164 PMCID: PMC7765825 DOI: 10.3390/metabo10120513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022] Open
Abstract
Obesity is closely associated with adipose tissue inflammation and insulin resistance. Dysglycemia and type 2 diabetes results when islet β cells fail to maintain appropriate insulin secretion in the face of insulin resistance. To clarify the early transcriptional events leading to β-cell failure in the setting of obesity, we fed male C57BL/6J mice an obesogenic, high-fat diet (60% kcal from fat) or a control diet (10% kcal from fat) for one week, and islets from these mice (from four high-fat- and three control-fed mice) were subjected to single-cell RNA sequencing (sc-RNAseq) analysis. Islet endocrine cell types (α cells, β cells, δ cells, PP cells) and other resident cell types (macrophages, T cells) were annotated by transcript profiles and visualized using Uniform Manifold Approximation and Projection for Dimension Reduction (UMAP) plots. UMAP analysis revealed distinct cell clusters (11 for β cells, 5 for α cells, 3 for δ cells, PP cells, ductal cells, endothelial cells), emphasizing the heterogeneity of cell populations in the islet. Collectively, the clusters containing the majority of β cells showed the fewest gene expression changes, whereas clusters harboring the minority of β cells showed the most changes. We identified that distinct β-cell clusters downregulate genes associated with the endoplasmic reticulum stress response and upregulate genes associated with insulin secretion, whereas others upregulate genes that impair insulin secretion, cell proliferation, and cell survival. Moreover, all β-cell clusters negatively regulate genes associated with immune response activation. Glucagon-producing α cells exhibited patterns similar to β cells but, again, in clusters containing the minority of α cells. Our data indicate that an early transcriptional response in islets to an obesogenic diet reflects an attempt by distinct populations of β cells to augment or impair cellular function and/or reduce inflammatory responses as possible harbingers of ensuing insulin resistance.
Collapse
Affiliation(s)
- Annie R. Piñeros
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.R.P.); (W.W.)
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Y.L.)
| | - Wenting Wu
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.R.P.); (W.W.)
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Y.L.)
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (H.G.); (Y.L.)
| | - Sarah A. Tersey
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA;
| | - Raghavendra G. Mirmira
- Kolver Diabetes Center and Department of Medicine, The University of Chicago, Chicago, IL 60637, USA;
- Correspondence:
| |
Collapse
|
19
|
Li J, Zheng Y, Yan P, Song M, Wang S, Sun L, Liu Z, Ma S, Izpisua Belmonte JC, Chan P, Zhou Q, Zhang W, Liu GH, Tang F, Qu J. A single-cell transcriptomic atlas of primate pancreatic islet aging. Natl Sci Rev 2020; 8:nwaa127. [PMID: 34691567 PMCID: PMC8288398 DOI: 10.1093/nsr/nwaa127] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/25/2022] Open
Abstract
Aging-related degeneration of pancreatic islet cells contributes to impaired glucose tolerance and diabetes. Endocrine cells age heterogeneously, complicating the efforts to unravel the molecular drivers underlying endocrine aging. To overcome these obstacles, we undertook single-cell RNA sequencing of pancreatic islet cells obtained from young and aged non-diabetic cynomolgus monkeys. Despite sex differences and increased transcriptional variations, aged β-cells showed increased unfolded protein response (UPR) along with the accumulation of protein aggregates. We observed transcriptomic dysregulation of UPR components linked to canonical ATF6 and IRE1 signaling pathways, comprising adaptive UPR during pancreatic aging. Notably, we found aging-related β-cell-specific upregulation of HSP90B1, an endoplasmic reticulum-located chaperone, impeded high glucose-induced insulin secretion. Our work decodes aging-associated transcriptomic changes that underlie pancreatic islet functional decay at single-cell resolution and indicates that targeting UPR components may prevent loss of proteostasis, suggesting an avenue to delaying β-cell aging and preventing aging-related diabetes.
Collapse
Affiliation(s)
- Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuxuan Zheng
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Pengze Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Si Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Liang Sun
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing 100730, China
| | - Zunpeng Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | - Piu Chan
- Beijing Institute for Brain Disorders, Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
20
|
Shergalis AG, Hu S, Bankhead A, Neamati N. Role of the ERO1-PDI interaction in oxidative protein folding and disease. Pharmacol Ther 2020; 210:107525. [PMID: 32201313 DOI: 10.1016/j.pharmthera.2020.107525] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/04/2020] [Accepted: 02/19/2020] [Indexed: 02/06/2023]
Abstract
Protein folding in the endoplasmic reticulum is an oxidative process that relies on protein disulfide isomerase (PDI) and endoplasmic reticulum oxidase 1 (ERO1). Over 30% of proteins require the chaperone PDI to promote disulfide bond formation. PDI oxidizes cysteines in nascent polypeptides to form disulfide bonds and can also reduce and isomerize disulfide bonds. ERO1 recycles reduced PDI family member PDIA1 using a FAD cofactor to transfer electrons to oxygen. ERO1 dysfunction critically affects several diseases states. Both ERO1 and PDIA1 are overexpressed in cancers and implicated in diabetes and neurodegenerative diseases. Cancer-associated ERO1 promotes cell migration and invasion. Furthermore, the ERO1-PDIA1 interaction is critical for epithelial-to-mesenchymal transition. Co-expression analysis of ERO1A gene expression in cancer patients demonstrated that ERO1A is significantly upregulated in lung adenocarcinoma (LUAD), glioblastoma and low-grade glioma (GBMLGG), pancreatic ductal adenocarcinoma (PAAD), and kidney renal papillary cell carcinoma (KIRP) cancers. ERO1Α knockdown gene signature correlates with knockdown of cancer signaling proteins including IGF1R, supporting the search for novel, selective ERO1 inhibitors for the treatment of cancer. In this review, we explore the functions of ERO1 and PDI to support inhibition of this interaction in cancer and other diseases.
Collapse
Affiliation(s)
- Andrea G Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States
| | - Shuai Hu
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Armand Bankhead
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, United States; Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI 48109, United States
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Rogel Cancer Center, Ann Arbor, MI 48109, United States.
| |
Collapse
|
21
|
Protein disulfide isomerase in cardiovascular disease. Exp Mol Med 2020; 52:390-399. [PMID: 32203104 PMCID: PMC7156431 DOI: 10.1038/s12276-020-0401-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 02/04/2020] [Indexed: 01/07/2023] Open
Abstract
Protein disulfide isomerase (PDI) participates in the pathogenesis of numerous diseases. Increasing evidence indicates that intravascular cell-derived PDI plays an important role in the initiation and progression of cardiovascular diseases, including thrombosis and vascular inflammation. Recent studies with PDI conditional knockout mice have advanced our understanding of the function of cell-specific PDI in disease processes. Furthermore, the identification and development of novel small-molecule PDI inhibitors has led into a new era of PDI research that transitioned from the bench to bedside. In this review, we will discuss recent findings on the regulatory role of PDI in cardiovascular disease. Efforts to untangle the functions of a large family of enzymes could lead researchers to new therapies for diverse cardiovascular diseases. Members of the protein disulfide isomerase (PDI) family chemically modify other proteins in ways that can alter both their structure and biological activity. Jaehyung Cho of the University of Illinois at Chicago, USA and coworkers have reviewed numerous studies linking PDI with cardiovascular diseases, including thrombosis, heart attack, vascular inflammation, and stroke. The authors also report progress in developing small-molecule PDI inhibitors that could yield the treatment for these conditions.
Collapse
|
22
|
Abstract
Insulin secretion by the pancreatic β-cells is elicited in response to elevated extracellular glucose concentration. In addition to triggering insulin secretion, glucose-induced signal regulates β-cell proliferation and survival. However, the molecular mechanism underlying the effects of glucose on the β-cell functionality still remains unclear. Glucokinase, a hexokinase isozyme that catalyzes the phosphorylation of glucose, acts as the glucose sensor in the β-cells. To investigate the mechanisms of glucose signaling in the regulation of β-cell functions, we analyzed the role of glucokinase in insulin secretion, β-cell proliferation and β-cell apoptosis, using β-cell-specific glucokinase-haploinsufficient (Gck+/-) mice and allosteric glucokinase activators (GKAs). Glucokinase-mediated glucose metabolism (1) suppresses endoplasmic reticulum (ER) stress-induced β-cell apoptosis via inducing insulin receptor substrate-2 (IRS-2) expression and expression of ER stress-related molecules, (2) promotes adaptive β-cell proliferation through activation of the Forkhead Box M1 (FoxM1)/polo-like kinase-1 (PLK1)/centromere protein-A (CENP-A) pathway, (3) induces islet inflammation by promoting interaction of islet-derived S100 calcium-binding protein A8 (S100A8) with macrophages, (4) induces the expression of Fibulin-5 (Fbln5), an extracellular matrix protein to regulate β-cell functions, and (5) activates other unknown pathways. Glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors have been found to possibly compensate for dysregulation of glucose metabolism in the β-cells. This review provides an update and overview of the recent advances in the study of β-cell pathophysiology and some therapeutic possibilities focusing on glucose-/glucokinase-mediated signaling.
Collapse
Affiliation(s)
- Jun Shirakawa
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
23
|
Shi R, Yang H, Lin X, Cao Y, Zhang C, Fan Z, Hou B. Analysis of the characteristics and expression profiles of coding and noncoding RNAs of human dental pulp stem cells in hypoxic conditions. Stem Cell Res Ther 2019; 10:89. [PMID: 30867055 PMCID: PMC6417198 DOI: 10.1186/s13287-019-1192-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/08/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Human dental pulp stem cell (DPSC)-mediated regenerative endodontics is a promising therapy for damaged teeth; however, the hypoxic environment in root canals can affect tissue regeneration. In this study, we investigate the characteristics and possible regulatory mechanisms of DPSC function under hypoxic conditions. METHODS Human DPSCs were cultured under normoxia (20% O2) and hypoxia (3% O2). DPSC proliferation and osteo/odontogenic differentiation potential were assessed by Cell Counting Kit-8 (CCK8) assay, carboxyfluorescein succinimidyl ester (CFSE) assay, alkaline phosphatase (ALP) activity, Alizarin red staining, real-time RT-PCR assays, and western blot analysis. Microarray and bioinformatic analyses were performed to investigate the differences in the mRNA, lncRNA, and miRNA expression profiles of DPSCs. RESULTS DPSCs exhibited a more powerful proliferation ability and lower osteo/odontogenic differentiation potential in hypoxic conditions. A total of 60 mRNAs (25 upregulated and 35 downregulated), 47 lncRNAs (20 upregulated and 27 downregulated), and 14 miRNAs (7 upregulated and 7 downregulated) in DPSCs were differentially expressed in the hypoxia group compared with the normoxia group. Bioinformatic analysis identified that 7 mRNAs (GRPR, ERO1L, ANPEP, EPHX1, PGD, ANGPT1, and NQO1) and 5 lncRNAs (AF085958, AX750575, uc002czn.2, RP3-413H6.2, and six-twelve leukemia (STL)) may be associated with DPSCs during hypoxia according to CNC network analysis, while 28 mRNAs (including GYS1, PRKACB, and NQO1) and 13 miRNAs (including hsa-miR-3916 and hsa-miR-192-5p) may be involved according to miRNA target gene network analysis. The depletion of one candidate lncRNA, STL, inhibited the osteo/odontogenic differentiation potentials of DPSCs. CONCLUSIONS Our results revealed that hypoxia could enhance the proliferation ability and impair the osteo/odontogenic differentiation potential of DPSCs in vitro. Furthermore, our results identified candidate coding and noncoding RNAs that could be potential targets for improving DPSC function in regenerative endodontics and lead to a better understanding of the mechanisms of hypoxia's effects on DPSCs.
Collapse
Affiliation(s)
- Ruitang Shi
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Haoqing Yang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiao Lin
- Department of Implant Dentistry, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Yangyang Cao
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Chen Zhang
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Zhipeng Fan
- Laboratory of Molecular Signaling and Stem Cells Therapy, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| | - Benxiang Hou
- Department of Endodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
24
|
Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ, Arvan P. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 2018; 20 Suppl 2:28-50. [PMID: 30230185 PMCID: PMC6463291 DOI: 10.1111/dom.13378] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Insulin synthesis in pancreatic β-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic β-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202 IN USA
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Jing Yong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Nischay Rege
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| |
Collapse
|
25
|
Ramos-Lopez O, Riezu-Boj JI, Milagro FI, Martinez JA. DNA methylation signatures at endoplasmic reticulum stress genes are associated with adiposity and insulin resistance. Mol Genet Metab 2018; 123:50-58. [PMID: 29221916 DOI: 10.1016/j.ymgme.2017.11.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022]
Abstract
A sustained activation of the unfolded protein response and the subsequent endoplasmic reticulum (ER) stress has been involved in the onset and severity of several metabolic diseases. The aim of this study was to analyze the association of DNA methylation signatures at ER stress genes with adiposity traits and related metabolic disorders. An epigenomic analysis within the Methyl Epigenome Network Association (MENA) project was conducted in an adult population (n=474). DNA methylation status in peripheral white blood cells was analyzed by a microarray approach. KEGG database was used to the characterization and discrimination of genes involved in the "protein processing in endoplasmic reticulum pathway". Anthropometric measurements and plasma metabolic profiles were analyzed. A total of 15 CpG sites at genes participating in ER pathway were strongly correlated with BMI after adjusted linear regression analyses (p<0.0001). These included cg08188400 (MAP2K7), cg20541779 (CASP12), cg24776411 (EIF2AK1), cg14190817 (HSPA5), cg21376454 (ERN1), cg06666486 (EIF2AK1), cg03211481 (DNAJC1), cg18357645 (OS9), cg05801879 (MBTPS1), cg20964082 (ERO1LB), cg17300868 (NFE2L2), cg03384128 (EIF2AK4), cg02712587 (EIF2AK4), cg04972384 (SELS), cg02240686 (EIF2AK2). Noteworthy, most of them were implicated in ER stress (p=2.9E-09). However, only methylation levels at cg20964082 (ERO1LB), cg17300868 (NFE2L2), cg05801879 (MBTPS1), and cg03384128 (EIF2AK4) also correlated with total fat mass. Interestingly, significant associations between methylation patterns at cg20964082 (ERO1LB) and cg17300868 (NFE2L2) and insulin and HOMA-IR index were found, whereas cg05801879 (MBTPS1) and cg03384128 (EIF2AK4) were correlated with triglyceride levels. This study suggests associations of methylation signatures at ER stress genes with adiposity and insulin resistance, as revealed by discriminative pathway analyses.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Biomedical Research Centre Network in Physiopathology of Obesity and Nutrition (CIBERobn), Carlos III Institute, Madrid, Spain; Madrid Institute of Advanced Studies (IMDEA Food), Madrid, Spain.
| |
Collapse
|
26
|
Ottosson-Laakso E, Krus U, Storm P, Prasad RB, Oskolkov N, Ahlqvist E, Fadista J, Hansson O, Groop L, Vikman P. Glucose-Induced Changes in Gene Expression in Human Pancreatic Islets: Causes or Consequences of Chronic Hyperglycemia. Diabetes 2017; 66:3013-3028. [PMID: 28882899 DOI: 10.2337/db17-0311] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/30/2017] [Indexed: 11/13/2022]
Abstract
Dysregulation of gene expression in islets from patients with type 2 diabetes (T2D) might be causally involved in the development of hyperglycemia, or it could develop as a consequence of hyperglycemia (i.e., glucotoxicity). To separate the genes that could be causally involved in pathogenesis from those likely to be secondary to hyperglycemia, we exposed islets from human donors to normal or high glucose concentrations for 24 h and analyzed gene expression. We compared these findings with gene expression in islets from donors with normal glucose tolerance and hyperglycemia (including T2D). The genes whose expression changed in the same direction after short-term glucose exposure, as in T2D, were considered most likely to be a consequence of hyperglycemia. Genes whose expression changed in hyperglycemia but not after short-term glucose exposure, particularly those that also correlated with insulin secretion, were considered the strongest candidates for causal involvement in T2D. For example, ERO1LB, DOCK10, IGSF11, and PRR14L were downregulated in donors with hyperglycemia and correlated positively with insulin secretion, suggesting a protective role, whereas TMEM132C was upregulated in hyperglycemia and correlated negatively with insulin secretion, suggesting a potential pathogenic role. This study provides a catalog of gene expression changes in human pancreatic islets after exposure to glucose.
Collapse
Affiliation(s)
- Emilia Ottosson-Laakso
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Ulrika Krus
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Petter Storm
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Rashmi B Prasad
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Nikolay Oskolkov
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Emma Ahlqvist
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - João Fadista
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Ola Hansson
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Leif Groop
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Finnish Institute of Molecular Medicine, University of Helsinki, Helsinki, Finland
| | - Petter Vikman
- Lund University Diabetes Centre, Department of Clinical Sciences, Lund University, Malmö, Sweden
| |
Collapse
|
27
|
Mehmeti I, Lortz S, Avezov E, Jörns A, Lenzen S. ER-resident antioxidative GPx7 and GPx8 enzyme isoforms protect insulin-secreting INS-1E β-cells against lipotoxicity by improving the ER antioxidative capacity. Free Radic Biol Med 2017; 112:121-130. [PMID: 28751022 DOI: 10.1016/j.freeradbiomed.2017.07.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/20/2017] [Accepted: 07/22/2017] [Indexed: 12/16/2022]
Abstract
Increased circulating levels of saturated fatty acids (FFAs) and glucose are considered to be major mediators of β-cell dysfunction and death in T2DM. Although it has been proposed that endoplasmic reticulum (ER) and oxidative stress play a crucial role in gluco/lipotoxicity, their interplay and relative contribution to β-cell dysfunction and apoptosis has not been fully elucidated. In addition it is still unclear how palmitate - the physiologically most abundant long-chain saturated FFA - elicits ER stress and which immediate signals commit β-cells to apoptosis. To study the underlying mechanisms of palmitate-mediated ER stress and β-cell toxicity, we exploited the observation that the recently described ER-resident GPx7 and GPx8 are not expressed in rat β-cells. Expression of GPx7 or GPx8 attenuated FFAs-mediated H2O2 generation, ER stress, and apoptosis induction. These results could be confirmed by a H2O2-specific inactivating ER catalase, indicating that accumulation of H2O2 in the ER lumen is critical in FFA-induced ER stress. Furthermore, neither the expression of GPx7 nor of GPx8 increased insulin content or facilitated disulfide bond formation in insulin-secreting INS-1E cells. Hence, reduction of H2O2 by ER-GPx isoforms is not rate-limiting in oxidative protein folding in rat β-cells. These data suggest that FFA-mediated ER stress is partially dependent on oxidative stress and selective expression of GPx7 or GPx8 improves the ER antioxidative capacity of rat β-cells without compromising insulin production and the oxidative protein folding machinery.
Collapse
Affiliation(s)
- Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | - Stephan Lortz
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Edward Avezov
- University of Cambridge, Cambridge Institute for Medical Research, the Wellcome Trust MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Cambridge CB2 0XY, United Kingdom
| | - Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany; Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
28
|
Upadhyaya B, Larsen T, Barwari S, Louwagie EJ, Baack ML, Dey M. Prenatal Exposure to a Maternal High-Fat Diet Affects Histone Modification of Cardiometabolic Genes in Newborn Rats. Nutrients 2017; 9:E407. [PMID: 28425976 PMCID: PMC5409746 DOI: 10.3390/nu9040407] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 04/12/2017] [Accepted: 04/14/2017] [Indexed: 12/15/2022] Open
Abstract
Infants born to women with diabetes or obesity are exposed to excess circulating fuels during fetal heart development and are at higher risk of cardiac diseases. We have previously shown that late-gestation diabetes, especially in conjunction with a maternal high-fat (HF) diet, impairs cardiac functions in rat-offspring. This study investigated changes in genome-wide histone modifications in newborn hearts from rat-pups exposed to maternal diabetes and HF-diet. Chromatin-immunoprecipitation-sequencing revealed a differential peak distribution on gene promoters in exposed pups with respect to acetylation of lysines 9 and 14 and to trimethylation of lysines 4 and 27 in histone H3 (all, false discovery rate, FDR < 0.1). In the HF-diet exposed offspring, 54% of the annotated genes showed the gene-activating mark trimethylated lysine 4. Many of these genes (1) are associated with the "metabolic process" in general and particularly with "positive regulation of cholesterol biosynthesis" (FDR = 0.03); (2) overlap with 455 quantitative trait loci for blood pressure, body weight, serum cholesterol (all, FDR < 0.1); and (3) are linked to cardiac disease susceptibility/progression, based on disease ontology analyses and scientific literature. These results indicate that maternal HF-diet changes the cardiac histone signature in offspring suggesting a fuel-mediated epigenetic reprogramming of cardiac tissue in utero.
Collapse
Affiliation(s)
- Bijaya Upadhyaya
- Department of Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, USA.
| | - Tricia Larsen
- Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA.
| | - Shivon Barwari
- Department of Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, USA.
| | - Eli J Louwagie
- Sanford School of Medicine-University of South Dakota, Sioux Falls, SD 57105, USA.
| | - Michelle L Baack
- Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104, USA.
- Sanford School of Medicine-University of South Dakota, Sioux Falls, SD 57105, USA.
- Children's Health Specialty Clinic, Sanford Children's Hospital, Sioux Falls, SD 57117, USA.
| | - Moul Dey
- Department of Health and Nutritional Sciences, Box 2203, South Dakota State University, Brookings, SD 57007, USA.
| |
Collapse
|
29
|
Zhu T, Gao YF, Chen YX, Wang ZB, Yin JY, Mao XY, Li X, Zhang W, Zhou HH, Liu ZQ. Genome-scale analysis identifies GJB2 and ERO1LB as prognosis markers in patients with pancreatic cancer. Oncotarget 2017; 8:21281-21289. [PMID: 28177904 PMCID: PMC5400583 DOI: 10.18632/oncotarget.15068] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/09/2017] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is a complex and heterogeneous disease with the etiology largely unknown. The deadly nature of pancreatic cancer, with an extremely low 5-year survival rate, renders urgent a better understanding of the molecular events underlying it. The aim of this study is to investigate the gene expression module of pancreatic adenocarcinoma and to identify differentially expressed genes (DEGs) with prognostic potentials. Transcriptome microarray data of five GEO datasets (GSE15471, GSE16515, GSE18670, GSE32676, GSE71989), including 117 primary tumor samples and 73 normal pancreatic tissue samples, were utilized to identify DEGs. The five sets of DEGs had an overlapping subset consisting of 98 genes (90 up-regulated and 8 down-regulated), which were probably common to pancreatic cancer. Gene ontology (GO) analysis of the 98 DEGs showed that cell cycle and cell adhesion were the major enriched processes, and extracellular matrix (ECM)-receptor interaction and p53 signaling pathway were the most enriched pathways according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Elevated expression of gap junction protein beta 2 (GJB2) and reduced endoplasmic reticulum oxidoreductase 1-like beta (ERO1LB) expression were validated in an independent cohort. Kaplan-Meier survival analysis revealed that GJB2 and ERO1LB levels were significantly associated with the overall survival of pancreatic cancer patients. GJB2 and ERO1LB are implicated in pancreatic cancer progression and can be used to predict patient survival. Therapeutic strategies targeting GJB2 and facilitating ERO1LB expression may deserve evaluation to improve prognosis of pancreatic cancer patients.
Collapse
Affiliation(s)
- Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Yuan-Feng Gao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Yi-Xin Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhi-Bin Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xiao-Yuan Mao
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P. R. China
| |
Collapse
|
30
|
A formulation of grape seed, Indian gooseberry, turmeric and fenugreek helps controlling type 2 diabetes mellitus in advanced-stage patients. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2016.06.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
31
|
Rakshit K, Qian J, Ernst J, Matveyenko AV. Circadian variation of the pancreatic islet transcriptome. Physiol Genomics 2016; 48:677-87. [PMID: 27495157 DOI: 10.1152/physiolgenomics.00019.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/01/2016] [Indexed: 01/09/2023] Open
Abstract
Pancreatic islet failure is a characteristic feature of impaired glucose control in diabetes mellitus. Circadian control of islet function is essential for maintaining proper glucose homeostasis. Circadian variations in transcriptional pathways have been described in diverse cell types and shown to be critical for optimization of cellular function in vivo. In the current study, we utilized Short Time Series Expression Miner (STEM) analysis to identify diurnally expressed transcripts and biological pathways from mouse islets isolated at 4 h intervals throughout the 24 h light-dark cycle. STEM analysis identified 19 distinct chronological model profiles, and genes belonging to each profile were subsequently annotated to significantly enriched Kyoto Encyclopedia of Genes and Genomes biological pathways. Several transcriptional pathways essential for proper islet function (e.g., insulin secretion, oxidative phosphorylation), cell survival (e.g., insulin signaling, apoptosis) and cell proliferation (DNA replication, homologous recombination) demonstrated significant time-dependent variations. Notably, KEGG pathway analysis revealed "protein processing in endoplasmic reticulum - mmu04141" as one of the most enriched time-dependent pathways in islets. This study provides unique data set on time-dependent diurnal profiles of islet gene expression and biological pathways, and suggests that diurnal variation of the islet transcriptome is an important feature of islet homeostasis, which should be taken into consideration for optimal experimental design and interpretation of future islet studies.
Collapse
Affiliation(s)
- Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic Rochester, Rochester, Minnesota; Department of Medicine, Division of Endocrinology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California; and
| | - Jingyi Qian
- Department of Medicine, Division of Endocrinology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California; and
| | - Jason Ernst
- Department of Biological Chemistry, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California
| | - Aleksey V Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic Rochester, Rochester, Minnesota; Department of Medicine, Division of Endocrinology, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California; and
| |
Collapse
|
32
|
Xie J, Zhu Y, Chen H, Shi M, Gu J, Zhang J, Shen B, Deng X, Zhan X, Peng C. The Immunohistochemical Evaluation of Solid Pseudopapillary Tumors of the Pancreas and Pancreatic Neuroendocrine Tumors Reveals ERO1Lβ as a New Biomarker. Medicine (Baltimore) 2016; 95:e2509. [PMID: 26765469 PMCID: PMC4718295 DOI: 10.1097/md.0000000000002509] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Solid pseudopapillary tumor of the pancreas (SPTP) is a class of low-grade malignant tumors that carry a favorable prognosis after surgery. Our group has reported that dysfunctions in the endoplasmic reticulum (ER) protein processing pathway may play a role in tumor development. However, alterations of this pathway in other pancreatic tumors had not been well investigated. In this study, we collected 35 SPTP and pancreatic neuroendocrine tumor (PNET) specimens and described the clinicopathological features of them. We performed immunohistochemistry (IHC) for 6 representative proteins (ERO1Lβ, TRAM1, GRP94, BIP, P4HB, and PDIA4) involved in the ER pathway in both SPTP and PNET specimens. We compared the IHC scoring results of tumors and matched normal pancreas tissues and demonstrated that these proteins were downregulated in SPTP specimens. Five of these proteins (TRAM1, GRP94, BIP, P4HB, and PDIA4) did not display significant changes between PNET and normal pancreas tissue. However, ERO1Lβ was upregulated in PNET tissues compared to the normal tissues, which could be used as a pathological biomarker in the future.
Collapse
Affiliation(s)
- Junjie Xie
- From the Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai (JX, HC, JG, JZ, BS, XD, XZ, CP); Department of Surgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou (YZ); and Research Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China (MS)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mehmeti I, Lortz S, Elsner M, Lenzen S. Peroxiredoxin 4 improves insulin biosynthesis and glucose-induced insulin secretion in insulin-secreting INS-1E cells. J Biol Chem 2014; 289:26904-26913. [PMID: 25122762 DOI: 10.1074/jbc.m114.568329] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oxidative folding of (pro)insulin is crucial for its assembly and biological function. This process takes place in the endoplasmic reticulum (ER) and is accomplished by protein disulfide isomerase and ER oxidoreductin 1β, generating stoichiometric amounts of hydrogen peroxide (H2O2) as byproduct. During insulin resistance in the prediabetic state, increased insulin biosynthesis can overwhelm the ER antioxidative and folding capacity, causing an imbalance in the ER redox homeostasis and oxidative stress. Peroxiredoxin 4 (Prdx4), an ER-specific antioxidative peroxidase can utilize luminal H2O2 as driving force for reoxidizing protein disulfide isomerase family members, thus efficiently contributing to disulfide bond formation. Here, we examined the functional significance of Prdx4 on β-cell function with emphasis on insulin content and secretion during stimulation with nutrient secretagogues. Overexpression of Prdx4 in glucose-responsive insulin-secreting INS-1E cells significantly metabolized luminal H2O2 and improved the glucose-induced insulin secretion, which was accompanied by the enhanced proinsulin mRNA transcription and insulin content. This β-cell beneficial effect was also observed upon stimulation with the nutrient insulin secretagogue combination of leucine plus glutamine, indicating that the effect is not restricted to glucose. However, knockdown of Prdx4 had no impact on H2O2 metabolism or β-cell function due to the fact that Prdx4 expression is negligibly low in pancreatic β-cells. Moreover, we provide evidence that the constitutively low expression of Prdx4 is highly susceptible to hyperoxidation in the presence of high glucose. Overall, these data suggest an important role of Prdx4 in maintaining insulin levels and improving the ER folding capacity also under conditions of a high insulin requirement.
Collapse
Affiliation(s)
- Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Stephan Lortz
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Matthias Elsner
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Sigurd Lenzen
- Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany.
| |
Collapse
|
34
|
Eletto D, Chevet E, Argon Y, Appenzeller-Herzog C. Redox controls UPR to control redox. J Cell Sci 2014; 127:3649-58. [PMID: 25107370 DOI: 10.1242/jcs.153643] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In many physiological contexts, intracellular reduction-oxidation (redox) conditions and the unfolded protein response (UPR) are important for the control of cell life and death decisions. UPR is triggered by the disruption of endoplasmic reticulum (ER) homeostasis, also known as ER stress. Depending on the duration and severity of the disruption, this leads to cell adaptation or demise. In this Commentary, we review reductive and oxidative activation mechanisms of the UPR, which include direct interactions of dedicated protein disulfide isomerases with ER stress sensors, protein S-nitrosylation and ER Ca(2+) efflux that is promoted by reactive oxygen species. Furthermore, we discuss how cellular oxidant and antioxidant capacities are extensively remodeled downstream of UPR signals. Aside from activation of NADPH oxidases, mitogen-activated protein kinases and transcriptional antioxidant responses, such remodeling prominently relies on ER-mitochondrial crosstalk. Specific redox cues therefore operate both as triggers and effectors of ER stress, thus enabling amplification loops. We propose that redox-based amplification loops critically contribute to the switch from adaptive to fatal UPR.
Collapse
Affiliation(s)
- Davide Eletto
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Chevet
- INSERM U1053, Université Bordeaux 33076 Segalen, Bordeaux, France
| | - Yair Argon
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia and The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christian Appenzeller-Herzog
- Division of Molecular & Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, CH-4056 Basel, Switzerland
| |
Collapse
|