1
|
Choi H, Kang M, Lee KH, Kim YS. Elevated level of PLRG1 is critical for the proliferation and maintenance of genome stability of tumor cells. BMB Rep 2023; 56:612-617. [PMID: 37817442 PMCID: PMC10689083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
Pleiotropic regulator 1 (PLRG1), a highly conserved element in the spliceosome, can form a NineTeen Complex (NTC) with Prp19, SPF27, and CDC5L. This complex plays crucial roles in both pre-mRNA splicing and DNA repair processes. Here, we provide evidence that PLRG1 has a multifaceted impact on cancer cell proliferation. Comparing its expression levels in cancer and normal cells, we observed that PLRG1 was upregulated in various tumor tissues and cell lines. Knockdown of PLRG1 resulted in tumor-specific cell death. Depletion of PLRG1 had notable effects, including mitotic arrest, microtubule instability, endoplasmic reticulum (ER) stress, and accumulation of autophagy, ultimately culminating in apoptosis. Our results also demonstrated that PLRG1 downregulation contributed to DNA damage in cancer cells, which we confirmed through experimental validation as DNA repair impairment. Interestingly, when PLRG1 was decreased in normal cells, it induced G1 arrest as a self-protective mechanism, distinguishing it from effects observed in cancer cells. These results highlight multifaceted impacts of PLRG1 in cancer and underscore its potential as a novel anti-cancer strategy by selectively targeting cancer cells. [BMB Reports 2023; 56(11): 612-617].
Collapse
Affiliation(s)
- Hyunji Choi
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea
| | | | - Kee-Ho Lee
- Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Korea
| | - Yeon-Soo Kim
- Graduate School of New Drug Discovery and Development, Chungnam National University, Daejeon 34134, Korea
- R&D Center, artiCure Inc., Daejeon 34134, Korea
| |
Collapse
|
2
|
Forni G, Mikheyev AS, Luchetti A, Mantovani B. Gene transcriptional profiles in gonads of Bacillus taxa (Phasmida) with different cytological mechanisms of automictic parthenogenesis. ZOOLOGICAL LETTERS 2022; 8:14. [PMID: 36435814 PMCID: PMC9701443 DOI: 10.1186/s40851-022-00197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
The evolution of automixis - i.e., meiotic parthenogenesis - requires several features, including ploidy restoration after meiosis and maintenance of fertility. Characterizing the relative contribution of novel versus pre-existing genes and the similarities in their expression and sequence evolution is fundamental to understand the evolution of reproductive novelties. Here we identify gonads-biased genes in two Bacillus automictic stick-insects and compare their expression profile and sequence evolution with a bisexual congeneric species. The two parthenogens restore ploidy through different cytological mechanisms: in Bacillus atticus, nuclei derived from the first meiotic division fuse to restore a diploid egg nucleus, while in Bacillus rossius, diploidization occurs in some cells of the haploid blastula through anaphase restitution. Parthenogens' gonads transcriptional program is found to be largely assembled from genes that were already present before the establishment of automixis. The three species transcriptional profiles largely reflect their phyletic relationships, yet we identify a shared core of genes with gonad-biased patterns of expression in parthenogens which are either male gonads-biased in the sexual species or are not differentially expressed there. At the sequence level, just a handful of gonads-biased genes were inferred to have undergone instances of positive selection exclusively in the parthenogen species. This work is the first to explore the molecular underpinnings of automixis in a comparative framework: it delineates how reproductive novelties can be sustained by genes whose origin precedes the establishment of the novelty itself and shows that different meiotic mechanisms of reproduction can be associated with a shared molecular ground plan.
Collapse
Affiliation(s)
- Giobbe Forni
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, 40126, Bologna, Italy
- Dip. Scienze Agrarie e Ambientali, University of Milano, Milano, Italy
| | - Alexander S Mikheyev
- Australian National University, ACT, Canberra, 2600, Australia
- Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Andrea Luchetti
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, 40126, Bologna, Italy.
| | - Barbara Mantovani
- Dip. Scienze Biologiche, Geologiche e Ambientali (BiGeA), University of Bologna, 40126, Bologna, Italy
| |
Collapse
|
3
|
Olthof AM, White AK, Kanadia RN. The emerging significance of splicing in vertebrate development. Development 2022; 149:dev200373. [PMID: 36178052 PMCID: PMC9641660 DOI: 10.1242/dev.200373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Splicing is a crucial regulatory node of gene expression that has been leveraged to expand the proteome from a limited number of genes. Indeed, the vast increase in intron number that accompanied vertebrate emergence might have aided the evolution of developmental and organismal complexity. Here, we review how animal models for core spliceosome components have provided insights into the role of splicing in vertebrate development, with a specific focus on neuronal, neural crest and skeletal development. To this end, we also discuss relevant spliceosomopathies, which are developmental disorders linked to mutations in spliceosome subunits. Finally, we discuss potential mechanisms that could underlie the tissue-specific phenotypes often observed upon spliceosome inhibition and identify gaps in our knowledge that, we hope, will inspire further research.
Collapse
Affiliation(s)
- Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Alisa K. White
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT 06269, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
4
|
A first glimpse into the transcriptomic changes induced by the PaV1 infection in the gut of Caribbean spiny lobsters, Panulirus argus (Latreille, 1804) (Decapoda: Achelata: Palinuridae). Virus Res 2022; 311:198713. [PMID: 35176328 DOI: 10.1016/j.virusres.2022.198713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 12/13/2022]
Abstract
The Caribbean spiny lobster, Panulirus argus (Latreille, 1804) supports important fisheries in the Caribbean region. This species is affected by a deadly virus, Panulirus argus Virus 1 (PaV1), the only known pathogenic virus for this species. As infection progresses, the effects of PaV1 on its host become systemic, with far reaching impacts on the host's physiology, including structural injuries to its gastrointestinal organs, such as the hepatopancreas and the gut. This last one becomes highly compromised in the last stages of infection. Since the gut is a key organ for the physiological stability of lobsters, we compared the transcriptomic changes in the gut of juvenile individuals of Panulirus argus naturally infected with PaV1. In the RNA-Seq analysis, we obtained a total of 485 × 106 raw reads. After cleaning, reads were de novo assembled into 68,842 transcripts and 50,257 unigenes. The length of unigenes ranged from 201 bp to 28,717 bp, with a N50 length of 2079, and a GC content of 40.61%. In the differential gene expression analysis, we identified a total of 3,405 non redundant differential transcripts, of which 1,920 were up-regulated and 1,485 were down-regulated. We found alterations in transcripts encoding for proteins involved in transcriptional regulation, splicing, postraductional regulation, protein signaling, transmembrane transport, cytoskeletal regulation, and proteolysis, among others. This is the first insight into the transcriptomic regulation of PaV1-P. argus interaction. The information generated can help to unravel the molecular mechanisms that may intervene in the gut during PaV1 infection.
Collapse
|
5
|
Kopylov AT, Papysheva O, Gribova I, Kaysheva AL, Kotaysch G, Kharitonova L, Mayatskaya T, Nurbekov MK, Schipkova E, Terekhina O, Morozov SG. Severe types of fetopathy are associated with changes in the serological proteome of diabetic mothers. Medicine (Baltimore) 2021; 100:e27829. [PMID: 34766598 PMCID: PMC8589259 DOI: 10.1097/md.0000000000027829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/27/2022] Open
Abstract
ABSTRACT Pregestational or gestational diabetes are the main risk factors for diabetic fetopathy. There are no generalized signs of fetopathy before the late gestational age due to insufficient sensitivity of currently employed instrumental methods. In this cross-sectional observational study, we investigated several types of severe diabetic fetopathy (cardiomyopathy, central nervous system defects, and hepatomegaly) established in type 2 diabetic mothers during 30 to 35 gestational weeks and confirmed upon delivery. We examined peripheral blood plasma and determined a small proportion of proteins strongly associated with a specific type of fetopathy or anatomical malfunction. Most of the examined markers participate in critical processes at different stages of embryogenesis and regulate various phases of morphogenesis. Alterations in CDCL5 had a significant impact on mRNA splicing and DNA repair. Patients with central nervous system defects were characterized by the greatest depletion (ca. 7% of the basal level) of DFP3, a neurotrophic factor needed for the proper specialization of oligodendrocytes. Dysregulation of noncanonical wingless-related integration site signaling pathway (Wnt) signaling guided by pigment epithelium-derived factor (PEDF) and disheveled-associated activator of morphogenesis 2 (DAAM2) was also profound. In addition, deficiency in retinoic acid and thyroxine transport was exhibited by the dramatic increase of transthyretin (TTHY). The molecular interplay between the identified serological markers leads to pathologies in fetal development on the background of a diabetic condition. These warning serological markers can be quantitatively examined, and their profile may reflect different severe types of diabetic fetopathy, producing a beneficial effect on the current standard care for pregnant women and infants.
Collapse
Affiliation(s)
- Arthur T. Kopylov
- Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, Russia
| | - Olga Papysheva
- S.S. Yudin 7th State Clinical Hospital, 4 Kolomenskaya str., Moscow, Russia
| | - Iveta Gribova
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
| | - Anna L. Kaysheva
- Institute of Biomedical Chemistry, 10 Pogodinskaya str., Moscow, Russia
| | - Galina Kotaysch
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
| | - Lubov Kharitonova
- N.I. Pirogov Medical University, 1 Ostrovityanova st., Moscow, Russia
| | | | - Malik K. Nurbekov
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Ekaterina Schipkova
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Olga Terekhina
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| | - Sergey G. Morozov
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., Moscow, Russia
- Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., Moscow, Russia
| |
Collapse
|
6
|
The influence of hypoxia on the cardiac transcriptomes of two estuarine species - C. variegatus and F. grandis. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 39:100837. [PMID: 33892309 DOI: 10.1016/j.cbd.2021.100837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/21/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023]
Abstract
Increased nutrient loading has led to eutrophication of coastal shelf waters which has resulted in increased prevalence of persistent hypoxic zones - areas in which the dissolved oxygen content of the water drops below 2 mg/L. The northern Gulf of Mexico, fed primarily by the Mississippi River watershed, undergoes annual establishment of one of the largest hypoxic zones in the world. Exposure to hypoxia can induce physiological impacts in fish cardiac systems that include bradycardia, changes in stroke volume, and altered cardiovascular vessel development. While these impacts have been addressed at the functional level, there is little information regarding the molecular basis for these changes. This study used transcriptomic analysis techniques to interrogate the effects of hypoxia exposure on the developing cardiovascular system in newly hatched larvae of two estuarine species that occupy the same ecological niche - the sheepshead minnow (Cyprinodon variegatus) and the Gulf killifish (Fundulus grandis). Results suggest that while differential gene expression is largely distinct between the two species, downstream impacts on pathways and functional responses such as reduced cardiac hypertrophy, modulation of blood pressure, and increased incidence of apoptosis appear to be conserved. Further, differences in the magnitude of these conserved responses may suggest that the length of embryonic development could impart a level of resiliency to hypoxic perturbation in early life stage fish.
Collapse
|
7
|
Wang X, Li Y, Dai H, Xu C. Crystal structure of the WD40 domain of human PLRG1. Biochem Biophys Res Commun 2020; 534:474-477. [PMID: 33239170 DOI: 10.1016/j.bbrc.2020.11.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 12/11/2022]
Abstract
PLRG1 is a evolutionarily conserved protein in spliceosome and plays an important role in maintaining the integral part of the splicoeosme and its proper splicing. Here we solved the high resolution crystal structure of the WD40 domain of human PLRG1 by crystallography and compared our crystal structure with the cryo-EM structure of PLRG1 bound with other splicing factors. We found that two loops of the WD40 domain become resolved upon binding to the proteins within the spliceosome. Thus our work characterize the dynamic property of PLRG1 during the spliceosome assembly by presenting its apo structure.
Collapse
Affiliation(s)
- Xiaoyang Wang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, 101 College St., Toronto, Ontario, M5G 1L7, Canada
| | - Haiming Dai
- Anhui Province Key Laboratory of Medical Physics and Technology, Center of Medical Physics and Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Chao Xu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
8
|
Manjarín R, Boutry-Regard C, Suryawan A, Canovas A, Piccolo BD, Maj M, Abo-Ismail M, Nguyen HV, Fiorotto ML, Davis TA. Intermittent leucine pulses during continuous feeding alters novel components involved in skeletal muscle growth of neonatal pigs. Amino Acids 2020; 52:1319-1335. [PMID: 32974749 DOI: 10.1007/s00726-020-02894-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
When neonatal pigs continuously fed formula are supplemented with leucine pulses, muscle protein synthesis and body weight gain are enhanced. To identify the responsible mechanisms, we combined plasma metabolomic analysis with transcriptome expression of the transcriptome and protein catabolic pathways in skeletal muscle. Piglets (n = 23, 7-day-old) were fed continuously a milk replacement formula via orogastric tube for 21 days with an additional parenteral infusion (800 μmol kg-1 h-1) of either leucine (LEU) or alanine (CON) for 1 h every 4 h. Plasma metabolites were measured by liquid chromatography-mass spectrometry. Gene and protein expression analyses of longissimus dorsi muscle were performed by RNA-seq and Western blot, respectively. Compared with CON, LEU pigs had increased plasma levels of leucine-derived metabolites, including 4-methyl-2-oxopentanoate, beta-hydroxyisovalerate, β-hydroxyisovalerylcarnitine, and 3-methylglutaconate (P ≤ 0.05). Leucine pulses downregulated transcripts enriched in the Kyoto Encyclopedia of Genes and Genomes terms "spliceosome," "GAP junction," "endocytosis," "ECM-receptor interaction," and "DNA replication". Significant correlations were identified between metabolites derived from leucine catabolism and muscle genes involved in protein degradation, transcription and translation, and muscle maintenance and development (P ≤ 0.05). Further, leucine pulses decreased protein expression of autophagic markers and serine/threonine kinase 4, involved in muscle atrophy (P ≤ 0.01). In conclusion, results from our studies support the notion that leucine pulses during continuous enteral feeding enhance muscle mass gain in neonatal pigs by increasing protein synthetic activity and downregulating protein catabolic pathways through concerted responses in the transcriptome and metabolome.
Collapse
Affiliation(s)
- Rodrigo Manjarín
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA.
- Animal Science Department, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407-0255, USA.
| | - Claire Boutry-Regard
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Agus Suryawan
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Angela Canovas
- Ontario Agricultural College, University of Guelph, Guelph, Canada
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, U.S. Department of Agriculture/Agricultural Research Service, Little Rock, AR, 72202, USA
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, 72202, USA
| | - Magdalena Maj
- Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Mohammed Abo-Ismail
- Animal Science Department, California Polytechnic State University, 1 Grand Ave, San Luis Obispo, CA, 93407-0255, USA
| | - Hanh V Nguyen
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Marta L Fiorotto
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| | - Teresa A Davis
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, U.S. Department of Agriculture/Agricultural Research Service, Houston, TX, 77030, USA
| |
Collapse
|
9
|
Wang LP, Chen TY, Kang CK, Huang HP, Chen SL. BCAS2, a protein enriched in advanced prostate cancer, interacts with NBS1 to enhance DNA double-strand break repair. Br J Cancer 2020; 123:1796-1807. [PMID: 32963349 PMCID: PMC7723048 DOI: 10.1038/s41416-020-01086-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 08/21/2020] [Accepted: 09/03/2020] [Indexed: 12/30/2022] Open
Abstract
Background Breast cancer amplified sequence 2 (BCAS2) plays crucial roles in pre-mRNA splicing and androgen receptor transcription. Previous studies suggested that BCAS2 is involved in double-strand breaks (DSB); therefore, we aimed to characterise its mechanism and role in prostate cancer (PCa). Methods Western blotting and immunofluorescence microscopy were used to assay the roles of BCAS2 in the DSBs of PCa cells and apoptosis in Drosophila, respectively. The effect of BCAS2 dosage on non-homologous end joining (NHEJ) and homologous recombination (HR) were assayed by precise end-joining assay and flow cytometry, respectively. Glutathione-S-transferase pulldown and co-immunoprecipitation assays were used to determine whether and how BCAS2 interacts with NBS1. The expression of BCAS2 and other proteins in human PCa was determined by immunohistochemistry. Results BCAS2 helped repair radiation-induced DSBs efficiently in both human PCa cells and Drosophila. BCAS2 enhanced both NHEJ and HR, possibly by interacting with NBS1, which involved the BCAS2 N-terminus as well as both the NBS1 N- and C-termini. The overexpression of BCAS2 was significantly associated with higher Gleason and pathology grades and shorter survival in patients with PCa. Conclusion BCAS2 promotes two DSB repair pathways by interacting with NBS1, and it may affect PCa progression.
Collapse
Affiliation(s)
- Li-Po Wang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Tzu-Yu Chen
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chun-Kai Kang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsiang-Po Huang
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine, National Taiwan University, Taipei, Taiwan.
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
10
|
Sun Y, Zhang B, Luo L, Shi DL, Wang H, Cui Z, Huang H, Cao Y, Shu X, Zhang W, Zhou J, Li Y, Du J, Zhao Q, Chen J, Zhong H, Zhong TP, Li L, Xiong JW, Peng J, Xiao W, Zhang J, Yao J, Yin Z, Mo X, Peng G, Zhu J, Chen Y, Zhou Y, Liu D, Pan W, Zhang Y, Ruan H, Liu F, Zhu Z, Meng A. Systematic genome editing of the genes on zebrafish Chromosome 1 by CRISPR/Cas9. Genome Res 2019; 30:gr.248559.119. [PMID: 31831591 PMCID: PMC6961580 DOI: 10.1101/gr.248559.119] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 11/06/2019] [Indexed: 02/05/2023]
Abstract
Genome editing by the well-established CRISPR/Cas9 technology has greatly facilitated our understanding of many biological processes. However, a complete whole-genome knockout for any species or model organism has rarely been achieved. Here, we performed a systematic knockout of all the genes (1333) on Chromosome 1 in zebrafish, successfully mutated 1029 genes, and generated 1039 germline-transmissible alleles corresponding to 636 genes. Meanwhile, by high-throughput bioinformatics analysis, we found that sequence features play pivotal roles in effective gRNA targeting at specific genes of interest, while the success rate of gene targeting positively correlates with GC content of the target sites. Moreover, we found that nearly one-fourth of all mutants are related to human diseases, and several representative CRISPR/Cas9-generated mutants are described here. Furthermore, we tried to identify the underlying mechanisms leading to distinct phenotypes between genetic mutants and antisense morpholino-mediated knockdown embryos. Altogether, this work has generated the first chromosome-wide collection of zebrafish genetic mutants by the CRISPR/Cas9 technology, which will serve as a valuable resource for the community, and our bioinformatics analysis also provides some useful guidance to design gene-specific gRNAs for successful gene editing.
Collapse
Affiliation(s)
- Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, Peking University Genome Editing Research Center, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Lingfei Luo
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - De-Li Shi
- Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Han Wang
- Center for Circadian Clocks, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zongbin Cui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Honghui Huang
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Ying Cao
- School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaodong Shu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, Guangdong, 510530, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Jianfeng Zhou
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Yun Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266100, China
| | - Jiulin Du
- State Key Laboratory of Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qingshun Zhao
- Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hanbing Zhong
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Tao P Zhong
- Institute of Biomedical Sciences, East China Normal University, Shanghai, 200062, China
| | - Li Li
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Jing-Wei Xiong
- College of Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jinrong Peng
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Jian Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Jihua Yao
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Xianming Mo
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Gang Peng
- Institutes of Brain Science, Fudan University, Shanghai, 200433, China
| | - Jun Zhu
- Sino-French Research Center for Life Sciences and Genomics, Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Chen
- Institute of Health Sciences, Chinese Academy of Sciences & Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Zhou
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dong Liu
- Department of Biology, South University of Science and Technology of China, Shenzhen, Guangdong, 518055, China
| | - Weijun Pan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Hua Ruan
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zuoyan Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Anming Meng
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Cellular Processes Involved in Jurkat Cells Exposed to Nanosecond Pulsed Electric Field. Int J Mol Sci 2019; 20:ijms20235847. [PMID: 31766457 PMCID: PMC6929111 DOI: 10.3390/ijms20235847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/16/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
Recently, nanosecond pulsed electric field (nsPEF) has been considered as a new tool for tumor therapy, but its molecular mechanism of function remains to be fully elucidated. Here, we explored the cellular processes of Jurkat cells exposed to nanosecond pulsed electric field. Differentially expressed genes (DEGs) were acquired from the GEO2R, followed by analysis with a series of bioinformatics tools. Subsequently, 3D protein models of hub genes were modeled by Modeller 9.21 and Rosetta 3.9. Then, a 100 ns molecular dynamics simulation for each hub protein was performed with GROMACS 2018.2. Finally, three kinds of nsPEF voltages (0.01, 0.05, and 0.5 mV/mm) were used to simulate the molecular dynamics of hub proteins for 100 ns. A total of 1769 DEGs and eight hub genes were obtained. Molecular dynamic analysis, including root mean square deviation (RMSD), root mean square fluctuation (RMSF), and the Rg, demonstrated that the 3D structure of hub proteins was built, and the structural characteristics of hub proteins under different nsPEFs were acquired. In conclusion, we explored the effect of nsPEF on Jurkat cell signaling pathway from the perspective of molecular informatics, which will be helpful in understanding the complex effects of nsPEF on acute T-cell leukemia Jurkat cells.
Collapse
|
12
|
Pal S, Medatwal N, Kumar S, Kar A, Komalla V, Yavvari PS, Mishra D, Rizvi ZA, Nandan S, Malakar D, Pillai M, Awasthi A, Das P, Sharma RD, Srivastava A, Sengupta S, Dasgupta U, Bajaj A. A Localized Chimeric Hydrogel Therapy Combats Tumor Progression through Alteration of Sphingolipid Metabolism. ACS CENTRAL SCIENCE 2019; 5:1648-1662. [PMID: 31660434 PMCID: PMC6813554 DOI: 10.1021/acscentsci.9b00551] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 05/14/2023]
Abstract
Rapid proliferation of cancer cells assisted by endothelial cell-mediated angiogenesis and acquired inflammation at the tumor microenvironment (TME) lowers the success rate of chemotherapeutic regimens. Therefore, targeting these processes using localized delivery of a minimally toxic drug combination may be a promising strategy. Here, we present engineering of a biocompatible self-assembled lithocholic acid-dipeptide derived hydrogel (TRI-Gel) that can maintain sustained delivery of antiproliferating doxorubicin, antiangiogenic combretastatin-A4 and anti-inflammatory dexamethasone. Application of TRI-Gel therapy to a murine tumor model promotes enhanced apoptosis with a concurrent reduction in angiogenesis and inflammation, leading to effective abrogation of tumor proliferation and increased median survival with reduced drug resistance. In-depth RNA-sequencing analysis showed that TRI-Gel therapy induced transcriptome-wide alternative splicing of many genes responsible for oncogenic transformation including sphingolipid genes. We demonstrate that TRI-Gel therapy targets the reversal of a unique intron retention event in β-glucocerebrosidase 1 (Gba1), thereby increasing the availability of functional Gba1 protein. An enhanced Gba1 activity elevates ceramide levels responsible for apoptosis and decreases glucosylceramides to overcome drug resistance. Therefore, TRI-Gel therapy provides a unique system that affects the TME via post-transcriptional modulations of sphingolipid metabolic genes, thereby opening a new and rational approach to cancer therapy.
Collapse
Affiliation(s)
- Sanjay Pal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- Kalinga
Institute of Industrial Technology, Bhubaneswar 751024, Odisha, India
| | - Nihal Medatwal
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sandeep Kumar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- Manipal
Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Animesh Kar
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Varsha Komalla
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Prabhu Srinivas Yavvari
- Department
of Chemistry, Indian Institute of Science
Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Deepakkumar Mishra
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Zaigham Abbas Rizvi
- Translational
Health Science and Technology
Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Shiv Nandan
- Amity Institute
of Integrative Sciences and Health, Amity
University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Dipankar Malakar
- SCIEX, 121 Udyog Vihar,
Phase IV, Gurgaon 122015, Haryana, India
| | - Manoj Pillai
- SCIEX, 121 Udyog Vihar,
Phase IV, Gurgaon 122015, Haryana, India
| | - Amit Awasthi
- Translational
Health Science and Technology
Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
| | - Prasenjit Das
- Department
of Pathology, All India Institute of Medical
Sciences, Ansari Nagar, New Delhi 110029, India
| | - Ravi Datta Sharma
- Amity Institute
of Integrative Sciences and Health, Amity
University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
| | - Aasheesh Srivastava
- Department
of Chemistry, Indian Institute of Science
Education and Research, Bhopal 462066, Madhya Pradesh, India
| | - Sagar Sengupta
- National
Institute of Immunology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ujjaini Dasgupta
- Amity Institute
of Integrative Sciences and Health, Amity
University Haryana, Panchgaon, Manesar, Gurgaon 122413, Haryana, India
- E-mail: . (U.D.)
| | - Avinash Bajaj
- Laboratory
of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon
Expressway, Faridabad 121001, Haryana, India
- E-mail: . (A.B.)
| |
Collapse
|
13
|
Nikonova E, Kao SY, Ravichandran K, Wittner A, Spletter ML. Conserved functions of RNA-binding proteins in muscle. Int J Biochem Cell Biol 2019; 110:29-49. [PMID: 30818081 DOI: 10.1016/j.biocel.2019.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/13/2022]
Abstract
Animals require different types of muscle for survival, for example for circulation, motility, reproduction and digestion. Much emphasis in the muscle field has been placed on understanding how transcriptional regulation generates diverse types of muscle during development. Recent work indicates that alternative splicing and RNA regulation are as critical to muscle development, and altered function of RNA-binding proteins causes muscle disease. Although hundreds of genes predicted to bind RNA are expressed in muscles, many fewer have been functionally characterized. We present a cross-species view summarizing what is known about RNA-binding protein function in muscle, from worms and flies to zebrafish, mice and humans. In particular, we focus on alternative splicing regulated by the CELF, MBNL and RBFOX families of proteins. We discuss the systemic nature of diseases associated with loss of RNA-binding proteins in muscle, focusing on mis-regulation of CELF and MBNL in myotonic dystrophy. These examples illustrate the conservation of RNA-binding protein function and the marked utility of genetic model systems in understanding mechanisms of RNA regulation.
Collapse
Affiliation(s)
- Elena Nikonova
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Shao-Yen Kao
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Keshika Ravichandran
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Anja Wittner
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany
| | - Maria L Spletter
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University München, Großhaderner Str. 9, 82152, Martinsried-Planegg, Germany; Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
14
|
Anufrieva KS, Shender VО, Arapidi GP, Pavlyukov MS, Shakhparonov MI, Shnaider PV, Butenko IO, Lagarkova MA, Govorun VM. Therapy-induced stress response is associated with downregulation of pre-mRNA splicing in cancer cells. Genome Med 2018; 10:49. [PMID: 29950180 PMCID: PMC6020472 DOI: 10.1186/s13073-018-0557-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/07/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Abnormal pre-mRNA splicing regulation is common in cancer, but the effects of chemotherapy on this process remain unclear. METHODS To evaluate the effect of chemotherapy on slicing regulation, we performed meta-analyses of previously published transcriptomic, proteomic, phosphoproteomic, and secretome datasets. Our findings were verified by LC-MS/MS, western blotting, immunofluorescence, and FACS analyses of multiple cancer cell lines treated with cisplatin and pladienolide B. RESULTS Our results revealed that different types of chemotherapy lead to similar changes in alternative splicing by inducing intron retention in multiple genes. To determine the mechanism underlying this effect, we analyzed gene expression in 101 cell lines affected by ɣ-irradiation, hypoxia, and 10 various chemotherapeutic drugs. Strikingly, оnly genes involved in the cell cycle and pre-mRNA splicing regulation were changed in a similar manner in all 335 tested samples regardless of stress stimuli. We revealed significant downregulation of gene expression levels in these two pathways, which could be explained by the observed decrease in splicing efficiency and global intron retention. We showed that the levels of active spliceosomal proteins might be further post-translationally decreased by phosphorylation and export into the extracellular space. To further explore these bioinformatics findings, we performed proteomic analysis of cisplatin-treated ovarian cancer cells. Finally, we demonstrated that the splicing inhibitor pladienolide B impairs the cellular response to DNA damage and significantly increases the sensitivity of cancer cells to chemotherapy. CONCLUSIONS Decreased splicing efficiency and global intron retention is a novel stress response mechanism that may promote survival of malignant cells following therapy. We found that this mechanism can be inhibited by pladienolide B, which significantly increases the sensitivity of cancer cells to cisplatin which makes it a good candidate drug for improving the efficiency of cancer therapy.
Collapse
Affiliation(s)
- Ksenia S Anufrieva
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
- Systems Biology Lab, Moscow Institute of Physics and Technology (State University), Moscow, Region, 141701, Russia.
| | - Victoria О Shender
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - Georgij P Arapidi
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
- Systems Biology Lab, Moscow Institute of Physics and Technology (State University), Moscow, Region, 141701, Russia
| | - Marat S Pavlyukov
- Laboratory of Membrane Bioenergetics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Michail I Shakhparonov
- Laboratory of Membrane Bioenergetics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
| | - Polina V Shnaider
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Ivan O Butenko
- Laboratory of Proteomic Analysis, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Maria A Lagarkova
- Laboratory of Cell Biology, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| | - Vadim M Govorun
- Laboratory of Proteomics, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia
- Laboratory of Proteomic Analysis, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, 119435, Russia
| |
Collapse
|
15
|
Pascarella A, Ferrandino G, Credendino SC, Moccia C, D'Angelo F, Miranda B, D'Ambrosio C, Bielli P, Spadaro O, Ceccarelli M, Scaloni A, Sette C, De Felice M, De Vita G, Amendola E. DNAJC17 is localized in nuclear speckles and interacts with splicing machinery components. Sci Rep 2018; 8:7794. [PMID: 29773831 PMCID: PMC5958099 DOI: 10.1038/s41598-018-26093-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 05/04/2018] [Indexed: 01/23/2023] Open
Abstract
DNAJC17 is a heat shock protein (HSP40) family member, identified in mouse as susceptibility gene for congenital hypothyroidism. DNAJC17 knockout mouse embryos die prior to implantation. In humans, germline homozygous mutations in DNAJC17 have been found in syndromic retinal dystrophy patients, while heterozygous mutations represent candidate pathogenic events for myeloproliferative disorders. Despite widespread expression and involvement in human diseases, DNAJC17 function is still poorly understood. Herein, we have investigated its function through high-throughput transcriptomic and proteomic approaches. DNAJC17-depleted cells transcriptome highlighted genes involved in general functional categories, mainly related to gene expression. Conversely, DNAJC17 interactome can be classified in very specific functional networks, with the most enriched one including proteins involved in splicing. Furthermore, several splicing-related interactors, were independently validated by co-immunoprecipitation and in vivo co-localization. Accordingly, co-localization of DNAJC17 with SC35, a marker of nuclear speckles, further supported its interaction with spliceosomal components. Lastly, DNAJC17 up-regulation enhanced splicing efficiency of minigene reporter in live cells, while its knockdown induced perturbations of splicing efficiency at whole genome level, as demonstrated by specific analysis of RNAseq data. In conclusion, our study strongly suggests a role of DNAJC17 in splicing-related processes and provides support to its recognized essential function in early development.
Collapse
Affiliation(s)
- A Pascarella
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - G Ferrandino
- Istituto di Ricerche Genetiche G. Salvatore, Biogem s.c.ar.l, Ariano Irpino (AV), Italy
| | - S C Credendino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - C Moccia
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - F D'Angelo
- Istituto di Ricerche Genetiche G. Salvatore, Biogem s.c.ar.l, Ariano Irpino (AV), Italy
| | - B Miranda
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - C D'Ambrosio
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - P Bielli
- Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143, Rome, Italy.,Department of Biomedicine and Prevention, Università di Roma Tor Vergata, 00133, Rome, Italy
| | - O Spadaro
- Istituto di Ricerche Genetiche G. Salvatore, Biogem s.c.ar.l, Ariano Irpino (AV), Italy
| | - M Ceccarelli
- Istituto di Ricerche Genetiche G. Salvatore, Biogem s.c.ar.l, Ariano Irpino (AV), Italy
| | - A Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Napoli, Italy
| | - C Sette
- Laboratory of Neuroembryology, Fondazione Santa Lucia, 00143, Rome, Italy.,Institute of Human Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - M De Felice
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.,Istituto di Ricerche Genetiche G. Salvatore, Biogem s.c.ar.l, Ariano Irpino (AV), Italy
| | - G De Vita
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.
| | - E Amendola
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Napoli, Italy.
| |
Collapse
|
16
|
de Moura TR, Mozaffari-Jovin S, Szabó CZK, Schmitzová J, Dybkov O, Cretu C, Kachala M, Svergun D, Urlaub H, Lührmann R, Pena V. Prp19/Pso4 Is an Autoinhibited Ubiquitin Ligase Activated by Stepwise Assembly of Three Splicing Factors. Mol Cell 2018; 69:979-992.e6. [DOI: 10.1016/j.molcel.2018.02.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/22/2017] [Accepted: 02/15/2018] [Indexed: 01/24/2023]
|
17
|
Sorrells S, Nik S, Casey MJ, Cameron RC, Truong H, Toruno C, Gulfo M, Lowe A, Jette C, Stewart RA, Bowman TV. Spliceosomal components protect embryonic neurons from R-loop-mediated DNA damage and apoptosis. Dis Model Mech 2018; 11:dmm.031583. [PMID: 29419415 PMCID: PMC5894942 DOI: 10.1242/dmm.031583] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/18/2018] [Indexed: 02/02/2023] Open
Abstract
RNA splicing factors are essential for the viability of all eukaryotic cells; however, in metazoans some cell types are exquisitely sensitive to disruption of splicing factors. Neuronal cells represent one such cell type, and defects in RNA splicing factors can lead to neurodegenerative diseases. The basis for this tissue selectivity is not well understood owing to difficulties in analyzing the consequences of splicing factor defects in whole-animal systems. Here, we use zebrafish mutants to show that loss of spliceosomal components, including splicing factor 3b, subunit 1 (sf3b1), causes increased DNA double-strand breaks and apoptosis in embryonic neurons. Moreover, these mutants show a concomitant accumulation of R-loops, which are non-canonical nucleic acid structures that promote genomic instability. Dampening R-loop formation by conditional induction of ribonuclease H1 in sf3b1 mutants reduced neuronal DNA damage and apoptosis. These findings show that splicing factor dysfunction leads to R-loop accumulation and DNA damage that sensitizes embryonic neurons to apoptosis. Our results suggest that diseases associated with splicing factor mutations could be susceptible to treatments that modulate R-loop levels. Summary: Loss of RNA splicing factors causes R-loop accumulation and DNA damage in embryonic neurons, sensitizing them to radiation-induced cell death. These findings suggest that diseased cells with mutations in splicing factors are vulnerable to radiotherapy.
Collapse
Affiliation(s)
- Shelly Sorrells
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Sara Nik
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rosannah C Cameron
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Harold Truong
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cristhian Toruno
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Michelle Gulfo
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Albert Lowe
- Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cicely Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Teresa V Bowman
- Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA .,Gottesman Institute for Stem Cell Biology and Regenerative Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
18
|
Exploring the Human-Nipah Virus Protein-Protein Interactome. J Virol 2017; 91:JVI.01461-17. [PMID: 28904190 DOI: 10.1128/jvi.01461-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 11/20/2022] Open
Abstract
Nipah virus is an emerging, highly pathogenic, zoonotic virus of the Paramyxoviridae family. Human transmission occurs by close contact with infected animals, the consumption of contaminated food, or, occasionally, via other infected individuals. Currently, we lack therapeutic or prophylactic treatments for Nipah virus. To develop these agents we must now improve our understanding of the host-virus interactions that underpin a productive infection. This aim led us to perform the present work, in which we identified 101 human-Nipah virus protein-protein interactions (PPIs), most of which (88) are novel. This data set provides a comprehensive view of the host complexes that are manipulated by viral proteins. Host targets include the PRP19 complex and the microRNA (miRNA) processing machinery. Furthermore, we explored the biologic consequences of the interaction with the PRP19 complex and found that the Nipah virus W protein is capable of altering p53 control and gene expression. We anticipate that these data will help in guiding the development of novel interventional strategies to counter this emerging viral threat.IMPORTANCE Nipah virus is a recently discovered virus that infects a wide range of mammals, including humans. Since its discovery there have been yearly outbreaks, and in some of them the mortality rate has reached 100% of the confirmed cases. However, the study of Nipah virus has been largely neglected, and currently we lack treatments for this infection. To develop these agents we must now improve our understanding of the host-virus interactions that underpin a productive infection. In the present work, we identified 101 human-Nipah virus protein-protein interactions using an affinity purification approach coupled with mass spectrometry. Additionally, we explored the cellular consequences of some of these interactions. Globally, this data set offers a comprehensive and detailed view of the host machinery's contribution to the Nipah virus's life cycle. Furthermore, our data present a large number of putative drug targets that could be exploited for the treatment of this infection.
Collapse
|
19
|
Li AH, Hanchard NA, Furthner D, Fernbach S, Azamian M, Nicosia A, Rosenfeld J, Muzny D, D'Alessandro LCA, Morris S, Jhangiani S, Parekh DR, Franklin WJ, Lewin M, Towbin JA, Penny DJ, Fraser CD, Martin JF, Eng C, Lupski JR, Gibbs RA, Boerwinkle E, Belmont JW. Whole exome sequencing in 342 congenital cardiac left sided lesion cases reveals extensive genetic heterogeneity and complex inheritance patterns. Genome Med 2017; 9:95. [PMID: 29089047 PMCID: PMC5664429 DOI: 10.1186/s13073-017-0482-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 10/12/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Left-sided lesions (LSLs) account for an important fraction of severe congenital cardiovascular malformations (CVMs). The genetic contributions to LSLs are complex, and the mutations that cause these malformations span several diverse biological signaling pathways: TGFB, NOTCH, SHH, and more. Here, we use whole exome sequence data generated in 342 LSL cases to identify likely damaging variants in putative candidate CVM genes. METHODS Using a series of bioinformatics filters, we focused on genes harboring population-rare, putative loss-of-function (LOF), and predicted damaging variants in 1760 CVM candidate genes constructed a priori from the literature and model organism databases. Gene variants that were not observed in a comparably sequenced control dataset of 5492 samples without severe CVM were then subjected to targeted validation in cases and parents. Whole exome sequencing data from 4593 individuals referred for clinical sequencing were used to bolster evidence for the role of candidate genes in CVMs and LSLs. RESULTS Our analyses revealed 28 candidate variants in 27 genes, including 17 genes not previously associated with a human CVM disorder, and revealed diverse patterns of inheritance among LOF carriers, including 9 confirmed de novo variants in both novel and newly described human CVM candidate genes (ACVR1, JARID2, NR2F2, PLRG1, SMURF1) as well as established syndromic CVM genes (KMT2D, NF1, TBX20, ZEB2). We also identified two genes (DNAH5, OFD1) with evidence of recessive and hemizygous inheritance patterns, respectively. Within our clinical cohort, we also observed heterozygous LOF variants in JARID2 and SMAD1 in individuals with cardiac phenotypes, and collectively, carriers of LOF variants in our candidate genes had a four times higher odds of having CVM (odds ratio = 4.0, 95% confidence interval 2.5-6.5). CONCLUSIONS Our analytical strategy highlights the utility of bioinformatic resources, including human disease records and model organism phenotyping, in novel gene discovery for rare human disease. The results underscore the extensive genetic heterogeneity underlying non-syndromic LSLs, and posit potential novel candidate genes and complex modes of inheritance in this important group of birth defects.
Collapse
Affiliation(s)
- Alexander H Li
- Human Genetics Center, University of Texas Health Science Center, Houston, TX, USA
| | - Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Dieter Furthner
- Department of Paediatrics, Children's Hospital, Krankenhausstr. 26-30, 4020, Linz, Austria
| | - Susan Fernbach
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mahshid Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Annarita Nicosia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jill Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Donna Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | | | - Shaine Morris
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Dhaval R Parekh
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Wayne J Franklin
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Mark Lewin
- Division of Cardiology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jeffrey A Towbin
- Pediatric Cardiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel J Penny
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Charles D Fraser
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, and the Texas Heart Institute, Houston, TX, USA
| | - Christine Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, TX, USA.,Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA. .,, 5200 Illumina Way, San Diego, CA, USA.
| |
Collapse
|
20
|
Lei L, Yan SY, Yang R, Chen JY, Li Y, Bu Y, Chang N, Zhou Q, Zhu X, Li CY, Xiong JW. Spliceosomal protein eftud2 mutation leads to p53-dependent apoptosis in zebrafish neural progenitors. Nucleic Acids Res 2017; 45:3422-3436. [PMID: 27899647 PMCID: PMC5389467 DOI: 10.1093/nar/gkw1043] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/24/2016] [Indexed: 12/26/2022] Open
Abstract
Haploinsufficiency of EFTUD2 (Elongation Factor Tu GTP Binding Domain Containing 2) is linked to human mandibulofacial dysostosis, Guion-Almeida type (MFDGA), but the underlying cellular and molecular mechanisms remain to be addressed. We report here the isolation, cloning and functional analysis of the mutated eftud2 (snu114) in a novel neuronal mutant fn10a in zebrafish. This mutant displayed abnormal brain development with evident neuronal apoptosis while the development of other organs appeared less affected. Positional cloning revealed a nonsense mutation such that the mutant eftud2 mRNA encoded a truncated Eftud2 protein and was subjected to nonsense-mediated decay. Disruption of eftud2 led to increased apoptosis and mitosis of neural progenitors while it had little effect on differentiated neurons. Further RNA-seq and functional analyses revealed a transcriptome-wide RNA splicing deficiency and a large amount of intron-retaining and exon-skipping transcripts, which resulted in inadequate nonsense-mediated RNA decay and activation of the p53 pathway in fn10a mutants. Therefore, our study has established that eftud2 functions in RNA splicing during neural development and provides a suitable zebrafish model for studying the molecular pathology of the neurological disease MFDGA.
Collapse
Affiliation(s)
- Lei Lei
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Shou-Yu Yan
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Ran Yang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jia-Yu Chen
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Yumei Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Ye Bu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Nannan Chang
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Qinchao Zhou
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Xiaojun Zhu
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Chuan-Yun Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jing-Wei Xiong
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Huang CW, Chen YW, Lin YR, Chen PH, Chou MH, Lee LJ, Wang PY, Wu JT, Tsao YP, Chen SL. Conditional Knockout of Breast Carcinoma Amplified Sequence 2 (BCAS2) in Mouse Forebrain Causes Dendritic Malformation via β-catenin. Sci Rep 2016; 6:34927. [PMID: 27713508 PMCID: PMC5054673 DOI: 10.1038/srep34927] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/20/2016] [Indexed: 01/11/2023] Open
Abstract
Breast carcinoma amplified sequence 2 (BCAS2) is a core component of the hPrP19 complex that controls RNA splicing. Here, we performed an exon array assay and showed that β-catenin is a target of BCAS2 splicing regulation. The regulation of dendrite growth and morphology by β-catenin is well documented. Therefore, we generated conditional knockout (cKO) mice to eliminate the BCAS2 expression in the forebrain to investigate the role of BCAS2 in dendrite growth. BCAS2 cKO mice showed a microcephaly-like phenotype with a reduced volume in the dentate gyrus (DG) and low levels of learning and memory, as evaluated using Morris water maze analysis and passive avoidance, respectively. Golgi staining revealed shorter dendrites, less dendritic complexity and decreased spine density in the DG of BCAS2 cKO mice. Moreover, the cKO mice displayed a short dendrite length in newborn neurons labeled by DCX, a marker of immature neurons, and BrdU incorporation. To further examine the mechanism underlying BCAS2-mediated dendritic malformation, we overexpressed β-catenin in BCAS2-depleted primary neurons and found that the dendritic growth was restored. In summary, BCAS2 is an upstream regulator of β-catenin gene expression and plays a role in dendrite growth at least partly through β-catenin.
Collapse
Affiliation(s)
- Chu-Wei Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yi-Rou Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Po-Han Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Meng-Hsuan Chou
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Li-Jen Lee
- Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
22
|
Karamysheva Z, Díaz-Martínez LA, Warrington R, Yu H. Graded requirement for the spliceosome in cell cycle progression. Cell Cycle 2016; 14:1873-83. [PMID: 25892155 DOI: 10.1080/15384101.2015.1039209] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genome stability is ensured by multiple surveillance mechanisms that monitor the duplication, segregation, and integrity of the genome throughout the cell cycle. Depletion of components of the spliceosome, a macromolecular machine essential for mRNA maturation and gene expression, has been associated with increased DNA damage and cell cycle defects. However, the specific role for the spliceosome in these processes has remained elusive, as different cell cycle defects have been reported depending on the specific spliceosome subunit depleted. Through a detailed cell cycle analysis after spliceosome depletion, we demonstrate that the spliceosome is required for progression through multiple phases of the cell cycle. Strikingly, the specific cell cycle phenotype observed after spliceosome depletion correlates with the extent of depletion. Partial depletion of a core spliceosome component results in defects at later stages of the cell cycle (G2 and mitosis), whereas a more complete depletion of the same component elicits an early cell cycle arrest in G1. We propose a quantitative model in which different functional dosages of the spliceosome are required for different cell cycle transitions.
Collapse
Affiliation(s)
- Zemfira Karamysheva
- a Department of Physiology; University of Texas Southwestern Medical Center ; Dallas , TX , USA
| | | | | | | |
Collapse
|
23
|
hPso4/hPrp19: a critical component of DNA repair and DNA damage checkpoint complexes. Oncogene 2015; 35:2279-86. [PMID: 26364595 DOI: 10.1038/onc.2015.321] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 12/15/2022]
Abstract
Genome integrity is vital to cellular homeostasis and its forfeiture is linked to deleterious consequences-cancer, immunodeficiency, genetic disorders and premature aging. The human ubiquitin ligase Pso4/Prp19 has emerged as a critical component of multiple DNA damage response (DDR) signaling networks. It not only senses DNA damage, binds double-stranded DNA in a sequence-independent manner, facilitates processing of damaged DNA, promotes DNA end joining, regulates replication protein A (RPA2) phosphorylation and ubiquitination at damaged DNA, but also regulates RNA splicing and mitotic spindle formation in its integral capacity as a scaffold for a multimeric core complex. Accordingly, by virtue of its regulatory and structural interactions with key proteins critical for genome integrity-DNA double-strand break (DSB) repair, DNA interstrand crosslink repair, repair of stalled replication forks and DNA end joining-it fills a unique niche in restoring genomic integrity after multiple types of DNA damage and thus has a vital role in maintaining chromatin integrity and cellular functions. These properties may underlie its ability to thwart replicative senescence and, not surprisingly, have been linked to the self-renewal and colony-forming ability of murine hematopoietic stem cells. This review highlights recent advances in hPso4 research that provides a fascinating glimpse into the pleiotropic activities of a ubiquitously expressed multifunctional E3 ubiquitin ligase.
Collapse
|
24
|
van Maldegem F, Maslen S, Johnson CM, Chandra A, Ganesh K, Skehel M, Rada C. CTNNBL1 facilitates the association of CWC15 with CDC5L and is required to maintain the abundance of the Prp19 spliceosomal complex. Nucleic Acids Res 2015; 43:7058-69. [PMID: 26130721 PMCID: PMC4538830 DOI: 10.1093/nar/gkv643] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 06/09/2015] [Indexed: 12/16/2022] Open
Abstract
In order to catalyse the splicing of messenger RNA, multiple proteins and RNA components associate and dissociate in a dynamic highly choreographed process. The Prp19 complex is a conserved essential part of the splicing machinery thought to facilitate the conformational changes the spliceosome undergoes during catalysis. Dynamic protein interactions often involve highly disordered regions that are difficult to study by structural methods. Using amine crosslinking and hydrogen-deuterium exchange coupled to mass spectrometry, we describe the architecture of the Prp19 sub-complex that contains CTNNBL1. Deficiency in CTNNBL1 leads to delayed initiation of cell division and embryonic lethality. Here we show that in vitro CTNNBL1 enhances the association of CWC15 and CDC5L, both core Prp19 complex proteins and identify an overlap in the region of CDC5L that binds either CTNNBL1 or CWC15 suggesting the two proteins might exchange places in the complex. Furthermore, in vivo, CTNNBL1 is required to maintain normal levels of the Prp19 complex and to facilitate the interaction of CWC15 with CDC5L. Our results identify a chaperone function for CTNNBL1 within the essential Prp19 complex, a function required to maintain the integrity of the complex and to support efficient splicing.
Collapse
Affiliation(s)
| | - Sarah Maslen
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | - Anita Chandra
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Karuna Ganesh
- Department of Medicine and Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Cristina Rada
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| |
Collapse
|
25
|
Chou MH, Hsieh YC, Huang CW, Chen PH, Chan SP, Tsao YP, Lee HH, Wu JT, Chen SL. BCAS2 Regulates Delta-Notch Signaling Activity through Delta Pre-mRNA Splicing in Drosophila Wing Development. PLoS One 2015; 10:e0130706. [PMID: 26091239 PMCID: PMC4475048 DOI: 10.1371/journal.pone.0130706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/23/2015] [Indexed: 11/19/2022] Open
Abstract
Previously, we showed that BCAS2 is essential for Drosophila viability and functions in pre-mRNA splicing. In this study, we provide strong evidence that BCAS2 regulates the activity of Delta-Notch signaling via Delta pre-mRNA splicing. Depletion of dBCAS2 reduces Delta mRNA expression and leads to accumulation of Delta pre-mRNA, resulting in diminished transcriptions of Delta-Notch signaling target genes, such as cut and E(spl)m8. Furthermore, ectopic expression of human BCAS2 (hBCAS2) and Drosophila BCAS2 (dBCAS2) in a dBCAS2-deprived fly can rescue dBCAS2 depletion-induced wing damage to the normal phenotypes. These rescued phenotypes are correlated with the restoration of Delta pre-mRNA splicing, which affects Delta-Notch signaling activity. Additionally, overexpression of Delta can rescue the wing deformation by deprivation of dBCAS2; and the depletion of dBCAS2 can restore the aberrant eye associated with Delta-overexpressing retinas; providing supporting evidence for the regulation of Delta-Notch signaling by dBCAS2. Taken together, dBCAS2 participates in Delta pre-mRNA splicing that affects the regulation of Delta-Notch signaling in Drosophila wing development.
Collapse
Affiliation(s)
- Meng-Hsuan Chou
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yi-Chen Hsieh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chu-Wei Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Po-Han Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, 104, Taiwan
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100, Taiwan
- * E-mail: (SLC); (JTW)
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- * E-mail: (SLC); (JTW)
| |
Collapse
|
26
|
Nancy MM, Nora RM, Rebeca MC. Peptidic tools applied to redirect alternative splicing events. Peptides 2015; 67:1-11. [PMID: 25748022 DOI: 10.1016/j.peptides.2015.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 02/05/2015] [Accepted: 02/26/2015] [Indexed: 01/25/2023]
Abstract
Peptides are versatile and attractive biomolecules that can be applied to modulate genetic mechanisms like alternative splicing. In this process, a single transcript yields different mature RNAs leading to the production of protein isoforms with diverse or even antagonistic functions. During splicing events, errors can be caused either by mutations present in the genome or by defects or imbalances in regulatory protein factors. In any case, defects in alternative splicing have been related to several genetic diseases including muscular dystrophy, Alzheimer's disease and cancer from almost every origin. One of the most effective approaches to redirect alternative splicing events has been to attach cell-penetrating peptides to oligonucleotides that can modulate a single splicing event and restore correct gene expression. Here, we summarize how natural existing and bioengineered peptides have been applied over the last few years to regulate alternative splicing and genetic expression. Under different genetic and cellular backgrounds, peptides have been shown to function as potent vehicles for splice correction, and their therapeutic benefits have reached clinical trials and patenting stages, emphasizing the use of regulatory peptides as an exciting therapeutic tool for the treatment of different genetic diseases.
Collapse
Affiliation(s)
- Martínez-Montiel Nancy
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Rosas-Murrieta Nora
- Laboratorio de Bioquímica y Biología Molecular, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Martínez-Contreras Rebeca
- Laboratorio de Ecología Molecular Microbiana, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico.
| |
Collapse
|
27
|
Eady JJ, Wormstone YM, Heaton SJ, Hilhorst B, Elliott RM. Differential effects of basolateral and apical iron supply on iron transport in Caco-2 cells. GENES AND NUTRITION 2015; 10:463. [PMID: 25896409 DOI: 10.1007/s12263-015-0463-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/08/2015] [Indexed: 12/21/2022]
Abstract
Iron homeostasis in the human body is maintained primarily through regulation of iron absorption in the duodenum. The liver peptide hepcidin plays a central role in this regulation. Additionally, expression and functional control of certain components of the cellular iron transport machinery can be influenced directly by the iron status of enterocytes. The significance of this modulation, relative to the effects of hepcidin, and the comparative effects of iron obtained directly from the diet and/or via the bloodstream are not clear. The studies described here were performed using Caco-2 cell monolayers as a model of intestinal epithelium, to compare the effects of iron supplied in physiologically relevant forms to either the apical or basolateral surfaces of the cells. Both sources of iron provoked increased cellular ferritin content, indicating iron uptake from both sides of the cells. Supply of basolateral transferrin-bound iron did not affect subsequent iron transport across the apical surface, but reduced iron transport across the basolateral membrane. In contrast, the apical iron supply led to subsequent reduction in iron transport across the apical cell membrane without altering iron export across the basolateral membrane. The apical and basolateral iron supplies also elicited distinct effects on the expression and subcellular distribution of iron transporters. These data suggest that, in addition to the effects of cellular iron status on the expression of iron transporter genes, different modes and direction of iron supply to enterocytes can elicit distinct functional effects on iron transport.
Collapse
Affiliation(s)
- J J Eady
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | | | | | | | | |
Collapse
|
28
|
Abbas M, Shanmugam I, Bsaili M, Hromas R, Shaheen M. The role of the human psoralen 4 (hPso4) protein complex in replication stress and homologous recombination. J Biol Chem 2014; 289:14009-19. [PMID: 24675077 DOI: 10.1074/jbc.m113.520056] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Psoralen 4 (Pso4) is an evolutionarily conserved protein that has been implicated in a variety of cellular processes including RNA splicing and resistance to agents that cause DNA interstrand cross-links. Here we show that the hPso4 complex is required for timely progression through S phase and transition through the G2/M checkpoint, and it functions in the repair of DNA lesions that arise during replication. Notably, hPso4 depletion results in delayed resumption of DNA replication after hydroxyurea-induced stalling of replication forks, reduced repair of spontaneous and hydroxyurea-induced DNA double strand breaks (DSBs), and increased sensitivity to a poly(ADP-ribose) polymerase inhibitor. Furthermore, we show that hPso4 is involved in the repair of DSBs by homologous recombination, probably by regulating the BRCA1 protein levels and the generation of single strand DNA at DSBs. Together, our results demonstrate that hPso4 participates in cell proliferation and the maintenance of genome stability by regulating homologous recombination. The involvement of hPso4 in the recombinational repair of DSBs provides an explanation for the sensitivity of Pso4-deficient cells to DNA interstrand cross-links.
Collapse
Affiliation(s)
- Mohammad Abbas
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Ilanchezhian Shanmugam
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Manal Bsaili
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| | - Robert Hromas
- the Department of Medicine, University of Florida, Gainesville, Florida 32611
| | - Monte Shaheen
- From the Division of Hematology-Oncology, Department of Internal Medicine, University of New Mexico, Albuquerque, New Mexico 87131 and
| |
Collapse
|
29
|
Wan L, Huang J. The PSO4 protein complex associates with replication protein A (RPA) and modulates the activation of ataxia telangiectasia-mutated and Rad3-related (ATR). J Biol Chem 2014; 289:6619-6626. [PMID: 24443570 DOI: 10.1074/jbc.m113.543439] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The PSO4 core complex is composed of PSO4/PRP19/SNEV, CDC5L, PLRG1, and BCAS2/SPF27. Besides its well defined functions in pre-mRNA splicing, the PSO4 complex has been shown recently to participate in the DNA damage response. However, the specific role for the PSO4 complex in the DNA damage response pathways is still not clear. Here we show that both the BCAS2 and PSO4 subunits of the PSO4 complex directly interact and colocalize with replication protein A (RPA). Depletion of BCAS2 or PSO4 impairs the recruitment of ATR-interacting protein (ATRIP) to DNA damage sites and compromises CHK1 activation and RPA2 phosphorylation. Moreover, we demonstrate that both the RPA1-binding ability of BCAS2 and the E3 ligase activity of PSO4 are required for efficient accumulation of ATRIP at DNA damage sites and the subsequent CHK1 activation and RPA2 phosphorylation. Our results suggest that the PSO4 complex functionally interacts with RPA and plays an important role in the DNA damage response.
Collapse
Affiliation(s)
- Li Wan
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jun Huang
- Life Sciences Institute and Innovation Center for Cell Biology, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
30
|
Chen PH, Lee CI, Weng YT, Tarn WY, Tsao YP, Kuo PC, Hsu PH, Huang CW, Huang CS, Lee HH, Wu JT, Chen SL. BCAS2 is essential for Drosophila viability and functions in pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2013; 19:208-218. [PMID: 23249746 PMCID: PMC3543084 DOI: 10.1261/rna.034835.112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 11/14/2012] [Indexed: 06/01/2023]
Abstract
Here, we show that dBCAS2 (CG4980, human Breast Carcinoma Amplified Sequence 2 ortholog) is essential for the viability of Drosophila melanogaster. We find that ubiquitous or tissue-specific depletion of dBCAS2 leads to larval lethality, wing deformities, impaired splicing, and apoptosis. More importantly, overexpression of hBCAS2 rescues these defects. Furthermore, the C-terminal coiled-coil domain of hBCAS2 binds directly to CDC5L and recruits hPrp19/PLRG1 to form a core complex for splicing in mammalian cells and can partially restore wing damage induced by knocking down dBCAS2 in flies. In summary, Drosophila and human BCAS2 share a similar function in RNA splicing, which affects cell viability.
Collapse
Affiliation(s)
- Po-Han Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chia-I Lee
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Yu-Tzu Weng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Woan-Yuh Tarn
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei 104, Taiwan
| | - Ping-Chang Kuo
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Pang-Hung Hsu
- Department of Life Science, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
- Institute of Bioscience and Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Chu-Wei Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chiun-Sheng Huang
- Department of Surgery, College of Medicine, National Taiwan University and Hospital, Taipei 100, Taiwan
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
31
|
Ghavami S, Cunnington RH, Yeganeh B, Davies JJL, Rattan SG, Bathe K, Kavosh M, Los MJ, Freed DH, Klonisch T, Pierce GN, Halayko AJ, Dixon IMC. Autophagy regulates trans fatty acid-mediated apoptosis in primary cardiac myofibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:2274-86. [PMID: 23026405 DOI: 10.1016/j.bbamcr.2012.09.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 02/06/2023]
Abstract
Trans fats are not a homogeneous group of molecules and less is known about the cellular effects of individual members of the group. Vaccenic acid (VA) and elaidic acid (EA) are the predominant trans monoenes in ruminant fats and vegetable oil, respectively. Here, we investigated the mechanism of cell death induced by VA and EA on primary rat ventricular myofibroblasts (rVF). The MTT assay demonstrated that both VA and EA (200μM, 0-72 h) reduced cell viability in rVF (P<0.001). The FACS assay confirmed that both VA and EA induced apoptosis in rVF, and this was concomitant with elevation in cleaved caspase-9, -3 and -7, but not caspase-8. VA and EA decreased the expression ratio of Bcl2:Bax, induced Bax translocation to mitochondria and decrease in mitochondrial membrane potential (Δψ). BAX and BAX/BAK silencing in mouse embryonic fibroblasts (MEF) inhibited VA and EA-induced cell death compared to the corresponding wild type cells. Transmission electron microscopy revealed that VA and EA also induced macroautophagosome formation in rVF, and immunoblot analysis confirmed the induction of several autophagy markers: LC3-β lipidation, Atg5-12 accumulation, and increased beclin-1. Finally, deletion of autophagy genes, ATG3 and ATG5 significantly inhibited VA and EA-induced cell death (P<0.001). Our findings show for the first time that trans fat acid (TFA) induces simultaneous apoptosis and autophagy in rVF. Furthermore, TFA-induced autophagy is required for this pro-apoptotic effect. Further studies to address the effect of TFA on the heart may reveal significant translational value for prevention of TFA-linked heart disease.
Collapse
Affiliation(s)
- Saeid Ghavami
- Department of Physiology, University of Manitoba, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mpn1, mutated in poikiloderma with neutropenia protein 1, is a conserved 3'-to-5' RNA exonuclease processing U6 small nuclear RNA. Cell Rep 2012; 2:855-65. [PMID: 23022480 DOI: 10.1016/j.celrep.2012.08.031] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 08/31/2012] [Accepted: 08/31/2012] [Indexed: 01/09/2023] Open
Abstract
Clericuzio-type poikiloderma with neutropenia (PN) is a rare genodermatosis associated with mutations in the C16orf57 gene, which codes for the uncharacterized protein hMpn1. We show here that, in both fission yeasts and humans, Mpn1 processes the spliceosomal U6 small nuclear RNA (snRNA) posttranscriptionally. In Mpn1-deficient cells, U6 molecules carry 3' end polyuridine tails that are longer than those in normal cells and lack a terminal 2',3' cyclic phosphate group. In mpn1Δ yeast cells, U6 snRNA and U4/U6 di-small nuclear RNA protein complex levels are diminished, leading to precursor messenger RNA splicing defects, which are reverted by expression of either yeast or human Mpn1 and by overexpression of U6. Recombinant hMpn1 is a 3'-to-5' RNA exonuclease that removes uridines from U6 3' ends, generating terminal 2',3' cyclic phosphates in vitro. Finally, U6 degradation rates increase in mpn1Δ yeasts and in lymphoblasts established from individuals affected by PN. Our data indicate that Mpn1 promotes U6 stability through 3' end posttranscriptional processing and implicate altered U6 metabolism as a potential mechanism for PN pathogenesis.
Collapse
|
33
|
Sorrells S, Carbonneau S, Harrington E, Chen AT, Hast B, Milash B, Pyati U, Major MB, Zhou Y, Zon LI, Stewart RA, Look AT, Jette C. Ccdc94 protects cells from ionizing radiation by inhibiting the expression of p53. PLoS Genet 2012; 8:e1002922. [PMID: 22952453 PMCID: PMC3431329 DOI: 10.1371/journal.pgen.1002922] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 07/13/2012] [Indexed: 01/07/2023] Open
Abstract
DNA double-strand breaks (DSBs) represent one of the most deleterious forms of DNA damage to a cell. In cancer therapy, induction of cell death by DNA DSBs by ionizing radiation (IR) and certain chemotherapies is thought to mediate the successful elimination of cancer cells. However, cancer cells often evolve to evade the cytotoxicity induced by DNA DSBs, thereby forming the basis for treatment resistance. As such, a better understanding of the DSB DNA damage response (DSB–DDR) pathway will facilitate the design of more effective strategies to overcome chemo- and radioresistance. To identify novel mechanisms that protect cells from the cytotoxic effects of DNA DSBs, we performed a forward genetic screen in zebrafish for recessive mutations that enhance the IR–induced apoptotic response. Here, we describe radiosensitizing mutation 7 (rs7), which causes a severe sensitivity of zebrafish embryonic neurons to IR–induced apoptosis and is required for the proper development of the central nervous system. The rs7 mutation disrupts the coding sequence of ccdc94, a highly conserved gene that has no previous links to the DSB–DDR pathway. We demonstrate that Ccdc94 is a functional member of the Prp19 complex and that genetic knockdown of core members of this complex causes increased sensitivity to IR–induced apoptosis. We further show that Ccdc94 and the Prp19 complex protect cells from IR–induced apoptosis by repressing the expression of p53 mRNA. In summary, we have identified a new gene regulating a dosage-sensitive response to DNA DSBs during embryonic development. Future studies in human cancer cells will determine whether pharmacological inactivation of CCDC94 reduces the threshold of the cancer cell apoptotic response. Radiation therapy and most chemotherapies elicit cancer cell death through the induction of excessive DNA damage. However, cancer cells can harbor genetic defects that confer resistance to these therapies. To identify cellular components whose targeted therapeutic inactivation could potentially enhance the sensitivity of treatment-resistant cancer cells to DNA–damaging therapies, we have chosen an unbiased genetic approach in live whole zebrafish embryos to identify genes that normally protect cells from the lethal effects of DNA damage. This approach has yielded the discovery of a novel radioprotective gene called ccdc94. Upon inactivation of ccdc94, cells become more sensitive to radiation-induced cell death. Our further analysis revealed that the Ccdc94 protein functions in the Prp19 complex, which is known to regulate gene expression and repair of damaged DNA. We found that this complex normally represses radiation-induced cell death by inhibiting the expression of the p53 gene, a critical mediator of DNA damage–induced cell death. Future experiments that inactivate Ccdc94 and Prp19 complex proteins in human cancer cells will determine if inactivation of this complex represents a novel therapeutic strategy that could increase p53 expression to enhance sensitivity to DNA damaging therapies in chemo- and radio-resistant cancer cells.
Collapse
Affiliation(s)
- Shelly Sorrells
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Seth Carbonneau
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erik Harrington
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Aye T. Chen
- Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, United States of America
| | - Bridgid Hast
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, United States of America
| | - Brett Milash
- Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Ujwal Pyati
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael B. Major
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, Chapel Hill, North Carolina, United States of America
| | - Yi Zhou
- Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, United States of America
| | - Leonard I. Zon
- Department of Hematology/Oncology, Children's Hospital, Boston, Massachusetts, United States of America
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail: (ATL); (CJ)
| | - Cicely Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail: (ATL); (CJ)
| |
Collapse
|
34
|
Hersch M, Peter B, Kang HM, Schüpfer F, Abriel H, Pedrazzini T, Eskin E, Beckmann JS, Bergmann S, Maurer F. Mapping genetic variants associated with beta-adrenergic responses in inbred mice. PLoS One 2012; 7:e41032. [PMID: 22859963 PMCID: PMC3409184 DOI: 10.1371/journal.pone.0041032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 06/16/2012] [Indexed: 01/11/2023] Open
Abstract
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β1-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10−8). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10−6). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.
Collapse
Affiliation(s)
- Micha Hersch
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bastian Peter
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hyun Min Kang
- Department of Computer Science and Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Fanny Schüpfer
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Hugues Abriel
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Thierry Pedrazzini
- Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Eleazar Eskin
- Department of Computer Science and Department of Human Genetics, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jacques S. Beckmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Fabienne Maurer
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
35
|
Schrimpe-Rutledge AC, Fontès G, Gritsenko MA, Norbeck AD, Anderson DJ, Waters KM, Adkins JN, Smith RD, Poitout V, Metz TO. Discovery of novel glucose-regulated proteins in isolated human pancreatic islets using LC-MS/MS-based proteomics. J Proteome Res 2012; 11:3520-32. [PMID: 22578083 DOI: 10.1021/pr3002996] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The prevalence of diabetes mellitus is increasing dramatically throughout the world, and the disease has become a major public health issue. The most common form of the disease, type 2 diabetes, is characterized by insulin resistance and insufficient insulin production from the pancreatic beta-cell. Since glucose is the most potent regulator of beta-cell function under physiological conditions, identification of the insulin secretory defect underlying type 2 diabetes requires a better understanding of glucose regulation of human beta-cell function. To this aim, a bottom-up LC-MS/MS-based proteomics approach was used to profile pooled islets from multiple donors under basal (5 mM) or high (15 mM) glucose conditions. Our analysis discovered 256 differentially abundant proteins (∼p < 0.05) after 24 h of high glucose exposure from more than 4500 identified in total. Several novel glucose-regulated proteins were elevated under high glucose conditions, including regulators of mRNA splicing (pleiotropic regulator 1), processing (retinoblastoma binding protein 6), and function (nuclear RNA export factor 1), in addition to neuron navigator 1 and plasminogen activator inhibitor 1. Proteins whose abundances markedly decreased during incubation at 15 mM glucose included Bax inhibitor 1 and synaptotagmin-17. Up-regulation of dicer 1 and SLC27A2 and down-regulation of phospholipase Cβ4 were confirmed by Western blots. Many proteins found to be differentially abundant after high glucose stimulation are annotated as uncharacterized or hypothetical. These findings expand our knowledge of glucose regulation of the human islet proteome and suggest many hitherto unknown responses to glucose that require additional studies to explore novel functional roles.
Collapse
|
36
|
Chen CH, Chu PC, Lee L, Lien HW, Lin TL, Fan CC, Chi P, Huang CJ, Chang MS. Disruption of murine mp29/Syf2/Ntc31 gene results in embryonic lethality with aberrant checkpoint response. PLoS One 2012; 7:e33538. [PMID: 22448250 PMCID: PMC3308990 DOI: 10.1371/journal.pone.0033538] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 02/10/2012] [Indexed: 11/19/2022] Open
Abstract
Human p29 is a putative component of spliceosomes, but its role in pre-mRNA is elusive. By siRNA knockdown and stable overexpression, we demonstrated that human p29 is involved in DNA damage response and Fanconi anemia pathway in cultured cells. In this study, we generated p29 knockout mice (mp29(GT/GT)) using the mp29 gene trap embryonic stem cells to study the role of mp29 in DNA damage response in vivo. Interruption of mp29 at both alleles resulted in embryonic lethality. Embryonic abnormality occurred as early as E6.5 in mp29(GT/GT) mice accompanied with decreased mRNA levels of α-tubulin and Chk1. The reduction of α-tubulin and Chk1 mRNAs is likely due to an impaired post-transcriptional event. An aberrant G2/M checkpoint was found in mp29 gene trap embryos when exposed to aphidicolin and UV light. This embryonic lethality was rescued by crossing with mp29 transgenic mice. Additionally, the knockdown of zfp29 in zebrafish resulted in embryonic death at 72 hours of development postfertilization (hpf). A lower level of acetylated α-tubulin was also observed in zfp29 morphants. Together, these results illustrate an indispensable role of mp29 in DNA checkpoint response during embryonic development.
Collapse
Affiliation(s)
- Chia-Hsin Chen
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Po-Chen Chu
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Liekyeow Lee
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Huang-Wei Lien
- Institute of Fisheries Science, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Tse-Ling Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Chen Fan
- Department of Physiology, Mackay Memorial Hospital, Taipei, Taiwan
| | - Peter Chi
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chang-Jen Huang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Mau-Sun Chang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
37
|
Nicotinic stimulation induces Tristetraprolin over-production and attenuates inflammation in muscle. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:368-78. [DOI: 10.1016/j.bbamcr.2011.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 10/27/2011] [Accepted: 11/02/2011] [Indexed: 01/11/2023]
|
38
|
Koncz C, deJong F, Villacorta N, Szakonyi D, Koncz Z. The spliceosome-activating complex: molecular mechanisms underlying the function of a pleiotropic regulator. FRONTIERS IN PLANT SCIENCE 2012; 3:9. [PMID: 22639636 PMCID: PMC3355604 DOI: 10.3389/fpls.2012.00009] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 01/09/2012] [Indexed: 05/18/2023]
Abstract
Correct interpretation of the coding capacity of RNA polymerase II transcribed eukaryotic genes is determined by the recognition and removal of intronic sequences of pre-mRNAs by the spliceosome. Our current knowledge on dynamic assembly and subunit interactions of the spliceosome mostly derived from the characterization of yeast, Drosophila, and human spliceosomal complexes formed on model pre-mRNA templates in cell extracts. In addition to sequential structural rearrangements catalyzed by ATP-dependent DExH/D-box RNA helicases, catalytic activation of the spliceosome is critically dependent on its association with the NineTeen Complex (NTC) named after its core E3 ubiquitin ligase subunit PRP19. NTC, isolated recently from Arabidopsis, occurs in a complex with the essential RNA helicase and GTPase subunits of the U5 small nuclear RNA particle that are required for both transesterification reactions of splicing. A compilation of mass spectrometry data available on the composition of NTC and spliceosome complexes purified from different organisms indicates that about half of their conserved homologs are encoded by duplicated genes in Arabidopsis. Thus, while mutations of single genes encoding essential spliceosome and NTC components lead to cell death in other organisms, differential regulation of some of their functionally redundant Arabidopsis homologs permits the isolation of partial loss of function mutations. Non-lethal pleiotropic defects of these mutations provide a unique means for studying the roles of NTC in co-transcriptional assembly of the spliceosome and its crosstalk with DNA repair and cell death signaling pathways.
Collapse
Affiliation(s)
- Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of SciencesSzeged, Hungary
- *Correspondence: Csaba Koncz, Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-59829 Cologne, Germany. e-mail:
| | - Femke deJong
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Nicolas Villacorta
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Dóra Szakonyi
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding ResearchCologne, Germany
| |
Collapse
|
39
|
Dai Y, Hogan S, Schmelz EM, Ju YH, Canning C, Zhou K. Selective growth inhibition of human breast cancer cells by graviola fruit extract in vitro and in vivo involving downregulation of EGFR expression. Nutr Cancer 2011; 63:795-801. [PMID: 21767082 DOI: 10.1080/01635581.2011.563027] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The epidermal growth factor receptor (EGFR) is an oncogene frequently overexpressed in breast cancer (BC), and its overexpression has been associated with poor prognosis and drug resistance. EGFR is therefore a rational target for BC therapy development. This study demonstrated that a graviola fruit extract (GFE) significantly downregulated EGFR gene expression and inhibited the growth of BC cells and xenografts. GFE selectively inhibited the growth of EGFR-overexpressing human BC (MDA-MB-468) cells (IC(50) = 4.8 μg/ml) but had no effect on nontumorigenic human breast epithelial cells (MCF-10A). GFE significantly downregulated EGFR mRNA expression, arrested cell cycle in the G0/G1 phase, and induced apoptosis in MDA-MB-468 cells. In the mouse xenograft model, a 5-wk dietary treatment of GFE (200 mg/kg diet) significantly reduced the protein expression of EGFR, p-EGFR, and p-ERK in MDA-MB-468 tumors by 56%, 54%, and 32.5%, respectively. Overall, dietary GFE inhibited tumor growth, as measured by wet weight, by 32% (P < 0.01). These data showed that dietary GFE induced significant growth inhibition of MDA-MB-468 cells in vitro and in vivo through a mechanism involving the EGFR/ERK signaling pathway, suggesting that GFE may have a protective effect for women against EGFR-overexpressing BC.
Collapse
Affiliation(s)
- Yumin Dai
- Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | | | | | | |
Collapse
|
40
|
Huen MSY, Sy SMH, Leung KM, Ching YP, Tipoe GL, Man C, Dong S, Chen J. SON is a spliceosome-associated factor required for mitotic progression. Cell Cycle 2011; 9:2679-85. [PMID: 20581448 DOI: 10.4161/cc.9.13.12151] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division.
Collapse
Affiliation(s)
- Michael S Y Huen
- Genome Stability Research Laboratory, The University of Hong Kong, Hong Kong, SAR.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Chen Y, Zhang L, Jones KA. SKIP counteracts p53-mediated apoptosis via selective regulation of p21Cip1 mRNA splicing. Genes Dev 2011; 25:701-16. [PMID: 21460037 PMCID: PMC3070933 DOI: 10.1101/gad.2002611] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 02/23/2011] [Indexed: 11/24/2022]
Abstract
The Ski-interacting protein SKIP/SNW1 functions as both a splicing factor and a transcriptional coactivator for induced genes. We showed previously that transcription elongation factors such as SKIP are dispensable in cells subjected to DNA damage stress. However, we report here that SKIP is critical for both basal and stress-induced expression of the cell cycle arrest factor p21(Cip1). RNAi chromatin immunoprecipitation (RNAi-ChIP) and RNA immunoprecipitation (RNA-IP) experiments indicate that SKIP is not required for transcription elongation of the gene under stress, but instead is critical for splicing and p21(Cip1) protein expression. SKIP interacts with the 3' splice site recognition factor U2AF65 and recruits it to the p21(Cip1) gene and mRNA. Remarkably, SKIP is not required for splicing or loading of U2AF65 at other investigated p53-induced targets, including the proapoptotic gene PUMA. Consequently, depletion of SKIP induces a rapid down-regulation of p21(Cip1) and predisposes cells to undergo p53-mediated apoptosis, which is greatly enhanced by chemotherapeutic DNA damage agents. ChIP experiments reveal that SKIP is recruited to the p21(Cip1), and not PUMA, gene promoters, indicating that p21(Cip1) gene-specific splicing is predominantly cotranscriptional. The SKIP-associated factors DHX8 and Prp19 are also selectively required for p21(Cip1) expression under stress. Together, these studies define a new step that controls cancer cell apoptosis.
Collapse
Affiliation(s)
- Yupeng Chen
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Lirong Zhang
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Katherine A. Jones
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| |
Collapse
|
42
|
Human PRP19 interacts with prolyl-hydroxylase PHD3 and inhibits cell death in hypoxia. Exp Cell Res 2010; 316:2871-82. [DOI: 10.1016/j.yexcr.2010.06.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 05/29/2010] [Accepted: 06/23/2010] [Indexed: 11/22/2022]
|
43
|
Hofmann JC, Husedzinovic A, Gruss OJ. The function of spliceosome components in open mitosis. Nucleus 2010; 1:447-59. [PMID: 21327086 DOI: 10.4161/nucl.1.6.13328] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 08/09/2010] [Accepted: 08/13/2010] [Indexed: 12/15/2022] Open
Abstract
Spatial separation of eukaryotic cells into the nuclear and cytoplasmic compartment permits uncoupling of DNA transcription from translation of mRNAs and allows cells to modify newly transcribed pre mRNAs extensively. Intronic sequences (introns), which interrupt the coding elements (exons), are excised ("spliced") from pre-mRNAs in the nucleus to yield mature mRNAs. This not only enables alternative splicing as an important source of proteome diversity, but splicing is also an essential process in all eukaryotes and knock-out or knock-down of splicing factors frequently results in defective cell proliferation and cell division. However, higher eukaryotes progress through cell division only after breakdown of the nucleus ("open mitosis"). Open mitosis suppresses basic nuclear functions such as transcription and splicing, but allows separate, mitotic functions of nuclear proteins in cell division. Mitotic defects arising after loss-of-function of splicing proteins therefore could be an indirect consequence of compromised splicing in the closed nucleus of the preceding interphase or reflect a direct contribution of splicing proteins to open mitosis. Although experiments to directly distinguish between these two alternatives have not been reported, indirect evidence exists for either hypotheses. In this review, we survey published data supporting an indirect function of splicing in open mitosis or arguing for a direct function of spliceosomal proteins in cell division.
Collapse
|
44
|
Breast Cancer Amplified Sequence 2, a Novel Negative Regulator of the p53 Tumor Suppressor. Cancer Res 2009; 69:8877-85. [DOI: 10.1158/0008-5472.can-09-2023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|