1
|
Han L, Lu SN, Nishimura T, Kobayashi K. Regulatory roles of dopamine D2 receptor in milk protein production and apoptosis in mammary epithelial cells. Exp Cell Res 2024; 439:114090. [PMID: 38740167 DOI: 10.1016/j.yexcr.2024.114090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Dopamine D2 receptors (D2Rs) play crucial roles in regulating diverse physiological functions of the central nervous system and peripheral organs. D2Rs are also expressed in mammary glands. However, which cell types express D2Rs and whether they are involved in milk production remains unclear. The present findings revealed that D2Rs are expressed in the apical regions of the lateral membranes of mammary epithelial cells (MECs) in lactating mice. We also investigated the effects of the D2R agonist bromocriptine and/or antagonist domperidone on intracellular cAMP levels, milk protein production, and apoptosis in a lactation culture model of MECs that produce major milk components like lactating MECs in vivo. We found that bromocriptine decreased intracellular cAMP levels, whereas domperidone dose-dependently neutralized this effect. Bromocriptine also inhibited casein and lactoferrin production and suppressed activities of STAT5 and glucocorticoid receptors (GRs). Domperidone neutralized the inhibition of casein production as well as STAT5 and GR inactivation induced by bromocriptine. Furthermore, D2R activation by bromocriptine induced apoptosis and inactivated ERK, a signaling molecule responsible for promoting cell proliferation and survival. Domperidone attenuated ERK inactivation and apoptosis induced by bromocriptine. These findings suggest that D2Rs play regulatory roles in milk protein production and apoptosis in MECs.
Collapse
Affiliation(s)
- Liang Han
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Shan-Ni Lu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| |
Collapse
|
2
|
Borkúti P, Kristó I, Szabó A, Kovács Z, Vilmos P. FERM domain-containing proteins are active components of the cell nucleus. Life Sci Alliance 2024; 7:e202302489. [PMID: 38296350 PMCID: PMC10830384 DOI: 10.26508/lsa.202302489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/20/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
The FERM domain is a conserved and widespread protein module that appeared in the common ancestor of amoebae, fungi, and animals, and is therefore now found in a wide variety of species. The primary function of the FERM domain is localizing to the plasma membrane through binding lipids and proteins of the membrane; thus, for a long time, FERM domain-containing proteins (FDCPs) were considered exclusively cytoskeletal. Although their role in the cytoplasm has been extensively studied, the recent discovery of the presence and importance of cytoskeletal proteins in the nucleus suggests that FDCPs might also play an important role in nuclear function. In this review, we collected data on their nuclear localization, transport, and possible functions, which are still scattered throughout the literature, with special regard to the role of the FERM domain in these processes. With this, we would like to draw attention to the exciting, new dimension of the role of FDCPs, their nuclear activity, which could be an interesting novel direction for future research.
Collapse
Affiliation(s)
| | | | - Anikó Szabó
- HUN-REN Biological Research Centre, Szeged, Hungary
| | - Zoltán Kovács
- HUN-REN Biological Research Centre, Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Science, University of Szeged, Szeged, Hungary
| | - Péter Vilmos
- HUN-REN Biological Research Centre, Szeged, Hungary
| |
Collapse
|
3
|
Hathaway CA, Rice MS, Collins LC, Chen D, Frank DA, Walker S, Clevenger CV, Tamimi RM, Tworoger SS, Hankinson SE. Prolactin levels and breast cancer risk by tumor expression of prolactin-related markers. Breast Cancer Res 2023; 25:24. [PMID: 36882838 PMCID: PMC9990334 DOI: 10.1186/s13058-023-01618-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/11/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Higher circulating prolactin has been associated with increased breast cancer risk. Prolactin binding to the prolactin receptor (PRLR) can activate the transcription factor STAT5, thus, we examined the association between plasma prolactin and breast cancer risk by tumor expression of PRLR, STAT5, and the upstream kinase JAK2. METHODS Using data from 745 cases and 2454 matched controls in the Nurses' Health Study, we conducted polytomous logistic regression to examine the association between prolactin (> 11 ng/mL vs. ≤ 11 ng/mL) measured within 10 years of diagnosis and breast cancer risk by PRLR (nuclear [N], cytoplasmic [C]), phosphorylated STAT5 (pSTAT5; N, C), and phosphorylated JAK2 (pJAK2; C) tumor expression. Analyses were conducted separately in premenopausal (n = 168 cases, 765 controls) and postmenopausal women (n = 577 cases, 1689 controls). RESULTS In premenopausal women, prolactin levels > 11 ng/mL were positively associated with risk of tumors positive for pSTAT5-N (OR 2.30, 95% CI 1.02-5.22) and pSTAT5-C (OR 1.64, 95% CI 1.01-2.65), but not tumors that were negative for these markers (OR 0.98, 95% CI 0.65-1.46 and OR 0.73, 95% CI 0.43-1.25; p-heterogeneity = 0.06 and 0.02, respectively). This was stronger when tumors were positive for both pSTAT5-N and pSTAT5-C (OR 2.88, 95% CI 1.14-7.25). No association was observed for PRLR or pJAK2 (positive or negative) and breast cancer risk among premenopausal women. Among postmenopausal women, plasma prolactin levels were positively associated with breast cancer risk irrespective of PRLR, pSTAT5, or pJAK2 expression (all p-heterogeneity ≥ 0.21). CONCLUSION We did not observe clear differences in the association between plasma prolactin and breast cancer risk by tumor expression of PRLR or pJAK2, although associations for premenopausal women were observed for pSTAT5 positive tumors only. While additional studies are needed, this suggests that prolactin may act on human breast tumor development through alternative pathways.
Collapse
Affiliation(s)
- Cassandra A Hathaway
- Department of Cancer Epidemiology, Moffitt Cancer Center, 13131 Magnolia Drive, Tampa, FL, 33612, USA.
| | - Megan S Rice
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Laura C Collins
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Dilys Chen
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Royal Columbian Hospital, University of British Columbia, Vancouver, Canada
| | - David A Frank
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Sarah Walker
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Charles V Clevenger
- Department of Pathology, Virginia Commonwealth University, Richmond, VA, USA
| | - Rulla M Tamimi
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Shelley S Tworoger
- Department of Cancer Epidemiology, Moffitt Cancer Center, 13131 Magnolia Drive, Tampa, FL, 33612, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Susan E Hankinson
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
4
|
Shahi A, Kahle J, Hopkins C, Diakonova M. The SH2 domain and kinase activity of JAK2 target JAK2 to centrosome and regulate cell growth and centrosome amplification. PLoS One 2022; 17:e0261098. [PMID: 35089929 PMCID: PMC8797172 DOI: 10.1371/journal.pone.0261098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
JAK2 is cytokine-activated non-receptor tyrosine kinase. Although JAK2 is mainly localized at the plasma membrane, it is also present on the centrosome. In this study, we demonstrated that JAK2 localization to the centrosome depends on the SH2 domain and intact kinase activity. We created JAK2 mutants deficient in centrosomal localization ΔSH2, K882E and (ΔSH2, K882E). We showed that JAK2 WT clone strongly enhances cell proliferation as compared to control cells while JAK2 clones ΔSH2, K882E and (ΔSH2, K882E) proliferate slower than JAK2 WT cells. These mutant clones also progress much slower through the cell cycle as compared to JAK2 WT clone and the enhanced proliferation of JAK2 WT cells is accompanied by increased S -> G2 progression. Both the SH2 domain and the kinase activity of JAK2 play a role in prolactin-dependent activation of JAK2 substrate STAT5. We showed that JAK2 is an important regulator of centrosome function as the SH2 domain of JAK2 regulates centrosome amplification. The cells overexpressing ΔSH2 and (ΔSH2, K-E) JAK2 have almost three-fold the amplified centrosomes of WT cells. In contrast, the kinase activity of JAK2 is dispensable for centrosome amplification. Our observations provide novel insight into the role of SH2 domain and kinase activity of JAK2 in centrosome localization of JAK2 and in the regulation of cell growth and centrosome biogenesis.
Collapse
Affiliation(s)
- Aashirwad Shahi
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Jacob Kahle
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Chandler Hopkins
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
| | - Maria Diakonova
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States of America
- * E-mail:
| |
Collapse
|
5
|
Nguyen TTT, Shingyoji M, Hanazono M, Zhong B, Morinaga T, Tada Y, Shimada H, Hiroshima K, Tagawa M. An MDM2 inhibitor achieves synergistic cytotoxic effects with adenoviruses lacking E1B55kDa gene on mesothelioma with the wild-type p53 through augmenting NFI expression. Cell Death Dis 2021; 12:663. [PMID: 34230456 PMCID: PMC8260618 DOI: 10.1038/s41419-021-03934-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/20/2022]
Abstract
A majority of mesothelioma specimens were defective of p14 and p16 expression due to deletion of the INK4A/ARF region, and the p53 pathway was consequently inactivated by elevated MDM2 functions which facilitated p53 degradaton. We investigated a role of p53 elevation by MDM2 inhibitors, nutlin-3a and RG7112, in cytotoxicity of replication-competent adenoviruses (Ad) lacking the p53-binding E1B55kDa gene (Ad-delE1B). We found that a growth inhibition by p53-activating Ad-delE1B was irrelevant to p53 expression in the infected cells, but combination of Ad-delE1B and the MDM2 inhibitor produced synergistic inhibitory effects on mesothelioma with the wild-type but not mutated p53 genotype. The combination augmented p53 phosphorylation, activated apoptotic but not autophagic pathway, and enhanced DNA damage signals through ATM-Chk2 phosphorylation. The MDM2 inhibitors facilitated production of the Ad progenies through augmented expression of nuclear factor I (NFI), one of the transcriptional factors involved in Ad replications. Knocking down of p53 with siRNA did not increase the progeny production or the NFI expression. We also demonstrated anti-tumor effects by the combination of Ad-delE1B and the MDM2 inhibitors in an orthotopic animal model. These data collectively indicated that upregulation of wild-type p53 expression contributed to cytotoxicity by E1B55kDa-defective replicative Ad through NFI induction and suggested that replication-competent Ad together with augmented p53 levels was a therapeutic strategy for p53 wild-type mesothelioma.
Collapse
Affiliation(s)
- Thao Thi Thanh Nguyen
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Division of Medical Biotechnology, Biotechnology Center of Ho Chi Minh City, 2374 National Highway 1, District 12, Ho Chi Minh, Vietnam
| | - Masato Shingyoji
- Division of Respirology, Chiba Cancer Center, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Michiko Hanazono
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Boya Zhong
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
- Department of Molecular Biology and Oncology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Takao Morinaga
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan
| | - Yuji Tada
- Department of Respirology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku©, Chiba, 260-8670, Japan
- Department of Respiratory Medicine, International University of Health and Welfare Atami Hospital, 13-1 Higasikaigan, Atami, 413-0012, Japan
| | - Hideaki Shimada
- Department of Surgery, Graduate School of Medicine, Toho University, 6-11-1 Oomori-nishi, Oota-ku, 143-8541, Tokyo, Japan
| | - Kenzo Hiroshima
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
- Department of Pathology, Tokyo Women's Medical University Yachiyo Medical Center, 477-96 Ohwadashinden, Yachiyo, 276-8524, Japan
| | - Masatoshi Tagawa
- Division of Pathology and Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuo-ku, Chiba, 260-8717, Japan.
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
- Funabashi Orthopedic Hospital, 1-833 Hazama, Funabashi, 274-0822, Japan.
| |
Collapse
|
6
|
Tian M, Qi Y, Zhang X, Wu Z, Chen J, Chen F, Guan W, Zhang S. Regulation of the JAK2-STAT5 Pathway by Signaling Molecules in the Mammary Gland. Front Cell Dev Biol 2020; 8:604896. [PMID: 33282878 PMCID: PMC7705115 DOI: 10.3389/fcell.2020.604896] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Janus kinase 2 (JAK2) and signal transducers and activators of transcription 5 (STAT5) are involved in the proliferation, differentiation, and survival of mammary gland epithelial cells. Dysregulation of JAK2-STAT5 activity invariably leads to mammary gland developmental defects and/or diseases, including breast cancer. Proper functioning of the JAK2-STAT5 signaling pathway relies on crosstalk with other signaling pathways (synergistically or antagonistically), which leads to normal biological performance. This review highlights recent progress regarding the critical components of the JAK2-STAT5 pathway and its crosstalk with G-protein coupled receptor (GPCR) signaling, PI3K-Akt signaling, growth factors, inflammatory cytokines, hormone receptors, and cell adhesion.
Collapse
Affiliation(s)
- Min Tian
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yingao Qi
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaoli Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihui Wu
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Fang Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, China.,College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Benhassine M, Guérin SL. Transcription of the Human 5-Hydroxytryptamine Receptor 2B (HTR2B) Gene Is under the Regulatory Influence of the Transcription Factors NFI and RUNX1 in Human Uveal Melanoma. Int J Mol Sci 2018; 19:ijms19103272. [PMID: 30347896 PMCID: PMC6214142 DOI: 10.3390/ijms19103272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/27/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Because it accounts for 70% of all eye cancers, uveal melanoma (UM) is therefore the most common primary ocular malignancy. In this study, we investigated the molecular mechanisms leading to the aberrant expression of the gene encoding the serotonin receptor 2B (HTR2B), one of the most discriminating among the candidates from the class II gene signature, in metastatic and non-metastatic UM cell lines. Transfection analyses revealed that the upstream regulatory region of the HTR2B gene contains a combination of alternative positive and negative regulatory elements functional in HTR2B− but not in HTR23B+ UM cells. We demonstrated that both the transcription factors nuclear factor I (NFI) and Runt-related transcription factor I (RUNX1) interact with regulatory elements from the HTR2B gene to either activate (NFI) or repress (RUNX1) HTR2B expression in UM cells. The results of this study will help understand better the molecular mechanisms accounting for the abnormal expression of the HTR2B gene in uveal melanoma.
Collapse
Affiliation(s)
- Manel Benhassine
- Centre Universitaire d'Ophtalmologie-Recherche (CUO-Recherche), Axe médecine régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Université Laval, Québec, QC G1S4L8, Canada.
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie-Recherche (CUO-Recherche), Axe médecine régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Université Laval, Québec, QC G1S4L8, Canada.
- Département d'ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V0A6, Canada.
| |
Collapse
|
8
|
Tsurumi A, Zhao C, Li WX. Canonical and non-canonical JAK/STAT transcriptional targets may be involved in distinct and overlapping cellular processes. BMC Genomics 2017; 18:718. [PMID: 28893190 PMCID: PMC5594485 DOI: 10.1186/s12864-017-4058-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 08/14/2017] [Indexed: 02/08/2023] Open
Abstract
Background The Janus kinase-signal transducer and activator of transcription (JAK/STAT) pathway has been well-characterized as a crucial signal transduction cascade that regulates vital biological responses including development, immunity and oncogenesis. Additionally to its canonical pathway that uses the phosphorylated form of the STAT transcription factor, recently the non-canonical pathway involving heterochromatin formation by unphosphorylated STAT was recently uncovered. Considering the significant role of the JAK/STAT pathway, we used the simple Drosophila system in which the non-canonical pathway was initially characterized, to compare putative canonical versus non-canonical transcriptional targets across the genome. We analyzed microarray expression patterns of wildtype, Jak gain- and loss-of-function mutants, as well as the Stat loss-of-function mutant during embryogenesis, since the contribution of the canonical signal transduction pathway has been well-characterized in these contexts. Previous studies have also demonstrated that Jak gain-of-function and Stat mutants counter heterochromatin silencing to de-repress target genes by the non-canonical pathway. Results Compared to canonical target genomic loci, non-canonical targets were significantly more associated with sites enriched with heterochromatin-related factors (p = 0.004). Furthermore, putative canonical and non-canonical transcriptional targets identified displayed some differences in biological pathways they regulate, as determined by Gene Ontology (GO) enrichment analyses. Canonical targets were enriched mainly with genes relevant to development and immunity, as expected, whereas the non-canonical target gene set mainly showed enrichment of genes for various metabolic responses and stress response, highlighting the possibility that some differences may exist between the two loci. Conclusions Canonical and non-canonical JAK/STAT genes may regulate distinct and overlapping sets of genes and may perform specific overall functions in physiology. Further studies at different developmental stages, or using distinct tissues may identify additional targets and provide insight into which gene targets are unique to the canonical or non-canonical pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-4058-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy Tsurumi
- Department of Surgery, Massachusetts General Hospital, 50 Blossom St., Thier 340, Boston, MA, 02114, USA. .,Department of Microbiology and Immunology, Harvard Medical School, 77 Ave. Louis Pasteur, Boston, MA, 02115, USA. .,Shriners Hospitals for Children-Boston®, 51 Blossom St, Boston, MA, 02114, USA.
| | - Connie Zhao
- Genomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Willis X Li
- Department of Medicine, University of California at San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
9
|
Hepatic Deletion of Janus Kinase 2 Counteracts Oxidative Stress in Mice. Sci Rep 2016; 6:34719. [PMID: 27713471 PMCID: PMC5054456 DOI: 10.1038/srep34719] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/19/2016] [Indexed: 12/13/2022] Open
Abstract
Genetic deletion of the tyrosine kinase JAK2 or the downstream transcription factor STAT5 in liver impairs growth hormone (GH) signalling and thereby promotes fatty liver disease. Hepatic STAT5 deficiency accelerates liver tumourigenesis in presence of high GH levels. To determine whether the upstream kinase JAK2 exerts similar functions, we crossed mice harbouring a hepatocyte-specific deletion of JAK2 (JAK2Δhep) to GH transgenic mice (GHtg) and compared them to GHtgSTAT5Δhep mice. Similar to GHtgSTAT5Δhep mice, JAK2 deficiency resulted in severe steatosis in the GHtg background. However, in contrast to STAT5 deficiency, loss of JAK2 significantly delayed liver tumourigenesis. This was attributed to: (i) activation of STAT3 in STAT5-deficient mice, which was prevented by JAK2 deficiency and (ii) increased detoxification capacity of JAK2-deficient livers, which diminished oxidative damage as compared to GHtgSTAT5Δhep mice, despite equally severe steatosis and reactive oxygen species (ROS) production. The reduced oxidative damage in JAK2-deficient livers was linked to increased expression and activity of glutathione S-transferases (GSTs). Consistent with genetic deletion of Jak2, pharmacological inhibition and siRNA-mediated knockdown of Jak2 led to significant upregulation of Gst isoforms and to reduced hepatic oxidative DNA damage. Therefore, blocking JAK2 function increases detoxifying GSTs in hepatocytes and protects against oxidative liver damage.
Collapse
|
10
|
Sahu S, Ganguly R, Raman P. Leptin augments recruitment of IRF-1 and CREB to thrombospondin-1 gene promoter in vascular smooth muscle cells in vitro. Am J Physiol Cell Physiol 2016; 311:C212-24. [PMID: 27281481 DOI: 10.1152/ajpcell.00068.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/02/2016] [Indexed: 01/26/2023]
Abstract
We previously reported that high pathophysiological concentrations of leptin, the adipocyte-secreted peptide, upregulate the expression of a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in vascular smooth muscle cells. Moreover, this regulation was found to occur at the level of transcription; however, the underlying molecular mechanisms remain unknown. The goal of the present study was to investigate the specific transcriptional mechanisms that mediate upregulation of TSP-1 expression by leptin. Primary human aortic smooth muscle cell cultures were transiently transfected with different TSP-1 gene (THBS1) promoter-linked luciferase reporter constructs, and luciferase activity in response to leptin (100 ng/ml) was assessed. We identified a long THBS1 promoter (-1270/+750) fragment with specific leptin response elements that are required for increased TSP-1 transcription by leptin. Promoter analyses, protein/DNA array and gel shift assays demonstrated activation and association of transcription factors, interferon regulatory factor-1 (IRF-1) and cAMP response element-binding protein (CREB), to the distal fragment of the THBS1 promoter in response to leptin. Supershift, chromatin immunoprecipitation, and coimmunoprecipitation assays revealed formation of a single complex between IRF-1 and CREB in response to leptin; importantly, recruitment of this complex to the THBS1 promoter mediated leptin-induced TSP-1 transcription. Finally, binding sequence decoy oligomer and site-directed mutagenesis revealed that regulatory elements for both IRF-1 (-1019 to -1016) and CREB (-1198 to -1195), specific to the distal THBS1 promoter, were required for leptin-induced TSP-1 transcription. Taken together, these findings demonstrate that leptin promotes a cooperative association between IRF-1 and CREB on the THBS1 promoter driving TSP-1 transcription in vascular smooth muscle cells.
Collapse
Affiliation(s)
- Soumyadip Sahu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Rituparna Ganguly
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Priya Raman
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio; and School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
11
|
Nilsson G, Kannius-Janson M. Forkhead Box F1 promotes breast cancer cell migration by upregulating lysyl oxidase and suppressing Smad2/3 signaling. BMC Cancer 2016; 16:142. [PMID: 26908052 PMCID: PMC4763409 DOI: 10.1186/s12885-016-2196-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 02/17/2016] [Indexed: 11/20/2022] Open
Abstract
Background Epithelial-mesenchymal transition (EMT) increases cell migration and is implicated in cancer cell invasion and metastasis. We have previously described the involvement of the transcription factors, nuclear factor I-C2 (NFI-C2) and Forkhead box F1 (FoxF1), in the regulation of EMT and invasion during breast tumor progression. NFI-C2 counteracts these processes and FoxF1 is a directly repressed target of NFI-C2. FoxF1 induces EMT and invasiveness and enhances xenograft tumorigenicity in nude mice. Here we identify oppositely regulated targets of NFI-C2 and FoxF1 involved in these processes and further study a possible role for FoxF1 in tumorigenesis. Methods We used Affymetrix microarray to detect changes in the transcriptome of a mouse mammary epithelial cell line upon overexpression of NFI-C2 or FoxF1. To elucidate the effects and signaling events following FoxF1 overexpression we investigated in vitro invasion capacity and changes in transcription and protein expression resulting from RNAi and inhibitor treatment. Results The extracellular matrix enzyme lysyl oxidase (LOX) was negatively regulated by NFI-C2 and positively regulated by FoxF1, and upregulation of LOX following FoxF1 overexpression in mouse mammary epithelial cells increased in vitro cell invasion. In the nuclei of FoxF1-overexpressing cells, the phosphorylation of Smad2 decreased, while that of p38 increased. Depletion of LOX by RNAi enhanced phosphorylation of Smad2 by a focal adhesion kinase (FAK)-dependent mechanism. In addition, induced expression of FoxF1 in a non-malignant human mammary epithelial cell line showed that the increase in LOX transcription and the suppression of Smad2 activity are early effects of FoxF1. Conclusion These data show that FoxF1 enhances invasion in a LOX-dependent manner, is involved in the regulation of Smad2 signaling, and that FoxF1 overexpression ultimately leads to activation of p38 MAPK signaling. These findings provide new insights into the regulation of signaling pathways known to be important during breast tumor progression. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2196-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gisela Nilsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 430, SE-405 30, Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Gothenburg, Sweden
| | - Marie Kannius-Janson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30, Gothenburg, Sweden.
| |
Collapse
|
12
|
Lee HK, Lee DS, Park JC. Nuclear factor I-C regulates E-cadherin via control of KLF4 in breast cancer. BMC Cancer 2015; 15:113. [PMID: 25879941 PMCID: PMC4359555 DOI: 10.1186/s12885-015-1118-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 02/24/2015] [Indexed: 12/31/2022] Open
Abstract
Background Progression to metastasis is the leading cause of most cancer-related mortality; however, much remains to be understood about what facilitates the spread of tumor cells. In the present study, we describe a novel pathway in breast cancer that regulates epithelial-to-mesenchymal transition (EMT), motility, and invasiveness. Methods We examined nuclear factor I-C (NFI-C) expression in MCF10A human breast epithelial cells, MCF7 non-invasive breast cancer cells, and MDA-MB231 invasive breast cancer cells by real-time PCR and western blotting. To investigate the loss- and gain-function of NFI-C, we determined whether NFI-C regulated KLF4 expression by real-time PCR, western blotting, and promoter assay. To understand the biological functions of NFI-C, we observed cell invasion, migration, adhesion in human tumor cells by transwell assay, wound healing assay, quantitative RT-PCR, cell adhesion assay, western blotting, and immunohistochemistry. Results We identified the downstream factors of NFI-C, such as KLF4 and E-cadherin, which play roles in EMT. NFI-C is expressed in normal mammary gland or noninvasive breast cancer cells with epithelial characteristics. NFI-C overexpression induced expression of KLF4 and E-cadherin, but not Slug, in breast cancer cells. NFI-C bound directly to the KLF4 promoter and stimulated KLF4 transcriptional activity, thereby regulating E-cadherin expression during tumorigenesis. Cells overexpressing NFI-C maintained their epithelial differentiation status, which could drive mesenchymal-epithelial transition (MET) via the NFI-C-KLF4-E-cadherin axis in breast cancer cells. Consequently, NFI-C suppressed EMT, migration, and invasion in breast cancer cells. Conclusions Our study reveals a novel signaling pathway that is important during breast cancer tumorigenesis: the NFI-C-KLF4-E-cadherin pathway. The results indicate the important role of NFI-C in regulating KLF4 during tumorigenesis.
Collapse
Affiliation(s)
- Hye-Kyung Lee
- Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehagro, Chongro-gu, Seoul, 110-749, South Korea.
| | - Dong-Seol Lee
- Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehagro, Chongro-gu, Seoul, 110-749, South Korea.
| | - Joo-Cheol Park
- Department of Oral Histology-Developmental Biology & Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehagro, Chongro-gu, Seoul, 110-749, South Korea.
| |
Collapse
|
13
|
Ghosh A, Pechota A, Coleman D, Upchurch GR, Eliason JL. Cigarette smoke-induced MMP2 and MMP9 secretion from aortic vascular smooth cells is mediated via the Jak/Stat pathway. Hum Pathol 2014; 46:284-94. [PMID: 25537973 DOI: 10.1016/j.humpath.2014.11.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
It is hypothesized that cigarette smoke may increase MMP2 and MMP9 secretion through Jak/Stat pathway in the aorta, thereby facilitating abdominal aortic aneurysm (AAA) formation/progression in smokers. We observed through zymograms that treatment of male rat aortic vascular smooth muscle cells (RASMC) with an aqueous extract of cigarette smoke (CSE) for 24 hours resulted in a significant increase in pro-MMP9 (P = .005) and a modest increase in pro-MMP2 (P = .055) production. Western blot with protein extracts from CSE-treated RASMC showed up-regulation of pStat3, pJak2, and T-Jak2 and unchanged levels of T-Stat3. Transfection of RASMC with small interfering RNAs for Jak2, Stat3, or both Jak2 and Stat3 significantly reduced pro-MMP9 (P < .005) and pro-MMP2 (P < .05) in medium of CSE-treated RASMC compared with control small interfering RNA-transfected cells. Immunoprecipitation with total Jak2 antibody showed increased pStat3 and T-Stat3 in the cytoplasm and nucleus of CSE-treated RASMC. Immunofluorescence revealed increased presence of pJak2, T-Jak2, pStat3, and T-Stat3 in the cytoplasm and nucleus of the CSE-treated cells. Treatment of control human tissues with CSE resulted in pro-MMP9 secretion and up-regulation of the Jak/Stat proteins. In addition, AAA tissues showed more pJak2 and pStat3 than control human tissues. Therefore, inhibiting the Jak/Stat pathway could be a potential therapeutic approach in the treatment of AAA.
Collapse
Affiliation(s)
- Abhijit Ghosh
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, MI 48109-5867
| | - Angela Pechota
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, MI 48109-5867
| | - Dawn Coleman
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, MI 48109-5867
| | - Gilbert R Upchurch
- University of Virginia, Division of Vascular and Endovascular Surgery, Charlottesville, VA 800679
| | - Jonathan L Eliason
- Section of Vascular Surgery, Department of Surgery, Jobst Vascular Research Laboratories, University of Michigan Medical School, Ann Arbor, MI 48109-5867.
| |
Collapse
|
14
|
JAK2 tyrosine kinase phosphorylates and is negatively regulated by centrosomal protein Ninein. Mol Cell Biol 2014; 35:111-31. [PMID: 25332239 DOI: 10.1128/mcb.01138-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
JAK2 is a cytoplasmic tyrosine kinase critical for cytokine signaling. In this study, we have identified a novel centrosome-associated complex containing ninein and JAK2. We have found that active JAK2 localizes around the mother centrioles, where it partly colocalizes with ninein, a protein involved in microtubule (MT) nucleation and anchoring. We demonstrated that JAK2 is an important regulator of centrosome function. Depletion of JAK2 or use of JAK2-null cells causes defects in MT anchoring and increased numbers of cells with mitotic defects; however, MT nucleation is unaffected. We showed that JAK2 directly phosphorylates the N terminus of ninein while the C terminus of ninein inhibits JAK2 kinase activity in vitro. Overexpressed wild-type (WT) or C-terminal (amino acids 1179 to 1931) ninein inhibits JAK2. This ninein-dependent inhibition of JAK2 significantly decreases prolactin- and interferon gamma (IFN-γ)-induced tyrosyl phosphorylation of STAT1 and STAT5. Downregulation of ninein enhances JAK2 activation. These results indicate that JAK2 is a novel member of centrosome-associated complex and that this localization regulates both centrosomal function and JAK2 kinase activity, thus controlling cytokine-activated molecular pathways.
Collapse
|
15
|
Harris L, Genovesi LA, Gronostajski RM, Wainwright BJ, Piper M. Nuclear factor one transcription factors: Divergent functions in developmental versus adult stem cell populations. Dev Dyn 2014; 244:227-38. [PMID: 25156673 DOI: 10.1002/dvdy.24182] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 08/18/2014] [Accepted: 08/20/2014] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor one (NFI) transcription factors are a group of site-specific DNA-binding proteins that are emerging as critical regulators of stem cell biology. During development NFIs promote the production of differentiated progeny at the expense of stem cell fate, with Nfi null mice exhibiting defects such as severely delayed brain and lung maturation, skeletomuscular defects and renal abnormalities, phenotypes that are often consistent with patients with congenital Nfi mutations. Intriguingly, recent research suggests that in adult tissues NFI factors play a qualitatively different role than during development, with NFIs serving to promote the survival and maintenance of slow-cycling adult stem cell populations rather than their differentiation. Here we review the role of NFI factors in development, largely focusing on their role as promoters of stem cell differentiation, and attempt to reconcile this with the emerging role of NFIs in adult stem cell niches.
Collapse
Affiliation(s)
- Lachlan Harris
- The School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
16
|
Wang Z, Hou X, Qu B, Wang J, Gao X, Li Q. Pten regulates development and lactation in the mammary glands of dairy cows. PLoS One 2014; 9:e102118. [PMID: 25009983 PMCID: PMC4092105 DOI: 10.1371/journal.pone.0102118] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/15/2014] [Indexed: 12/31/2022] Open
Abstract
Pten is a tumor suppressor gene regulating many cellular processes, including growth, adhesion, and apoptosis. In the aim of investigating the role of Pten during mammary gland development and lactation of dairy cows, we analyzed Pten expression levels in the mammary glands of dairy cows by using western blotting, immunohistochemistry, and quantitative polymerase chain reaction (qPCR) assays. Dairy cow mammary epithelial cells (DCMECs) were used to study the function of Pten in vitro. We determined concentrations of β-casein, triglyceride, and lactose in the culture medium following Pten overexpression and siRNA inhibition. To determine whether Pten affected DCMEC viability and proliferation, cells were analyzed by CASY-TT and flow cytometry. Genes involved in lactation-related signaling pathways were detected. Pten expression was also assessed by adding prolactin and glucose to cell cultures. When Pten was overexpressed, proliferation of DCMECs and concentrations for β-casein, triglyceride, and lactose were significantly decreased. Overexpression of Pten down-regulated expression of MAPK, CYCLIN D1, AKT, MTOR, S6K1, STAT5, SREBP1, PPARγ, PRLR, and GLUT1, but up-regulated 4EBP1 in DCMECs. The Pten siRNA inhibition experiments revealed results that opposed those from the gene overexpression experiments. Introduction of prolactin (PRL) increased secretion of β-casein, triglyceride, and lactose, but decreased Pten expression levels. Introduction of glucose also increased β-casein and triglyceride concentrations, but did not significantly alter Pten expression levels. The Pten mRNA and protein expression levels were decreased 0.3- and 0.4-fold in mammary glands of lactating cows producing high quality milk (milk protein >3.0%, milk fat >3.5%), compared with those cows producing low quality milk (milk protein <3.0%, milk fat <3.5%). In conclusion, Pten functions as an inhibitor during mammary gland development and lactation in dairy cows. It can down-regulate DCMECs secretion of β-casein, triglyceride, and lactose, and plays a critical role in lactation related signaling pathways.
Collapse
Affiliation(s)
- Zhuoran Wang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xiaoming Hou
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Bo Qu
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jie Wang
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Xuejun Gao
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qingzhang Li
- Key Laboratory of Dairy Science of Education Ministry, Northeast Agricultural University, Harbin, Heilongjiang, China
- * E-mail:
| |
Collapse
|
17
|
Ichim CV. Kinase-independent mechanisms of resistance of leukemia stem cells to tyrosine kinase inhibitors. Stem Cells Transl Med 2014; 3:405-15. [PMID: 24598782 DOI: 10.5966/sctm.2012-0159] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Tyrosine kinase inhibitors such as imatinib mesylate have changed the clinical course of chronic myeloid leukemia; however, the observation that these inhibitors do not target the leukemia stem cell implies that patients need to maintain lifelong therapy. The mechanism of this phenomenon is unclear: the question of whether tyrosine kinase inhibitors are inactive inside leukemia stem cells or whether leukemia stem cells do not require breakpoint cluster region (Bcr)-Abl signaling is currently under debate. Herein, I propose an alternative model: perhaps the leukemia stem cell requires Bcr-Abl, but is dependent on its kinase-independent functions. Kinases such as epidermal growth factor receptor and Janus kinase 2 possess kinase-independent roles in regulation of gene expression; it is worth investigating whether Bcr-Abl has similar functions. Mechanistically, Bcr-Abl is able to activate the Ras, phosphatidylinositol 3-kinase/Akt, and/or the Src-kinase Hck/Stat5 pathways in a scaffolding-dependent manner. Whereas the scaffolding activity of Bcr-Abl with Grb2 is dependent on autophosphorylation, kinases such as Hck can use Bcr-Abl as substrate, inducing phosphorylation of Y177 to enable scaffolding ability in the absence of Bcr-Abl catalytic activity. It is worth investigating whether leukemia stem cells exclusively express kinases that are able to use Bcr-Abl as substrate. A kinase-independent role for Bcr-Abl in leukemia stem cells would imply that drugs that target Bcr-Abl's scaffolding ability or its DNA-binding ability should be used in conjunction with current therapeutic regimens to increase their efficacy and eradicate the stem cells of chronic myeloid leukemia.
Collapse
MESH Headings
- Animals
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Leukemic/drug effects
- Gene Expression Regulation, Leukemic/genetics
- Humans
- Leukemia
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/enzymology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplastic Stem Cells/enzymology
- Neoplastic Stem Cells/pathology
- Phosphatidylinositol 3-Kinases/genetics
- Phosphatidylinositol 3-Kinases/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Christine Victoria Ichim
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Discipline of Molecular and Cellular Biology, Sunnybrook Research Institute, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Qian C, Wang J, Yao J, Wang L, Xue M, Liu W, Si J. Involvement of Nuclear JAK2 Signaling in AG490-Induced Apoptosis of Gastric Cancer Cells. Anat Rec (Hoboken) 2013; 296:1865-73. [PMID: 24151255 DOI: 10.1002/ar.22820] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/27/2013] [Accepted: 09/11/2013] [Indexed: 01/01/2023]
Affiliation(s)
- Cuijuan Qian
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| | - Jiji Wang
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| | - Jun Yao
- Institute of Tumor; School of Medicine, Taizhou University; Taizhou Zhejiang China
| | - Lan Wang
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| | - Meng Xue
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| | - Weili Liu
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| | - Jianmin Si
- Institute of Gastroenterology; Sir Run Run Shaw Hospital, Zhejiang University; Hangzhou Zhejiang China
| |
Collapse
|
19
|
Silver-Morse L, Li WX. JAK-STAT in heterochromatin and genome stability. JAKSTAT 2013; 2:e26090. [PMID: 24069569 PMCID: PMC3772121 DOI: 10.4161/jkst.26090] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
The canonical JAK-STAT signaling pathway transmits signals from the cell membrane to the nucleus, to regulate transcription of particular genes involved in development and many other physiological processes. It has been shown in Drosophila that JAK and STAT also function in a non-canonical mode, to regulate heterochromatin. This review discusses the non-canonical functioning of JAK and STAT, and its effects on biological processes. Decreased levels of activated JAK and increased levels of unphosphorylated STAT generate higher levels of heterochromatin. These higher heterochromatin levels result in suppression of hematopoietic tumor-like masses, increased resistance to DNA damage, and longer lifespan.
Collapse
Affiliation(s)
- Louise Silver-Morse
- Department of Medicine; University of California San Diego; La Jolla, CA USA
| | | |
Collapse
|
20
|
Johnson HM, Noon-Song EN, Dabelic R, Ahmed CM. IFN signaling: how a non-canonical model led to the development of IFN mimetics. Front Immunol 2013; 4:202. [PMID: 23898330 PMCID: PMC3722551 DOI: 10.3389/fimmu.2013.00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/05/2013] [Indexed: 12/16/2022] Open
Abstract
The classical model of cytokine signaling dominates our view of specific gene activation by cytokines such as the interferons (IFNs). The importance of the model extends beyond cytokines and applies to hormones such as growth hormone (GH) and insulin, and growth factors such as epidermal growth factor (EGF) and fibroblast growth factor (FGF). According to this model, ligand activates the cell via interaction with the extracellular domain of the receptor. This results in activation of receptor or receptor-associated tyrosine kinases, primarily of the Janus activated kinase (JAK) family, phosphorylation and dimerization of the signal transducer and activator of transcription (STAT) transcription factors, which dissociate from the receptor cytoplasmic domain and translocate to the nucleus. This view ascribes no further role to the ligand, JAK kinase, or receptor in either specific gene activation or the associated epigenetic events. The presence of dimeric STATs in the nucleus essentially explains it all. Our studies have resulted in the development of a non-canonical, more complex model of IFNγ signaling that is akin to that of steroid hormone (SH)/steroid receptor (SR) signaling. We have shown that ligand, receptor, activated JAKs, and STATs are associated with specific gene activation, where the receptor subunit IFNGR1 functions as a co-transcription factor and the JAKs are involved in associated epigenetic events. We found that the type I IFN system functions similarly. The fact that GH receptor, insulin receptor, EGF receptor, and FGF receptor undergo nuclear translocation upon ligand binding suggests that they may also function similarly. The SH/SR nature of type I and II IFN signaling provides insight into the specificity of signaling by members of cytokine families. The non-canonical model could also provide better understanding to more complex cytokine families such as those of IL-2 and IL-12, whose members often use the same JAKs and STATs, but also have different functions and properties.
Collapse
Affiliation(s)
- Howard M Johnson
- Department of Microbiology and Cell Science, University of Florida , Gainesville, FL , USA
| | | | | | | |
Collapse
|
21
|
Ahmed CM, Noon-Song EN, Kemppainen K, Pascalli MP, Johnson HM. Type I IFN receptor controls activated TYK2 in the nucleus: implications for EAE therapy. J Neuroimmunol 2013; 254:101-9. [PMID: 23110939 PMCID: PMC3534922 DOI: 10.1016/j.jneuroim.2012.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 09/25/2012] [Accepted: 10/09/2012] [Indexed: 11/28/2022]
Abstract
Recent studies have suggested that activated wild-type and mutant Janus kinase JAK2 play a role in the epigenetics of histone modification, where it phosphorylates histone H3 on tyrosine 41(H3pY41). We showed that type I IFN signaling involves activated TYK2 in the nucleus. ChIP-PCR demonstrated the presence of receptor subunits IFNAR1 and IFNAR2 along with TYK2, STAT1, and H3pY41 specifically at the promoter of the OAS1 gene in IFN treated cells. A complex of IFNAR1, TYK2, and STAT1α was also shown in the nucleus by immunoprecipitation. IFN treatment was required for TYK2 activation in the nucleus. The presence of IFNAR1, IFNAR2, and activated STAT1 and STAT2, as well as the type I IFN in the nucleus of treated cells was confirmed by the combination of Western blotting and confocal microscopy. Trimethylated histone H3 lysine 9 underwent demethylation and subsequent acetylation specifically in the region of the OAS1 promoter. Resultant N-terminal truncated IFN mimetics functioned intracellularly as antivirals as well as therapeutics against experimental allergic encephalomyelitis without the undesirable side effects that limit the therapeutic efficacy of IFNβ in treatment of multiple sclerosis. The findings indicate that IFN signaling is complex like that of steroid signaling.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- B-Lymphocytes/drug effects
- B-Lymphocytes/enzymology
- B-Lymphocytes/ultrastructure
- Cell Line, Transformed
- Cell Nucleus/drug effects
- Cell Nucleus/enzymology
- Chromatin Immunoprecipitation
- Culture Media, Serum-Free/pharmacology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/enzymology
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Female
- Green Fluorescent Proteins/metabolism
- HeLa Cells/ultrastructure
- Humans
- Interferon-alpha/chemistry
- Mice
- Mice, Inbred Strains
- Peptides/pharmacology
- Peptides/therapeutic use
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/metabolism
- STAT Transcription Factors/metabolism
- TYK2 Kinase/metabolism
- Time Factors
- Transfection
Collapse
Affiliation(s)
- Chulbul M Ahmed
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, United States.
| | | | | | | | | |
Collapse
|
22
|
Fiorillo AA, Medler TR, Feeney YB, Wetz SM, Tommerdahl KL, Clevenger CV. The prolactin receptor transactivation domain is associated with steroid hormone receptor expression and malignant progression of breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 182:217-33. [PMID: 23159947 DOI: 10.1016/j.ajpath.2012.09.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 08/29/2012] [Accepted: 09/25/2012] [Indexed: 11/27/2022]
Abstract
The polypeptide hormone prolactin (PRL) stimulates breast epithelial cell growth, differentiation, and motility through its cognate receptor, PRLr. PRLr is expressed in most breast cancers; however, its exact role remains elusive. Our laboratory previously described a novel mode of PRLr signaling in which Stat5a-mediated transcription is regulated through ligand-induced phosphorylation of the PRLr transactivation domain (TAD). Herein, we used a PRLr transactivation-deficient mutant (PRLrYDmut) to identify novel TAD-specific target genes. Microarray analysis identified 120 PRL-induced genes up-regulated by wild type but not PRLrYDmut. Compared with control, PRLr expression significantly induced expression of approximately 4700 PRL-induced genes, whereas PRLrYDmut ablated induction of all but 19 of these genes. Ingenuity pathway analysis found that the PRLr TAD most profoundly affected networks involving cancer and proliferation. In support of this, PRLrYDmut expression reduced anchorage-dependent and anchorage-independent growth. In addition, pathway analysis identified a link between the PRLr TAD and the estrogen and progesterone receptors (ERα/PR). Although neither ERα nor PR was identified as a PRL target gene, a TAD mutation significantly impaired ERα/PR expression and estrogen responsiveness. TMA analysis revealed a marked increase in nuclear, but not cytoplasmic, PRLr TAD phosphorylation as a function of neoplastic progression. We propose that PRLr TAD phosphorylation contributes to breast cancer pathogenesis, in part through regulation of ERα and PR, and has potential utility as a biomarker in this disease.
Collapse
Affiliation(s)
- Alyson A Fiorillo
- Women's Cancer Research Program, Robert H. Lurie Comprehensive Cancer Center, and the Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
23
|
Dawson M, Foster S, Bannister A, Robson S, Hannah R, Wang X, Xhemalce B, Wood A, Green A, Göttgens B, Kouzarides T. Three distinct patterns of histone H3Y41 phosphorylation mark active genes. Cell Rep 2012; 2:470-7. [PMID: 22999934 PMCID: PMC3607218 DOI: 10.1016/j.celrep.2012.08.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/16/2012] [Accepted: 08/16/2012] [Indexed: 02/02/2023] Open
Abstract
The JAK2 tyrosine kinase is a critical mediator of cytokine-induced signaling. It plays a role in the nucleus, where it regulates transcription by phosphorylating histone H3 at tyrosine 41 (H3Y41ph). We used chromatin immunoprecipitation coupled to massively parallel DNA sequencing (ChIP-seq) to define the genome-wide pattern of H3Y41ph in human erythroid leukemia cells. Our results indicate that H3Y41ph is located at three distinct sites: (1) at a subset of active promoters, where it overlaps with H3K4me3, (2) at distal cis-regulatory elements, where it coincides with the binding of STAT5, and (3) throughout the transcribed regions of active, tissue-specific hematopoietic genes. Together, these data extend our understanding of this conserved and essential signaling pathway and provide insight into the mechanisms by which extracellular stimuli may lead to the coordinated regulation of transcription.
Collapse
Affiliation(s)
- Mark A. Dawson
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK,Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK,Addenbrooke’s Hospital, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Samuel D. Foster
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Andrew J. Bannister
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Samuel C. Robson
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Rebecca Hannah
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Xiaonan Wang
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Blerta Xhemalce
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK
| | - Andrew D. Wood
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Anthony R. Green
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK,Addenbrooke’s Hospital, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Berthold Göttgens
- Department of Haematology, Cambridge Institute for Medical Research and The Wellcome Trust and MRC Stem Cell Institute, University of Cambridge, Cambridge, CB2 0XY, UK,Corresponding author
| | - Tony Kouzarides
- Gurdon Institute and Department of Pathology, Tennis Court Road, Cambridge, CB2 1QN, UK,Corresponding author
| |
Collapse
|
24
|
Yue H, Tanaka K, Furukawa T, Karnik SS, Li W. Thymidine phosphorylase inhibits vascular smooth muscle cell proliferation via upregulation of STAT3. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1823:1316-23. [PMID: 22668509 PMCID: PMC4133185 DOI: 10.1016/j.bbamcr.2012.05.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 04/20/2012] [Accepted: 05/25/2012] [Indexed: 11/22/2022]
Abstract
Dysregulated growth and motility of vascular smooth muscle cells (VSMC) play important role in obstructive vascular diseases. We previously reported that gene transfer of thymidine phosphorylase (TP) into rat VSMC inhibits cell proliferation and attenuates balloon injury induced neointimal hyperplasia; however, the mechanism remains unclear. The current study identified a signaling pathway that mediates effect of TP inhibited VSMC proliferation with a TP activity-dependent manner. Rat VSMC overexpressing human TP gene (C2) or control empty vector (PC) were used. Serum stimulation induced constitutive STAT3 phosphorylation at tyrosine705 in C2 cell but not in PC, which was independent of JAK2 signaling pathway. Inhibition of Src family kinases activity inhibited STAT3 phosphorylation in C2 cells. Lyn activity was higher in C2 cell than in PC. SiRNA based gene knockdown of Lyn significantly decreased serum induced STAT3 phosphorylation in C2 and dramatically increased proliferation of this cell, suggesting that Lyn plays a pivotal role in TP inhibited VSMC proliferation. Unphosphorylated STAT3 (U-STAT3) expression was significantly increased in C2 cells, which may be due to the increased STAT3 transcription. Gene transfection of mouse wild-type or Y705F mutant STAT3 into PC cell or mouse primary cultured VSMC significantly reduced proliferation of these cells, suggesting that overexpression of U-STAT3 inhibits VSMC proliferation. We conclude that Lyn mediates TP induced STAT3 activation, which subsequently contributes to upregulate expression of U-STAT3. The U-STAT3 plays a critical role in inhibiting VSMC proliferation.
Collapse
Affiliation(s)
- Hong Yue
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Ohio USA
| | - Kuniyoshi Tanaka
- Second Department of Surgery, Faculty of Medical Sciences, University of Fukui, Fukui Japan
| | - Tatsuhiko Furukawa
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima Japan
| | - Sadashiva S. Karnik
- Department of Molecular Cardiology, Lerner Research Institute, The Cleveland Clinic, Ohio USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Ohio, USA
| | - Wei Li
- Second Department of Surgery, Faculty of Medical Sciences, University of Fukui, Fukui Japan
- Department of Cell Biology, Lerner Research Institute, The Cleveland Clinic, Ohio USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Ohio, USA
| |
Collapse
|
25
|
Jäkel H, Peschel I, Kunze C, Weinl C, Hengst L. Regulation of p27 (Kip1) by mitogen-induced tyrosine phosphorylation. Cell Cycle 2012; 11:1910-7. [PMID: 22580455 DOI: 10.4161/cc.19957] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Extracellular mitogen signal transduction is initiated by ligand binding to specific receptors of target cells. This causes a cellular response that frequently triggers the activation of tyrosine kinases. Non-receptor kinases like Src and Lyn can directly phosphorylate the Cdk inhibitor protein p27 (Kip1) . Tyrosine phosphorylation can cause impaired Cdk-inhibitory activity and decreased stability of p27. In addition to these non-receptor tyrosine kinases, the receptor-associated tyrosine kinase Janus kinase 2 (JAK2) was recently identified to phosphorylate p27. JAK2 becomes activated through binding of various cytokines and growth factors to their corresponding receptors and can directly bind and selectively phosphorylate tyrosine residue 88 (Y88) of the Cdk inhibitor p27. This impairs Cdk inhibition by p27 and promotes its ubiquitin-dependent proteasomal degradation. Via this mechanism, JAK2 can link cytokine and growth factor initiated signal transduction to p27 regulation, whereas oncogenes like JAK2V617F or BCR-Abl can use this mechanism to inactivate the Cdk inhibitor.
Collapse
Affiliation(s)
- Heidelinde Jäkel
- Division of Medical Biochemistry; Biocenter; Innsbruck Medical University; Innsbruck, Austria
| | | | | | | | | |
Collapse
|
26
|
Duval C, Gaudreault M, Vigneault F, Touzel-Deschênes L, Rochette PJ, Masson-Gadais B, Germain L, Guérin SL. Rescue of the transcription factors Sp1 and NFI in human skin keratinocytes through a feeder-layer-dependent suppression of the proteasome activity. J Mol Biol 2012; 418:281-99. [PMID: 22420942 DOI: 10.1016/j.jmb.2012.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 01/17/2012] [Accepted: 01/19/2012] [Indexed: 12/01/2022]
Abstract
Co-culturing human skin keratinocytes along with a feeder layer has proven to considerably improve their proliferative properties by delaying massive induction of terminal differentiation. Through a yet unclear mechanism, we recently reported that irradiated 3T3 (i3T3) fibroblasts used as a feeder layer increase the nuclear content of Sp1, a positive transcription factor (TF) that plays a critical role in many cellular functions including cell proliferation, into both adult skin keratinocytes and newborn skin keratinocytes. In this study, we examined the influence of i3T3 on the expression and DNA binding of NFI, another TF important for cell proliferation and cell cycle progression, and attempted to decipher the mechanism by which the feeder layer contributes at maintaining higher levels of these TFs in skin keratinocytes. Our results indicate that co-culturing both adult skin keratinocytes and newborn skin keratinocytes along with a feeder layer dramatically increases glycosylation of NFI and may prevent it from being degraded by the proteasome.
Collapse
Affiliation(s)
- Céline Duval
- LOEX/CUO-Recherche, Hôpital du Saint-Sacrement, Centre de Recherche du CHA, Québec, QC, Canada G1S4L8
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Dawson MA, Bannister AJ, Saunders L, Wahab OA, Liu F, Nimer SD, Levine RL, Göttgens B, Kouzarides T, Green AR. Nuclear JAK2. Blood 2011; 118:6987-8. [PMID: 22194397 PMCID: PMC4729533 DOI: 10.1182/blood-2011-10-385278] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
28
|
Talhouk RS, Khalil AA, Bajjani R, Rahme GJ, El-Sabban ME. Gap junctions mediate STAT5-independent β-casein expression in CID-9 mammary epithelial cells. ACTA ACUST UNITED AC 2011; 18:104-16. [DOI: 10.3109/15419061.2011.639468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rabih S. Talhouk
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Antoine A. Khalil
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Rachid Bajjani
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Gilbert J. Rahme
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Marwan E. El-Sabban
- Department of Human Morphology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
29
|
Zouein FA, Duhé RJ, Booz GW. JAKs go nuclear: emerging role of nuclear JAK1 and JAK2 in gene expression and cell growth. Growth Factors 2011; 29:245-52. [PMID: 21892841 PMCID: PMC3595105 DOI: 10.3109/08977194.2011.614949] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The four Janus kinases (JAKs) comprise a family of intracellular, nonreceptor tyrosine kinases that first gained attention as signaling mediators of the type I and type II cytokine receptors. Subsequently, the JAKs were found to be involved in signaling downstream of the insulin receptor, a number of receptor tyrosine kinases, and certain G-protein coupled receptors. Although a number of cytoplasmic targets for the JAKs have been identified, their predominant action was found to be the phosphorylation and activation of the signal transducers and activators of transcription (STAT) factors. Through the STATs, the JAKs activate gene expression linked to cellular stress, proliferation, and differentiation. The JAKs are especially important in hematopoiesis, inflammation, and immunity, and aberrant JAK activity has been implicated in a number of disorders including rheumatoid arthritis, psoriasis, polycythemia vera, and myeloproliferative diseases. Although once thought to reside strictly in the cytoplasm, recent evidence shows that JAK1 and JAK2 are present in the nucleus of certain cells often under conditions associated with high rates of cell growth. Nuclear JAKs have now been shown to affect gene expression by activating other transcription factors besides the STATs and exerting epigenetic actions, for example, by phosphorylating histone H3. The latter action derepresses global gene expression and has been implicated in leukemogenesis. Nuclear JAKs may have a role as well in stem cell biology. Here we describe recent developments in understanding the noncanonical nuclear actions of JAK1 and JAK2.
Collapse
Affiliation(s)
- Fouad A. Zouein
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- The Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Roy J. Duhé
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- University of Mississippi Cancer Institute, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, Mississippi, USA
- The Center for Excellence in Cardiovascular-Renal Research, The University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
30
|
Fiorillo AA, Medler TR, Feeney YB, Liu Y, Tommerdahl KL, Clevenger CV. HMGN2 inducibly binds a novel transactivation domain in nuclear PRLr to coordinate Stat5a-mediated transcription. Mol Endocrinol 2011; 25:1550-64. [PMID: 21816901 DOI: 10.1210/me.2011-0106] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The direct actions of transmembrane receptors within the nucleus remain enigmatic. In this report, we demonstrate that the prolactin receptor (PRLr) localizes to the nucleus where it functions as a coactivator through its interactions with the latent transcription factor signal transducer and activator of transcription 5a (Stat5a) and the high-mobility group N2 protein (HMGN2). We identify a novel transactivation domain within the PRLr that is activated by ligand-induced phosphorylation, an event coupled to HMGN2 binding. The association of the PRLr with HMGN2 enables Stat5a-responsive promoter binding, thus facilitating transcriptional activation and promoting anchorage-independent growth. We propose that HMGN2 serves as a critical regulatory factor in Stat5a-driven gene expression by facilitating the assembly of PRLr/Stat5a onto chromatin and that these events may serve to promote biological events that contribute to a tumorigenic phenotype. Our data imply that phosphorylation may be the molecular switch that activates a cell surface receptor transactivation domain, enabling it to tether chromatin-modifying factors, such as HMGN2, to target promoter regions in a sequence-specific manner.
Collapse
Affiliation(s)
- Alyson A Fiorillo
- Robert H. Lurie Comprehensive Cancer Center and Department of Pathology, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | |
Collapse
|
31
|
Lefrancois-Martinez AM, Blondet-Trichard A, Binart N, Val P, Chambon C, Sahut-Barnola I, Pointud JC, Martinez A. Transcriptional control of adrenal steroidogenesis: novel connection between Janus kinase (JAK) 2 protein and protein kinase A (PKA) through stabilization of cAMP response element-binding protein (CREB) transcription factor. J Biol Chem 2011; 286:32976-85. [PMID: 21808064 DOI: 10.1074/jbc.m111.218016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In the adrenal gland, adrenocorticotropin (ACTH) acting through the cAMP protein kinase (PKA) transduction pathway is the main regulator of genes involved in glucocorticoid synthesis. The prolactin (PRL) receptor is expressed in the adrenal cortex of most mammals, but experimental proof that PRL ensures direct control on glucocorticoid synthesis in rodents remains elusive. To unravel the physiological importance of PRL in adrenocortical functions, we measured steroidogenic capacity of Prlr-deficient mice (Prlr(-/-)) and explored the influence of JAK/STAT signaling, the major PRL transduction pathway, on the steroidogenic activity of adrenocortical cell cultures. We demonstrate that lack of Prlr does not affect basal (nor stress-induced) corticosterone levels in mice. PRL triggers JAK2/STAT5-dependent transcription in adrenal cells, but this does not influence corticosterone release. In contrast, pharmacological or siRNA-mediated inhibition of JAK2 reveals its essential role in both basal and ACTH/cAMP-induced steroidogenesis. We demonstrate that nuclear JAK2 regulates the amount of active transcription factor CREB (cAMP response element-binding protein) through tyrosine phosphorylation and prevention of proteasomal degradation, which in turn leads to transcriptional activation of the rate-limiting steroidogenic Star gene. Hence, we describe a novel link between PKA and JAK2 by which nuclear JAK2 signaling controls adrenal steroidogenesis by increasing the stability of CREB.
Collapse
|
32
|
Qian CJ, Yao J, Si JM. Nuclear JAK2: form and function in cancer. Anat Rec (Hoboken) 2011; 294:1446-59. [PMID: 21809458 DOI: 10.1002/ar.21443] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/19/2011] [Indexed: 12/23/2022]
Abstract
The conventional view of Janus kinase 2 (JAK2) is a nonreceptor tyrosine kinase which transmits information to the nucleus via the signal transducer and activator of transcriptions (STATs) without leaving the cytoplasm. However, accumulating data suggest that JAK2 may signal by exporting from cytoplasm to nucleus, where it guides the transcriptional machinery independent of STATs protein. Recent studies demonstrated that JAK2 is a crucial component of signaling pathways operating in the nucleus. Especially the latest landmark discovery confirmed that JAK2 goes into the nucleus and directly interacts with nucleoproteins, such as histone H3 at tyrosine 41 (H3Y41), nuclear factor 1-C2 (NF1-C2) and SWI/SNF-related helicases/ATPases (RUSH)-1α, indicating that JAK2 has a fresh nuclear function. Nuclear JAK2 is linked to a variety of cellular functions, such as cell cycle progression, apoptosis and genetic instability. The balance between these functions is an essential factor in determining whether a cell remains benign or becomes malignant. The aim of this review is intended to summarize the state of our knowledge on nuclear localization of JAK2 and nuclear JAK2 pathways, and to highlight the emerging roles for nuclear JAK2 in carcinogenesis.
Collapse
Affiliation(s)
- Cui-Juan Qian
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
33
|
WAN ZY, TONG HL, LI QZ, GAO XJ. Influence on Cellular Signal Transduction Pathway in Dairy Cow Mammary Gland Epithelial Cells by Galactopoietic Compound Isolated from Vaccariae segetalis. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/s1671-2927(11)60044-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
34
|
Helmer RA, Panchoo M, Dertien JS, Bhakta SM, Hewetson A, Chilton BS. Prolactin-induced Jak2 phosphorylation of RUSH: a key element in Jak/RUSH signaling. Mol Cell Endocrinol 2010; 325:143-9. [PMID: 20562009 PMCID: PMC2902710 DOI: 10.1016/j.mce.2010.05.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 05/11/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
Jak2/Stat-mediated prolactin signaling culminates in Stat5a-DNA-binding. However, not all Jak2-dependent genes have Stat5 sites. Western analysis with inhibitors showed Jak2 is a proximal intermediate in prolactin-induced RUSH phosphorylation. Transfection assays with HRE-H9 cells showed the RUSH-binding site mediated the ability of prolactin to augment progesterone-dependent transcription of the RUSH gene. Jak2 inhibitors or targeted RUSH-site mutation blocked the prolactin effect. RUSH co-immunoprecipitated with phospho-Jak2 from nuclear extracts. Jak2 inhibitors abolished the nuclear pool of phospho-RUSH not the nuclear content of RUSH in HRE-H9 cells. Nucleolar-affiliated partners, e.g. nucleolin, were identified by microLC/MS/MS analysis of nuclear proteins that co-immunoprecipitated with RUSH/GST-RING. RUSH did not exclusively co-localize with fibrillarin to the nucleolus. MG-132 (proteasomal inhibitor) failed to block Tyrene CR4-mediated decrease in phospho-RUSH, and did not promote RUSH accumulation in the nucleolus. These studies authenticate prolactin-dependent Jak2 phosphorylation of RUSH, and provide functional implications on the RUSH network of nuclear interactions.
Collapse
Affiliation(s)
- Rebecca A. Helmer
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Marlyn Panchoo
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Janet S. Dertien
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Suhani M. Bhakta
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Aveline Hewetson
- Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Beverly S. Chilton
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| |
Collapse
|
35
|
Kondyli M, Gatzounis G, Kyritsis A, Varakis J, Assimakopoulou M. Immunohistochemical detection of phosphorylated JAK-2 and STAT-5 proteins and correlation with erythropoietin receptor (EpoR) expression status in human brain tumors. J Neurooncol 2010; 100:157-64. [PMID: 20336349 DOI: 10.1007/s11060-010-0156-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 03/08/2010] [Indexed: 12/18/2022]
Abstract
Phosphorylated (activated) forms of Janus Kinase 2 (pJAK-2) and STAT-5 transcription factor (pSTAT-5), which are preferentially expressed after binding of erythropoietin (Epo) to its receptor EpoR, are known to be implicated in the molecular mechanisms controlling brain development. The purpose of this study was to investigate the expression of these proteins (pJAK-2, pSTAT-5, and EpoR) in human brain tumors compared with normal brain. Using specific antibodies and immunohistochemistry on formalin-fixed, paraffin-embedded semi-serial tissue sections a total of 87 human brain tumors and samples from normal brain tissue were studied. pJAK-2/pSTAT-5 nuclear co-expression was detected in 39% of astrocytomas, 43% of oligodendrogliomas, 50% of ependymomas, and in all (100%) of the medulloblastomas examined. In contrast, most of the meningiomas showed weak or no immunoreactivity for pJAK-2/pSTAT-5 proteins. A significant percentage of tumors exhibited pSTAT-5 immunoreactivity, being pJAK-2 immunonegative. EpoR/pJAK-2/pSTAT-5 co-expression was detected in a small percentage of astrocytomas (18%) and ependymomas (33%). Oligodendrogliomas and medulloblastomas were EpoR immunonegative. Tumor vessels exhibited EpoR, pJAK-2, and pSTAT-5 immunoreactivity. In normal brain tissue, EpoR immunoreactivity was detected in neurons and vessels whereas pSTAT-5 and pJAK-2 immunoreactivity was limited to some neurons and a few glial cells, respectively. These results indicate the existence of ligand (other than Epo)-dependent or independent JAK-2 activation that leads to constitutive activation of STAT-5 in most human brain tumors. Given the oncogenic potential of the JAK/STAT pathway, detection of different pJAK-2 and pSTAT-5 expression profiles between groups of tumors may reflect differences in the biological behavior of the various human brain tumors.
Collapse
Affiliation(s)
- M Kondyli
- Department of Anatomy, School of Medicine, University of Patras, Patras, Greece
| | | | | | | | | |
Collapse
|
36
|
Nilsson J, Helou K, Kovács A, Bendahl PO, Bjursell G, Fernö M, Carlsson P, Kannius-Janson M. Nuclear Janus-activated kinase 2/nuclear factor 1-C2 suppresses tumorigenesis and epithelial-to-mesenchymal transition by repressing Forkhead box F1. Cancer Res 2010; 70:2020-9. [PMID: 20145151 DOI: 10.1158/0008-5472.can-09-1677] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Progression to metastasis is the proximal cause of most cancer-related mortality. Yet much remains to be understood about what determines the spread of tumor cells. This paper describes a novel pathway in breast cancer that regulates epithelial-to-mesenchymal transition (EMT), motility, and invasiveness. We identify two transcription factors, nuclear factor 1-C2 (NF1-C2) and Forkhead box F1 (FoxF1), downstream of prolactin/nuclear Janus-activated kinase 2, with opposite effects on these processes. We show that NF1-C2 is lost during mammary tumor progression and is almost invariably absent from lymph node metastases. NF1-C2 levels in primary tumors correlate with better patient survival. Manipulation of NF1-C2 levels by expression of a stabilized version or using small interfering RNA showed that NF1-C2 counteracts EMT, motility, invasiveness, and tumor growth. FoxF1 was found to be a direct repressed target of NF1-C2. We provide the first evidence for a role of FoxF1 in cancer and in the regulation of EMT in cells of epithelial origin. Overexpression of FoxF1 was associated with a mesenchymal phenotype, increased invasiveness in vitro, and enhanced growth of breast carcinoma xenografts in nude mice. The relevance of these findings is strengthened by the correlation between FoxF1 expression and a mesenchymal phenoype in breast cancer cell isolates, consistent with the interpretation that FoxF1 promotes invasion and metastasis.
Collapse
Affiliation(s)
- Jeanette Nilsson
- Department of Cell and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Schneegans T, Borgmeyer U, Hentschke M, Gronostajski RM, Schachner M, Tilling T. Nuclear factor I-A represses expression of the cell adhesion molecule L1. BMC Mol Biol 2009; 10:107. [PMID: 20003413 PMCID: PMC2805660 DOI: 10.1186/1471-2199-10-107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 12/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The neural cell adhesion molecule L1 plays a crucial role in development and plasticity of the nervous system. Neural cells thus require precise control of L1 expression. RESULTS We identified a full binding site for nuclear factor I (NFI) transcription factors in the regulatory region of the mouse L1 gene. Electrophoretic mobility shift assay (EMSA) showed binding of nuclear factor I-A (NFI-A) to this site. Moreover, for a brain-specific isoform of NFI-A (NFI-A bs), we confirmed the interaction in vivo using chromatin immunoprecipitation (ChIP). Reporter gene assays showed that in neuroblastoma cells, overexpression of NFI-A bs repressed L1 expression threefold. CONCLUSION Our findings suggest that NFI-A, in particular its brain-specific isoform, represses L1 gene expression, and might act as a second silencer of L1 in addition to the neural restrictive silencer factor (NRSF).
Collapse
Affiliation(s)
- Tanja Schneegans
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany.
| | | | | | | | | | | |
Collapse
|
38
|
Prolactin and the Skin: A Dermatological Perspective on an Ancient Pleiotropic Peptide Hormone. J Invest Dermatol 2009; 129:1071-87. [DOI: 10.1038/jid.2008.348] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
39
|
Maures TJ, Chen L, Carter-Su C. Nucleocytoplasmic shuttling of the adapter protein SH2B1beta (SH2-Bbeta) is required for nerve growth factor (NGF)-dependent neurite outgrowth and enhancement of expression of a subset of NGF-responsive genes. Mol Endocrinol 2009; 23:1077-91. [PMID: 19372237 DOI: 10.1210/me.2009-0011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The adapter protein SH2B1 (SH2-B, PSM) is recruited to multiple ligand-activated receptor tyrosine kinases, including the receptors for nerve growth factor (NGF), insulin, and IGF-I as well as the cytokine receptor-associated Janus kinase family kinases. In this study, we examine SH2B1's function in NGF signaling. We show that depleting endogenous SH2B1 using short hairpin RNA against SH2B1 inhibits NGF-dependent neurite outgrowth, but not NGF-mediated phosphorylation of Akt or ERKs 1/2. SH2B1 has been hypothesized to localize and function at the plasma membrane. We identify a nuclear localization signal within SH2B1 and show that it is required for nuclear translocation of SH2B1beta. Mutation of the nuclear localization signal has no effect on NGF-induced activation of TrkA and ERKs 1/2 but prevents SH2B1beta from enhancing NGF-induced neurite outgrowth. Disruption of SH2B1beta nuclear import also prevents SH2B1beta from enhancing NGF-induced transcription of genes important for neuronal differentiation, including those encoding urokinase plasminogen activator receptor, and matrix metalloproteinases 3 and 10. Disruption of SH2B1beta nuclear export by mutation of its nuclear export sequence similarly prevents SH2B1beta enhancement of NGF-induced transcription of those genes. Nuclear translocation of the highly homologous family member SH2B2(APS) was not observed. Together, these data suggest that rather than simply acting as an adapter protein linking signaling proteins to the activated TrkA receptor at the plasma membrane, SH2B1beta must shuttle between the plasma membrane and nucleus to function as a critical component of NGF-induced gene expression and neuronal differentiation.
Collapse
Affiliation(s)
- Travis J Maures
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, Michigan 48109-5622, USA
| | | | | |
Collapse
|
40
|
Nuclear factor one transcription factors in CNS development. Mol Neurobiol 2009; 39:10-23. [PMID: 19058033 DOI: 10.1007/s12035-008-8048-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 11/12/2008] [Indexed: 01/22/2023]
Abstract
Transcription factors are key regulators of central nervous system (CNS) development and brain function. Research in this area has now uncovered a new key player-the nuclear factor one (NFI) gene family. It has been almost a decade since the phenotype of the null mouse mutant for the nuclear factor one A transcription factor was reported. Nfia null mice display a striking brain phenotype including agenesis of the corpus callosum and malformation of midline glial populations needed to guide axons of the corpus callosum across the midline of the developing brain. Besides NFIA, there are three other NFI family members in vertebrates: NFIB, NFIC, and NFIX. Since generation of the Nfia knockout (KO) mice, KO mice for all other family members have been generated, and defects in one or more organ systems have been identified for all four NFI family members (collectively referred to as NFI here). Like the Nfia KO mice, the Nfib and Nfix KO mice also display a brain phenotype, with the Nfib KO forebrain phenotype being remarkably similar to that of Nfia. Over the past few years, studies have highlighted NFI as a key payer in a variety of CNS processes including axonal outgrowth and guidance and glial and neuronal cell differentiation. Here, we discuss the importance and role of NFI in these processes in the context of several CNS systems including the neocortex, hippocampus, cerebellum, and spinal cord at both cellular and molecular levels.
Collapse
|
41
|
Oakes SR, Rogers RL, Naylor MJ, Ormandy CJ. Prolactin regulation of mammary gland development. J Mammary Gland Biol Neoplasia 2008; 13:13-28. [PMID: 18219564 DOI: 10.1007/s10911-008-9069-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2007] [Accepted: 01/02/2008] [Indexed: 10/22/2022] Open
Abstract
Mammary morphogenesis is orchestrated with other reproductive events by pituitary-driven changes to the systemic hormone environment, initiating the formation of a mammary ductal network during puberty and the addition of secretory alveoli during pregnancy. Prolactin is the major driver of development during pregnancy via regulation of ovarian progesterone production (in many species) and direct effects on mammary epithelial cells (in all species). Together these hormones regulate two aspects of development that are the subject of intense interest: (1) a genomic regulatory network that integrates many additional spatial and temporal cues to control gene expression and (2), the activity of a stem and progenitor cell hierarchy. Amalgamation of these two aspects will increase our understanding of cell proliferation and differentiation within the mammary gland, with clear application to our attempts to control breast cancer. Here we focus on providing an over-view of prolactin action during development of the model murine mammary gland.
Collapse
Affiliation(s)
- Samantha R Oakes
- Development group, Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | | | | | | |
Collapse
|
42
|
Smirnova OV, Ostroukhova TY, Bogorad RL. JAK-STAT pathway in carcinogenesis: Is it relevant to cholangiocarcinoma progression. World J Gastroenterol 2007; 13:6478-91. [PMID: 18161917 PMCID: PMC4611286 DOI: 10.3748/wjg.v13.i48.6478] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The features of JAK-STAT signaling in liver cells are discussed in the current review. The role of this signaling cascade in carcinogenesis is accentuated. The possible involvement of this pathway and alteration of its elements are compared for normal cholangiocytes, cholangiocarcinoma predisposition and development. Prolactin and interleukin-6 are described in detail as the best studied examples. In addition, the non-classical nuclear translocation of cytokine receptors is discussed in terms of its possible implication to cholangiocarcinoma development.
Collapse
|
43
|
Abstract
The biological actions of prolactin (PRL), a polypeptide hormone, are mostly related to lactation and reproduction. These actions have been clarified by studies of PRL and PRL-deficient receptor mice, which have a clear phenotype of reproductive failure at multiple sites. This review aims to summarize current knowledge about PRL and its receptor, role in reproductive axis and presents information of hyperprolactinemia in reproductive medicine. Our understanding of the physiology and transduction pathway of PRL has largely increased in the past 20 years with the cloning of PRL and its receptor gene.
Collapse
Affiliation(s)
- Anne Bachelot
- Inserm, Unit 809, Paris, France, Faculty of Medicine René Descartes, University Paris-Descartes, Paris 5-Necker site, Paris, France
| | | |
Collapse
|
44
|
Elsasser TH, Li CJ, Caperna TJ, Kahl S, Schmidt WF. Growth hormone (GH)-associated nitration of Janus kinase-2 at the 1007Y-1008Y epitope impedes phosphorylation at this site: mechanism for and impact of a GH, AKT, and nitric oxide synthase axis on GH signal transduction. Endocrinology 2007; 148:3792-802. [PMID: 17510232 DOI: 10.1210/en.2006-1736] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A generalized increase in liver protein tyrosine nitration (3'-nitrotyrosine, 3'-NT) occurs after GH injection in a time frame consistent with observed acute GH hyporesponsiveness. Here we investigated whether the GH-associated nitration process might be targeted to the (1007)Y-(1008)Y-phosphorylation epitope of Janus kinase (JAK)-2 because of its homology to a defined peptide nitration motif. Using antibodies we developed to the 3'NT-substituted peptide analog of the (1007)Y-(1008)Y-JAK2 site (nitro-JAK2), we demonstrated a rapid increase in membrane-associated nitro-JAK2 after GH. In vivo (bovine liver) and in vitro (porcine hepatocytes), GH-induced cellular levels of nitro-(1007)Y-(1008)Y-JAK2 persisted significantly longer after a stimulatory GH pulse than did levels of phospho-JAK2. Treatment of cultured cells with inhibitors of AKT or endothelial nitric oxide synthase prior to GH challenge attenuated the increases in nitro-JAK2 predominantly in the membrane subcellular fraction. In instances in which GH effected orthophosphorylation of (694)Y-signal transducer and activator of transcription (STAT)-5b, the addition of AKT and endothelial nitric oxide synthase inhibitors prior to GH significantly increased the levels of phospho-(694)Y-STAT5b and phospho-(1007)Y-JAK2 over those arising from GH alone. Nuclear magnetic resonance molecular modeling of natural and 3'-NT- and orthophosphate-substituted peptide analogs of the (1007)Y-(1008)Y site demonstrated significant effects of 3'-nitration on the planar orientation and intramolecular stabilizing points of the affected tyrosines. When these peptides were used as substrates for in vitro tyrosine kinase phosphorylation reactions, 3'-NT in the (1007)Y and/or (1008)Y positions blocked the generation of (1007)Y-phosphotyrosine. The data suggest that the nitration of JAK2 may act as an inhibitory counterpart to phosphorylation activation, reflecting a very localized break on the progression of GH signal transduction processes spanning JAK-STAT-AKT interactions.
Collapse
Affiliation(s)
- Ted H Elsasser
- US Department of Agriculture, Agricultural Research Service, Growth Biology Laboratory, Beltsville, Maryland 20705, USA.
| | | | | | | | | |
Collapse
|
45
|
Regulation of p73 by Hck through kinase-dependent and independent mechanisms. BMC Mol Biol 2007; 8:45. [PMID: 17535448 PMCID: PMC1899183 DOI: 10.1186/1471-2199-8-45] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2006] [Accepted: 05/30/2007] [Indexed: 11/25/2022] Open
Abstract
Background p73, a p53 family member is a transcription factor that plays a role in cell cycle, differentiation and apoptosis. p73 is regulated through post translational modifications and protein interactions. c-Abl is the only known tyrosine kinase that phosphorylates and activates p73. Here we have analyzed the role of Src family kinases, which are involved in diverse signaling pathways, in regulating p73. Results Exogenously expressed as well as cellular Hck and p73 interact in vivo. In vitro binding assays show that SH3 domain of Hck interacts with p73. Co-expression of p73 with Hck or c-Src in mammalian cells resulted in tyrosine phosphorylation of p73. Using site directed mutational analysis, we determined that Tyr-28 was the major site of phosphorylation by Hck and c-Src, unlike c-Abl which phosphorylates Tyr-99. In a kinase dependent manner, Hck co-expression resulted in stabilization of p73 protein in the cytoplasm. Activation of Hck in HL-60 cells resulted in tyrosine phosphorylation of endogenous p73. Both exogenous and endogenous Hck localize to the nuclear as well as cytoplasmic compartment, just as does p73. Ectopically expressed Hck repressed the transcriptional activity of p73 as determined by promoter assays and semi-quantitative RT-PCR analysis of the p73 target, Ipaf and MDM2. SH3 domain- dependent function of Hck was required for its effect on p73 activity, which was also reflected in its ability to inhibit p73-mediated apoptosis. We also show that Hck interacts with Yes associated protein (YAP), a transcriptional co-activator of p73, and shRNA mediated knockdown of YAP protein reduces p73 induced Ipaf promoter activation. Conclusion We have identified p73 as a novel substrate and interacting partner of Hck and show that it regulates p73 through mechanisms that are dependent on either catalytic activity or protein interaction domains. Hck-SH3 domain-mediated interactions play an important role in the inhibition of p73-dependent transcriptional activation of a target gene, Ipaf, as well as apoptosis.
Collapse
|
46
|
Mukhopadhyay SS, Rosen JM. The C-terminal domain of the nuclear factor I-B2 isoform is glycosylated and transactivates the WAP gene in the JEG-3 cells. Biochem Biophys Res Commun 2007; 358:770-6. [PMID: 17511965 PMCID: PMC1942171 DOI: 10.1016/j.bbrc.2007.04.185] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 04/30/2007] [Indexed: 02/06/2023]
Abstract
The transcription factor nuclear factor I (NFI) has been shown previously both in vivo and in vitro to be involved in the cooperative regulation of whey acidic protein (WAP) gene transcription along with the glucocorticoid receptor and STAT5. In addition, one of the specific NFI isoforms, NFI-B2, was demonstrated in transient co-transfection experiments in JEG cells, which lack endogenous NFI, to be preferentially involved in the cooperative regulation of WAP gene expression. A comparison of the DNA-binding specificities of the different NFI isoforms only partially explained their differential ability to activate the WAP gene transcription. Here, we analyzed the transactivation regions of two NFI isoforms by making chimeric proteins between the NFI-A and B isoforms. Though, their DNA-binding specificities were not altered as compared to the corresponding wild-type transcription factors, the C-terminal region of the NFI-B isoform was shown to preferentially activate WAP gene transcription in cooperation with GR and STAT5 in transient co-transfection assays in JEG-3 cells. Furthermore, determination of serine and threonine-specific glycosylation (O-linked N-acetylglucosamine) of the C-terminus of the NFI-B isoform suggested that the secondary modification by O-GlcNAc might play a role in the cooperative regulation of WAP gene transcription by NFI-B2 and STAT5.
Collapse
Affiliation(s)
- Sudit S Mukhopadhyay
- Department of Molecular and Cancer Genetics, M.D. Anderson Cancer Center, Houston, TX 77030, USA.
| | | |
Collapse
|
47
|
Hershkovitz L, Beuschlein F, Klammer S, Krup M, Weinstein Y. Adrenal 20alpha-hydroxysteroid dehydrogenase in the mouse catabolizes progesterone and 11-deoxycorticosterone and is restricted to the X-zone. Endocrinology 2007; 148:976-88. [PMID: 17122075 DOI: 10.1210/en.2006-1100] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The enzyme 20alpha-hydroxysteroid dehydrogenase (20alpha-HSD) is a progesterone-catabolizing enzyme that is highly expressed in mouse ovaries and adrenals. Although the functional significance of ovarian 20alpha-HSD for the induction of parturition has been defined, regulation and distribution of 20alpha-HSD in the adrenal gland has not been determined. We demonstrate that the expression of adrenal 20alpha-HSD is restricted to the X-zone, a transient zone between the adrenal cortex and the medulla of yet unknown function. Adrenal 20alpha-HSD activity in male mice peaks at 3 wk of age and disappears thereafter, whereas 20alpha-HSD enzyme activity is maintained in adrenals from nulliparous female animals. Testosterone treatment of female mice induces rapid involution of the X-zone that is associated with the disappearance of the 20alpha-HSD-positive cells. Conversely, reappearance of 20alpha-HSD expression and activity in male animals is evident after gonadectomy. Moreover, pregnancy, but not pseudopregnancy, is accompanied by X-zone regression and loss of 20alpha-HSD activity. Pregnancy-induced X-zone regression and -abolished 20alpha-HSD expression is partially restored in animals that were kept from nursing their pups. We found that in addition to its progesterone-reducing activity, 20alpha-HSD also functions as an 11-deoxycorticosterone-catabolizing enzyme. The unaltered growth kinetics of the X-zone in 20alpha-HSD knockout animals suggests that 20alpha-HSD is not required for the regulation of X-zone growth. However, 20alpha-HSD expression and enzymatic activity in all experimental paradigms is closely correlated with the presence of the X-zone. These findings provide the basis for 20alpha-HSD as a reliable marker of the murine X-zone.
Collapse
Affiliation(s)
- Liat Hershkovitz
- Department of Microbiology and Immunology, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | | | | | | | | |
Collapse
|