1
|
Carbonell-Roig J, Aaltonen A, Wilson K, Molinari M, Cartocci V, McGuirt A, Mosharov E, Kehr J, Lieberman OJ, Sulzer D, Borgkvist A, Santini E. Dysregulated acetylcholine-mediated dopamine neurotransmission in the eIF4E Tg mouse model of autism spectrum disorders. Cell Rep 2024; 43:114997. [PMID: 39607825 DOI: 10.1016/j.celrep.2024.114997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/18/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024] Open
Abstract
Autism spectrum disorder (ASD) consists of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine (DA) neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine DA neurotransmission in a mouse model of ASD characterized by elevated expression of eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal DA release. The loss of normal DA neurotransmission is due to a defect in nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions by revealing the intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility.
Collapse
Affiliation(s)
| | - Alina Aaltonen
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Karin Wilson
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Maya Molinari
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Veronica Cartocci
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
| | - Avery McGuirt
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Eugene Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Jan Kehr
- Pronexus Analytical AB, 16733 Stockholm-Bromma, Sweden
| | - Ori J Lieberman
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA; Department of Neurology, University of California San Francisco (UCSF), San Francisco, CA 94143, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; New York State Psychiatric Institute, New York, NY 10032, USA
| | - Anders Borgkvist
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| | - Emanuela Santini
- Department of Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden.
| |
Collapse
|
2
|
Carbonell-Roig J, Aaltonen A, Cartocci V, McGuirt A, Mosharov E, Kehr J, Lieberman OJ, Sulzer D, Borgkvist A, Santini E. Dysregulated acetylcholine-mediated dopamine neurotransmission in the eIF4E Tg mouse model of autism spectrum disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577831. [PMID: 38352367 PMCID: PMC10862723 DOI: 10.1101/2024.01.29.577831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2024]
Abstract
Autism Spectrum Disorders (ASD) consist of diverse neurodevelopmental conditions where core behavioral symptoms are critical for diagnosis. Altered dopamine neurotransmission in the striatum has been suggested to contribute to the behavioral features of ASD. Here, we examine dopamine neurotransmission in a mouse model of ASD characterized by elevated expression of the eukaryotic initiation factor 4E (eIF4E), a key regulator of cap-dependent translation, using a comprehensive approach that encompasses genetics, behavior, synaptic physiology, and imaging. The results indicate that increased eIF4E expression leads to behavioral inflexibility and impaired striatal dopamine release. The loss of normal dopamine neurotransmission is due to a defective nicotinic receptor signaling that regulates calcium dynamics in dopaminergic axons. These findings reveal an intricate interplay between eIF4E, DA neurotransmission, and behavioral flexibility, provide a mechanistic understanding of ASD symptoms and offer a foundation for targeted therapeutic interventions.
Collapse
|
3
|
Aksoylu IS, Martin P, Robert F, Szkop KJ, Redmond NE, Bhattacharyya S, Wang J, Chen S, Beauchamp RL, Nobeli I, Pelletier J, Larsson O, Ramesh V. Translatome analysis of tuberous sclerosis complex 1 patient-derived neural progenitor cells reveals rapamycin-dependent and independent alterations. Mol Autism 2023; 14:39. [PMID: 37880800 PMCID: PMC10601155 DOI: 10.1186/s13229-023-00572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an inherited neurocutaneous disorder caused by mutations in the TSC1 or TSC2 genes, with patients often exhibiting neurodevelopmental (ND) manifestations termed TSC-associated neuropsychiatric disorders (TAND) including autism spectrum disorder (ASD) and intellectual disability. Hamartin (TSC1) and tuberin (TSC2) proteins form a complex inhibiting mechanistic target of rapamycin complex 1 (mTORC1) signaling. Loss of TSC1 or TSC2 activates mTORC1 that, among several targets, controls protein synthesis by inhibiting translational repressor eIF4E-binding proteins. Using TSC1 patient-derived neural progenitor cells (NPCs), we recently reported early ND phenotypic changes, including increased cell proliferation and altered neurite outgrowth in TSC1-null NPCs, which were unaffected by the mTORC1 inhibitor rapamycin. METHODS Here, we used polysome profiling, which quantifies changes in mRNA abundance and translational efficiencies at a transcriptome-wide level, to compare CRISPR-edited TSC1-null with CRISPR-corrected TSC1-WT NPCs generated from one TSC donor (one clone/genotype). To assess the relevance of identified gene expression alterations, we performed polysome profiling in postmortem brains from ASD donors and age-matched controls. We further compared effects on translation of a subset of transcripts and rescue of early ND phenotypes in NPCs following inhibition of mTORC1 using the allosteric inhibitor rapamycin versus a third-generation bi-steric, mTORC1-selective inhibitor RMC-6272. RESULTS Polysome profiling of NPCs revealed numerous TSC1-associated alterations in mRNA translation that were largely recapitulated in human ASD brains. Moreover, although rapamycin treatment partially reversed the TSC1-associated alterations in mRNA translation, most genes related to neural activity/synaptic regulation or ASD were rapamycin-insensitive. In contrast, treatment with RMC-6272 inhibited rapamycin-insensitive translation and reversed TSC1-associated early ND phenotypes including proliferation and neurite outgrowth that were unaffected by rapamycin. CONCLUSIONS Our work reveals ample mRNA translation alterations in TSC1 patient-derived NPCs that recapitulate mRNA translation in ASD brain samples. Further, suppression of TSC1-associated but rapamycin-insensitive translation and ND phenotypes by RMC-6272 unveils potential implications for more efficient targeting of mTORC1 as a superior treatment strategy for TAND.
Collapse
Affiliation(s)
- Inci S Aksoylu
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Pauline Martin
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Francis Robert
- Department of Biochemistry and Goodman Cancer Research Institute, McGill University, Montreal, PQ, H3G1Y6, Canada
| | - Krzysztof J Szkop
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Nicholas E Redmond
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Srirupa Bhattacharyya
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Jennifer Wang
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Shan Chen
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Roberta L Beauchamp
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Department of Biological Sciences,, Birkbeck, University of London, London, WC1E 7HX, UK
| | - Jerry Pelletier
- Department of Biochemistry and Goodman Cancer Research Institute, McGill University, Montreal, PQ, H3G1Y6, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 77, Stockholm, Sweden.
| | - Vijaya Ramesh
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Shapiro JS, Chang HC, Tatekoshi Y, Zhao Z, Waxali ZS, Hong BJ, Chen H, Geier JA, Bartom ET, De Jesus A, Nejad FK, Mahmoodzadeh A, Sato T, Ramos-Alonso L, Romero AM, Martinez-Pastor MT, Jiang SC, Sah-Teli SK, Li L, Bentrem D, Lopaschuk G, Ben-Sahra I, O'Halloran TV, Shilatifard A, Puig S, Bergelson J, Koivunen P, Ardehali H. Iron drives anabolic metabolism through active histone demethylation and mTORC1. Nat Cell Biol 2023; 25:1478-1494. [PMID: 37749225 PMCID: PMC11407783 DOI: 10.1038/s41556-023-01225-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 08/08/2023] [Indexed: 09/27/2023]
Abstract
All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1.
Collapse
Affiliation(s)
- Jason S Shapiro
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Hsiang-Chun Chang
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Yuki Tatekoshi
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Zibo Zhao
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - Zohra Sattar Waxali
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Bong Jin Hong
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Haimei Chen
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Justin A Geier
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Elizabeth T Bartom
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - Adam De Jesus
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Farnaz K Nejad
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Amir Mahmoodzadeh
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Tatsuya Sato
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Lucia Ramos-Alonso
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Antonia Maria Romero
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | - Shang-Chuan Jiang
- Plant Production and Protection Division (NSP), Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, Rome, Italy
| | - Shiv K Sah-Teli
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David Bentrem
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Gary Lopaschuk
- Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas V O'Halloran
- The Chemistry of Life Processes Institute, Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University School of Medicine, Chicago, IL, USA
| | - Sergi Puig
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Joy Bergelson
- Center of Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - Hossein Ardehali
- Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
5
|
Aksoylu IS, Martin P, Robert F, Szkop KJ, Redmond NE, Chen S, Beauchamp RL, Nobeli I, Pelletier J, Larsson O, Ramesh V. Translatome analysis of Tuberous Sclerosis Complex-1 patient-derived neural progenitor cells reveal rapamycin-dependent and independent alterations. RESEARCH SQUARE 2023:rs.3.rs-2702044. [PMID: 37034588 PMCID: PMC10081384 DOI: 10.21203/rs.3.rs-2702044/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Tuberous sclerosis complex (TSC) is an inherited neurocutaneous disorder caused by mutations in TSC1 or TSC2 genes, with patients often exhibiting neurodevelopmental (ND) manifestations termed TSC-associated neuropsychiatric disorders (TAND) including autism spectrum disorder (ASD). The hamartin-tuberin (TSC1-TSC2) protein complex inactivates mechanistic target of rapamycin complex 1 (mTORC1) signaling, leading to increased protein synthesis via inactivation of translational repressor eIF4E-binding proteins (4E-BPs). In TSC1-null neural progenitor cells (NPCs), we previously reported early ND phenotypic changes, including increased proliferation/altered neurite outgrowth, which were unaffected by mTORC1-inhibitor rapamycin. Here, using polysome-profiling to quantify translational efficiencies at a transcriptome-wide level, we observed numerous TSC1-dependent alterations in NPCs, largely recapitulated in post-mortem brains from ASD donors. Although rapamycin partially reversed TSC1-associated alterations, most neural activity/synaptic- or ASD-related genes remained insensitive but were inhibited by third-generation bi-steric, mTORC1-selective inhibitor RMC-6272, which also reversed altered ND phenotypes. Together these data reveal potential implications for treatment of TAND.
Collapse
Affiliation(s)
- Inci S. Aksoylu
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- These authors contributed equally to this work
| | - Pauline Martin
- Ctr. for Genomic Med., Department of Neurology, Massachusetts Gen. Hosp., Boston, MA
- These authors contributed equally to this work
| | - Francis Robert
- Department of Biochem. and Goodman Cancer Res. Ctr., McGill Univ., Montreal, QC, Canada
- These authors contributed equally to this work
| | - Krzysztof J. Szkop
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- These authors contributed equally to this work
| | - Nicholas E. Redmond
- Ctr. for Genomic Med., Department of Neurology, Massachusetts Gen. Hosp., Boston, MA
| | - Shan Chen
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Roberta L. Beauchamp
- Ctr. for Genomic Med., Department of Neurology, Massachusetts Gen. Hosp., Boston, MA
| | - Irene Nobeli
- Department of Biol. Sciences, Inst. of Structural and Mol. Biology, Birkbeck, Univ. of London, London, United Kingdom
| | - Jerry Pelletier
- Department of Biochem. and Goodman Cancer Res. Ctr., McGill Univ., Montreal, QC, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Vijaya Ramesh
- Ctr. for Genomic Med., Department of Neurology, Massachusetts Gen. Hosp., Boston, MA
| |
Collapse
|
6
|
Chen ST, Oliveira TY, Gazumyan A, Cipolla M, Nussenzweig MC. B cell receptor signaling in germinal centers prolongs survival and primes B cells for selection. Immunity 2023; 56:547-561.e7. [PMID: 36882061 PMCID: PMC10424567 DOI: 10.1016/j.immuni.2023.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 10/28/2022] [Accepted: 02/08/2023] [Indexed: 03/08/2023]
Abstract
Germinal centers (GCs) are sites of B cell clonal expansion, diversification, and antibody affinity selection. This process is limited and directed by T follicular helper cells that provide helper signals to B cells that endocytose, process, and present cognate antigens in proportion to their B cell receptor (BCR) affinity. Under this model, the BCR functions as an endocytic receptor for antigen capture. How signaling through the BCR contributes to selection is not well understood. To investigate the role of BCR signaling in GC selection, we developed a tracker for antigen binding and presentation and a Bruton's tyrosine kinase drug-resistant-mutant mouse model. We showed that BCR signaling per se is necessary for the survival and priming of light zone B cells to receive T cell help. Our findings provide insight into how high-affinity antibodies are selected within GCs and are fundamental to our understanding of adaptive immunity and vaccine development.
Collapse
Affiliation(s)
- Spencer T Chen
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA.
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Melissa Cipolla
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
7
|
Safaric Tepes P, Segovia D, Jevtic S, Ramirez D, Lyons SK, Sordella R. Patient-derived xenografts and in vitro model show rationale for imatinib mesylate repurposing in HEY1-NCoA2-driven mesenchymal chondrosarcoma. J Transl Med 2022; 102:1038-1049. [PMID: 36775418 DOI: 10.1038/s41374-021-00704-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/17/2023] Open
Abstract
Mesenchymal chondrosarcoma (MCS) is a high-grade malignancy that represents 2-9% of chondrosarcomas and mostly affects children and young adults. HEY1-NCoA2 gene fusion is considered to be a driver of tumorigenesis and it has been identified in 80% of MCS tumors. The shortage of MCS samples and biological models creates a challenge for the development of effective therapeutic strategies to improve the low survival rate of MCS patients. Previous molecular studies using immunohistochemical staining of patient samples suggest that activation of PDGFR signaling could be involved in MCS tumorigenesis. This work presents the development of two independent in vitro and in vivo models of HEY1-NCoA2-driven MCS and their application in a drug repurposing strategy. The in vitro model was characterized by RNA sequencing at the single-cell level and successfully recapitulated relevant MCS features. Imatinib, as well as specific inhibitors of ABL and PDGFR, demonstrated a highly selective cytotoxic effect targeting the HEY1-NCoA2 fusion-driven cellular model. In addition, patient-derived xenograft (PDX) models of MCS harboring the HEY1-NCoA2 fusion were developed from a primary tumor and its distant metastasis. In concordance with in vitro observations, imatinib was able to significantly reduce tumor growth in MCS-PDX models. The conclusions of this study serve as preclinical results to revisit the clinical efficacy of imatinib in the treatment of HEY1-NCoA2-driven MCS.
Collapse
Affiliation(s)
- Polona Safaric Tepes
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA.
- Faculty of Pharmacy, University of Ljubljana, Kongresni trg 12, 1000, Ljubljana, Slovenia.
| | - Danilo Segovia
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
- Graduate Program in Molecular and Cellular Biology, Stony Brook University, 100 Nicolls Rd, Stony Brook, NY, 11794, USA
| | - Sania Jevtic
- Phytoform Labs Ltd., Lawes Open Innovation Hub, West Common, Harpenden, Hertfordshire, England, UK
| | - Daniel Ramirez
- Hospital for Special Surgery, Pathology and Laboratory Medicine, 535 E 70th St, New York, NY, 10021, USA
| | - Scott K Lyons
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| | - Raffaella Sordella
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
8
|
Espín R, Baiges A, Blommaert E, Herranz C, Roman A, Saez B, Ancochea J, Valenzuela C, Ussetti P, Laporta R, Rodríguez-Portal JA, van Moorsel CHM, van der Vis JJ, Quanjel MJR, Villar-Piqué A, Diaz-Lucena D, Llorens F, Casanova Á, Molina-Molina M, Plass M, Mateo F, Moss J, Pujana MA. Heterogeneity and Cancer-Related Features in Lymphangioleiomyomatosis Cells and Tissue. Mol Cancer Res 2021; 19:1840-1853. [PMID: 34312290 PMCID: PMC8568632 DOI: 10.1158/1541-7786.mcr-21-0220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/23/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
Lymphangioleiomyomatosis (LAM) is a rare, low-grade metastasizing disease characterized by cystic lung destruction. LAM can exhibit extensive heterogeneity at the molecular, cellular, and tissue levels. However, the molecular similarities and differences among LAM cells and tissue, and their connection to cancer features are not fully understood. By integrating complementary gene and protein LAM signatures, and single-cell and bulk tissue transcriptome profiles, we show sources of disease heterogeneity, and how they correspond to cancer molecular portraits. Subsets of LAM diseased cells differ with respect to gene expression profiles related to hormones, metabolism, proliferation, and stemness. Phenotypic diseased cell differences are identified by evaluating lumican (LUM) proteoglycan and YB1 transcription factor expression in LAM lung lesions. The RUNX1 and IRF1 transcription factors are predicted to regulate LAM cell signatures, and both regulators are expressed in LAM lung lesions, with differences between spindle-like and epithelioid LAM cells. The cancer single-cell transcriptome profiles most similar to those of LAM cells include a breast cancer mesenchymal cell model and lines derived from pleural mesotheliomas. Heterogeneity is also found in LAM lung tissue, where it is mainly determined by immune system factors. Variable expression of the multifunctional innate immunity protein LCN2 is linked to disease heterogeneity. This protein is found to be more abundant in blood plasma from LAM patients than from healthy women. IMPLICATIONS: This study identifies LAM molecular and cellular features, master regulators, cancer similarities, and potential causes of disease heterogeneity.
Collapse
Affiliation(s)
- Roderic Espín
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Alexandra Baiges
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Eline Blommaert
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Carmen Herranz
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Antonio Roman
- Lung Transplant Unit, Pneumology Service, Lymphangioleiomyomatosis Clinic, Vall d'Hebron University Hospital, Barcelona, Catalonia, Spain
| | - Berta Saez
- Lung Transplant Unit, Pneumology Service, Lymphangioleiomyomatosis Clinic, Vall d'Hebron University Hospital, Barcelona, Catalonia, Spain
| | - Julio Ancochea
- Pneumology Service, University Hospital La Princesa, La Princesa Research Institute (IIS-IP), Madrid, Spain
| | - Claudia Valenzuela
- Pneumology Service, University Hospital La Princesa, La Princesa Research Institute (IIS-IP), Madrid, Spain
| | - Piedad Ussetti
- Pneumology Service, University Hospital Clínica Puerta del Hierro, Majadahonda, Madrid, Spain
| | - Rosalía Laporta
- Pneumology Service, University Hospital Clínica Puerta del Hierro, Majadahonda, Madrid, Spain
| | - José A Rodríguez-Portal
- Medical-Surgical Unit of Respiratory Diseases, University Hospital Virgen del Rocío, Institute of Biomedicine of Seville (IBiS), Seville, Spain
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Coline H M van Moorsel
- Interstitial Lung Disease (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Joanne J van der Vis
- Interstitial Lung Disease (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Marian J R Quanjel
- Interstitial Lung Disease (ILD) Center of Excellence, St. Antonius Hospital, Nieuwegein, the Netherlands
| | - Anna Villar-Piqué
- Neuroscience Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniela Diaz-Lucena
- Neuroscience Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Franc Llorens
- Neuroscience Program, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Neurology, Clinical Dementia Center and National Reference Center for CJD Surveillance, University Medical School, Göttingen, Germany
| | - Álvaro Casanova
- Pneumology Service, University Hospital of Henares, University Francisco de Vitoria, Coslada, Madrid, Spain
| | - María Molina-Molina
- Biomedical Research Network Centre in Respiratory Diseases (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
- Interstitial Lung Disease Unit, Department of Respiratory Medicine, University Hospital of Bellvitge, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Mireya Plass
- Program for Advancing Clinical Translation of Regenerative Medicine of Catalonia, P-CMR[C], L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
- Gene Regulation of Cell Identity, Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
- Biomedical Research Network Centre on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Francesca Mateo
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain
| | - Joel Moss
- Pulmonary Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland
| | - Miquel Angel Pujana
- ProCURE, Catalan Institute of Oncology, Oncobell, Bellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet del Llobregat, Barcelona, Catalonia, Spain.
| |
Collapse
|
9
|
Chalkiadaki K, Statoulla E, Markou M, Bellou S, Bagli E, Fotsis T, Murphy C, Gkogkas CG. Translational control in neurovascular brain development. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211088. [PMID: 34659781 PMCID: PMC8511748 DOI: 10.1098/rsos.211088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
The human brain carries out complex tasks and higher functions and is crucial for organismal survival, as it senses both intrinsic and extrinsic environments. Proper brain development relies on the orchestrated development of different precursor cells, which will give rise to the plethora of mature brain cell-types. Within this process, neuronal cells develop closely to and in coordination with vascular cells (endothelial cells (ECs), pericytes) in a bilateral communication process that relies on neuronal activity, attractive or repulsive guidance cues for both cell types and on tight-regulation of gene expression. Translational control is a master regulator of the gene-expression pathway and in particular for neuronal and ECs, it can be localized in developmentally relevant (axon growth cone, endothelial tip cell) and mature compartments (synapses, axons). Herein, we will review mechanisms of translational control relevant to brain development in neurons and ECs in health and disease.
Collapse
Affiliation(s)
- Kleanthi Chalkiadaki
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Elpida Statoulla
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Maria Markou
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Sofia Bellou
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Eleni Bagli
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Theodore Fotsis
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Carol Murphy
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| | - Christos G. Gkogkas
- Division of Biomedical Research, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, University Campus, 45110 Ioannina, Greece
| |
Collapse
|
10
|
Spevak CC, Elias HK, Kannan L, Ali MAE, Martin GH, Selvaraj S, Eng WS, Ernlund A, Rajasekhar VK, Woolthuis CM, Zhao G, Ha CJ, Schneider RJ, Park CY. Hematopoietic Stem and Progenitor Cells Exhibit Stage-Specific Translational Programs via mTOR- and CDK1-Dependent Mechanisms. Cell Stem Cell 2021; 26:755-765.e7. [PMID: 32386556 DOI: 10.1016/j.stem.2019.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/16/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
Hematopoietic stem cells (HSCs) require highly regulated rates of protein synthesis, but it is unclear if they or lineage-committed progenitors preferentially recruit transcripts to translating ribosomes. We utilized polysome profiling, RNA sequencing, and whole-proteomic approaches to examine the translatome in LSK (Lin-Sca-1+c-Kit+) and myeloid progenitor (MP; Lin-Sca-1-c-Kit+) cells. Our studies show that LSKs exhibit low global translation but high translational efficiencies (TEs) of mRNAs required for HSC maintenance. In contrast, MPs activate translation in an mTOR-independent manner due, at least in part, to proteasomal degradation of mTOR by the E3 ubiquitin ligase c-Cbl. In the near absence of mTOR, CDK1 activates eIF4E-dependent translation in MPs through phosphorylation of 4E-BP1. Aberrant activation of mTOR expression and signaling in c-Cbl-deficient MPs results in increased mature myeloid lineage output. Overall, our data demonstrate that hematopoietic stem and progenitor cells (HSPCs) undergo translational reprogramming mediated by previously uncharacterized mechanisms of translational regulation.
Collapse
Affiliation(s)
- Christina C Spevak
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Harold K Elias
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Lavanya Kannan
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Mohamed A E Ali
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Gaëlle H Martin
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | | | - William S Eng
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Amanda Ernlund
- Department of Microbiology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Vinagolu K Rajasekhar
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Carolien M Woolthuis
- Department of Hematology, Cancer Research Center, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Guangjie Zhao
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Caryn J Ha
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA
| | - Robert J Schneider
- Department of Microbiology and Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Christopher Y Park
- Department of Pathology, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
11
|
Kwon OS, Mishra R, Safieddine A, Coleno E, Alasseur Q, Faucourt M, Barbosa I, Bertrand E, Spassky N, Le Hir H. Exon junction complex dependent mRNA localization is linked to centrosome organization during ciliogenesis. Nat Commun 2021; 12:1351. [PMID: 33649372 PMCID: PMC7921557 DOI: 10.1038/s41467-021-21590-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 01/14/2021] [Indexed: 12/17/2022] Open
Abstract
Exon junction complexes (EJCs) mark untranslated spliced mRNAs and are crucial for the mRNA lifecycle. An imbalance in EJC dosage alters mouse neural stem cell (mNSC) division and is linked to human neurodevelopmental disorders. In quiescent mNSC and immortalized human retinal pigment epithelial (RPE1) cells, centrioles form a basal body for ciliogenesis. Here, we report that EJCs accumulate at basal bodies of mNSC or RPE1 cells and decline when these cells differentiate or resume growth. A high-throughput smFISH screen identifies two transcripts accumulating at centrosomes in quiescent cells, NIN and BICD2. In contrast to BICD2, the localization of NIN transcripts is EJC-dependent. NIN mRNA encodes a core component of centrosomes required for microtubule nucleation and anchoring. We find that EJC down-regulation impairs both pericentriolar material organization and ciliogenesis. An EJC-dependent mRNA trafficking towards centrosome and basal bodies might contribute to proper mNSC division and brain development. Exon junction complexes (EJCs) that mark untranslated mRNA are involved in transport, translation and nonsense-mediated mRNA decay. Here the authors show centrosomal localization of EJCs which appears to be required for both the localization of NIN mRNA around centrosomes and ciliogenesis.
Collapse
Affiliation(s)
- Oh Sung Kwon
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Rahul Mishra
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.,Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Adham Safieddine
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Emeline Coleno
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Quentin Alasseur
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Isabelle Barbosa
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.,Equipe labélisée Ligue Nationale Contre le Cancer, University of Montpellier, CNRS, Montpellier, France
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Hervé Le Hir
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France.
| |
Collapse
|
12
|
Hien A, Molinaro G, Liu B, Huber KM, Richter JD. Ribosome profiling in mouse hippocampus: plasticity-induced regulation and bidirectional control by TSC2 and FMRP. Mol Autism 2020; 11:78. [PMID: 33054857 PMCID: PMC7556950 DOI: 10.1186/s13229-020-00384-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Mutations in TSC2 are the most common cause of tuberous sclerosis (TSC), a disorder with a high incidence of autism and intellectual disability. TSC2 regulates mRNA translation required for group 1 metabotropic glutamate receptor-dependent synaptic long-term depression (mGluR-LTD) and behavior, but the identity of mRNAs responsive to mGluR-LTD signaling is largely unknown. METHODS We utilized Tsc2+/- mice as a mouse model of TSC and prepared hippocampal slices from these animals. We induced mGluR-LTD synaptic plasticity in slices and processed the samples for RNA-seq and ribosome profiling to identify differentially expressed genes in Tsc2+/- and following mGluR-LTD synaptic plasticity. RESULTS Ribosome profiling reveals that in Tsc2+/- mouse hippocampal slices, the expression of several mRNAs was dysregulated: terminal oligopyrimidine (TOP)-containing mRNAs decreased, while FMRP-binding targets increased. Remarkably, we observed the opposite changes of FMRP binding targets in Fmr1-/y hippocampi. In wild-type hippocampus, induction of mGluR-LTD caused rapid changes in the steady-state levels of hundreds of mRNAs, many of which are FMRP targets. Moreover, mGluR-LTD failed to promote phosphorylation of eukaryotic elongation factor 2 (eEF2) in TSC mice, and chemically mimicking phospho-eEF2 with low cycloheximide enhances mGluR-LTD in TSC mice. CONCLUSION These results suggest a molecular basis for bidirectional regulation of synaptic plasticity and behavior by TSC2 and FMRP. Our study also suggests that altered mGluR-regulated translation elongation contributes to impaired synaptic plasticity in Tsc2+/- mice.
Collapse
Affiliation(s)
- Annie Hien
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Medical Scientist Training Program, University of Massachusetts Medical School, Worcester, MA, 01655, USA
| | - Gemma Molinaro
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kimberly M Huber
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
13
|
Hipolito VEB, Diaz JA, Tandoc KV, Oertlin C, Ristau J, Chauhan N, Saric A, Mclaughlan S, Larsson O, Topisirovic I, Botelho RJ. Enhanced translation expands the endo-lysosome size and promotes antigen presentation during phagocyte activation. PLoS Biol 2019; 17:e3000535. [PMID: 31800587 PMCID: PMC6913987 DOI: 10.1371/journal.pbio.3000535] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/16/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
The mechanisms that govern organelle adaptation and remodelling remain poorly defined. The endo-lysosomal system degrades cargo from various routes, including endocytosis, phagocytosis, and autophagy. For phagocytes, endosomes and lysosomes (endo-lysosomes) are kingpin organelles because they are essential to kill pathogens and process and present antigens. During phagocyte activation, endo-lysosomes undergo a morphological transformation, going from a collection of dozens of globular structures to a tubular network in a process that requires the phosphatidylinositol-3-kinase-AKT-mechanistic target of rapamycin (mTOR) signalling pathway. Here, we show that the endo-lysosomal system undergoes an expansion in volume and holding capacity during phagocyte activation within 2 h of lipopolysaccharides (LPS) stimulation. Endo-lysosomal expansion was paralleled by an increase in lysosomal protein levels, but this was unexpectedly largely independent of the transcription factor EB (TFEB) and transcription factor E3 (TFE3), which are known to scale up lysosome biogenesis. Instead, we demonstrate a hitherto unappreciated mechanism of acute organelle expansion via mTOR Complex 1 (mTORC1)-dependent increase in translation, which appears to be mediated by both S6Ks and 4E-BPs. Moreover, we show that stimulation of RAW 264.7 macrophage cell line with LPS alters translation of a subset but not all of mRNAs encoding endo-lysosomal proteins, thereby suggesting that endo-lysosome expansion is accompanied by functional remodelling. Importantly, mTORC1-dependent increase in translation activity was necessary for efficient and rapid antigen presentation by dendritic cells. Collectively, we identified a previously unknown and functionally relevant mechanism for endo-lysosome expansion that relies on mTORC1-dependent translation to stimulate endo-lysosome biogenesis in response to an infection signal. Activation of phagocytes rapidly expands the endo-lysosomal system and promotes antigen presentation. Endo-lysosome expansion was driven by mTORC1-dependent enhanced translation, revealing regulated translation as a mechanism to remodel membrane organelles in response to external signals and stresses.
Collapse
Affiliation(s)
- Victoria E. B. Hipolito
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Jacqueline A. Diaz
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Kristofferson V. Tandoc
- Department of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- The Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - Christian Oertlin
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Johannes Ristau
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Neha Chauhan
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Amra Saric
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
| | - Shannon Mclaughlan
- The Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Topisirovic
- Department of Experimental Medicine, McGill University, Montréal, Quebec, Canada
- The Lady Davis Institute, Jewish General Hospital, Montréal, Quebec, Canada
- Gerald Bronfman Department of Oncology, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry, McGill University, Montréal, Quebec, Canada
| | - Roberto J. Botelho
- Graduate Program in Molecular Science, Ryerson University, Toronto, Ontario, Canada
- Department of Chemistry and Biology, Ryerson University, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
14
|
Chiu YC, Hsiao TH, Tsai JR, Wang LJ, Ho TC, Hsu SL, Teng CLJ. Integrating resistance functions to predict response to induction chemotherapy in de novo acute myeloid leukemia. Eur J Haematol 2019; 103:417-425. [PMID: 31356696 DOI: 10.1111/ejh.13301] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVES This study explored resistance functions and their interactions in de novo AML treated with the "7 + 3" induction regimen. METHODS We analyzed RNA-sequencing profiles of whole bone marrow samples from 52 de novo AML patients who completed the "7 + 3" regimen and stratified patients into CR (n = 35) and non-CR (n = 17) groups. RESULTS A systematic gene set analysis revealed significant associations between chemoresistance and mTOR (P < .001), myc (P < .001), mitochondrial oxidative phosphorylation (P < .001), and stemness (P = .002). These functions were independent with regard to gene contents and activity scores. An integration of these four functions showed a prediction of chemoresistance (area under the receiver operating characteristic curve = 0.815) superior to that of each function alone. Moreover, our proposed seven-gene scoring system significantly correlated with the four-function model (r = .97; P < .001) to predict chemoresistance to the "7 + 3" regimen. On multivariate analysis, a seven-gene score of ≥-0.027 (hazard ratio: 11.18; 95% confidence interval: 2.06-60.65; P = .005) was an independent risk factor for induction failure. CONCLUSIONS Myc, OXPHOS, mTOR, and stemness were responsive for chemoresistance in AML. Treatments other than the "7 + 3" regimen need to be considered for de novo AML patients predicted to be refractory to the "7 + 3" regimen.
Collapse
Affiliation(s)
- Yu-Chiao Chiu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jia-Rong Tsai
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Li-Ju Wang
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan.,Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tzu-Chieh Ho
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shih-Lan Hsu
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, Taiwan.,Department of Life Science, Tunghai University, Taichung, Taiwan.,Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
15
|
Wigton EJ, DeFranco AL, Ansel KM. Antigen Complexed with a TLR9 Agonist Bolsters c-Myc and mTORC1 Activity in Germinal Center B Lymphocytes. Immunohorizons 2019; 3:389-401. [PMID: 31427364 PMCID: PMC6738343 DOI: 10.4049/immunohorizons.1900030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/31/2019] [Indexed: 01/12/2023] Open
Abstract
The germinal center (GC) is the anatomical site where humoral immunity evolves. B cells undergo cycles of proliferation and selection to produce high-affinity Abs against Ag. Direct linkage of a TLR9 agonist (CpG) to a T-dependent Ag increases the number of GC B cells. We used a T-dependent Ag complexed with CpG and a genetic model for ablating the TLR9 signaling adaptor molecule MyD88 specifically in B cells (B-MyD88- mice) together with transcriptomics to determine how this innate pathway positively regulates the GC. GC B cells from complex Ag-immunized B-MyD88- mice were defective in inducing gene expression signatures downstream of c-Myc and mTORC1. In agreement with the latter gene signature, ribosomal protein S6 phosphorylation was increased in GC B cells from wild-type mice compared with B-MyD88- mice. However, GC B cell expression of a c-Myc protein reporter was enhanced by CpG attached to Ag in both wild-type and B-MyD88- mice, indicating a B cell-extrinsic effect on c-Myc protein expression combined with a B cell-intrinsic enhancement of gene expression downstream of c-Myc. Both mTORC1 activity and c-Myc are directly induced by T cell help, indicating that TLR9 signaling in GC B cells either enhances their access to T cell help or directly influences these pathways to further enhance the effect of T cell help. Taken together, these findings indicate that TLR9 signaling in the GC could provide a surrogate prosurvival stimulus, "TLR help," thus lowering the threshold for selection and increasing the magnitude of the GC response.
Collapse
Affiliation(s)
- Eric J Wigton
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143; and.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - Anthony L DeFranco
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| | - K Mark Ansel
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143; and .,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
16
|
Chiang YJ, Liao WT, Ho KC, Wang SH, Chen YG, Ho CL, Huang SF, Shih LY, Yang-Yen HF, Yen JJY. CBAP modulates Akt-dependent TSC2 phosphorylation to promote Rheb-mTORC1 signaling and growth of T-cell acute lymphoblastic leukemia. Oncogene 2018; 38:1432-1447. [PMID: 30266989 PMCID: PMC6372575 DOI: 10.1038/s41388-018-0507-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/22/2018] [Accepted: 08/24/2018] [Indexed: 11/09/2022]
Abstract
High-frequency relapse remains a clinical hurdle for complete remission of T-cell acute lymphoblastic leukemia (T-ALL) patients, with heterogeneous dysregulated signaling profiles—including of Raf-MEK-ERK and Akt-mTORC1-S6K signaling pathways—recently being implicated in disease outcomes. Here we report that GM-CSF/IL-3/IL-5 receptor common β-chain-associated protein (CBAP) is highly expressed in human T-ALL cell lines and many primary tumor tissues and is required to bolster leukemia cell proliferation in tissue culture and for in vivo leukemogenesis in a xenograft mouse model. Downregulation of CBAP markedly restrains expansion of leukemia cells and alleviates disease aggravation of leukemic mice. Transcriptomic profiling and molecular biological analyses suggest that CBAP acts upstream of Ras and Rac1, and functions as a modulator of both Raf-MEK–ERK and Akt-mTORC1 signaling pathways to control leukemia cell growth. Specifically, CBAP facilitated Akt-dependent TSC2 phosphorylation in cell-based assays and in vitro analysis, decreased lysosomal localization of TSC2, and elevated Rheb-GTP loading and subsequent activation of mTORC1 signaling. Taken together, our findings reveal a novel oncogenic contribution of CBAP in T-ALL leukemic cells, in addition to its original pro-apoptotic function in cytokine-dependent cell lines and primary hematopoietic cells, by demonstrating its functional role in the regulation of Akt-TSC2-mTORC1 signaling for leukemia cell proliferation. Thus, CBAP represents a novel therapeutic target for many types of cancers and metabolic diseases linked to PI3K-Akt-mTORC1 signaling.
Collapse
Affiliation(s)
- Yun-Jung Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Wei-Ting Liao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kun-Chin Ho
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Hao Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Guang Chen
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Ching-Liang Ho
- Division of Hematology/Oncology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, 11490, Taiwan
| | - Shiu-Feng Huang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli County, 35053, Taiwan
| | - Lee-Yung Shih
- Division of Hematology-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou, College of Medicine, Chang Gung University, Taoyuan, 33305, Taiwan
| | | | | |
Collapse
|
17
|
Abstract
Mechanistic target of rapamycin (mTOR) is the kinase subunit of two structurally and functionally distinct large multiprotein complexes, referred to as mTOR complex 1 (mTORC1) and mTORC2. mTORC1 and mTORC2 play key physiological roles as they control anabolic and catabolic processes in response to external cues in a variety of tissues and organs. However, mTORC1 and mTORC2 activities are deregulated in widespread human diseases, including cancer. Cancer cells take advantage of mTOR oncogenic signaling to drive their proliferation, survival, metabolic transformation, and metastatic potential. Therefore, mTOR lends itself very well as a therapeutic target for innovative cancer treatment. mTOR was initially identified as the target of the antibiotic rapamycin that displayed remarkable antitumor activity in vitro Promising preclinical studies using rapamycin and its derivatives (rapalogs) demonstrated efficacy in many human cancer types, hence supporting the launch of numerous clinical trials aimed to evaluate the real effectiveness of mTOR-targeted therapies. However, rapamycin and rapalogs have shown very limited activity in most clinical contexts, also when combined with other drugs. Thus, novel classes of mTOR inhibitors with a stronger antineoplastic potency have been developed. Nevertheless, emerging clinical data suggest that also these novel mTOR-targeting drugs may have a weak antitumor activity. Here, we summarize the current status of available mTOR inhibitors and highlight the most relevant results from both preclinical and clinical studies that have provided valuable insights into both their efficacy and failure.
Collapse
|
18
|
Hu Z, Yang A, Fan H, Wang Y, Zhao Y, Zha X, Zhang H, Tu P. Huaier aqueous extract sensitizes cells to rapamycin and cisplatin through activating mTOR signaling. JOURNAL OF ETHNOPHARMACOLOGY 2016; 186:143-150. [PMID: 27045863 DOI: 10.1016/j.jep.2016.03.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 02/01/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese Medicine (TCM) has been increasingly used to treat cancers. Trametes robiniophila Murr. (Huaier) is a medicinal fungus for treatment of inflammation and cancer. Huaier Granule has great clinical effect in various types of cancers, including liver cancer, lung cancer, gastric cancer, and breast cancer. AIM OF THE STUDY The present study was performed to determine the therapeutical effect of Huaier on cancers caused by aberrant mTOR signaling in vitro and in vivo, investigate the combination effect of Huaier and rapamycin or cisplatin on cell viability, and explore its underlying mechanism. MATERIALS AND METHODS The therapeutical effect of Huaier on cancers caused by aberrant mTOR signaling and the underlying mechanism of combination effect of Huaier and rapamycin or cisplatin on cell viability were investigated in mouse embryonic fibroblasts, rat uterine leiomyoma cells, human hepatoma cells, human lung carcinoma cells, and xenograft tumor model by cell viability assay and immunoblotting. RESULTS Activation of mTOR sensitizes cells to Huaier treatment. Huaier inhibits tumorigenic capacity of cells with activated mTOR in vivo. Moreover, activation of mTOR signaling induced by Huaier contributes to the increased sensitivity of cells to rapamycin or cisplatin in response to Huaier treatment. CONCLUSIONS Huaier may be a potential drug for the treatment of cancers caused by aberrant mTOR signaling. The combination of Huaier and rapamycin may be a candidate regimen in the treatment of these cancers.
Collapse
Affiliation(s)
- Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ailin Yang
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Haitao Fan
- College of Bioengineering, Beijing Polytechnic, Beijing 100029, China
| | - Ying Wang
- Department of Molecular Orthopaedics, Beijing Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yunfang Zhao
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Hongbing Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Physiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Pengfei Tu
- Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
19
|
Bommer UA, Iadevaia V, Chen J, Knoch B, Engel M, Proud CG. Growth-factor dependent expression of the translationally controlled tumour protein TCTP is regulated through the PI3-K/Akt/mTORC1 signalling pathway. Cell Signal 2015; 27:1557-68. [PMID: 25936523 DOI: 10.1016/j.cellsig.2015.04.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/21/2015] [Accepted: 04/25/2015] [Indexed: 11/21/2022]
Abstract
Translationally controlled tumour protein TCTP (gene symbol: TPT1) is a highly-conserved, cyto-protective protein implicated in many physiological and disease processes, in particular cancer, where it is associated with poor patient outcomes. To understand the mechanisms underlying the accumulation of high TCTP levels in cancer cells, we studied the signalling pathways that control translation of TCTP mRNA, which contains a 5'-terminal oligopyrimidine tract (5'-TOP). In HT29 colon cancer cells and in HeLa cells, serum increases the expression of TCTP two- and four-fold, respectively, and this is inhibited by rapamycin or mTOR kinase inhibitors. Polysome profiling and mRNA quantification indicate that these effects occur at the level of mRNA translation. Blocking this pathway upstream of mTOR complex 1 (mTORC1) by inhibiting Akt also prevented increases in TCTP levels in both HeLa and HT29 colon cancer cells, whereas knockout of TSC2, a negative regulator of mTORC1, led to derepression of TCTP synthesis under serum starvation. Overexpression of eIF4E enhanced the polysomal association of the TCTP mRNA, although it did not protect its translation from inhibition by rapamycin. Conversely, expression of a constitutively-active mutant of the eIF4E inhibitor 4E-BP1, which is normally inactivated by mTORC1, inhibited TCTP mRNA translation in HEK293 cells. Our results demonstrate that TCTP mRNA translation is regulated by signalling through the PI3-K/Akt/mTORC1 pathway. This explains why TCTP levels are frequently increased in cancers, since mTORC1 signalling is hyperactive in ~80% of tumours.
Collapse
Affiliation(s)
- Ulrich-Axel Bommer
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia; Graduate School of Medicine, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong 2522 NSW, Australia.
| | | | - Jiezhong Chen
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | - Bianca Knoch
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | - Martin Engel
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong 2522 NSW, Australia
| | | |
Collapse
|
20
|
Oligodendrocyte precursor cell-intrinsic effect of Rheb1 controls differentiation and mediates mTORC1-dependent myelination in brain. J Neurosci 2015; 34:15764-78. [PMID: 25411504 DOI: 10.1523/jneurosci.2267-14.2014] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rheb1 is an immediate early gene that functions to activate mammalian target of rapamycin (mTor) selectively in complex 1 (mTORC1). We have demonstrated previously that Rheb1 is essential for myelination in the CNS using a Nestin-Cre driver line that deletes Rheb1 in all neural cell lineages, and recent studies using oligodendrocyte-specific CNP-Cre have suggested a preferential role for mTORC1 is myelination in the spinal cord. Here, we examine the role of Rheb1/mTORC1 in mouse oligodendrocyte lineage using separate Cre drivers for oligodendrocyte progenitor cells (OPCs) including Olig1-Cre and Olig2-Cre as well as differentiated and mature oligodendrocytes including CNP-Cre and Tmem10-Cre. Deletion of Rheb1 in OPCs impairs their differentiation to mature oligodendrocytes. This is accompanied by reduced OPC cell-cycle exit suggesting a requirement for Rheb1 in OPC differentiation. The effect of Rheb1 on OPC differentiation is mediated by mTor since Olig1-Cre deletion of mTor phenocopies Olig1-Cre Rheb1 deletion. Deletion of Rheb1 in mature oligodendrocytes, in contrast, does not disrupt developmental myelination or myelin maintenance. Loss of Rheb1 in OPCs or neural progenitors does not affect astrocyte formation in gray and white matter, as indicated by the pan-astrocyte marker Aldh1L1. We conclude that OPC-intrinsic mTORC1 activity mediated by Rheb1 is critical for differentiation of OPCs to mature oligodendrocytes, but that mature oligodendrocytes do not require Rheb1 to make myelin or maintain it in the adult brain. These studies reveal mechanisms that may be relevant for both developmental myelination and impaired remyelination in myelin disease.
Collapse
|
21
|
Abstract
Somatic mitochondrial DNA (mtDNA) mutations contribute to the pathogenesis of age-related disorders, including myelodysplastic syndromes (MDS). The accumulation of mitochondria harboring mtDNA mutations in patients with these disorders suggests a failure of normal mitochondrial quality-control systems. The mtDNA-mutator mice acquire somatic mtDNA mutations via a targeted defect in the proofreading function of the mtDNA polymerase, PolgA, and develop macrocytic anemia similar to that of patients with MDS. We observed an unexpected defect in clearance of dysfunctional mitochondria at specific stages during erythroid maturation in hematopoietic cells from aged mtDNA-mutator mice. Mechanistically, aberrant activation of mechanistic target of rapamycin signaling and phosphorylation of uncoordinated 51-like kinase (ULK) 1 in mtDNA-mutator mice resulted in proteasome-mediated degradation of ULK1 and inhibition of autophagy in erythroid cells. To directly evaluate the consequence of inhibiting autophagy on mitochondrial function in erythroid cells harboring mtDNA mutations in vivo, we deleted Atg7 from erythroid progenitors of wild-type and mtDNA-mutator mice. Genetic disruption of autophagy did not cause anemia in wild-type mice but accelerated the decline in mitochondrial respiration and development of macrocytic anemia in mtDNA-mutator mice. These findings highlight a pathological feedback loop that explains how dysfunctional mitochondria can escape autophagy-mediated degradation and propagate in cells predisposed to somatic mtDNA mutations, leading to disease.
Collapse
|
22
|
Patursky-Polischuk I, Kasir J, Miloslavski R, Hayouka Z, Hausner-Hanochi M, Stolovich-Rain M, Tsukerman P, Biton M, Mudhasani R, Jones SN, Meyuhas O. Reassessment of the role of TSC, mTORC1 and microRNAs in amino acids-meditated translational control of TOP mRNAs. PLoS One 2014; 9:e109410. [PMID: 25338081 PMCID: PMC4206288 DOI: 10.1371/journal.pone.0109410] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/30/2014] [Indexed: 01/02/2023] Open
Abstract
TOP mRNAs encode components of the translational apparatus, and repression of their translation comprises one mechanism, by which cells encountering amino acid deprivation downregulate the biosynthesis of the protein synthesis machinery. This mode of regulation involves TSC as knockout of TSC1 or TSC2 rescued TOP mRNAs translation in amino acid-starved cells. The involvement of mTOR in translational control of TOP mRNAs is demonstrated by the ability of constitutively active mTOR to relieve the translational repression of TOP mRNA upon amino acid deprivation. Consistently, knockdown of this kinase as well as its inhibition by pharmacological means blocked amino acid-induced translational activation of these mRNAs. The signaling of amino acids to TOP mRNAs involves RagB, as overexpression of active RagB derepressed the translation of these mRNAs in amino acid-starved cells. Nonetheless, knockdown of raptor or rictor failed to suppress translational activation of TOP mRNAs by amino acids, suggesting that mTORC1 or mTORC2 plays a minor, if any, role in this mode of regulation. Finally, miR10a has previously been suggested to positively regulate the translation of TOP mRNAs. However, we show here that titration of this microRNA failed to downregulate the basal translation efficiency of TOP mRNAs. Moreover, Drosha knockdown or Dicer knockout, which carries out the first and second processing steps in microRNAs biosynthesis, respectively, failed to block the translational activation of TOP mRNAs by amino acid or serum stimulation. Evidently, these results are questioning the positive role of microRNAs in this mode of regulation.
Collapse
Affiliation(s)
- Ilona Patursky-Polischuk
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Judith Kasir
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rachel Miloslavski
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zvi Hayouka
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mirit Hausner-Hanochi
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Miri Stolovich-Rain
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Pinchas Tsukerman
- Lautenberg Center for General and Tumor Immunology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moshe Biton
- Lautenberg Center for General and Tumor Immunology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Rajini Mudhasani
- Department of Cell Biology, University of Massachusetts Medical School, North Worcester, Massachusetts, United States of America
| | - Stephen N. Jones
- Department of Cell Biology, University of Massachusetts Medical School, North Worcester, Massachusetts, United States of America
| | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research – Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
23
|
Meyuhas O, Kahan T. The race to decipher the top secrets of TOP mRNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:801-11. [PMID: 25234618 DOI: 10.1016/j.bbagrm.2014.08.015] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 08/18/2014] [Accepted: 08/27/2014] [Indexed: 12/20/2022]
Abstract
Cells encountering hostile growth conditions, like those residing in the middle of a newly developing solid tumor, conserve resources and energy by downregulating protein synthesis. One mechanism in this response is the translational repression of multiple mRNAs that encode components of the translational apparatus. This coordinated translational control is carried through a common cis-regulatory element, the 5' Terminal OligoPyrimidine motif (5'TOP), after which these mRNAs are referred to as TOP mRNAs. Subsequent to the initial structural and functional characterization of members of this family, the research of TOP mRNAs has progressed in three major directions: a) delineating the landscape of the family; b) establishing the pathways that transduce stress cues into selective translational repression; and c) attempting to decipher the most proximal trans-acting factor(s) and defining its mode of action--a repressor or activator. The present chapter critically reviews the development in these three avenues of research with a special emphasis on the two "top secrets" of the TOP mRNA family: the scope of its members and the identity of the proximal cellular regulator(s). This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| | - Tamar Kahan
- Bioinformatics Unit, The Hebrew University, Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
24
|
Translational control of immune responses: from transcripts to translatomes. Nat Immunol 2014; 15:503-11. [DOI: 10.1038/ni.2891] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 04/08/2014] [Indexed: 12/13/2022]
|
25
|
Miloslavski R, Cohen E, Avraham A, Iluz Y, Hayouka Z, Kasir J, Mudhasani R, Jones SN, Cybulski N, Rüegg MA, Larsson O, Gandin V, Rajakumar A, Topisirovic I, Meyuhas O. Oxygen sufficiency controls TOP mRNA translation via the TSC-Rheb-mTOR pathway in a 4E-BP-independent manner. J Mol Cell Biol 2014; 6:255-66. [PMID: 24627160 DOI: 10.1093/jmcb/mju008] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cells encountering hypoxic stress conserve resources and energy by downregulating the protein synthesis. Here we demonstrate that one mechanism in this response is the translational repression of TOP mRNAs that encode components of the translational apparatus. This mode of regulation involves TSC and Rheb, as knockout of TSC1 or TSC2 or overexpression of Rheb rescued TOP mRNA translation in oxygen-deprived cells. Stress-induced translational repression of these mRNAs closely correlates with the hypophosphorylated state of 4E-BP, a translational repressor. However, a series of 4E-BP loss- and gain-of-function experiments disprove a cause-and-effect relationship between the phosphorylation status of 4E-BP and the translational repression of TOP mRNAs under oxygen or growth factor deprivation. Furthermore, the repressive effect of anoxia is similar to that attained by the very efficient inhibition of mTOR activity by Torin 1, but much more pronounced than raptor or rictor knockout. Likewise, deficiency of raptor or rictor, even though it mildly downregulated basal translation efficiency of TOP mRNAs, failed to suppress the oxygen-mediated translational activation of TOP mRNAs. Finally, co-knockdown of TIA-1 and TIAR, two RNA-binding proteins previously implicated in translational repression of TOP mRNAs in amino acid-starved cells, failed to relieve TOP mRNA translation under other stress conditions. Thus, the nature of the proximal translational regulator of TOP mRNAs remains elusive.
Collapse
Affiliation(s)
- Rachel Miloslavski
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Elad Cohen
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel Present address: Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
| | - Adam Avraham
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Yifat Iluz
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Zvi Hayouka
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Judith Kasir
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Rajini Mudhasani
- Department of Cell Biology, University of Massachusetts Medical School, North Worcester, MA 01655, USA Present address: United States Army Medical Research Institute of Infectious Diseases, Frederick, MD 21702-5011, USA
| | - Stephen N Jones
- Department of Cell Biology, University of Massachusetts Medical School, North Worcester, MA 01655, USA
| | - Nadine Cybulski
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland Present address: ADAM, Montreal, QC H3N 2C7, Canada
| | - Markus A Rüegg
- Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Ola Larsson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm SE-171 76, Sweden
| | - Valentina Gandin
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, and Department of Oncology, McGill University, Montréal, QC H3T 1E2, Canada
| | - Arjuna Rajakumar
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, and Department of Oncology, McGill University, Montréal, QC H3T 1E2, Canada
| | - Ivan Topisirovic
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, and Department of Oncology, McGill University, Montréal, QC H3T 1E2, Canada
| | - Oded Meyuhas
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research - Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| |
Collapse
|
26
|
McKinney C, Zavadil J, Bianco C, Shiflett L, Brown S, Mohr I. Global reprogramming of the cellular translational landscape facilitates cytomegalovirus replication. Cell Rep 2013; 6:9-17. [PMID: 24373965 DOI: 10.1016/j.celrep.2013.11.045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/31/2013] [Accepted: 11/26/2013] [Indexed: 12/27/2022] Open
Abstract
Unlike many viruses that suppress cellular protein synthesis, host mRNA translation and polyribosome formation are stimulated by human cytomegalovirus (HCMV). How HCMV impacts the translationally regulated cellular mRNA repertoire and its contribution to virus biology remains unknown. Using polysome profiling, we show that HCMV presides over the cellular translational landscape, selectively accessing the host genome to extend its own coding capacity and regulate virus replication. Expression of the HCMV UL38 mTORC1-activator partially recapitulates these translational alterations in uninfected cells. The signature of cellular mRNAs translationally stimulated by HCMV resembles pathophysiological states (such as cancer) where translation initiation factor levels or activity increase. In contrast, cellular mRNAs repressed by HCMV include those involved in differentiation and the immune response. Surprisingly, interfering with the virus-induced activation of cellular mRNA translation can either limit or enhance HCMV growth. The unanticipated extent to which HCMV specifically manipulates host mRNA translation may aid in understanding its association with complex inflammatory disorders and cancer.
Collapse
Affiliation(s)
- Caleb McKinney
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jiri Zavadil
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; NYU Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA
| | - Christopher Bianco
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Lora Shiflett
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Stuart Brown
- NYU Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
27
|
Michel AM, Baranov PV. Ribosome profiling: a Hi-Def monitor for protein synthesis at the genome-wide scale. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:473-90. [PMID: 23696005 PMCID: PMC3823065 DOI: 10.1002/wrna.1172] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 01/28/2023]
Abstract
Ribosome profiling or ribo-seq is a new technique that provides genome-wide information on protein synthesis (GWIPS) in vivo. It is based on the deep sequencing of ribosome protected mRNA fragments allowing the measurement of ribosome density along all RNA molecules present in the cell. At the same time, the high resolution of this technique allows detailed analysis of ribosome density on individual RNAs. Since its invention, the ribosome profiling technique has been utilized in a range of studies in both prokaryotic and eukaryotic organisms. Several studies have adapted and refined the original ribosome profiling protocol for studying specific aspects of translation. Ribosome profiling of initiating ribosomes has been used to map sites of translation initiation. These studies revealed the surprisingly complex organization of translation initiation sites in eukaryotes. Multiple initiation sites are responsible for the generation of N-terminally extended and truncated isoforms of known proteins as well as for the translation of numerous open reading frames (ORFs), upstream of protein coding ORFs. Ribosome profiling of elongating ribosomes has been used for measuring differential gene expression at the level of translation, the identification of novel protein coding genes and ribosome pausing. It has also provided data for developing quantitative models of translation. Although only a dozen or so ribosome profiling datasets have been published so far, they have already dramatically changed our understanding of translational control and have led to new hypotheses regarding the origin of protein coding genes.
Collapse
|
28
|
Regulation of protein translation and c-Jun expression by prostate tumor overexpressed 1. Oncogene 2013; 33:1124-34. [PMID: 23455324 DOI: 10.1038/onc.2013.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 12/17/2012] [Accepted: 01/11/2013] [Indexed: 12/18/2022]
Abstract
Prostate tumor overexpressed-1 (PTOV1), a modulator of the Mediator transcriptional regulatory complex, is expressed at high levels in prostate cancer and other neoplasias in association with a more aggressive disease. Here we show that PTOV1 interacts directly with receptor of activated protein C kinase 1 (RACK1), a regulator of protein kinase C and Jun signaling and also a component of the 40S ribosome. Consistent with this interaction, PTOV1 was associated with ribosomes and its overexpression promoted global protein synthesis in prostate cancer cells and COS-7 fibroblasts in a mTORC1-dependent manner. Transfection of ectopic PTOV1 enhanced the expression of c-Jun protein without affecting the levels of c-Jun or RACK1 mRNA. Conversely, knockdown of PTOV1 caused significant declines in global protein synthesis and c-Jun protein levels. High levels of PTOV1 stimulated the motility and invasiveness of prostate cancer cells, which required c-Jun, whereas knockdown of PTOV1 strongly inhibited the tumorigenic and metastatic potentials of PC-3 prostate cancer cells. In human prostate cancer samples, the expression of high levels of PTOV1 in primary and metastatic tumors was significantly associated with increased nuclear localization of active c-Jun. These results unveil new functions of PTOV1 in the regulation of protein translation and in the progression of prostate cancer to an invasive and metastatic disease.
Collapse
|
29
|
Larsson O, Tian B, Sonenberg N. Toward a genome-wide landscape of translational control. Cold Spring Harb Perspect Biol 2013; 5:a012302. [PMID: 23209130 PMCID: PMC3579401 DOI: 10.1101/cshperspect.a012302] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Genome-wide analysis of translational control has taken strides in recent years owing to the advent of high-throughput technologies, including DNA microarrays and deep sequencing. Global studies have unraveled a principal role, among posttranscriptional mechanisms, for mRNA translation in determining protein levels in the cell. The impact of translational control in dynamic regulation of the proteome under different conditions is increasingly appreciated. Here we review genome-wide studies that use high-throughput techniques and bioinformatics to assess the role of mRNA translation in the regulation of protein levels; we also discuss how genome-wide data on mRNA translation can be obtained, analyzed, and used to identify mechanisms of translational control.
Collapse
Affiliation(s)
- Ola Larsson
- Department of Oncology-Pathology, Karolinska Institute, Stockholm SE-171 76, Sweden.
| | | | | |
Collapse
|
30
|
Romeo Y, Moreau J, Zindy PJ, Saba-El-Leil M, Lavoie G, Dandachi F, Baptissart M, Borden KLB, Meloche S, Roux PP. RSK regulates activated BRAF signalling to mTORC1 and promotes melanoma growth. Oncogene 2012; 32:2917-2926. [PMID: 22797077 DOI: 10.1038/onc.2012.312] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The Ras/mitogen-activated protein kinase (MAPK) signalling cascade regulates various biological functions, including cell growth, proliferation and survival. As such, this pathway is often deregulated in cancer, including melanomas, which frequently harbour activating mutations in the NRAS and BRAF oncogenes. Hyperactive MAPK signalling is known to promote protein synthesis, but the mechanisms by which this occurs remain poorly understood. Here, we show that expression of oncogenic forms of Ras and Raf promotes the constitutive activation of the mammalian target of rapamycin (mTOR). Using pharmacological inhibitors and RNA interference, we find that the MAPK-activated protein kinase RSK (p90 ribosomal S6 kinase) is partly required for these effects. Using melanoma cell lines carrying activating BRAF mutations, we show that ERK/RSK signalling regulates assembly of the translation initiation complex and polysome formation, as well as the translation of growth-related messenger RNAs containing a 5'-terminal oligopyrimidine (TOP) motif. Accordingly, we find that RSK inhibition abrogates tumour growth in mice. Our findings indicate that RSK may be a valuable therapeutic target for the treatment of tumours characterized by deregulated MAPK signalling, such as melanoma.
Collapse
Affiliation(s)
- Yves Romeo
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Moreau
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Pierre-Joachim Zindy
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Marc Saba-El-Leil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Geneviève Lavoie
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Farah Dandachi
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Marine Baptissart
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Katherine L B Borden
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Sylvain Meloche
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Department of Pharmacology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Philippe P Roux
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Department of Pathology and Cell Biology, Faculty of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
31
|
Thoreen CC, Chantranupong L, Keys HR, Wang T, Gray NS, Sabatini DM. A unifying model for mTORC1-mediated regulation of mRNA translation. Nature 2012; 485:109-13. [PMID: 22552098 PMCID: PMC3347774 DOI: 10.1038/nature11083] [Citation(s) in RCA: 1132] [Impact Index Per Article: 87.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 03/29/2012] [Indexed: 02/07/2023]
Abstract
The mTOR Complex 1 (mTORC1) kinase nucleates a pathway that promotes cell growth and proliferation and is the target of rapamycin, a drug with many clinical uses1. mTORC1 regulates mRNA translation, but the overall translational program is poorly defined and no unifying model exists to explain how mTORC1 differentially controls the translation of specific mRNAs. Here we use high-resolution transcriptome-scale ribosome profiling to monitor translation in cells acutely treated with the mTOR inhibitor Torin1, which, unlike rapamycin, fully inhibits mTORC12. These data reveal a surprisingly simple view of the mRNA features and mechanisms that confer mTORC1-dependent translation control. The subset of mRNAs that are specifically regulated by mTORC1 consists almost entirely of transcripts with established 5′ terminal oligopyrimidine (TOP) motifs, or, like Hsp90ab1 and Ybx1, with previously unrecognized TOP or related TOP-like motifs that we identified. We find no evidence to support proposals that mTORC1 preferentially regulates mRNAs with increased 5′ UTR length or complexity3. mTORC1 phosphorylates a myriad of translational regulators, but how it controls TOP mRNA translation is unknown4. Remarkably, loss of just the well-characterized mTORC1 substrates, the 4E-BP family of translational repressors, is sufficient to render TOP and TOP-like mRNA translation resistant to Torin1. The 4E-BPs inhibit translation initiation by interfering with the interaction between the cap-binding protein eIF4E and eIF4G1. Loss of this interaction diminishes the capacity of eIF4E to bind TOP and TOP-like mRNAs much more than other mRNAs, explaining why mTOR inhibition selectively suppresses their translation. Our results clarify the translational program controlled by mTORC1 and identify 4E-BPs and eIF4G1 as its master effectors.
Collapse
Affiliation(s)
- Carson C Thoreen
- Department of Cancer Biology, Dana Farber Cancer Institute, 250 Longwood Avenue, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
32
|
|
33
|
Drosophila RNA polymerase III repressor Maf1 controls body size and developmental timing by modulating tRNAiMet synthesis and systemic insulin signaling. Proc Natl Acad Sci U S A 2012; 109:1139-44. [PMID: 22228302 DOI: 10.1073/pnas.1113311109] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The target-of-rapamycin pathway couples nutrient availability with tissue and organismal growth in metazoans. The key effectors underlying this growth are, however, unclear. Here we show that Maf1, a repressor of RNA polymerase III-dependent tRNA transcription, is an important mediator of nutrient-dependent growth in Drosophila. We find nutrients promote tRNA synthesis during larval development by inhibiting Maf1. Genetic inhibition of Maf1 accelerates development and increases body size. These phenotypes are due to a non-cell-autonomous effect of Maf1 inhibition in the fat body, the main larval endocrine organ. Inhibiting Maf1 in the fat body increases growth by promoting the expression of brain-derived insulin-like peptides and consequently enhanced systemic insulin signaling. Remarkably, the effects of Maf1 inhibition are reproduced in flies carrying one extra copy of the initiator methionine tRNA, tRNA(i)(Met). These findings suggest the stimulation of tRNA(i)(Met) synthesis via inhibition of dMaf1 is limiting for nutrition-dependent growth during development.
Collapse
|
34
|
Abstract
The emergence of genome-wide analysis to interrogate cellular DNA, RNA, and protein content has revolutionized the study of the control network that mediates cellular homeostasis. Nutrigenomics addresses the effect of nutrients on gene expression, which provides a basis for understanding the biological activity of dietary components. Translation of mRNAs represents the last step of genetic flow and primarily defines the proteome. Translational regulation is thus critical for gene expression, in particular, under nutrient excess or deficiency. Until recently, it was unclear how the global effects of translational control are influenced by nutrient signaling. An emerging concept of translational reprogramming addresses how to maintain the expression of specific proteins during pathophysiological conditions by translation of selective mRNAs. Here we describe recent advances in our understanding of translational control, nutrient signaling, and their dysregulation in aging and cancer. The mechanistic understanding of translational regulation in response to different nutrient conditions may help identify potential dietary and therapeutic targets to improve human health.
Collapse
Affiliation(s)
- Botao Liu
- Graduate Field of Genetics and Development
| | - Shu-Bing Qian
- Graduate Field of Genetics and Development,Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Alajez NM, Lenarduzzi M, Ito E, Hui ABY, Shi W, Bruce J, Yue S, Huang SH, Xu W, Waldron J, O'Sullivan B, Liu FF. MiR-218 suppresses nasopharyngeal cancer progression through downregulation of survivin and the SLIT2-ROBO1 pathway. Cancer Res 2011; 71:2381-91. [PMID: 21385904 DOI: 10.1158/0008-5472.can-10-2754] [Citation(s) in RCA: 229] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nasopharayngeal carcinoma (NPC) is an Epstein-Barr virus-associated malignancy most common in East Asia and Africa. Here we report frequent downregulation of the microRNA miR-218 in primary NPC tissues and cell lines where it plays a critical role in NPC progression. Suppression of miR-218 was associated with epigenetic silencing of SLIT2 and SLIT3, ligands of ROBO receptors that have been previously implicated in tumor angiogenesis. Exogenous expression of miR-218 caused significant toxicity in NPC cells in vitro and delayed tumor growth in vivo. We used an integrated trimodality approach to identify targets of miR-218 in NPC, cervical, and breast cell lines. Direct interaction between miR-218 and the 3'-untranslated regions (UTR) of mRNAs encoding ROBO1, survivin (BIRC5), and connexin43 (GJA1) was validated in a luciferase-based transcription reporter assay. Mechanistic investigations revealed a negative feedback loop wherein miR-218 regulates NPC cell migration via the SLIT-ROBO pathway. Pleotropic effects of miR-218 on NPC survival and migration were rescued by enforced expression of miR-218-resistant, engineered isoforms of survivin and ROBO1, respectively. In clinical specimens of NPC (n=71), ROBO1 overexpression was significantly associated with worse overall (P=0.04, HR=2.4) and nodal relapse-free survival (P=0.008, HR=6.0). Our findings define an integrative tumor suppressor function for miR-218 in NPC and further suggest that restoring miR-218 expression in NPC might be useful for its clinical management.
Collapse
Affiliation(s)
- Nehad M Alajez
- Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
The balance between rRNA and ribosomal protein synthesis up- and downregulates the tumour suppressor p53 in mammalian cells. Oncogene 2011; 30:3274-88. [PMID: 21399665 DOI: 10.1038/onc.2011.48] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Data on the relationship between ribosome biogenesis and p53 function indicate that the tumour suppressor can be activated by either nucleolar disruption or ribosomal protein defects. However, there is increasing evidence that the induction of p53 does not always require these severe cellular changes, and data are still lacking on a possible role of ribosome biogenesis in the downregulation of p53. Here, we studied the effect of the up- and downregulation of the rRNA transcription rate on p53 induction in mammalian cells. We found that a downregulation of rRNA synthesis, induced by silencing the POLR1A gene coding for the RNA polymerase I catalytic subunit, stabilised p53 without altering the nucleolar integrity in human cancer cells. p53 stabilisation was due to the inactivation of the MDM2-mediated p53 degradation by the binding of ribosomal proteins no longer used for ribosome building. p53 stabilisation did not occur when rRNA synthesis downregulation was associated with a contemporary reduction of protein synthesis. Furthermore, we demonstrated that in three different experimental models characterised by an upregulation of rRNA synthesis, cancer cells treated with insulin or exposed to the insulin-like growth factor 1, rat liver stimulated by cortisol and regenerating rat liver after partial hepatectomy, the p53 protein level was reduced due to a lowered ribosomal protein availability for MDM2 binding. It is worth noting that the upregulation of rRNA synthesis was responsible for a decreased p53-mediated response to cytotoxic stresses. These findings demonstrated that the balance between rRNA and ribosomal protein synthesis controls the function of p53 in mammalian cells, that p53 can be induced without the occurrence of severe changes of the cellular components controlling ribosome biogenesis, and that conditions characterised by an upregulated rRNA synthesis are associated with a reduced p53 response.
Collapse
|
37
|
mTOR links oncogenic signaling to tumor cell metabolism. J Mol Med (Berl) 2011; 89:221-8. [DOI: 10.1007/s00109-011-0726-6] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/12/2011] [Indexed: 12/13/2022]
|
38
|
Mehta R, Chandler-Brown D, Ramos FJ, Shamieh LS, Kaeberlein M. Regulation of mRNA translation as a conserved mechanism of longevity control. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:14-29. [PMID: 20886753 DOI: 10.1007/978-1-4419-7002-2_2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Appropriate regulation of mRNA translation is essential for growth and survival and the pathways that regulate mRNA translation have been highly conserved throughout eukaryotic evolution. Translation is controlled by a complex set of mechanisms acting at multiple levels, ranging from global protein synthesis to individual mRNAs. Recently, several mutations that perturb regulation of mRNA translation have also been found to increase longevity in three model organisms: the buddingyeast Saccharomyces cerevisiae, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. Many of these translation control factors can be mapped to a single pathway downstream of the nutrient responsive target of rapamycin (TOR) kinase. In this chapter, we will review the data suggesting that mRNA translation is an evolutionarily conserved modifier of longevity and discuss potential mechanisms by which mRNA translation could influence aging and age-associated disease in different species.
Collapse
Affiliation(s)
- Ranjana Mehta
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
39
|
Genolet R, Rahim G, Gubler-Jaquier P, Curran J. The translational response of the human mdm2 gene in HEK293T cells exposed to rapamycin: a role for the 5'-UTRs. Nucleic Acids Res 2010; 39:989-1003. [PMID: 20876686 PMCID: PMC3035446 DOI: 10.1093/nar/gkq805] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Polysomal messenger RNA (mRNA) populations change rapidly in response to alterations in the physiological status of the cell. For this reason, translational regulation, mediated principally at the level of initiation, plays a key role in the maintenance of cellular homeostasis. In an earlier translational profiling study, we followed the impact of rapamycin on polysome re-seeding. Despite the overall negative effect on transcript recruitment, we nonetheless observed that some mRNAs were significantly less affected. Consequently, their relative polysomal occupancy increased in the rapamycin-treated cells. The behaviour of one of these genes, mdm2, has been further analysed. Despite the absence of internal ribosome entry site activity we demonstrate, using a dual reporter assay, that both the reported mdm2 5′-UTRs confer resistance to rapamycin relative to the 5′-UTR of β-actin. This relative resistance is responsive to the downstream targets mTORC1 but did not respond to changes in the La protein, a reported factor acting positively on MDM2 translational expression. Furthermore, extended exposure to rapamycin in the presence of serum increased the steady-state level of the endogenous MDM2 protein. However, this response was effectively reversed when serum levels were reduced. Taken globally, these studies suggest that experimental conditions can dramatically modulate the expressional output during rapamycin exposure.
Collapse
Affiliation(s)
- Raphael Genolet
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School (CMU) 1, rue Michel Servet, CH-1205 Geneva, Switzerland
| | | | | | | |
Collapse
|
40
|
A role for p38 stress-activated protein kinase in regulation of cell growth via TORC1. Mol Cell Biol 2009; 30:481-95. [PMID: 19917724 DOI: 10.1128/mcb.00688-09] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The target of rapamycin (TOR) complex 1 (TORC1) signaling pathway is a critical regulator of translation and cell growth. To identify novel components of this pathway, we performed a kinome-wide RNA interference (RNAi) screen in Drosophila melanogaster S2 cells. RNAi targeting components of the p38 stress-activated kinase cascade prevented the cell size increase elicited by depletion of the TOR negative regulator TSC2. In mammalian and Drosophila tissue culture, as well as in Drosophila ovaries ex vivo, p38-activating stresses, such as H(2)O(2) and anisomycin, were able to activate TORC1. This stress-induced TORC1 activation could be blocked by RNAi against mitogen-activated protein kinase kinase 3 and 6 (MKK3/6) or by the overexpression of dominant negative Rags. Interestingly, p38 was also required for the activation of TORC1 in response to amino acids and growth factors. Genetic ablation either of p38b or licorne, its upstream kinase, resulted in small flies consisting of small cells. Mutants with mutations in licorne or p38b are nutrition sensitive; low-nutrient food accentuates the small-organism phenotypes, as well as the partial lethality of the p38b null allele. These data suggest that p38 is an important positive regulator of TORC1 in both mammalian and Drosophila systems in response to certain stresses and growth factors.
Collapse
|
41
|
Meyuhas O, Dreazen A. Ribosomal protein S6 kinase from TOP mRNAs to cell size. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 90:109-53. [PMID: 20374740 DOI: 10.1016/s1877-1173(09)90003-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ribosomal protein S6 kinase (S6K) has been implicated in the phosphorylation of multiple substrates and is subject to activation by a wide variety of signals that converge at mammalian target of rapamycin (mTOR). In the course of the search for its physiological role, it was proposed that S6K activation and ribosomal protein S6 (rpS6) phosphorylation account for the translational activation of a subgroup of transcripts, the TOP mRNAs. The structural hallmark of these mRNAs is an oligopyrimidine tract at their 5'-terminus, known as the 5'-TOP motif. TOP mRNAs consists of about 90 members that encode multiple components of the translational machinery, such as ribosomal proteins and translation factors. The translation efficiency of TOP mRNAs indeed correlates with S6K activation and rpS6 phosphorylation, yet recent biochemical and genetic studies have established that, although S6K and TOP mRNAs respond to similar signals and are regulated by mTOR, they maintain no cause and effect relationship. Instead, S6K is primarily involved in regulation of cell size, and affects glucose homeostasis, but is dispensable for global protein synthesis, whereas translational efficiency of TOP mRNAs is a determinant of the cellular protein synthesis capacity. Despite extensive studies of their function and mode of regulation, the mechanism underlying the effect of S6K on the cell size, as well as the trans-acting factor that mediates the translational control of TOP mRNAs, still await their identification.
Collapse
Affiliation(s)
- Oded Meyuhas
- Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | |
Collapse
|
42
|
Fan D, Bitterman PB, Larsson O. Regulatory element identification in subsets of transcripts: comparison and integration of current computational methods. RNA (NEW YORK, N.Y.) 2009; 15:1469-82. [PMID: 19553345 PMCID: PMC2714745 DOI: 10.1261/rna.1617009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 05/20/2009] [Indexed: 05/20/2023]
Abstract
Regulatory elements in mRNA play an often pivotal role in post-transcriptional regulation of gene expression. However, a systematic approach to efficiently identify putative regulatory elements from sets of post-transcriptionally coregulated genes is lacking, hampering studies of coregulation mechanisms. Although there are several analytical methods that can be used to detect conserved mRNA regulatory elements in a set of transcripts, there has been no systematic study of how well any of these methods perform individually or as a group. We therefore compared how well three algorithms, each based on a different principle (enumeration, optimization, or structure/sequence profiles), can identify elements in unaligned untranslated sequence regions. Two algorithms were originally designed to detect transcription factor binding sites, Weeder and BioProspector; and one was designed to detect RNA elements conserved in structure, RNAProfile. Three types of elements were examined: (1) elements conserved in both primary sequence and secondary structure; (2) elements conserved only in primary sequence; and (3) microRNA targets. Our results indicate that all methods can uniquely identify certain known RNA elements, and therefore, integrating the output from all algorithms leads to the most complete identification of elements. We therefore developed an approach to integrate results and guide selection of candidate elements from several algorithms presented as a web service (https://dbw.msi.umn.edu:8443/recit). These findings together with the approach for integration can be used to identify candidate elements from genome-wide post-transcriptional profiling data sets.
Collapse
Affiliation(s)
- Danhua Fan
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
43
|
Wang Y, Weiss LM, Orlofsky A. Intracellular parasitism with Toxoplasma gondii stimulates mammalian-target-of-rapamycin-dependent host cell growth despite impaired signalling to S6K1 and 4E-BP1. Cell Microbiol 2009; 11:983-1000. [PMID: 19302577 PMCID: PMC2880858 DOI: 10.1111/j.1462-5822.2009.01305.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Ser/Thr kinase mammalian-target-of-rapamycin (mTOR) is a central regulator of anabolism, growth and proliferation. We investigated the effects of Toxoplasma gondii on host mTOR signalling. Toxoplasma invasion of multiple cell types rapidly induced sustained mTOR activation that was restricted to infected cells, as determined by rapamycin-sensitive phosphorylation of ribosomal protein S6; however, phosphorylation of the growth-associated mTOR substrates 4E-BP1 and S6K1 was not detected. Infected cells still phosphorylated S6K1 and 4E-BP1 in response to insulin, although the S6K1 response was blunted. Parasite-induced S6 phosphorylation was independent of S6K1 and did not require activation of canonical mTOR-inducing pathways mediated by phosphatidylinositol 3-kinase-Akt and ERK. Host mTOR was localized in a vesicular pattern surrounding the parasitophorous vacuole, suggesting potential activation by phosphatidic acid in the vacuolar membrane. In spite of a failure to phosphorylate 4E-BP1 and S6K1, intracellular T. gondii triggered host cell cycle progression in an mTOR-dependent manner and progression of infected cells displayed increased sensitivity to rapamycin. Moreover, normal cell growth was maintained during parasite-induced cell cycle progression, as indicated by total cellular S6 levels. The Toxoplasma-infected cell provides a unique example of non-canonical mTOR activation supporting growth that is independent of signalling through either S6K1 or 4E-BP1.
Collapse
Affiliation(s)
- Yubao Wang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Amos Orlofsky
- Department of Pathology, Albert Einstein College of Medicine, Bronx, New York 10461
| |
Collapse
|
44
|
Caldarola S, De Stefano MC, Amaldi F, Loreni F. Synthesis and function of ribosomal proteins--fading models and new perspectives. FEBS J 2009; 276:3199-210. [PMID: 19438715 DOI: 10.1111/j.1742-4658.2009.07036.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The synthesis of ribosomal proteins (RPs) has long been known to be a process strongly linked to the growth status of the cell. In vertebrates, this coordination is dependent on RP mRNA translational efficiency, which changes according to physiological circumstances. Despite many years of investigation, the trans-acting factors and the signaling pathways involved in this regulation are still elusive. At the same time, however, new techniques and classic approaches have opened up new perspectives as regards RP regulation and function. In fact, the proteasome seems to play a crucial and unpredicted role in regulating the availability of RPs for subunit assembly. In addition, the study of human ribosomal pathologies and animal models for these diseases has revealed that perturbation in the synthesis and/or function of an RP activates a p53-dependent stress response. Surprisingly, the effect of the ribosomal stress is more dramatic in specific physiological processes: hemopoiesis in humans, and pigmentation in mice. Moreover, alteration of each RP impacts differently on the development of an organism.
Collapse
Affiliation(s)
- Sara Caldarola
- Department of Biology, University 'Tor Vergata', Roma, Italy
| | | | | | | |
Collapse
|
45
|
A ribosomal protein L23-nucleophosmin circuit coordinates Mizl function with cell growth. Nat Cell Biol 2009; 10:1051-61. [PMID: 19160485 DOI: 10.1038/ncb1764] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Myc-associated zinc-finger protein, Miz1, is a negative regulator of cell proliferation and induces expression of the cell-cycle inhibitors p15(Ink4b) and p21(Cip1). Here we identify the ribosomal protein L23 as a negative regulator of Miz1-dependent transactivation. L23 exerts this function by retaining nucleophosmin, an essential co-activator of Miz1 required for Miz1-induced cell-cycle arrest, in the nucleolus. Mutant forms of nucleophosmin found in acute myeloid leukaemia fail to co-activate Miz1 and re-localize it to the cytosol. As L23 is encoded by a direct target gene of Myc, this regulatory circuit may provide a feedback mechanism that links translation of Myc target genes and cell growth to Miz1-dependent cell-cycle arrest.
Collapse
|
46
|
Patursky-Polischuk I, Stolovich-Rain M, Hausner-Hanochi M, Kasir J, Cybulski N, Avruch J, Rüegg MA, Hall MN, Meyuhas O. The TSC-mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor- or rictor-independent manner. Mol Cell Biol 2009; 29:640-9. [PMID: 19047368 PMCID: PMC2630691 DOI: 10.1128/mcb.00980-08] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2008] [Revised: 07/11/2008] [Accepted: 11/18/2008] [Indexed: 01/10/2023] Open
Abstract
The stimulatory effect of insulin on protein synthesis is due to its ability to activate various translation factors. We now show that insulin can increase protein synthesis capacity also by translational activation of TOP mRNAs encoding various components of the translation machinery. This translational activation involves the tuberous sclerosis complex (TSC), as the knockout of TSC1 or TSC2 rescues TOP mRNAs from translational repression in mitotically arrested cells. Similar results were obtained upon overexpression of Rheb, an immediate TSC1-TSC2 target. The role of mTOR, a downstream effector of Rheb, in translational control of TOP mRNAs has been extensively studied, albeit with conflicting results. Even though rapamycin fully blocks mTOR complex 1 (mTORC1) kinase activity, the response of TOP mRNAs to this drug varies from complete resistance to high sensitivity. Here we show that mTOR knockdown blunts the translation efficiency of TOP mRNAs in insulin-treated cells, thus unequivocally establishing a role for mTOR in this mode of regulation. However, knockout of the raptor or rictor gene has only a slight effect on the translation efficiency of these mRNAs, implying that mTOR exerts its effect on TOP mRNAs through a novel pathway with a minor, if any, contribution of the canonical mTOR complexes mTORC1 and mTORC2. This conclusion is further supported by the observation that raptor knockout renders the translation of TOP mRNAs rapamycin hypersensitive.
Collapse
|
47
|
Bianchini A, Loiarro M, Bielli P, Busà R, Paronetto MP, Loreni F, Geremia R, Sette C. Phosphorylation of eIF4E by MNKs supports protein synthesis, cell cycle progression and proliferation in prostate cancer cells. Carcinogenesis 2008; 29:2279-88. [PMID: 18809972 DOI: 10.1093/carcin/bgn221] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Deregulation of the phosphatidyl inositol trisphosphate kinase/AKT/mammalian target of rapamycin (mTOR) and RAS/mitogen-activated protein kinase (MAPK)/MNK pathways frequently occurs in human prostate carcinomas (PCas) and leads to aberrant modulation of messenger RNA (mRNA) translation. We have investigated the relative contribution of these pathways to translational regulation and proliferation of PCa cells. MNK-dependent phosphorylation of eIF4E is elevated in DU145 cells, which have low basal levels of AKT/mTOR activity due to the expression of the tumor suppressor PTEN. In contrast, eIF4E phosphorylation is low in PC3 and LNCaP cells with mutated PTEN and constitutively active AKT/mTOR pathway, but it can be strongly induced through inhibition of mTOR activity by rapamycin or serum depletion. Remarkably, we found that inhibition of MNKs strongly reduced the polysomal recruitment of terminal oligopyrimidine messenger RNAs (TOP mRNAs), which are known targets of mTOR-dependent translational control. Pull-down assays of the eIF4F complex indicated that translation initiation was differently affected by inhibition of MNKs and mTOR. In addition, concomitant treatment with MNK inhibitor and rapamycin exerted additive effects on polysomal recruitment of TOP mRNAs and protein synthesis. The MNK inhibitor was more effective than rapamycin in blocking proliferation of PTEN-expressing cells, whereas combination of the two inhibitors suppressed cell cycle progression in both cell lines. Microarray analysis showed that MNK affected translation of mRNAs involved in cell cycle progression. Thus, our results indicate that a balance between the activity of the AKT/mTOR and the MAPK/MNK pathway in PCa cells maintains a defined translational level of specific mRNAs required for ribosome biogenesis, cell proliferation and stress response and might confer to these cells the ability to overcome negative insults.
Collapse
Affiliation(s)
- Andrea Bianchini
- Department of Public Health and Cell Biology, University of Rome Tor Vergata, Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Genolet R, Araud T, Maillard L, Jaquier-Gubler P, Curran J. An approach to analyse the specific impact of rapamycin on mRNA-ribosome association. BMC Med Genomics 2008; 1:33. [PMID: 18673536 PMCID: PMC2533349 DOI: 10.1186/1755-8794-1-33] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 08/01/2008] [Indexed: 01/06/2023] Open
Abstract
Background Recent work, using both cell culture model systems and tumour derived cell lines, suggests that the differential recruitment into polysomes of mRNA populations may be sufficient to initiate and maintain tumour formation. Consequently, a major effort is underway to use high density microarray profiles to establish molecular fingerprints for cells exposed to defined drug regimes. The aim of these pharmacogenomic approaches is to provide new information on how drugs can impact on the translational read-out within a defined cellular background. Methods We describe an approach that permits the analysis of de-novo mRNA-ribosome association in-vivo during short drug exposures. It combines hypertonic shock, polysome fractionation and high-throughput analysis to provide a molecular phenotype of translationally responsive transcripts. Compared to previous translational profiling studies, the procedure offers increased specificity due to the elimination of the drugs secondary effects (e.g. on the transcriptional read-out). For this pilot "proof-of-principle" assay we selected the drug rapamycin because of its extensively studied impact on translation initiation. Results High throughput analysis on both the light and heavy polysomal fractions has identified mRNAs whose re-recruitment onto free ribosomes responded to short exposure to the drug rapamycin. The results of the microarray have been confirmed using real-time RT-PCR. The selective down-regulation of TOP transcripts is also consistent with previous translational profiling studies using this drug. Conclusion The technical advance outlined in this manuscript offers the possibility of new insights into mRNA features that impact on translation initiation and provides a molecular fingerprint for transcript-ribosome association in any cell type and in the presence of a range of drugs of interest. Such molecular phenotypes defined pre-clinically may ultimately impact on the evaluation of a particular drug in a living cell.
Collapse
Affiliation(s)
- Raphael Genolet
- Department of Microbiology and Molecular Medicine, University of Geneva Medical School (CMU), 1 rue Michel Servet, CH-1211 Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
49
|
Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M, Kwiatkowski DJ. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 2008; 28:5422-32. [PMID: 18495876 PMCID: PMC2633923 DOI: 10.1523/jneurosci.0955-08.2008] [Citation(s) in RCA: 395] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 04/06/2008] [Accepted: 04/07/2008] [Indexed: 12/31/2022] Open
Abstract
Tuberous sclerosis (TSC) is a hamartoma syndrome attributable to mutations in either TSC1 or TSC2 in which brain involvement causes epilepsy, mental retardation, and autism. We have reported recently (Meikle et al., 2007) a mouse neuronal model of TSC in which Tsc1 is ablated in most neurons during cortical development. We have tested rapamycin and RAD001 [40-O-(2-hydroxyethyl)-rapamycin], both mammalian target of rapamycin mTORC1 inhibitors, as potential therapeutic agents in this model. Median survival is improved from 33 d to more than 100 d; behavior, phenotype, and weight gain are all also markedly improved. There is brain penetration of both drugs, with accumulation over time with repetitive treatment, and effective reduction of levels of phospho-S6, a downstream target of mTORC1. In addition, there is restoration of phospho-Akt and phospho-glycogen synthase kinase 3 levels in the treated mice, consistent with restoration of Akt function. Neurofilament abnormalities, myelination, and cell enlargement are all improved by the treatment. However, dysplastic neuronal features persist, and there are only modest changes in dendritic spine density and length. Strikingly, mice treated with rapamycin or RAD001 for 23 d only (postnatal days 7-30) displayed a persistent improvement in phenotype, with median survival of 78 d. In summary, rapamycin/RAD001 are highly effective therapies for this neuronal model of TSC, with benefit apparently attributable to effects on mTORC1 and Akt signaling and, consequently, cell size and myelination. Although caution is appropriate, the results suggest the possibility that rapamycin/RAD001 may have benefit in the treatment of TSC brain disease, including infantile spasms.
Collapse
Affiliation(s)
- Lynsey Meikle
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital and
| | - Kristen Pollizzi
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital and
| | - Anna Egnor
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital and
| | - Ioannis Kramvis
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - Heidi Lane
- Novartis Institutes for BioMedical Research, Oncology Basel, Novartis Pharma AG, CH-4002 Basel, Switzerland
| | - Mustafa Sahin
- Department of Neurology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, and
| | - David J. Kwiatkowski
- Division of Translational Medicine, Department of Medicine, Brigham and Women's Hospital and
| |
Collapse
|
50
|
Vesicular stomatitis virus oncolysis of T lymphocytes requires cell cycle entry and translation initiation. J Virol 2008; 82:5735-49. [PMID: 18417567 DOI: 10.1128/jvi.02601-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a candidate oncolytic virus that replicates and induces cell death in cancer cells while sparing normal cells. Although defects in the interferon antiviral response facilitate VSV oncolysis, other host factors, including translational and growth regulatory mechanisms, also appear to influence oncolytic virus activity. We previously demonstrated that VSV infection induces apoptosis in proliferating CD4(+) T lymphocytes from adult T-cell leukemia samples but not in resting T lymphocytes or primary chronic lymphocytic leukemia cells that remain arrested in G(0). Activation of primary CD4(+) T lymphocytes with anti-CD3/CD28 is sufficient to induce VSV replication and cell death in a manner dependent on activation of the MEK1/2, c-Jun NH(2)-terminal kinase, or phosphatidylinositol 3-kinase pathway but not p38. VSV replication is specifically impaired by the cell cycle inhibitor olomoucine or rapamycin, which induces early G(1) arrest, but not by aphidicolin or Taxol, which blocks at the G(1)1S or G(2)1M phase, respectively; this result suggests a requirement for cell cycle entry for efficient VSV replication. The relationship between increased protein translation following G(0)/G(1) transition and VSV permissiveness is highlighted by the absence of mTOR and/or eIF4E phosphorylation whenever VSV replication is impaired. Furthermore, VSV protein production in activated T cells is diminished by small interfering RNA-mediated eIF4E knockdown. These results demonstrate that VSV replication in primary T lymphocytes relies on cell cycle transition from the G(0) phase to the G(1) phase, which is characterized by a sharp increase in ribogenesis and protein synthesis.
Collapse
|