1
|
Xiong X, Huang B, Gan Z, Liu W, Xie Y, Zhong J, Zeng X. Ubiquitin-modifying enzymes in thyroid cancer:Mechanisms and functions. Heliyon 2024; 10:e34032. [PMID: 39091932 PMCID: PMC11292542 DOI: 10.1016/j.heliyon.2024.e34032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 08/04/2024] Open
Abstract
Thyroid cancer is the most common malignant tumor of the endocrine system, and evidence suggests that post-translational modifications (PTMs) and epigenetic alterations play an important role in its development. Recently, there has been increasing evidence linking dysregulation of ubiquitinating enzymes and deubiquitinases with thyroid cancer. This review aims to summarize our current understanding of the role of ubiquitination-modifying enzymes in thyroid cancer, including their regulation of oncogenic pathways and oncogenic proteins. The role of ubiquitination-modifying enzymes in thyroid cancer development and progression requires further study, which will provide new insights into thyroid cancer prevention, treatment and the development of novel agents.
Collapse
Affiliation(s)
- Xingmin Xiong
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - BenBen Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Zhe Gan
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weixiang Liu
- Institute of Thyroid and Parathyroid Disease, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Yang Xie
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Ganzhou Key Laboratory of Thyroid Cancer, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, 323 National Road, Ganzhou, 341000, Jiangxi, China
| | - Xiangtai Zeng
- Department of Thyroid and Hernia Surgery, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- Institute of Thyroid and Parathyroid Disease, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
2
|
Raj S, Sifuentes CJ, Kyono Y, Denver RJ. Metamorphic gene regulation programs in Xenopus tropicalis tadpole brain. PLoS One 2023; 18:e0287858. [PMID: 37384728 PMCID: PMC10310023 DOI: 10.1371/journal.pone.0287858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023] Open
Abstract
Amphibian metamorphosis is controlled by thyroid hormone (TH), which binds TH receptors (TRs) to regulate gene expression programs that underlie morphogenesis. Gene expression screens using tissues from premetamorphic tadpoles treated with TH identified some TH target genes, but few studies have analyzed genome-wide changes in gene regulation during spontaneous metamorphosis. We analyzed RNA sequencing data at four developmental stages from the beginning to the end of spontaneous metamorphosis, conducted on the neuroendocrine centers of Xenopus tropicalis tadpole brain. We also conducted chromatin immunoprecipitation sequencing (ChIP-seq) for TRs, and we compared gene expression changes during metamorphosis with those induced by exogenous TH. The mRNA levels of 26% of protein coding genes changed during metamorphosis; about half were upregulated and half downregulated. Twenty four percent of genes whose mRNA levels changed during metamorphosis had TR ChIP-seq peaks. Genes involved with neural cell differentiation, cell physiology, synaptogenesis and cell-cell signaling were upregulated, while genes involved with cell cycle, protein synthesis, and neural stem/progenitor cell homeostasis were downregulated. There is a shift from building neural structures early in the metamorphic process, to the differentiation and maturation of neural cells and neural signaling pathways characteristic of the adult frog brain. Only half of the genes modulated by treatment of premetamorphic tadpoles with TH for 16 h changed expression during metamorphosis; these represented 33% of the genes whose mRNA levels changed during metamorphosis. Taken together, our results provide a foundation for understanding the molecular basis for metamorphosis of tadpole brain, and they highlight potential caveats for interpreting gene regulation changes in premetamorphic tadpoles induced by exogenous TH.
Collapse
Affiliation(s)
- Samhitha Raj
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Christopher J. Sifuentes
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yasuhiro Kyono
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Robert J. Denver
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
3
|
Mudri D, Bilić Ćurčić I, Meštrović L, Mihaljević I, Kizivat T. Hyperthyroidism and Wnt Signaling Pathway: Influence on Bone Remodeling. Metabolites 2023; 13:metabo13020241. [PMID: 36837860 PMCID: PMC9968154 DOI: 10.3390/metabo13020241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Graves' disease is an autoimmune disease of the thyroid gland, characterized by increased production of thyroid hormones, which can affect many different organ systems in the body. Among other problems, it can cause disorders of the skeletal system, shortening the bone remodeling cycle and causing a decrease in bone density. The Wnt cascade signaling pathway and the β-catenin, as a part of the canonical Wnt pathway, also play roles in maintaining bone mass. Inhibition of the Wnt pathway can cause bone loss, and its stimulation can increase it. The Wnt signaling pathway influences the effectiveness of thyroid hormones by affecting receptors for thyroid hormones and deiodinase, while thyroid hormones can change levels of β-catenin within the cell cytoplasm. This indicates that the Wnt pathway and thyroid hormone levels, including hyperthyroidism, are linked and may act together to change bone density. In this review article, we attempt to explain the interplay between thyroid hormones and the Wnt pathway on bone density, with a focus on directions for further research and treatment options.
Collapse
Affiliation(s)
- Dunja Mudri
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia
| | - Ines Bilić Ćurčić
- Department of Pharmacology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
- Department of Endocrinology and Metabolism Disorders, University Hospital Osijek, 31000 Osijek, Croatia
- Correspondence: (I.B.Ć.); (T.K.)
| | - Lucija Meštrović
- Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
| | - Ivica Mihaljević
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia
- Academy of Medical Sciences of Croatia, 31000 Osijek, Croatia
| | - Tomislav Kizivat
- Department of Nuclear Medicine and Oncology, Faculty of Medicine, University of Osijek, 31000 Osijek, Croatia
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia
- Correspondence: (I.B.Ć.); (T.K.)
| |
Collapse
|
4
|
Kim SM, Ryu V, Miyashita S, Korkmaz F, Lizneva D, Gera S, Latif R, Davies TF, Iqbal J, Yuen T, Zaidi M. Thyrotropin, Hyperthyroidism, and Bone Mass. J Clin Endocrinol Metab 2021; 106:e4809-e4821. [PMID: 34318885 PMCID: PMC8864741 DOI: 10.1210/clinem/dgab548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thyrotropin (TSH), traditionally seen as a pituitary hormone that regulates thyroid glands, has additional roles in physiology including skeletal remodeling. Population-based observations in people with euthyroidism or subclinical hyperthyroidism indicated a negative association between bone mass and low-normal TSH. The findings of correlative studies were supported by small intervention trials using recombinant human TSH (rhTSH) injection, and genetic and case-based evidence. Genetically modified mouse models, which disrupt the reciprocal relationship between TSH and thyroid hormone, have allowed us to examine an independent role of TSH. Since the first description of osteoporotic phenotype in haploinsufficient Tshr +/- mice with normal thyroid hormone levels, the antiosteoclastic effect of TSH has been documented in both in vitro and in vivo studies. Further studies showed that increased osteoclastogenesis in Tshr-deficient mice was mediated by tumor necrosis factor α. Low TSH not only increased osteoclastogenesis, but also decreased osteoblastogenesis in bone marrow-derived primary osteoblast cultures. However, later in vivo studies using small and intermittent doses of rhTSH showed a proanabolic effect, which suggests that its action might be dose and frequency dependent. TSHR was shown to interact with insulin-like growth factor 1 receptor, and vascular endothelial growth factor and Wnt pathway might play a role in TSH's effect on osteoblasts. The expression and direct skeletal effect of a biologically active splice variant of the TSHβ subunit (TSHβv) in bone marrow-derived macrophage and other immune cells suggest a local skeletal effect of TSHR. Further studies of how locally secreted TSHβv and systemic TSHβ interact in skeletal remodeling through the endocrine, immune, and skeletal systems will help us better understand the hyperthyroidism-induced bone disease.
Collapse
Affiliation(s)
- Se-Min Kim
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vitaly Ryu
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sari Miyashita
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Funda Korkmaz
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daria Lizneva
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sakshi Gera
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rauf Latif
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Terry F Davies
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jameel Iqbal
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tony Yuen
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mone Zaidi
- The Mount Sinai Bone Program, Departments of Pharmacological Sciences and of Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: The Mount Sinai Bone Program, Departments of Pharmacological Sciences and Medicine, and Center of Translational Medicine and Pharmacology, Icahn School of Medicine at Mount Sinai, 1428 Madison Avenue, 4th Floor, Box 1055, New York, NY 10029, USA.
| |
Collapse
|
5
|
Abstract
Hormones are key drivers of cancer development, and alteration of the intratumoral concentration of thyroid hormone (TH) is a common feature of many human neoplasias. Besides the systemic control of TH levels, the expression and activity of deiodinases constitute a major mechanism for the cell-autonomous, prereceptoral control of TH action. The action of deiodinases ensures tight control of TH availability at intracellular level in a time- and tissue-specific manner, and alterations in deiodinase expression are frequent in tumors. Research over the past decades has shown that in cancer cells, a complex and dynamic expression of deiodinases is orchestrated by a network of growth factors, oncogenic proteins, and miRNA. It has become increasingly evident that this fine regulation exposes cancer cells to a dynamic concentration of TH that is functional to stimulate or inhibit various cellular functions. This review summarizes recent advances in the identification of the complex interplay between deiodinases and cancer and how this family of enzymes is relevant in cancer progression. We also discuss whether deiodinase expression could represent a diagnostic tool with which to define tumor staging in cancer treatment or even a therapeutic tool against cancer.
Collapse
Affiliation(s)
- Annarita Nappi
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Maria Angela De Stefano
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Monica Dentice
- Department of Clinical Medicine and Surgery, University of Naples “Federico II,” Naples, Italy
| | - Domenico Salvatore
- Department of Public Health, University of Naples “Federico II,” Naples, Italy
- Correspondence: Domenico Salvatore, Department of Public Health, University of Naples “Federico II”, Napoli, Italy.
| |
Collapse
|
6
|
Bolf EL, Gillis NE, Davidson CD, Rodriguez PD, Cozzens L, Tomczak JA, Frietze S, Carr FE. Thyroid Hormone Receptor Beta Induces a Tumor-Suppressive Program in Anaplastic Thyroid Cancer. Mol Cancer Res 2020; 18:1443-1452. [PMID: 32554601 PMCID: PMC7541631 DOI: 10.1158/1541-7786.mcr-20-0282] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/24/2020] [Accepted: 06/11/2020] [Indexed: 12/22/2022]
Abstract
The thyroid hormone receptor beta (TRβ), a key regulator of cellular growth and differentiation, is frequently dysregulated in cancers. Diminished expression of TRβ is noted in thyroid, breast, and other solid tumors and is correlated with more aggressive disease. Restoration of TRβ levels decreased tumor growth supporting the concept that TRβ could function as a tumor suppressor. Yet, the TRβ tumor suppression transcriptome is not well delineated and the impact of TRβ is unknown in aggressive anaplastic thyroid cancer (ATC). Here, we establish that restoration of TRβ expression in the human ATC cell line SW1736 (SW-TRβ) reduces the aggressive phenotype, decreases cancer stem cell populations and induces cell death in a T3-dependent manner. Transcriptomic analysis of SW-TRβ cells via RNA sequencing revealed distinctive expression patterns induced by ligand-bound TRβ and revealed novel molecular signaling pathways. Of note, liganded TRβ repressed multiple nodes in the PI3K/AKT pathway, induced expression of thyroid differentiation markers, and promoted proapoptotic pathways. Our results further revealed the JAK1-STAT1 pathway as a novel, T3-mediated, antitumorigenic pathway that can be activated in additional ATC lines. These findings elucidate a TRβ-driven tumor suppression transcriptomic signature, highlight unexplored therapeutic options for ATC, and support TRβ activation as a promising therapeutic option in cancers. IMPLICATIONS: TRβ-T3 induced a less aggressive phenotype and tumor suppression program in anaplastic thyroid cancer cells revealing new potential therapeutic targets.
Collapse
Affiliation(s)
- Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
- University of Vermont Cancer Center, Burlington, Vermont
| | - Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
- University of Vermont Cancer Center, Burlington, Vermont
| | - Cole D Davidson
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
- University of Vermont Cancer Center, Burlington, Vermont
| | - Princess D Rodriguez
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Lauren Cozzens
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont
| | - Seth Frietze
- University of Vermont Cancer Center, Burlington, Vermont
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, Burlington, Vermont.
- University of Vermont Cancer Center, Burlington, Vermont
| |
Collapse
|
7
|
Lademann F, Weidner H, Tsourdi E, Kumar R, Rijntjes E, Köhrle J, Hofbauer LC, Rauner M. Disruption of BMP Signaling Prevents Hyperthyroidism-Induced Bone Loss in Male Mice. J Bone Miner Res 2020; 35:2058-2069. [PMID: 32453466 DOI: 10.1002/jbmr.4092] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
Thyroid hormones (TH) are key regulators of bone health, and TH excess in mice causes high bone turnover-mediated bone loss. However, the underlying molecular mechanisms of TH actions on bone remain poorly defined. Here, we tested the hypothesis whether TH mediate their effects via the pro-osteogenic bone morphogenetic protein (BMP) signaling pathway in vitro and in vivo. Primary murine osteoblasts treated with 3,3',5-triiodo-L-thyronine (T3 ) showed an enhanced differentiation potential, which was associated with activated canonical BMP/SMAD signaling reflected by SMAD1/5/8 phosphorylation. Blocking BMP signaling at the receptor (LDN193189) and ligand level (noggin, anti-BMP2/BMP4 neutralizing antibodies) inhibited T3 -induced osteogenic differentiation. In vivo, TH excess over 4 weeks in male C57BL/6JRj mice led to severe trabecular bone loss with a high bone turnover that was completely prevented by treatment with the BMP ligand scavenger ALK3-Fc. Thus, TH activate the canonical BMP pathway in osteoblasts to promote their differentiation and function. Importantly, this study indicates that blocking the BMP pathway may be an effective strategy to treat hyperthyroidism-induced bone loss. © 2020 The Authors. Journal of Bone and Mineral Research published by American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Heike Weidner
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ravi Kumar
- Acceleron Pharma, Inc, Cambridge, MA, USA
| | - Eddy Rijntjes
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Köhrle
- Institut für Experimentelle Endokrinologie, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lorenz C Hofbauer
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Aging, Universitätsklinikum Dresden, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
8
|
Targeting the β-catenin signaling for cancer therapy. Pharmacol Res 2020; 160:104794. [DOI: 10.1016/j.phrs.2020.104794] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
|
9
|
Lademann F, Tsourdi E, Hofbauer LC, Rauner M. Thyroid Hormone Actions and Bone Remodeling – The Role of the
Wnt Signaling Pathway. Exp Clin Endocrinol Diabetes 2020; 128:450-454. [DOI: 10.1055/a-1088-1215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
AbstractThyroid hormones are indispensable for bone development and growth. Also in
adults, bone mass maintenance is under the control of thyroid hormones.
Preclinical and clinical studies established untreated hyperthyroidism as a
cause for secondary osteoporosis with increased fracture risk. Thus, normal
thyroid function is essential for bone health. Mechanistically, thyroid hormone
excess accelerates bone turnover with predominant bone resorption. How thyroid
hormones affect osteoblast and osteoclast functions, however, still remains
ill-defined. The Wnt signaling pathway is a major determinant of bone mass and
strength as it promotes osteoblastogenesis and bone formation, while inhibiting
bone resorption. So far, only few studies investigated a possible link between
thyroid hormones, bone metabolism and the Wnt pathway. In this review, we
summarize the literature linking thyroid hormones to bone homeostasis through
Wnt signaling and discuss its potential as a therapeutic approach to treat
hyperthyroidism-induced bone loss.
Collapse
Affiliation(s)
- Franziska Lademann
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| | - Elena Tsourdi
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| | - Lorenz C. Hofbauer
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, Technische
Universität Dresden, Germany
| |
Collapse
|
10
|
Chi HC, Tsai CY, Tsai MM, Yeh CT, Lin KH. Molecular functions and clinical impact of thyroid hormone-triggered autophagy in liver-related diseases. J Biomed Sci 2019; 26:24. [PMID: 30849993 PMCID: PMC6407245 DOI: 10.1186/s12929-019-0517-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/26/2019] [Indexed: 02/07/2023] Open
Abstract
The liver is controlled by several metabolic hormones, including thyroid hormone, and characteristically displays high lysosomal activity as well as metabolic stress-triggered autophagy, which is stringently regulated by the levels of hormones and metabolites. Hepatic autophagy provides energy through catabolism of glucose, amino acids and free fatty acids for starved cells, facilitating the generation of new macromolecules and maintenance of the quantity and quality of cellular organelles, such as mitochondria. Dysregulation of autophagy and defective mitochondrial homeostasis contribute to hepatocyte injury and liver-related diseases, such as non-alcoholic fatty liver disease (NAFLD) and liver cancer. Thyroid hormones (TH) mediate several critical physiological processes including organ development, cell differentiation, metabolism and cell growth and maintenance. Accumulating evidence has revealed dysregulation of cellular TH activity as the underlying cause of several liver-related diseases, including alcoholic or non-alcoholic fatty liver disease and liver cancer. Data from epidemiologic, animal and clinical studies collectively support preventive functions of THs in liver-related diseases, highlighting the therapeutic potential of TH analogs. Elucidation of the molecular mechanisms and downstream targets of TH should thus facilitate the development of therapeutic strategies for a number of major public health issues. Here, we have reviewed recent studies focusing on the involvement of THs in hepatic homeostasis through induction of autophagy and their implications in liver-related diseases. Additionally, the potential underlying molecular pathways and therapeutic applications of THs in NAFLD and HCC are discussed.
Collapse
Affiliation(s)
- Hsiang-Cheng Chi
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chung-Ying Tsai
- Kidney Research Center and Department of Nephrology, Chang Gung Immunology Consortium, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan, Taiwan, 333.,Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan, 613.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan, 333
| | - Kwang-Huei Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan, 333. .,Department of Biochemistry, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, 333, Taiwan, Republic of China. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology , Taoyuan, Taiwan.
| |
Collapse
|
11
|
Valvo V, Nucera C. Coding Molecular Determinants of Thyroid Cancer Development and Progression. Endocrinol Metab Clin North Am 2019; 48:37-59. [PMID: 30717910 PMCID: PMC6366338 DOI: 10.1016/j.ecl.2018.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Thyroid cancer is the most common endocrine malignancy. Its incidence and mortality rates have increased for patients with advanced-stage papillary thyroid cancer. The characterization of the molecular pathways essential in thyroid cancer initiation and progression has made huge progress, underlining the role of intracellular signaling to promote clonal evolution, dedifferentiation, metastasis, and drug resistance. The discovery of genetic alterations that include mutations (BRAF, hTERT), translocations, deletions (eg, 9p), and copy-number gain (eg, 1q) has provided new biological insights with clinical applications. Understanding how molecular pathways interplay is one of the key strategies to develop new therapeutic treatments and improve prognosis.
Collapse
Affiliation(s)
- Veronica Valvo
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA
| | - Carmelo Nucera
- Laboratory of Human Thyroid Cancers Preclinical and Translational Research, Division of Experimental Pathology, Department of Pathology, Cancer Research Institute (CRI), Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Department of Pathology, Center for Vascular Biology Research (CVBR), Beth Israel Deaconess Medical Center, Harvard Medical School, 99 Brookline Avenue, Boston, MA 02215, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
12
|
Singh BK, Sinha RA, Yen PM. Novel Transcriptional Mechanisms for Regulating Metabolism by Thyroid Hormone. Int J Mol Sci 2018; 19:3284. [PMID: 30360449 PMCID: PMC6214012 DOI: 10.3390/ijms19103284] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 12/14/2022] Open
Abstract
The thyroid hormone plays a key role in energy and nutrient metabolisms in many tissues and regulates the transcription of key genes in metabolic pathways. It has long been believed that thyroid hormones (THs) exerted their effects primarily by binding to nuclear TH receptors (THRs) that are associated with conserved thyroid hormone response elements (TREs) located on the promoters of target genes. However, recent transcriptome and ChIP-Seq studies have challenged this conventional view as discordance was observed between TH-responsive genes and THR binding to DNA. While THR association with other transcription factors bound to DNA, TH activation of THRs to mediate effects that do not involve DNA-binding, or TH binding to proteins other than THRs have been invoked as potential mechanisms to explain this discrepancy, it appears that additional novel mechanisms may enable TH to regulate the mRNA expression. These include activation of transcription factors by SIRT1 via metabolic actions by TH, the post-translational modification of THR, the THR co-regulation of transcription with other nuclear receptors and transcription factors, and the microRNA (miR) control of RNA transcript expression to encode proteins involved in the cellular metabolism. Together, these novel mechanisms enlarge and diversify the panoply of metabolic genes that can be regulated by TH.
Collapse
Affiliation(s)
- Brijesh Kumar Singh
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Rohit Anthony Sinha
- Department of Endocrinology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Raebareli Road, Lucknow 226014, Uttar Pradesh, India.
| | - Paul Michael Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore 169857, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
13
|
Salazar P, Cisternas P, Martinez M, Inestrosa NC. Hypothyroidism and Cognitive Disorders during Development and Adulthood: Implications in the Central Nervous System. Mol Neurobiol 2018; 56:2952-2963. [PMID: 30073507 DOI: 10.1007/s12035-018-1270-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023]
Abstract
Thyroid hormones (THs) play a critical function in fundamental signaling of the body regulating process such as metabolism of glucose and lipids, cell maturation and proliferation, and neurogenesis, to name just a few. THs trigger biological effects both by directly affecting gene expression through the interaction with nuclear receptors (genomic effects) and by activating protein kinases and/or ion channels (short-term effects). For years, a close relationship between the THs hormones and the central nervous system (CNS) has been described, not only for neuronal cells but also for glial development and differentiation. A deficit in thyroid hormones triiodothyronine (T3) and thyroxine (T4) is observed in the hypothyroid condition, generated by a iodine deficiency or an autoimmune response of the body. In the hypothyroid condition, several cellular deregulation and alterations have been described in dendrite spine morphology, cell migration and proliferation, and impaired synaptic transmission in the hippocampus, among others. The aim of this review is to describe the role of the thyroid hormones with focus in brain function and neurodegenerative disorders.
Collapse
Affiliation(s)
- Paulina Salazar
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pedro Cisternas
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Milka Martinez
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Centro de Envejecimiento y Regeneración (CARE UC), Departamento de Biología Celular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Centre for Healthy Brain Ageing, School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, Australia. .,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile. .,CARE UC Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Av. Bernardo O'Higgins 340, P. O. Box 114, -D, Santiago, Chile.
| |
Collapse
|
14
|
Duszka K, Wahli W. Enteric Microbiota⁻Gut⁻Brain Axis from the Perspective of Nuclear Receptors. Int J Mol Sci 2018; 19:ijms19082210. [PMID: 30060580 PMCID: PMC6121494 DOI: 10.3390/ijms19082210] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/12/2022] Open
Abstract
Nuclear receptors (NRs) play a key role in regulating virtually all body functions, thus maintaining a healthy operating body with all its complex systems. Recently, gut microbiota emerged as major factor contributing to the health of the whole organism. Enteric bacteria have multiple ways to influence their host and several of them involve communication with the brain. Mounting evidence of cooperation between gut flora and NRs is already available. However, the full potential of the microbiota interconnection with NRs remains to be uncovered. Herewith, we present the current state of knowledge on the multifaceted roles of NRs in the enteric microbiota–gut–brain axis.
Collapse
Affiliation(s)
- Kalina Duszka
- Department of Nutritional Sciences, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological, 11 Mandalay Road, Singapore 308232, Singapore.
- Center for Integrative Genomics, University of Lausanne, Génopode, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
15
|
Wnt Signaling in Thyroid Homeostasis and Carcinogenesis. Genes (Basel) 2018; 9:genes9040204. [PMID: 29642644 PMCID: PMC5924546 DOI: 10.3390/genes9040204] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/09/2018] [Indexed: 12/29/2022] Open
Abstract
The Wnt pathway is essential for stem cell maintenance, but little is known about its role in thyroid hormone signaling and thyroid stem cell survival and maintenance. In addition, the role of Wnt signaling in thyroid cancer progenitor cells is also unclear. Here, we present emerging evidence for the role of Wnt signaling in somatic thyroid stem cell and thyroid cancer stem cell function. An improved understanding of the role of Wnt signaling in thyroid physiology and carcinogenesis is essential for improving both thyroid disease diagnostics and therapeutics.
Collapse
|
16
|
Zhu X, Cheng SY. Analysis of Thyroid Tumorigenesis in Xenograft Mouse Model. Methods Mol Biol 2018; 1801:207-223. [PMID: 29892827 PMCID: PMC7971365 DOI: 10.1007/978-1-4939-7902-8_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Analysis of thyroid tumorigenesis in xenograft mouse model is important to study human thyroid cancer. Recent studies have made big strides toward understanding the molecular mechanisms by which thyroid hormone nuclear receptors (TR) act to maintain normal cellular functions in growth, differentiation, and development. Despite growing interest, the role of TR in oncogenesis remains to be fully elucidated. Two TR genes give rise to three major TR isoforms: TRα1, TRβ1, and TRβ2. These TR subtypes express in a tissue- and development-dependent manner. Research has been directed at understanding the mechanisms by which TR could mediate aberrant cellular signaling that contributes to oncogenesis, at dissecting possible distinct roles of TR isoforms in oncogenesis, and at the differential susceptibility of target tissues to the oncogenic actions of TR. This chapter gives a brief overview of the current undersatanding of known molecular oncogenic actions of TR. Here, we describe analysis of thyroid tumorigenesis used in interrogating the in vivo oncogenic actions of TR.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Goemann IM, Romitti M, Meyer ELS, Wajner SM, Maia AL. Role of thyroid hormones in the neoplastic process: an overview. Endocr Relat Cancer 2017; 24:R367-R385. [PMID: 28928142 DOI: 10.1530/erc-17-0192] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/24/2017] [Indexed: 12/13/2022]
Abstract
Thyroid hormones (TH) are critical regulators of several physiological processes, which include development, differentiation and growth in virtually all tissues. In past decades, several studies have shown that changes in TH levels caused by thyroid dysfunction, disruption of deiodinases and/or thyroid hormone receptor (TR) expression in tumor cells, influence cell proliferation, differentiation, survival and invasion in a variety of neoplasms in a cell type-specific manner. The function of THs and TRs in neoplastic cell proliferation involves complex mechanisms that seem to be cell specific, exerting effects via genomic and nongenomic pathways, repressing or stimulating transcription factors, influencing angiogenesis and promoting invasiveness. Taken together, these observations indicate an important role of TH status in the pathogenesis and/or development of human neoplasia. Here, we aim to present an updated and comprehensive picture of the accumulated knowledge and the current understanding of the potential role of TH status on the different hallmarks of the neoplastic process.
Collapse
Affiliation(s)
- Iuri Martin Goemann
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mirian Romitti
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Erika L Souza Meyer
- Department of Internal MedicineUniversidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Simone Magagnin Wajner
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Ana Luiza Maia
- Thyroid SectionEndocrine Division, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
18
|
López Fontana CM, Zyla LE, Santiano FE, Sasso CV, Cuello-Carrión FD, Pistone Creydt V, Fanelli MA, Carón RW. Hypothyroidism reduces mammary tumor progression via Β-catenin-activated intrinsic apoptotic pathway in rats. Histochem Cell Biol 2017; 147:759-769. [PMID: 28191619 DOI: 10.1007/s00418-017-1544-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/20/2017] [Indexed: 01/26/2023]
Abstract
Experimental hypothyroidism retards mammary carcinogenesis promoting apoptosis of tumor cells. β-catenin plays a critical role in cell adhesion and intracellular signaling pathways conditioning the prognosis of breast cancer. However, the mechanistic connections associated with the expression of β-catenin in thyroid status and breast cancer are not known. Therefore, we studied the relationship between the expression and localization of β-catenin and apoptosis in mammary tumors induced by 7,12-dimethylbenz(a)anthracene (DMBA) in hypothyroid (Hypot) and euthyroid (EUT) rats. Female Sprague Dawley rats were treated with a dose of DMBA (15 mg/rat) at 55 days of age and were then divided into two groups: HypoT (0.01% 6-N-propyl-2-thiouracil in drinking water, n = 54) and EUT (untreated control, n = 43). Latency, incidence and progression of tumors were determined. At sacrifice, tumors were obtained for immunohistological studies and Western Blot. The latency was longer (p < 0.05), the incidence was lower (p < 0.0001) and tumor growth was slower (p < 0.01) in HypoT rats compared to EUT. The expression of Bax, cleaved caspase-9 and caspase-3 was significantly higher in tumors of HypoT than in EUT (p < 0.05) indicating the activation of the intrinsic pathway. In this group, β-catenin was expressed in the plasma membrane and with less intensity, while its expression was nuclear and with greater intensity in the EUT (p < 0.05). Moreover, the expression of survivin was reduced in tumors of HypoT rats (p < 0.05). In conclusion, decreased expression of β-catenin and its normal location in membrane of mammary tumors are associated with augmented apoptosis via activation of the intrinsic pathway in HypoT rats.
Collapse
Affiliation(s)
- C M López Fontana
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina.
| | - L E Zyla
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - F E Santiano
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - C V Sasso
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - F D Cuello-Carrión
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - V Pistone Creydt
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - M A Fanelli
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| | - R W Carón
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), CCT-Mendoza CONICET, Av. Adrián Ruiz-Leal s/n, CC855, Mendoza, Argentina
| |
Collapse
|
19
|
The thyroid hormone nuclear receptors and the Wnt/β-catenin pathway: An intriguing liaison. Dev Biol 2017; 422:71-82. [DOI: 10.1016/j.ydbio.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
|
20
|
Zhu X, Kim DW, Zhao L, Willingham MC, Cheng SY. SAHA-induced loss of tumor suppressor Pten gene promotes thyroid carcinogenesis in a mouse model. Endocr Relat Cancer 2016; 23:521-33. [PMID: 27267120 PMCID: PMC4959547 DOI: 10.1530/erc-16-0103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 06/06/2016] [Indexed: 11/08/2022]
Abstract
Thyroid cancer is on the rise. Novel approaches are needed to improve the outcome of patients with recurrent and advanced metastatic thyroid cancers. FDA approval of suberoylanilide hydroxamic acid (SAHA; vorinostat), an inhibitor of histone deacetylase, for the treatment of hematological malignancies led to the clinical trials of vorinostat for advanced thyroid cancer. However, patients were resistant to vorinostat treatment. To understand the molecular basis of resistance, we tested the efficacy of SAHA in two mouse models of metastatic follicular thyroid cancer: Thrb(PV/PV) and Thrb(PV/PV)Pten(+/-) mice. In both, thyroid cancer is driven by overactivation of PI3K-AKT signaling. However, the latter exhibit more aggressive cancer progression due to haplodeficiency of the tumor suppressor, the Pten gene. SAHA had no effects on thyroid cancer progression in Thrb(PV/PV) mice, indicative of resistance to SAHA. Unexpectedly, thyroid cancer progressed in SAHA-treated Thrb(PV/PV)Pten(+/-) mice with accelerated occurrence of vascular invasion, anaplastic foci, and lung metastasis. Molecular analyses showed further activated PI3K-AKT in thyroid tumors of SAHA-treated Thrb(PV/PV)Pten(+/-) mice, resulting in the activated effectors, p-Rb, CDK6, p21(Cip1), p-cSrc, ezrin, and matrix metalloproteinases, to increase proliferation and invasion of tumor cells. Single-molecule DNA analysis indicated that the wild-type allele of the Pten gene was progressively lost, whereas carcinogenesis progressed in SAHA-treated Thrb(PV/PV)Pten(+/-) mice. Thus, this study has uncovered a novel mechanism by which SAHA-induced loss of the tumor suppressor Pten gene to promote thyroid cancer progression. Effectors downstream of the Pten loss-induced signaling may be potential targets to overcome resistance of thyroid cancer to SAHA.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dong Wook Kim
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Li Zhao
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Mark C Willingham
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sheue-Yann Cheng
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
21
|
Abstract
The skeleton is an exquisitely sensitive and archetypal T3-target tissue that demonstrates the critical role for thyroid hormones during development, linear growth, and adult bone turnover and maintenance. Thyrotoxicosis is an established cause of secondary osteoporosis, and abnormal thyroid hormone signaling has recently been identified as a novel risk factor for osteoarthritis. Skeletal phenotypes in genetically modified mice have faithfully reproduced genetic disorders in humans, revealing the complex physiological relationship between centrally regulated thyroid status and the peripheral actions of thyroid hormones. Studies in mutant mice also established the paradigm that T3 exerts anabolic actions during growth and catabolic effects on adult bone. Thus, the skeleton represents an ideal physiological system in which to characterize thyroid hormone transport, metabolism, and action during development and adulthood and in response to injury. Future analysis of T3 action in individual skeletal cell lineages will provide new insights into cell-specific molecular mechanisms and may ultimately identify novel therapeutic targets for chronic degenerative diseases such as osteoporosis and osteoarthritis. This review provides a comprehensive analysis of the current state of the art.
Collapse
Affiliation(s)
- J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Medicine, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| |
Collapse
|
22
|
Synergistic signaling of KRAS and thyroid hormone receptor β mutants promotes undifferentiated thyroid cancer through MYC up-regulation. Neoplasia 2015; 16:757-69. [PMID: 25246276 PMCID: PMC4234871 DOI: 10.1016/j.neo.2014.08.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 08/08/2014] [Accepted: 08/12/2014] [Indexed: 01/08/2023] Open
Abstract
Undifferentiated thyroid carcinoma is one of the most aggressive human cancers with frequent RAS mutations. How mutations of the RAS gene contribute to undifferentiated thyroid cancer remains largely unknown. Mice harboring a potent dominant negative mutant thyroid hormone receptor β, TRβPV (Thrb(PV/PV)), spontaneously develop well-differentiated follicular thyroid cancer similar to human cancer. We genetically targeted the Kras(G12D) mutation to thyroid epithelial cells of Thrb(PV/PV) mice to understand how Kras(G12D) mutation could induce undifferentiated thyroid cancer in Thrb(PV/PV)Kras(G12D) mice. Thrb(PV/PV)Kras(G12D) mice exhibited poorer survival due to more aggressive thyroid tumors with capsular invasion, vascular invasion, and distant metastases to the lung occurring at an earlier age and at a higher frequency than Thrb(PV/PV) mice did. Importantly, Thrb(PV/PV)Kras(G12D) mice developed frequent anaplastic foci with complete loss of normal thyroid follicular morphology. Within the anaplastic foci, the thyroid-specific transcription factor paired box gene 8 (PAX8) expression was virtually lost and the loss of PAX8 expression was inversely correlated with elevated MYC expression. Consistently, co-expression of KRAS(G12D) with TRβPV upregulated MYC levels in rat thyroid pccl3 cells, and MYC acted to enhance the TRβPV-mediated repression of the Pax8 promoter activity of a distant upstream enhancer, critical for thyroid-specific Pax8 expression. Our findings indicated that synergistic signaling of KRAS(G12D) and TRβPV led to increased MYC expression. Upregulated MYC contributes to the initiation of undifferentiated thyroid cancer, in part, through enhancing TRβPV-mediated repression of the Pax8 expression. Thus, MYC might serve as a potential target for therapeutic intervention.
Collapse
|
23
|
Cheng SY. My journey to unravel complex actions of thyroid hormone: was it fate or destiny? Endocr Relat Cancer 2015; 22:P1-P10. [PMID: 25662575 DOI: 10.1530/erc-15-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sheue-yann Cheng
- Laboratory of Molecular BiologyCenter for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Room 5128, Bethesda, Maryland 20892-4264, USA
| |
Collapse
|
24
|
François CM, Wargnier R, Petit F, Goulvent T, Rimokh R, Treilleux I, Ray-Coquard I, Zazzu V, Cohen-Tannoudji J, Guigon CJ. 17β-estradiol inhibits spreading of metastatic cells from granulosa cell tumors through a non-genomic mechanism involving GPER1. Carcinogenesis 2015; 36:564-73. [PMID: 25823895 DOI: 10.1093/carcin/bgv041] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Granulosa cell tumor (GCT) is a rare and severe form of sex-cord stromal ovarian tumor that is characterized by its long natural history and tendency to recur years after surgical ablation. Because there is no efficient curative treatment beyond surgery, ~20% of patients die of the consequences of their tumor. However, very little is known of the molecular etiology of this pathology. About 70% of GCT patients present with elevated circulating estradiol (E2). Because this hormone is known to increase tumor growth and progression in a number of cancers, we investigated the possible role of E2 in GCTs. Cell-based studies with human GCT metastases and primary tumor-derived cells, ie KGN and COV434 cells, respectively, aimed at evaluating E2 effect on cell growth, migration and invasion. Importantly, we found that E2 did not affect GCT cell growth, but that it significantly decreased the migration and matrix invasion of metastatic GCT cells. Noteworthy, our molecular studies revealed that this effect was accompanied by the inhibition through non-genomic mechanisms of extracellular signal-regulated kinase 1/2 (ERK1/2), which is constitutively activated in GCTs. By using pharmacological and RNA silencing approaches, we found that E2 action was mediated by G protein-coupled estrogen receptor 1 (GPER1) signaling pathway. Analyses of GPER1 expression on tissue microarrays from human GCTs confirmed its expression in ~90% of GCTs. Overall, our study reveals that E2 would act via non-classical pathways to prevent metastasis spreading in GCTs and also reveals GPER1 as a possible target in this disease.
Collapse
Affiliation(s)
- Charlotte M François
- INSERM U1133, Physiologie de l'Axe Gonadotrope, F-75013 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France, CNRS UMR 8251, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Richard Wargnier
- INSERM U1133, Physiologie de l'Axe Gonadotrope, F-75013 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France, CNRS UMR 8251, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Florence Petit
- INSERM U1133, Physiologie de l'Axe Gonadotrope, F-75013 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France, CNRS UMR 8251, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Thibaut Goulvent
- U1052 INSERM, UMR CNRS 5286, Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon F-69000, France, Institut Roche de Recherche et Médecine Translationnelle, 92650 Boulogne Billancourt, France
| | - Ruth Rimokh
- U1052 INSERM, UMR CNRS 5286, Université de Lyon, Centre de Recherche en Cancérologie de Lyon, Centre Léon Bérard, Lyon F-69000, France
| | | | - Isabelle Ray-Coquard
- Department of Medical Oncology, Centre Léon Bérard, Université de Lyon, Lyon F-69000 and GINECO Group, Paris, France and
| | - Valeria Zazzu
- Institute of Genetics and Biophysics "A. Buzzati-Traverso"-CNR, I-80131 Naples, Italy
| | - Joëlle Cohen-Tannoudji
- INSERM U1133, Physiologie de l'Axe Gonadotrope, F-75013 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France, CNRS UMR 8251, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France
| | - Céline J Guigon
- INSERM U1133, Physiologie de l'Axe Gonadotrope, F-75013 Paris, France, Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France, CNRS UMR 8251, Biologie Fonctionnelle et Adaptative, F-75013 Paris, France,
| |
Collapse
|
25
|
Affiliation(s)
- Graham R Williams
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
26
|
Vu-Phan D, Koenig RJ. Genetics and epigenetics of sporadic thyroid cancer. Mol Cell Endocrinol 2014; 386:55-66. [PMID: 23933154 PMCID: PMC3867574 DOI: 10.1016/j.mce.2013.07.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/31/2013] [Accepted: 07/31/2013] [Indexed: 12/23/2022]
Abstract
Thyroid carcinoma is the most common endocrine malignancy, and although the disease generally has an excellent prognosis, therapeutic options are limited for patients not cured by surgery and radioiodine. Thyroid carcinomas commonly contain one of a small number of recurrent genetic mutations. The identification and study of these mutations has led to a deeper understanding of the pathophysiology of this disease and is providing new approaches to diagnosis and therapy. Papillary thyroid carcinomas usually contain an activating mutation in the RAS cascade, most commonly in BRAF and less commonly in RAS itself or through gene fusions that activate RET. A chromosomal translocation that results in production of a PAX8-PPARG fusion protein is found in follicular carcinomas. Anaplastic carcinomas may contain some of the above changes as well as additional mutations. Therapies that are targeted to these mutations are being used in patient care and clinical trials.
Collapse
Affiliation(s)
- Dang Vu-Phan
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| | - Ronald J Koenig
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
27
|
Meffre D, Grenier J, Bernard S, Courtin F, Dudev T, Shackleford G, Jafarian-Tehrani M, Massaad C. Wnt and lithium: a common destiny in the therapy of nervous system pathologies? Cell Mol Life Sci 2014; 71:1123-48. [PMID: 23749084 PMCID: PMC11113114 DOI: 10.1007/s00018-013-1378-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/26/2013] [Accepted: 05/16/2013] [Indexed: 02/07/2023]
Abstract
Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.
Collapse
Affiliation(s)
- Delphine Meffre
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Julien Grenier
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Sophie Bernard
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Françoise Courtin
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| | - Todor Dudev
- Institute of Biomedical Sciences, Academia Sinica, 11529 Taipei, Taiwan, R.O.C
- Faculty of Chemistry and Pharmacy, University of Sofia, 1 James Bourchier Avenue, 1164 Sofia, Bulgaria
| | | | | | - Charbel Massaad
- UMR 8194 CNRS, University Paris Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 6, France
| |
Collapse
|
28
|
Kim WG, Park JW, Willingham MC, Cheng SY. Diet-induced obesity increases tumor growth and promotes anaplastic change in thyroid cancer in a mouse model. Endocrinology 2013; 154:2936-47. [PMID: 23748362 PMCID: PMC3713208 DOI: 10.1210/en.2013-1128] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recent epidemiological studies provide strong evidence suggesting obesity is a risk factor in several cancers, including thyroid cancer. However, the molecular mechanisms by which obesity increases the risk of thyroid cancer are poorly understood. In this study, we evaluated the effect of diet-induced obesity on thyroid carcinogenesis in a mouse model that spontaneously develops thyroid cancer (Thrb(PV/PV)Pten(+/-) mice). These mice harbor a mutated thyroid hormone receptor-β (denoted as PV) and haplodeficiency of the Pten gene. A high-fat diet (HFD) efficiently induced the obese phenotype in Thrb(PV/PV)Pten(+/-) mice after 15 weeks. Thyroid tumor growth was markedly greater and survival was significantly lower in Thrb(PV/PV)Pten(+/-) mice fed an HFD than in controls fed a low-fat diet (LFD). The HFD increased thyroid tumor cell proliferation by increasing the protein levels of cyclin D1 and phosphorylated retinoblastoma protein to propel cell cycle progression. Histopathological analysis showed that the frequency of anaplasia of thyroid cancer was significantly greater (2.6-fold) in the HFD group than the LFD group. The HFD treatment led to an increase in parametrial/epididymal fat pad and elevated serum leptin levels in Thrb(PV/PV)Pten(+/-) mice. Further molecular analyses indicated that the HFD induced more aggressive pathological changes that were mediated by increased activation of the Janus kinase 2-signaling transducer and activator of transcription 3 (STAT3) signaling pathway and induction of STAT3 target gene expression. Our findings demonstrate that diet-induced obesity exacerbates thyroid cancer progression in Thrb(PV/PV)Pten(+/-) mice and suggest that the STAT3 signaling pathway could be tested as a potential target for the treatment of thyroid cancer.
Collapse
Affiliation(s)
- Won Gu Kim
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4264, USA
| | | | | | | |
Collapse
|
29
|
Kim WG, Cheng SY. Thyroid hormone receptors and cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1830:3928-36. [PMID: 22507269 PMCID: PMC3406244 DOI: 10.1016/j.bbagen.2012.04.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Revised: 03/06/2012] [Accepted: 04/02/2012] [Indexed: 12/13/2022]
Abstract
BACKGROUND Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that mediate the actions of the thyroid hormone (T3) in development, growth, and differentiation. The THRA and THRB genes encode several TR isoforms that express in a tissue- and development-dependent manner. In the past decades, a significant advance has been made in the understanding of TR actions in maintaining normal cellular functions. However, the roles of TRs in human cancer are less well understood. The reduced expression of TRs because of hypermethylation, or deletion of TR genes found in human cancers suggests that TRs could function as tumor suppressors. A close association of somatic mutations of TRs with human cancers further supports the notion that the loss of normal functions of TR could lead to uncontrolled growth and loss of cell differentiation. SCOPE OF REVIEW In line with the findings from association studies in human cancers, mice deficient in total functional TRs (Thra1(-/-)Thrb(-/-) mice) or with a targeted homozygous mutation of the Thrb gene (denoted PV; Thrb(PV/PV) mice) spontaneously develop metastatic thyroid carcinoma. This review will examine the evidence learned from these genetically engineered mice that provided strong evidence to support the critical role of TRs in human cancer. MAJOR CONCLUSIONS Loss of normal functions of TR by deletion or by mutations could contribute to cancer development, progression and metastasis. GENERAL SIGNIFICANCE Novel mechanistic insights are revealed in how aberrant TR activities lead to carcinogenesis. Mouse models of thyroid cancer provide opportunities to identify molecular targets as potential treatment modalities. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Won Gu Kim
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892
| |
Collapse
|
30
|
Fozzatti L, Park JW, Zhao L, Willingham MC, Cheng SY. Oncogenic Actions of the Nuclear Receptor Corepressor (NCOR1) in a Mouse Model of Thyroid Cancer. PLoS One 2013; 8:e67954. [PMID: 23840792 PMCID: PMC3694063 DOI: 10.1371/journal.pone.0067954] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/23/2013] [Indexed: 12/15/2022] Open
Abstract
Studies have suggested that the nuclear receptor corepressor 1 (NCOR1) could play an important role in human cancers. However, the detailed molecular mechanisms by which it functions in vivo to affect cancer progression are not clear. The present study elucidated the in vivo actions of NCOR1 in carcinogenesis using a mouse model (ThrbPV/PV mice) that spontaneously develops thyroid cancer. ThrbPV/PV mice harbor a dominantly negative thyroid hormone receptor β (TRβ) mutant (denoted as PV). We adopted the loss-of-the function approach by crossing ThrbPV mice with mice that globally express an NCOR1 mutant protein (NCOR1ΔID) in which the receptor interaction domains have been modified so that it cannot interact with the TRβ, or PV, in mice. Remarkably, expression of NCOR1ΔID protein reduced thyroid tumor growth, markedly delayed tumor progression, and prolonged survival of ThrbPV/PVNcor1ΔID/ΔID mice. Tumor cell proliferation was inhibited by increased expression of cyclin-dependent kinase inhibitor 1 (p21waf1/cip1; Cdkn1A), and apoptosis was activated by elevated expression of pro-apoptotic BCL-Associated X (Bax). Further analyses showed that p53 was recruited to the p53-binding site on the proximal promoter of the Cdkn1A and the Bax gene as a co-repressor complex with PV/NCOR1/histone deacetylas-3 (HDAC-3), leading to repression of the Cdkn1A as well as the Bax gene in thyroids of ThrbPV/PV mice. In thyroids of ThrbPV/PVNcor1ΔID/ΔID mice, the p53/PV complex could not recruit NCOR1ΔID and HDAC-3, leading to de-repression of both genes to inhibit cancer progression. The present studies provided direct evidence in vivo that NCOR1 could function as an oncogene via transcription regulation in a mouse model of thyroid cancer.
Collapse
Affiliation(s)
- Laura Fozzatti
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jeong Won Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark C. Willingham
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
31
|
Park JW, Zhao L, Cheng SY. Inhibition of estrogen-dependent tumorigenesis by the thyroid hormone receptor β in xenograft models. Am J Cancer Res 2013; 3:302-311. [PMID: 23841029 PMCID: PMC3696536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/20/2013] [Indexed: 06/02/2023] Open
Abstract
Association studies suggest that thyroid hormone receptor β (TRβ) could function as a tumor suppressor in breast cancer development, but unequivocal evidence is still lacking. To understand the role of TRβ in breast tumor development, we adopted the gain-of-function approach by stably expressing the THRB gene in a human breast cancer cell line, MCF-7 (MCF-7-TRβ). Parental MCF-7 cells express the estrogen receptor, but not TRs. MCF-7 cells, stably expressing only the selectable marker, the Neo gene, were also generated as control for comparison (MCF-7-Neo cells). Cell-based studies indicate that the estrogen (E2)-dependent growth of MCF-7 cells was inhibited by the expression of TRβ in the presence of the thyroid hormone (T3). In a xenograft mouse model, large tumors rapidly developed after inoculation of MCF-7-Neo cells in athymic mice. In contrast, markedly smaller tumors (98% smaller) were found when MCF-7-TRβ cells were inoculated in athymic mice, indicating that TRβ inhibited the E2-dependent tumor growth of MCF-7 cells. Further detailed molecular analysis showed that TRβ acted to activate apoptosis and decrease proliferation of tumor cells, resulting in inhibition of tumor growth. The TRβ-mediated inhibition of tumor growth was elucidated via down-regulation of the JAK-STAT-cyclin D pathways. This in vivo evidence shows that TRβ could act as a tumor suppressor in breast tumorigenesis. The present study provides new insights into the role of TR in breast cancer.
Collapse
Affiliation(s)
- Jeong Won Park
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute Bethesda, MD, USA
| | | | | |
Collapse
|
32
|
Wu SM, Cheng WL, Lin CD, Lin KH. Thyroid hormone actions in liver cancer. Cell Mol Life Sci 2013; 70:1915-36. [PMID: 22955376 PMCID: PMC11113324 DOI: 10.1007/s00018-012-1146-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 08/06/2012] [Accepted: 08/20/2012] [Indexed: 12/13/2022]
Abstract
The thyroid hormone 3,3',5-triiodo-L-thyronine (T3) mediates several physiological processes, including embryonic development, cellular differentiation, metabolism, and the regulation of cell proliferation. Thyroid hormone receptors (TRs) generally act as heterodimers with the retinoid X receptor (RXR) to regulate target genes. In addition to their developmental and metabolic functions, TRs have been shown to play a tumor suppressor role, suggesting that their aberrant expression can lead to tumor transformation. Conversely, recent reports have shown an association between overexpression of wild-type TRs and tumor metastasis. Signaling crosstalk between T3/TR and other pathways or specific TR coregulators appear to affect tumor development. Since TR actions are complex as well as cell context-, tissue- and time-specific, aberrant expression of the various TR isoforms has different effects during diverse tumorigenesis. Therefore, elucidation of the T3/TR signaling mechanisms in cancers should facilitate the identification of novel therapeutic targets. This review provides a summary of recent studies focusing on the role of TRs in hepatocellular carcinomas (HCCs).
Collapse
Affiliation(s)
- Sheng-Ming Wu
- Department of Biochemistry, College of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, 333 Taiwan
| | - Wan-Li Cheng
- Department of Biochemistry, College of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, 333 Taiwan
| | - Crystal D. Lin
- Pre-med Program, Pacific Union College, Angwin, CA 94508 USA
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, 259 Wen-hwa 1 Road, Taoyuan, 333 Taiwan
| |
Collapse
|
33
|
Kim DW, Walker RL, Meltzer PS, Cheng SY. Complex temporal changes in TGFβ oncogenic signaling drive thyroid carcinogenesis in a mouse model. Carcinogenesis 2013; 34:2389-400. [PMID: 23698635 DOI: 10.1093/carcin/bgt175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite recent advances, understanding of molecular genetic alterations underlying thyroid carcinogenesis remains unclear. One key question is how dynamic temporal changes in global genomic expression affect carcinogenesis as the disease progresses. To address this question, we used a mouse model that spontaneously develops follicular thyroid cancer similar to human cancer (Thrb (PV/PV) mice). Using complementary DNA microarrays, we compared global gene expression profiles of thyroid tumors of Thrb (PV/PV) mice with the age- and gender-matched thyroids of wild-type mice at 3 weeks and at 2, 4, 6 and 14 months. These time points covered the pathological progression from early hyperplasia to capsular invasion, vascular invasion and eventual metastasis. Microarray data indicated that 462 genes were upregulated (Up-cluster genes) and 110 genes were downregulated (Down-cluster genes). Three major expression patterns (trending up, cyclical and spiking up and then down) and two (trending down and cyclical) were apparent in the Up-cluster and Down-cluster genes, respectively. Functional clustering of tumor-related genes followed by Ingenuity Pathways Analysis identified the transforming growth factor β (TGF β)-mediated network as key signaling pathways. Further functional analyses showed sustained activation of TGFβ receptor-pSMAD2/3 signaling, leading to decreased expression of E-cadherin and increased expression of fibronectin, vimentin, collagens and laminins. These TGFβ-induced changes facilitated epithelial-to-mesenchymal transition, which promotes cancer invasion and migration. Thus, complex temporal changes in gene expression patterns drive thyroid cancer progression, and persistent activation of TGFβ-TGFRβII-pSMAD2/3 signaling leads to EMT, thus promoting metastasis. This study provides new understanding of progression and metastatic spread of human thyroid cancer.
Collapse
Affiliation(s)
- Dong Wook Kim
- Gene Regulation Section, Laboratory of Molecular Biology and
| | | | | | | |
Collapse
|
34
|
Cordeiro A, de Souza LL, Oliveira LS, Faustino LC, Santiago LA, Bloise FF, Ortiga-Carvalho TM, Almeida NADS, Pazos-Moura CC. Thyroid hormone regulation of Sirtuin 1 expression and implications to integrated responses in fasted mice. J Endocrinol 2013; 216:181-93. [PMID: 23151359 DOI: 10.1530/joe-12-0420] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, has been connected to beneficial effects elicited by calorie restriction. Physiological adaptation to starvation requires higher activity of SIRT1 and also the suppression of thyroid hormone (TH) action to achieve energy conservation. Here, we tested the hypothesis that those two events are correlated and that TH may be a regulator of SIRT1 expression. Forty-eight-hour fasting mice exhibited reduced serum TH and increased SIRT1 protein content in liver and brown adipose tissue (BAT), and physiological thyroxine replacement prevented or attenuated the increment of SIRT1 in liver and BAT of fasted mice. Hypothyroid mice exhibited increased liver SIRT1 protein, while hyperthyroid ones showed decreased SIRT1 in liver and BAT. In the liver, decreased protein is accompanied by reduced SIRT1 activity and no alteration in its mRNA. Hyperthyroid and hypothyroid mice exhibited increases and decreases in food intake and body weight gain respectively. Food-restricted hyperthyroid animals (pair-fed to euthyroid group) exhibited liver and BAT SIRT1 protein levels intermediary between euthyroid and hyperthyroid mice fed ad libitum. Mice with TH resistance at the liver presented increased hepatic SIRT1 protein and activity, with no alteration in Sirt1 mRNA. These results suggest that TH decreases SIRT1 protein, directly and indirectly, via food ingestion control and, in the liver, this reduction involves TRβ. The SIRT1 reduction induced by TH has important implication to integrated metabolic responses to fasting, as the increase in SIRT1 protein requires the fasting-associated suppression of TH serum levels.
Collapse
Affiliation(s)
- Aline Cordeiro
- Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Cidade Universitária - Ilha do Fundão, Avenida Carlos Chagas Filho, 373, Centro de Ciências da Saúde, Bloco G, CEP: 21941-902, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim WG, Zhu X, Kim DW, Zhang L, Kebebew E, Cheng SY. Reactivation of the silenced thyroid hormone receptor β gene expression delays thyroid tumor progression. Endocrinology 2013. [PMID: 23183175 PMCID: PMC3529371 DOI: 10.1210/en.2012-1728] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
That a knock-in mouse harboring a dominant-negative thyroid hormone receptor (TR)-β (Thrb) mutation develops metastatic thyroid cancer strongly suggests the involvement of TRβ in carcinogenesis. Epigenetic silencing of the THRB gene is common in human cancers. The aim of the present study was to determine how DNA methylation affected the expression of the THRB gene in differentiated thyroid cancer (DTC) and how reexpression of the THRB gene attenuated the cancer phenotypes. We used methylation-specific PCR to examine the expression and promoter methylation of the THRB gene in DTC tissues. Thyroid cancer cells with hypermethylated THRB were treated with the demethylating agents 5'-aza-2'-deoxycytidine (5'-aza-CdR) and zebularine to evaluate their impact on the cancer cell phenotypes. THRB mRNA expression in DTC was 90% lower than in normal controls, and this decrease was associated with a higher tumor/lymph node staging. The promoter methylation level of the THRB gene had a significant negative correlation with the expression level of the THRB gene. Treatment of FTC-236 cells with 5'-aza-CdR or zebularine induced reexpression of the THRB gene and inhibited cell proliferation and migration. FTC-236 cells stably expressing TRβ exhibited lower cell proliferation and migration through inhibition of β-catenin signaling pathways compared with FTC-236 without TRβ. 5'-Aza-CdR also led to suppression of tumor growth in an in vivo xenograft model using FTC-236 cells consistent with the cell-based studies. These finding indicate that TRβ is a tumor suppressor and could be tested as a potential therapeutic target.
Collapse
Affiliation(s)
- Won Gu Kim
- Laboratory of Molecular Biology, National Cancer Institute, 37 Convent Drive, Room 5128, Bethesda, MD 20892-4264, USA
| | | | | | | | | | | |
Collapse
|
36
|
Chong Y, Shin JH, Oh YL, Han BK, Ko EY. Cribriform-morular variant of papillary thyroid carcinoma: ultrasonographic and clinical characteristics. Thyroid 2013; 23:45-9. [PMID: 22892017 DOI: 10.1089/thy.2011.0534] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND The cribriform-morular variant of papillary thyroid carcinoma (cmvPTC) is rare. There are few if any studies of the ultrasonographic (US) features of cmvPTC. The aim of this study was to determine the characteristic US and clinical features of the cmvPTC. METHODS A retrospective review of the US and clinical features was performed on 18 surgically confirmed cmvPTCs in five patients who were seen at our institution between January 2000 and December 2010. RESULTS All patients were female with a mean age of 28 years (range, 19-46 years). Two patients presented with palpable lesions, and the other patients were incidentally detected during screening US. On US, the majority of nodules had well-defined, oval to round shapes, and were hypoechoic and solid without calcifications. However, 6 (33.3%) of 18 nodules did have a cystic change. The size of the lesions varied from 0.3 to 3.0 cm (mean, 1.11 cm). None of the nodules were diagnosed as malignant based on the US criteria, but all except one patient had a cytology of their thyroid nodules that was read as malignant, without revealing the subtype of their PTC. Two of the five patients had familial adenomatous polyposis (FAP), and they had bilateral multiple nodules. No metastatic lymph nodes or extrathyroidal extension were identified. To date, none of the patients has had recurrence or metastasis during their mean follow-up of 25 months after thyroidectomy. CONCLUSION It appears that most cases of cmvPTC do not have features of malignancy on US and that they are indolent tumors as far as their clinical and histological features are concerned.
Collapse
Affiliation(s)
- Yousun Chong
- Department of Radiology, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
37
|
Zhao L, Zhu X, Won Park J, Fozzatti L, Willingham M, Cheng SY. Role of TSH in the spontaneous development of asymmetrical thyroid carcinoma in mice with a targeted mutation in a single allele of the thyroid hormone-β receptor. Endocrinology 2012; 153:5090-100. [PMID: 22919057 PMCID: PMC3512015 DOI: 10.1210/en.2012-1600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 07/24/2012] [Indexed: 02/08/2023]
Abstract
Mutations of the thyroid hormone receptor-β gene (THRB) cause resistance to thyroid hormone (RTH). A mouse model of RTH harboring a homozygous thyroid hormone receptor (TR)-β mutation known as PV (Thrb(PV/PV) mouse) spontaneously develops follicular thyroid cancer (FTC). Similar to RTH patients with mutations of two alleles of the THRB gene, the Thrb(PV/PV) mouse exhibits elevated thyroid hormones accompanied by highly nonsuppressible TSH. However, the heterozygous Thrb(PV/+) mouse with mildly elevated TSH (~2-fold) does not develop FTC. The present study examined whether the mutation of a single allele of the Thrb gene is sufficient to induce FTC in Thrb(PV/+) mice under stimulation by high TSH. Thrb(PV/+) mice and wild-type siblings were treated with propylthiouracil (PTU) to elevate serum TSH. Thrb(PV/+)mice treated with PTU (Thrb(PV/+)-PTU) spontaneously developed FTC similar to human thyroid cancer, but wild-type siblings treated with PTU did not. Interestingly, approximately 33% of Thrb(PV/+)-PTU mice developed asymmetrical thyroid tumors, as is frequently observed in human thyroid cancer. Molecular analyses showed activation of the cyclin 1-cyclin-dependent kinase-4-transcription factor E2F1 pathway to increase thyroid tumor cell proliferation of Thrb(PV/+)-PTU mice. Moreover, via extranuclear signaling, the PV also activated the integrin-Src-focal adhesion kinase-AKT-metalloproteinase pathway to increase migration and invasion of tumor cells. Therefore, mutation of a single allele of the Thrb gene is sufficient to drive the TSH-simulated hyperplastic thyroid follicular cells to undergo carcinogenesis. The present study suggests that the Thrb(PV/+)-PTU mouse model potentially could be used to gain insights into the molecular basis underlying the association between thyroid cancer and RTH seen in some affected patients.
Collapse
Affiliation(s)
- Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-4264, USA
| | | | | | | | | | | |
Collapse
|
38
|
Dentice M, Luongo C, Ambrosio R, Sibilio A, Casillo A, Iaccarino A, Troncone G, Fenzi G, Larsen PR, Salvatore D. β-Catenin regulates deiodinase levels and thyroid hormone signaling in colon cancer cells. Gastroenterology 2012; 143:1037-47. [PMID: 22771508 DOI: 10.1053/j.gastro.2012.06.042] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 05/18/2012] [Accepted: 06/29/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Activation of the β-catenin/T-cell factor (TCF) complex occurs in most colon tumors, and its actions correlate with the neoplastic phenotype of intestinal epithelial cells. Type 3 deiodinase (D3), the selenoenzyme that inactivates thyroid hormone (3,5,3' triiodothyronine [T3]), is frequently expressed by tumor cells, but little is known about its role in the regulation of T3 signaling in cancer cells. METHODS We measured D3 expression in 6 colon cancer cell lines and human tumors and correlated it with the activity of the β-catenin/TCF complex. We also determined the effects of D3 loss on local thyroid hormone signaling and colon tumorigenesis. RESULTS We show that D3 is a direct transcriptional target of the β-catenin/TCF complex; its expression was higher in human intestinal adenomas and carcinomas than in healthy intestinal tissue. Experimental attenuation of β-catenin reduced D3 levels and induced type 2 deiodinase (the D3 antagonist that converts 3,5,3',5' tetraiodothyronine into active T3) thereby increasing T3-dependent transcription. In the absence of D3, excess T3 reduced cell proliferation and promoted differentiation in cultured cells and in xenograft mouse models. This occurred via induction of E-cadherin, which sequestered β-catenin at the plasma membrane and promoted cell differentiation. CONCLUSIONS Deiodinases are at the interface between the β-catenin and the thyroid hormone pathways. Their synchronized regulation of intracellular T3 concentration is a hitherto unrecognized route by which the multiple effects of β-catenin are generated and may be targeted to reduce the oncogenic effects of β-catenin in intestinal cells.
Collapse
Affiliation(s)
- Monica Dentice
- Department of Molecular and Clinical Endocrinology and Oncology, University of Naples "Federico II," Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim DW, Zhao L, Hanover J, Willingham M, Cheng SY. Thyroid hormone receptor β suppresses SV40-mediated tumorigenesis via novel nongenomic actions. Am J Cancer Res 2012; 2:606-619. [PMID: 22957312 PMCID: PMC3433110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023] Open
Abstract
Accumulated evidence suggests that thyroid hormone receptor β (TRβ) could function as a tumor suppressor, but the detailed mechanisms by which TRβ inhibits tumorigenesis are not fully understood. The present studies explored the mechanisms by which TRβ acted to inhibit thyroid tumor development mediated by simian virus-40 (SV40). In mouse xenograft models, SV40 large T antigen (SV40Tag)-immortalized human thyroid epithelial (HTori) cells rapidly induced tumors, but the tumor development was totally blocked by TRβ stably expressed in HTori cells. Previous studies showed that the SV40Tag oncoprotein binds to and inactivates tumor suppressors p53 and retinoblastoma protein (Rb), thereby inducing tumorigenesis. Here we showed that one of the mechanisms by which TRβ suppressed tumor development was by competing with p53 and Rb for binding to SV40Tag. The interaction of TRβ with SV40Tag led to reactivation of Rb to inhibit cell cycle progression. TRβ- SV40Tag interaction also resulted in reactivating p53 to increase the expression of Pten, thus attenuating PI3K-AKT signaling to decrease cell proliferation and to induce apoptosis. The present study uncovered a novel action of TRβ as a tumor suppressor initiated via interfering with the recruitment of Rb and p53 by SV40Tag oncoprotein through protein-protein interaction, thereby acting to block tumor development.
Collapse
Affiliation(s)
- Dong Wook Kim
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer InstituteBethesda, MD 20892, US
| | - Li Zhao
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer InstituteBethesda, MD 20892, US
| | - John Hanover
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney DiseasesBethesda, MD 20892, US
| | - Mark Willingham
- Department of Pathology, Wake Forest UniversityWinston-Salem, NC, 27157, US
| | - Sheue-yann Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer InstituteBethesda, MD 20892, US
| |
Collapse
|
40
|
Sirakov M, Skah S, Nadjar J, Plateroti M. Thyroid hormone's action on progenitor/stem cell biology: new challenge for a classic hormone? Biochim Biophys Acta Gen Subj 2012; 1830:3917-27. [PMID: 22890105 DOI: 10.1016/j.bbagen.2012.07.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 07/01/2012] [Accepted: 07/29/2012] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thyroid hormones are involved in developmental and homeostatic processes in several tissues. Their action results in different outcomes depending on the developmental stage, tissue and/or cellular context. Interestingly, their pleiotropic roles are conserved across vertebrates. It is largely documented that thyroid hormones act via nuclear receptors, the TRs, which are transcription factors and whose activity can be modulated by the local availability of the hormone T3. In the "classical view", the T3-induced physiological response depends on the expression of specific TR isoforms and the iodothyronine deiodinase selenoenzymes that control the local level of T3, thus TR activity. SCOPE OF THE REVIEW Recent data have clearly established that the functionality of TRs is coordinated and integrated with other signaling pathways, specifically at the level of stem/progenitor cell populations. Here, we summarize these data and propose a new and intriguing role for thyroid hormones in two selected examples. MAJOR CONCLUSIONS In the intestinal epithelium and the retina, TRα1 and TRβ2 are expressed at the level of the precursors where they induce cell proliferation and differentiation, respectively. Moreover, these different functions result from the integration of the hormone signal with other intrinsic pathways, which play a fundamental role in progenitor/stem cell physiology. GENERAL SIGNIFICANCE Taken together, the interaction of TRs with other signaling pathways, specifically in stem/progenitor cells, is a new concept that may have biological relevance in therapeutic approaches aimed to target stem cells such as tissue engineering and cancer. This article is part of a Special Issue entitled Thyroid hormone signalling.
Collapse
Affiliation(s)
- Maria Sirakov
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Belgium
| | | | | | | |
Collapse
|
41
|
Sirakov M, Skah S, Lone IN, Nadjar J, Angelov D, Plateroti M. Multi-level interactions between the nuclear receptor TRα1 and the WNT effectors β-catenin/Tcf4 in the intestinal epithelium. PLoS One 2012; 7:e34162. [PMID: 22509275 PMCID: PMC3317923 DOI: 10.1371/journal.pone.0034162] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/23/2012] [Indexed: 11/21/2022] Open
Abstract
Intestinal homeostasis results from complex cross-regulation of signaling pathways; their alteration induces intestinal tumorigenesis. Previously, we found that the thyroid hormone nuclear receptor TRα1 activates and synergizes with the WNT pathway, inducing crypt cell proliferation and promoting tumorigenesis. Here, we investigated the mechanisms and implications of the cross-regulation between these two pathways in gut tumorigenesis in vivo and in vitro. We analyzed TRα1 and WNT target gene expression in healthy mucosae and tumors from mice overexpressing TRα1 in the intestinal epithelium in a WNT-activated genetic background (vil-TRα1/Apc mice). Interestingly, increased levels of β-catenin/Tcf4 complex in tumors from vil-TRα1/Apc mice blocked TRα1 transcriptional activity. This observation was confirmed in Caco2 cells, in which TRα1 functionality on a luciferase reporter-assay was reduced by the overexpression of β-catenin/Tcf4. Moreover, TRα1 physically interacted with β-catenin/Tcf4 in the nuclei of these cells. Using molecular approaches, we demonstrated that the binding of TRα1 to its DNA target sequences within the tumors was impaired, while it was newly recruited to WNT target genes. In conclusion, our observations strongly suggest that increased β-catenin/Tcf4 levels i) correlated with reduced TRα1 transcriptional activity on its target genes and, ii) were likely responsible for the shift of TRα1 binding on WNT targets. Together, these data suggest a novel mechanism for the tumor-promoting activity of the TRα1 nuclear receptor.
Collapse
Affiliation(s)
- Maria Sirakov
- Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Seham Skah
- Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Imtiaz Nisar Lone
- Laboratoire de Biologie Moléculaire de la Cellule, Université de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Julien Nadjar
- Institut de Génomique Fonctionnelle de Lyon, Lyon, France
| | - Dimitar Angelov
- Laboratoire de Biologie Moléculaire de la Cellule, Université de Lyon, Université Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
| | | |
Collapse
|
42
|
O'Shea PJ, Kim DW, Logan JG, Davis S, Walker RL, Meltzer PS, Cheng SY, Williams GR. Advanced bone formation in mice with a dominant-negative mutation in the thyroid hormone receptor β gene due to activation of Wnt/β-catenin protein signaling. J Biol Chem 2012; 287:17812-17822. [PMID: 22442145 DOI: 10.1074/jbc.m111.311464] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Thyroid hormone (T(3)) acts in chondrocytes and bone-forming osteoblasts to control bone development and maintenance, but the signaling pathways mediating these effects are poorly understood. Thrb(PV/PV) mice have a severely impaired pituitary-thyroid axis and elevated thyroid hormone levels due to a dominant-negative mutant T(3) receptor (TRβ(PV)) that cannot bind T(3) and interferes with the actions of wild-type TR. Thrb(PV/PV) mice have accelerated skeletal development due to unknown mechanisms. We performed microarray studies in primary osteoblasts from wild-type mice and Thrb(PV/PV) mice. Activation of the canonical Wnt signaling in Thrb(PV/PV) mice was confirmed by in situ hybridization analysis of Wnt target gene expression in bone during postnatal growth. By contrast, T(3) treatment inhibited Wnt signaling in osteoblastic cells, suggesting that T(3) inhibits the Wnt pathway by facilitating proteasomal degradation of β-catenin and preventing its accumulation in the nucleus. Activation of the Wnt pathway in Thrb(PV/PV) mice, however, results from a gain of function for TRβ(PV) that stabilizes β-catenin despite the presence of increased thyroid hormone levels. These studies demonstrate novel interactions between T(3) and Wnt signaling pathways in the regulation of skeletal development and bone formation.
Collapse
Affiliation(s)
- Patrick J O'Shea
- Gene Regulation Section, Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892; Molecular Endocrinology Group, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Dong Wook Kim
- Gene Regulation Section, Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - John G Logan
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom
| | - Sean Davis
- Molecular Genetics Section, Genetics Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert L Walker
- Molecular Genetics Section, Genetics Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Paul S Meltzer
- Molecular Genetics Section, Genetics Branch, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Sheue-Yann Cheng
- Gene Regulation Section, Laboratory of Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| | - Graham R Williams
- Molecular Endocrinology Group, Department of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, United Kingdom.
| |
Collapse
|
43
|
Zhu X, Cheng SY. Modeling follicular thyroid cancer for future therapies. Am J Cancer Res 2012; 2:130-140. [PMID: 22485196 PMCID: PMC3304569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 01/20/2012] [Indexed: 05/31/2023] Open
Abstract
Therapeutic choices are limited for undifferentiated metastatic thyroid carcinomas. Although implanted subcutaneous thyroid tumors are standard preclinical models to examine the efficacy of new therapeutic agents, these xenograft models frequently fail to predict the outcomes of clinical trials in patients with metastatic thyroid carcinomas. Genetically engineered mouse models with alterations similar to human cancers in their pathological progression and in an immunocompetent environment offer unparalleled opportunities for evaluating novel potential molecular targets. We review recent advances in the modeling of follicular thyroid carcinoma with distant metastasis and in the use of these mouse models in preclinical studies, emphasizing the significance of genetically engineered mouse models in clinical applications.
Collapse
Affiliation(s)
- Xuguang Zhu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health Bethesda
| | | |
Collapse
|
44
|
Sastre-Perona A, Santisteban P. Role of the wnt pathway in thyroid cancer. Front Endocrinol (Lausanne) 2012; 3:31. [PMID: 22645520 PMCID: PMC3355838 DOI: 10.3389/fendo.2012.00031] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 02/09/2012] [Indexed: 01/03/2023] Open
Abstract
Aberrant activation of Wnt signaling is involved in the development of several epithelial tumors. Wnt signaling includes two major types of pathways: (i) the canonical or Wnt/β-catenin pathway; and (ii) the non-canonical pathways, which do not involve β-catenin stabilization. Among these pathways, the Wnt/β-catenin pathway has received most attention during the past years for its critical role in cancer. A number of publications emphasize the role of the Wnt/β-catenin pathway in thyroid cancer. This pathway plays a crucial role in development and epithelial renewal, and components such as β-catenin and Axin are often mutated in thyroid cancer. Although it is accepted that altered Wnt signaling is a late event in thyroid cell transformation that affects anaplastic thyroid tumors, recent data suggest that it is also altered in papillary thyroid carcinoma (PTC) with RET/PTC mutations. Therefore, the purpose of this review is to summarize the main relevant data of Wnt signaling in thyroid cancer, with special emphasis on the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Ana Sastre-Perona
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de MadridMadrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de MadridMadrid, Spain
- *Correspondence: Pilar Santisteban, Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas, y Universidad Autónoma de Madrid, C/Arturo Duperier 4, 28029 Madrid, Spain. e-mail:
| |
Collapse
|
45
|
Lu C, Zhu X, Willingham MC, Cheng SY. Activation of tumor cell proliferation by thyroid hormone in a mouse model of follicular thyroid carcinoma. Oncogene 2011; 31:2007-16. [PMID: 21909131 DOI: 10.1038/onc.2011.390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thyroid cancers are the most common malignancy of the endocrine system in humans. To understand the molecular genetic events underlying thyroid carcinogenesis, we have generated a mouse model that spontaneously develops follicular thyroid carcinoma similar to human thyroid cancer (Thrb(PV/PV) mouse). This mutant mouse harbors a dominant-negative mutated thyroid hormone receptor β (denoted PV). The PV mutation was identified in a patient with resistance to thyroid hormone (TH). Thrb(PV/PV) mice exhibit highly elevated serum thyroid-stimulating hormone levels and increased TH. We have previously shown that thyroid-stimulating hormone is required, but not sufficient to induce metastatic follicular thyroid cancer in Thrb(PV/PV) mice. However, whether the elevated TH also contributes to the thyroid carcinogenesis of Thrb(PV/PV) mice was not elucidated. To understand the role of TH in thyroid carcinogenesis, we blocked the production of TH by treating Thrb(PV/PV) mice with propylthiouracil (Thrb(PV/PV)-PTU mice) and compared the development of thyroid cancer in Thrb(PV/PV)-PTU and untreated Thrb(PV/PV) mice. We found that thyroid tumor growth was reduced by ∼42% in Thrb(PV/PV)-PTU mice as compared with Thrb(PV/PV) mice. Analysis by bromodeoxyuridine-nuclear labeling showed decreased incorporation of bromodeoxyuridine in thyroid tumor cells of Thrb(PV/PV)-PTU mice, indicative of decreased tumor cell proliferation. However, cleaved-caspase 3 staining showed no apparent changes in apoptosis of tumor cells in Thrb(PV/PV)-PTU mice. Molecular studies identified a marked attenuation of the PI3K-AKT-β-catenin signaling pathway that led to decreased protein levels of cyclin D2, thereby decreasing tumor cell proliferation in Thrb(PV/PV)-PTU mice. Furthermore, matrix metalloproteinase-2, a downstream target of β-catenin and a key regulator during tumor invasion and metastasis, was also decreased. Thus, the present study uncovers a critical role of TH in promoting the thyroid carcinogenesis of Thrb(PV/PV) mice via membrane signaling events. Importantly, these findings suggest that anti-thyroid drugs could be considered as possible therapeutic agents of thyroid cancer.
Collapse
Affiliation(s)
- C Lu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892-4264, USA
| | | | | | | |
Collapse
|
46
|
Lu C, Cheng SY. Extranuclear signaling of mutated thyroid hormone receptors in promoting metastatic spread in thyroid carcinogenesis. Steroids 2011; 76:885-91. [PMID: 21473875 PMCID: PMC3129395 DOI: 10.1016/j.steroids.2011.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/25/2011] [Accepted: 03/25/2011] [Indexed: 01/17/2023]
Abstract
Thyroid hormone receptors (TRs) mediate the critical activities of the thyroid hormone (T3) in growth, development, and differentiation. Decreased expression and/or somatic mutations of TRs have been shown to be associated with several types of human cancers including liver, breast, lung, and thyroid. A direct demonstration that TRβ mutants could function as oncogenes is evidenced by the spontaneous development of follicular thyroid carcinoma similar to human cancer in a knockin mouse model harboring a mutated TRβ (denoted as PV; Thrb(PV/PV) mice). PV is a dominant negative mutation identified in a patient with resistance to thyroid hormone. Analysis of altered gene expression and molecular studies of thyroid carcinogenesis in Thrb(PV/PV) mice show that the oncogenic activity of PV is mediated by both nucleus-initiated transcription and extranuclear actions to alter gene expression and signaling transduction activity. This article focuses on recent findings of novel extranuclear actions of PV that affect signaling cascades and thereby the invasiveness, migration, and motility of thyroid tumor cells. These findings have led to identification of potential molecular targets for treatment of metastatic thyroid cancer.
Collapse
Affiliation(s)
- Changxue Lu
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA
| | | |
Collapse
|
47
|
Sirakov M, Plateroti M. The thyroid hormones and their nuclear receptors in the gut: From developmental biology to cancer. Biochim Biophys Acta Mol Basis Dis 2011; 1812:938-46. [DOI: 10.1016/j.bbadis.2010.12.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 02/09/2023]
|
48
|
Guigon CJ, Kim DW, Willingham MC, Cheng SY. Mutation of thyroid hormone receptor-β in mice predisposes to the development of mammary tumors. Oncogene 2011; 30:3381-90. [PMID: 21399657 PMCID: PMC3457781 DOI: 10.1038/onc.2011.50] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 12/29/2022]
Abstract
Correlative data suggest that thyroid hormone receptor-β (TRβ) mutations could increase the risk of mammary tumor development, but unequivocal evidence is still lacking. To explore the role of TRβ mutants in vivo in breast tumor development and progression, we took advantage of a knock-in mouse model harboring a mutation in the Thrb gene encoding TRβ (Thrb(PV) mouse). Although in adult nulliparous females, a single ThrbPV allele did not contribute to mammary gland abnormalities, the presence of two ThrbPV alleles led to mammary hyperplasia in ∼36% Thrb(PV/PV) mice. The ThrbPV mutation further markedly augmented the risk of mammary hyperplasia in a mouse model with high susceptibility to mammary tumors (Pten(+/-) mouse), as demonstrated by the occurrence of mammary hyperplasia in ∼60% of Thrb(PV/+)Pten(+/-) and ∼77% of Thrb(PV/PV)Pten(+/-) mice versus ∼33% of Thrb(+/+)Pten(+/-) mice. The Thrb(PV) mutation increased the activity of signal transducer and activator of transcription (STAT5) to increase cell proliferation and the expression of the STAT5 target gene encoding β-casein in the mammary gland. We next sought to understand the molecular mechanism underlying STAT5 overactivation by TRβPV. Cell-based studies with a breast cancer cell line (T47D cells) showed that thyroid hormone (T3) repressed STAT5 signaling in TRβ-expressing cells through decreasing STAT5-mediated transcription activity and target gene expression, whereas sustained STAT5 signaling was observed in TRβPV-expressing cells. Collectively, these findings show for the first time that a TRβ mutation promotes the development of mammary hyperplasia via aberrant activation of STAT5, thereby conferring a fertile genetic ground for tumorigenesis.
Collapse
Affiliation(s)
- CJ Guigon
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - DW Kim
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - MC Willingham
- Department of Pathology, Wake Forest University, Winston-Salem, NC, USA
| | - S-y Cheng
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
49
|
Rosen MD, Privalsky ML. Thyroid hormone receptor mutations in cancer and resistance to thyroid hormone: perspective and prognosis. J Thyroid Res 2011; 2011:361304. [PMID: 21760978 PMCID: PMC3134260 DOI: 10.4061/2011/361304] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/16/2011] [Indexed: 12/13/2022] Open
Abstract
Thyroid hormone, operating through its receptors, plays crucial roles in the control of normal human physiology and development; deviations from the norm can give rise to disease. Clinical endocrinologists often must confront and correct the consequences of inappropriately high or low thyroid hormone synthesis. Although more rare, disruptions in thyroid hormone endocrinology due to aberrations in the receptor also have severe medical consequences. This review will focus on the afflictions that are caused by, or are closely associated with, mutated thyroid hormone receptors. These include Resistance to Thyroid Hormone Syndrome, erythroleukemia, hepatocellular carcinoma, renal clear cell carcinoma, and thyroid cancer. We will describe current views on the molecular bases of these diseases, and what distinguishes the neoplastic from the non-neoplastic. We will also touch on studies that implicate alterations in receptor expression, and thyroid hormone levels, in certain oncogenic processes.
Collapse
Affiliation(s)
- Meghan D Rosen
- Department of Microbiology, University of California-Davis, Davis, CA 95616, USA
| | | |
Collapse
|
50
|
Abstract
Selective thyromimetics are synthetic analogs of thyroid hormones with tissue-specific thyroid hormone actions. Tissue selectivity is partly mediated by selectivity for the thyroid hormone receptor-β isoform, but is also enhanced by tissue-selective uptake. Several preclinical animal models and recent human clinical trials have provided sound evidence that thyromimetics can serve as pharmacological tools to improve serum lipids without affecting heart rate. Thyromimetics consistently and efficiently lowered low-density lipoprotein cholesterol and lipoprotein (a) plasma levels without positive chronotropic effects. Most importantly, thyromimetics had a synergistic action when used in addition to 3-hydroxy-3-methylglutaryl CoA reductase inhibitors. Animal data have further suggested that thyromimetics might be useful in the treatment of obesity, hepatic steatosis and atherosclerosis. However, only long-term phase III clinical trials will tell if the observed lipid lowering effects of thyromimetics will improve cardiovascular outcome in humans, too. At the moment, the treatment of dyslipidemia seems to be the major indication for the therapeutic use of thyromimetics, which are now rapidly moving from bench to bed-side.
Collapse
Affiliation(s)
- Ivan Tancevski
- Department of Internal Medicine I, Innsbruck Medical University, Innsbruck, Austria.
| | | | | |
Collapse
|