1
|
Watts LM, Sparkes PC, Dewhurst HF, Guilfoyle SE, Pollard AS, Komla-Ebri D, Butterfield NC, Williams GR, Bassett JHD. The GWAS candidate far upstream element binding protein 3 (FUBP3) is required for normal skeletal growth, and adult bone mass and strength in mice. Bone 2025; 195:117472. [PMID: 40139337 DOI: 10.1016/j.bone.2025.117472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Bone mineral density (BMD) and height are highly heritable traits for which hundreds of genetic loci have been linked through genome wide association studies (GWAS). FUBP3 is a DNA and RNA binding protein best characterised as a transcriptional regulator of c-Myc, but little is known about its role in vivo. Single nucleotide polymorphisms in FUBP3 at the 9q34.11 locus have been associated with BMD, fracture and height in multiple GWAS, but FUBP3 has no previously established role in the skeleton. We analysed Fubp3-deficient mice to determine the consequence of FUBP3 deficiency in vivo. Mice lacking Fubp3 had reduced survival to adulthood and impaired skeletal growth. Bone mass was decreased, most strikingly in the vertebrae, with altered trabecular micro-architecture. Fubp3 deficient bones were also weak. These data provide the first functional demonstration that Fubp3 is required for normal skeletal growth and development and maintenance of adult bone structure and strength, indicating that FUBP3 contributes to the GWAS association of 9q34.11 with variation in height, BMD and fracture.
Collapse
Affiliation(s)
- Laura M Watts
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Penny C Sparkes
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Hannah F Dewhurst
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Siobhan E Guilfoyle
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Andrea S Pollard
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Davide Komla-Ebri
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Natalie C Butterfield
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Graham R Williams
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| | - J H Duncan Bassett
- Molecular Endocrinology Laboratory, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
| |
Collapse
|
2
|
Palzer KA, Bolduan V, Lakus J, Tubbe I, Montermann E, Clausen BE, Bros M, Pautz A. The RNA-binding protein KSRP reduces asthma-like characteristics in a murine model. Inflamm Res 2025; 74:54. [PMID: 40095032 PMCID: PMC11914311 DOI: 10.1007/s00011-025-02024-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND AND OBJECTIVE Asthma is a chronic inflammatory disease characterized by dysregulated cytokine expression. The RNA-binding protein KSRP reduces the expression of several pro-inflammatory mediators. Therefore, we investigated whether KSRP modulates Th2-associated immune responses in vivo in an ovalbumin-induced (OVA) allergic asthma model in C57BL/6 KSRP-deficient mice (KSRP-/-). METHODS Asthma severity in OVA-immunized wild type or KSRP-/- mice was determined by airway hyperresponsiveness (AHR), structural changes of lung tissue, and OVA-specific antibody production. Cytokine expression in bronchoalveolar lavage fluid (BALF) was measured by Cytometric Bead Array (CBA) analysis. Cellular signaling pathways involved in KSRP-mediated effects in asthma pathogenesis were analyzed in vitro in cell culture models using specific inhibitors. RESULTS KSRP deficiency exacerbates OVA-induced allergic asthma compared to wild type mice, as indicated by increased AHR, more severe lung damage, goblet cell hyperplasia and increased OVA-specific antibody production. CBA analyses confirmed, that KSRP deficiency enhances IL-4, IL-5 and IL-13 production in BALF. The effect of KSRP on Th2-associated cytokine expression appears to be mediated by modulation of the STAT6 and NFAT signaling pathway rather than by inhibiting the stability of cytokine-encoding mRNA species. CONCLUSION Our data demonstrate that KSRP dampens Th2 immune cell activity and therefore seems to be important for the pathogenesis of Th2-mediated diseases.
Collapse
Affiliation(s)
- Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Jelena Lakus
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Ingrid Tubbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Björn E Clausen
- Paul Klein Center for Immune Intervention, Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| |
Collapse
|
3
|
Zdradzinski MD, Vaughn LS, Matoo S, Trumbull K, Loomis A, Thames E, Lee SJ, Perrone-Bizzozero N, Lu Q, Larsen JM, Twiss JL. KHSRP-mediated Decay of Axonally Localized Prenyl-Cdc42 mRNA Slows Nerve Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636857. [PMID: 39975228 PMCID: PMC11839134 DOI: 10.1101/2025.02.06.636857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The small GTPase CDC42 promotes axon growth through actin filament polymerization and this growth is driven by axonal localization of the mRNA encoding the prenylated CDC42 isoform (Prenyl-Cdc42). Here, we show that axonal Prenyl-Cdc42 mRNA transport and translation are decreased by growth-inhibiting stimulation and increased by growth-promoting stimulation. In contrast, axonal RhoA mRNA transport and translation are increased by growth inhibition but unaffected by growth promotion. Localized increase in KHSRP in response to growth inhibitory stimulation, through elevation of intracellular Ca2+, promotes decay of axonal Prenyl-Cdc42 mRNA. Distinct 3'UTR motifs regulate transport and stability of axonal Prenyl-Cdc42 mRNA. KHSRP protein binds to a Prenyl-Cdc42 mRNA motif within nt 801-875 and the mRNA is remarkably increased in axons of Khsrp -/- mice. Selective depletion of Prenyl-Cdc42 mRNA from axons reverses the accelerated axon regeneration seen in Khsrp -/- mice.
Collapse
Affiliation(s)
- M D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Samaneh Matoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Kayleigh Trumbull
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA 29634
| | - Ashley Loomis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
- Genomic Medicine, Biogen, Cambridge, MA, 02142 USA
| | | | - Qun Lu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
- South Carolina SmartState Centers for Neurotherapeutics, University of South Carolina, Columbia, SC 29208 USA
| | - Jessica M Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA 29634
| | - J L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
- South Carolina SmartState Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC 29208 USA
- Carolina Autism and Neurodevelopment Center, University of South Carolina, Columbia, SC 29208 USA
| |
Collapse
|
4
|
Bolduan V, Palzer KA, Ries F, Busch N, Pautz A, Bros M. KSRP Deficiency Attenuates the Course of Pulmonary Aspergillosis and Is Associated with the Elevated Pathogen-Killing Activity of Innate Myeloid Immune Cells. Cells 2024; 13:2040. [PMID: 39768132 PMCID: PMC11674352 DOI: 10.3390/cells13242040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
The mRNA-binding protein KSRP (KH-type splicing regulatory protein) is known to modulate immune cell functions post-transcriptionally, e.g., by reducing the mRNA stability of cytokines. It is known that KSRP binds the AU-rich motifs (ARE) that are often located in the 3'-untranslated part of mRNA species, encoding dynamically regulated proteins as, for example, cytokines. Innate myeloid immune cells, such as polymorphonuclear neutrophils (PMNs) and macrophages (MACs), eliminate pathogens by multiple mechanisms, including phagocytosis and the secretion of chemo- and cytokines. Here, we investigated the role of KSRP in the phenotype and functions of both innate immune cell types in the mouse model of invasive pulmonary aspergillosis (IPA). Here, KSRP-/- mice showed lower levels of Aspergillus fumigatus conidia (AFC) and an increase in the frequencies of PMNs and MACs in the lungs. Our results showed that PMNs and MACs from KSRP-/- mice exhibited an enhanced phagocytic uptake of AFC, accompanied by increased ROS production in PMNs upon stimulation. A comparison of RNA sequencing data revealed that 64 genes related to inflammatory and immune responses were shared between PMNs and MACs. The majority of genes upregulated in PMNs were involved in metabolic processes, cell cycles, and DNA repair. Similarly, KSRP-deficient PMNs displayed reduced levels of apoptosis. In conclusion, our results indicate that KSRP serves as a critical negative regulator of PMN and MAC anti-pathogen activity.
Collapse
Affiliation(s)
- Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Frederic Ries
- Department of Hematology and Medical Oncology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Nora Busch
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
5
|
Yang YC, Ho KH, Hua KT, Chien MH. Roles of K(H)SRP in modulating gene transcription throughout cancer progression: Insights from cellular studies to clinical perspectives. Biochim Biophys Acta Rev Cancer 2024; 1879:189202. [PMID: 39447687 DOI: 10.1016/j.bbcan.2024.189202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
The KH-type splicing regulatory protein (KHSRP), also known as KSRP, is an RNA-binding protein that regulates gene expressions through various mechanisms, including messenger (m)RNA degradation, micro (mi)RNA maturation, and transcriptional activity. KSRP has been implicated in a wide range of physiological and pathological processes, with emerging evidence highlighting its role in modulating diverse aspects of cancer behaviors. In this review, we provide a comprehensive overview of KSRP's clinical relevance and its multifaceted regulatory mechanisms in cancer. Our extensive pan-cancer analysis uncovers associations of KSRP with clinical outcomes and identifies cell cycle progression as a key signaling pathway correlated with KSRP expression. Furthermore, we identify miR-17-5p as critical miRNAs positively correlated with KSRP, and it is associated with poor survival in various cancers. Collectively, this review offers new insights into the potential of KSRP as a target for therapeutic strategies in cancer treatment.
Collapse
Affiliation(s)
- Yi-Chieh Yang
- Department of Medical Research, Tungs' Taichung Metro Harbor Hospital, Taichung, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Oral Hygiene, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Hao Ho
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Kuo-Tai Hua
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Bolduan V, Palzer KA, Hieber C, Schunke J, Fichter M, Schneider P, Grabbe S, Pautz A, Bros M. The mRNA-Binding Protein KSRP Limits the Inflammatory Response of Macrophages. Int J Mol Sci 2024; 25:3884. [PMID: 38612694 PMCID: PMC11011855 DOI: 10.3390/ijms25073884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
KH-type splicing regulatory protein (KSRP) is a single-stranded nucleic acid-binding protein with multiple functions. It is known to bind AU-rich motifs within the 3'-untranslated region of mRNA species, which in many cases encode dynamically regulated proteins like cytokines. In the present study, we investigated the role of KSRP for the immunophenotype of macrophages using bone marrow-derived macrophages (BMDM) from wild-type (WT) and KSRP-/- mice. RNA sequencing revealed that KSRP-/- BMDM displayed significantly higher mRNA expression levels of genes involved in inflammatory and immune responses, particularly type I interferon responses, following LPS stimulation. In line, time kinetics studies revealed increased levels of interferon-γ (IFN-γ), interleukin (IL)-1β and IL-6 mRNA in KSRP-/- macrophages after 6 h subsequent to LPS stimulation as compared to WT cultures. At the protein level, KSRP-/- BMDM displayed higher levels of these cytokines after overnight stimulation. Matching results were observed for primary peritoneal macrophages of KSRP-/- mice. These showed higher IL-6, tumor necrosis factor-α (TNF-α), C-X-C motif chemokine 1 (CXCL1) and CC-chemokine ligand 5 (CCL5) protein levels in response to LPS stimulation than the WT controls. As macrophages play a key role in sepsis, the in vivo relevance of KSRP deficiency for cytokine/chemokine production was analyzed in an acute inflammation model. In agreement with our in vitro findings, KSRP-deficient animals showed higher cytokine production upon LPS administration in comparison to WT mice. Taken together, these findings demonstrate that KSRP constitutes an important negative regulator of cytokine expression in macrophages.
Collapse
Affiliation(s)
- Vanessa Bolduan
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany (A.P.)
| | - Christoph Hieber
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Jenny Schunke
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Michael Fichter
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Paul Schneider
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany (A.P.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
7
|
Leavenworth JD, Yusuf N, Hassan Q. K-Homology Type Splicing Regulatory Protein: Mechanism of Action in Cancer and Immune Disorders. Crit Rev Eukaryot Gene Expr 2024; 34:75-87. [PMID: 37824394 PMCID: PMC11003564 DOI: 10.1615/critreveukaryotgeneexpr.2023048085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
K homology-type splicing regulatory protein (KSRP) is emerging as a key player in cancer biology, and immunology. As a single-strand nucleic acid binding protein it functions in both transcriptional and post-transcriptional regulation, while facilitating multiple stages of RNA metabolism to affect proliferation and control cell fate. However, it must interact with other proteins to determine the fate of its bound substrate. Here we provide an minireview of this important regulatory protein and describe its complex subcellular functions to affect RNA metabolism, stability, miRNA biogenesis and maturation, stress granule function, metastasis, and inflammatory processes.
Collapse
Affiliation(s)
- Jonathan D. Leavenworth
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nabiha Yusuf
- Department of Dermatology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Quamarul Hassan
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Research, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
8
|
Schutt WR, Conde JN, Mladinich MC, Himmler GE, Mackow ER. ZIKV induction of tristetraprolin in endothelial and Sertoli cells post-transcriptionally inhibits IFNβ/λ expression and promotes ZIKV persistence. mBio 2023; 14:e0174223. [PMID: 37707056 PMCID: PMC10653947 DOI: 10.1128/mbio.01742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 09/15/2023] Open
Abstract
IMPORTANCE Our findings define a novel role for ZIKV-induced TTP expression in regulating IFNβ/IFNλ production in primary hBMECs and Sertoli cells. These cells comprise key physiological barriers subverted by ZIKV to access brain and testicular compartments and serve as reservoirs for persistent replication and dissemination. We demonstrate for the first time that the ARE-binding protein TTP is virally induced and post-transcriptionally regulates IFNβ/IFNλ secretion. In ZIKV-infected hBMEC and Sertoli cells, TTP knockout increased IFNβ/IFNλ secretion, while TTP expression blocked IFNβ/IFNλ secretion. The TTP-directed blockade of IFN secretion permits ZIKV spread and persistence in hBMECs and Sertoli cells and may similarly augment ZIKV spread across IFNλ-protected placental barriers. Our work highlights the importance of post-transcriptional ZIKV regulation of IFN expression and secretion in cells that regulate viral access to protected compartments and defines a novel mechanism of ZIKV-regulated IFN responses which may facilitate neurovirulence and sexual transmission.
Collapse
Affiliation(s)
- William R. Schutt
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| | - Jonas N. Conde
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Megan C. Mladinich
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Grace E. Himmler
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
- Molecular and Cell Biology Program, Stony Brook University, Stony Brook, New York, USA
| | - Erich R. Mackow
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
- Center for Infectious Disease, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
9
|
Lodde V, Floris M, Zoroddu E, Zarbo IR, Idda ML. RNA-binding proteins in autoimmunity: From genetics to molecular biology. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1772. [PMID: 36658783 DOI: 10.1002/wrna.1772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 11/18/2022] [Accepted: 12/05/2022] [Indexed: 01/21/2023]
Abstract
Autoimmune diseases (ADs) are chronic pathologies generated by the loss of immune tolerance to the body's own cells and tissues. There is growing recognition that RNA-binding proteins (RBPs) critically govern immunity in healthy and pathological conditions by modulating gene expression post-transcriptionally at all levels: nuclear mRNA splicing and modification, export to the cytoplasm, as well as cytoplasmic mRNA transport, storage, editing, stability, and translation. Despite enormous efforts to identify new therapies for ADs, definitive solutions are not yet available in many instances. Recognizing that many ADs have a strong genetic component, we have explored connections between the molecular biology and the genetics of RBPs in ADs. Here, we review the genetics and molecular biology of RBPs in four major ADs, multiple sclerosis (MS), type 1 diabetes mellitus (T1D), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA). We anticipate that gaining insights into the genetics and biology of ADs can facilitate the discovery of new therapies. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Valeria Lodde
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Matteo Floris
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Enrico Zoroddu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ignazio Roberto Zarbo
- Department of Medical, Surgical and Experimental Sciences, University of Sassari - Neurology Unit Azienza Ospedaliera Universitaria (AOU), Sassari, Italy
| | - Maria Laura Idda
- Institute for Genetic and Biomedical Research - National Research Council (IRGB-CNR), Sassari, Italy
| |
Collapse
|
10
|
Fan J, Li Q, Liang J, Chen Z, Chen L, Lai J, Chen Q. Regulation of IFNβ expression: focusing on the role of its promoter and transcription regulators. Front Microbiol 2023; 14:1158777. [PMID: 37396372 PMCID: PMC10309559 DOI: 10.3389/fmicb.2023.1158777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023] Open
Abstract
IFNβ is a single-copy gene without an intron. Under normal circumstances, it shows low or no expression in cells. It is upregulated only when the body needs it or is stimulated. Stimuli bind to the pattern recognition receptors (PRRs) and pass via various signaling pathways to several basic transcriptional regulators, such as IRFs, NF-кB, and AP-1. Subsequently, the transcriptional regulators enter the nucleus and bind to regulatory elements of the IFNβ promoter. After various modifications, the position of the nucleosome is altered and the complex is assembled to activate the IFNβ expression. However, IFNβ regulation involves a complex network. For the study of immunity and diseases, it is important to understand how transcription factors bind to regulatory elements through specific forms, which elements in cells are involved in regulation, what regulation occurs during the assembly of enhancers and transcription complexes, and the possible regulatory mechanisms after transcription. Thus, this review focuses on the various regulatory mechanisms and elements involved in the activation of IFNβ expression. In addition, we discuss the impact of this regulation in biology.
Collapse
Affiliation(s)
- Jiqiang Fan
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Qiumei Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Jiadi Liang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Zhirong Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Linqin Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| | - Junzhong Lai
- The Cancer Center, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, China
| |
Collapse
|
11
|
Olguin SL, Patel P, Buchanan CN, Dell'Orco M, Gardiner AS, Cole R, Vaughn LS, Sundararajan A, Mudge J, Allan AM, Ortinski P, Brigman JL, Twiss JL, Perrone-Bizzozero NI. KHSRP loss increases neuronal growth and synaptic transmission and alters memory consolidation through RNA stabilization. Commun Biol 2022; 5:672. [PMID: 35798971 PMCID: PMC9262970 DOI: 10.1038/s42003-022-03594-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
The KH-type splicing regulatory protein (KHSRP) is an RNA-binding protein linked to decay of mRNAs with AU-rich elements. KHSRP was previously shown to destabilize Gap43 mRNA and decrease neurite growth in cultured embryonic neurons. Here, we have tested functions of KHSRP in vivo. We find upregulation of 1460 mRNAs in neocortex of adult Khsrp-/- mice, of which 527 bind to KHSRP with high specificity. These KHSRP targets are involved in pathways for neuronal morphology, axon guidance, neurotransmission and long-term memory. Khsrp-/- mice show increased axon growth and dendritic spine density in vivo. Neuronal cultures from Khsrp-/- mice show increased axon and dendrite growth and elevated KHSRP-target mRNAs, including subcellularly localized mRNAs. Furthermore, neuron-specific knockout of Khsrp confirms these are from neuron-intrinsic roles of KHSRP. Consistent with this, neurons in the hippocampus and infralimbic cortex of Khsrp-/- mice show elevations in frequency of miniature excitatory postsynaptic currents. The Khsrp-/- mice have deficits in trace conditioning and attention set-shifting tasks compared Khsrp+/+ mice, indicating impaired prefrontal- and hippocampal-dependent memory consolidation with loss of KHSRP. Overall, these results indicate that deletion of KHSRP impairs neuronal development resulting in alterations in neuronal morphology and function by changing post-transcriptional control of neuronal gene expression.
Collapse
Affiliation(s)
- Sarah L Olguin
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | - Michela Dell'Orco
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Amy S Gardiner
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Robert Cole
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM, 87505, USA
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Pavel Ortinski
- Department of Neuroscience, University of Kentucky, Lexington, KY, 40536, USA
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
- Carolina Autism and Neurodevelopment Center, University of South Carolina, Columbia, SC, 29208, USA.
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, 87131, USA
| |
Collapse
|
12
|
Xu J, Wang D, Ma H, Zhai X, Huo Y, Ren Y, Li W, Chang L, Lu D, Guo Y, Si Y, Gao Y, Wang X, Ma Y, Wang F, Yu J. KHSRP combines transcriptional and posttranscriptional mechanisms to regulate monocytic differentiation. BLOOD SCIENCE 2022; 4:103-115. [DOI: 10.1097/bs9.0000000000000122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/11/2022] [Indexed: 11/25/2022] Open
|
13
|
Patel P, Buchanan CN, Zdradzinski MD, Sahoo PK, Kar A, Lee S, Vaughn L, Urisman A, Oses-Prieto J, Dell’Orco M, Cassidy D, Costa I, Miller S, Thames E, Smith T, Burlingame A, Perrone-Bizzozero N, Twiss J. Intra-axonal translation of Khsrp mRNA slows axon regeneration by destabilizing localized mRNAs. Nucleic Acids Res 2022; 50:5772-5792. [PMID: 35556128 PMCID: PMC9177972 DOI: 10.1093/nar/gkac337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons. We detected 76 proteins with reported RNA binding activity in axoplasm, and levels of several change with axon injury and regeneration. RBPs with altered levels include KHSRP that decreases neurite outgrowth in developing CNS neurons. Axonal KHSRP levels rapidly increase after injury remaining elevated up to 28 days post axotomy. Khsrp mRNA localizes into axons and the rapid increase in axonal KHSRP is through local translation of Khsrp mRNA in axons. KHSRP can bind to mRNAs with 3'UTR AU-rich elements and targets those transcripts to the cytoplasmic exosome for degradation. KHSRP knockout mice show increased axonal levels of KHSRP target mRNAs, Gap43, Snap25, and Fubp1, following sciatic nerve injury and these mice show accelerated nerve regeneration in vivo. Together, our data indicate that axonal translation of the RNA binding protein Khsrp mRNA following nerve injury serves to promote decay of other axonal mRNAs and slow axon regeneration.
Collapse
Affiliation(s)
- Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Matthew D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Anatoly Urisman
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Juan Oses-Prieto
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Michela Dell’Orco
- Department of Neurosciences, University of New Mexico School of Health Sciences, Albuquerque, NM 87131, USA
| | - Devon E Cassidy
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sharmina Miller
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Health Sciences, Albuquerque, NM 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
14
|
Palzer KA, Bolduan V, Käfer R, Kleinert H, Bros M, Pautz A. The Role of KH-Type Splicing Regulatory Protein (KSRP) for Immune Functions and Tumorigenesis. Cells 2022; 11:cells11091482. [PMID: 35563788 PMCID: PMC9104899 DOI: 10.3390/cells11091482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Post-transcriptional control of gene expression is one important mechanism that enables stringent and rapid modulation of cytokine, chemokines or growth factors expression, all relevant for immune or tumor cell function and communication. The RNA-binding protein KH-type splicing regulatory protein (KSRP) controls the mRNA stability of according genes by initiation of mRNA decay and inhibition of translation, and by enhancing the maturation of microRNAs. Therefore, KSRP plays a pivotal role in immune cell function and tumor progression. In this review, we summarize the current knowledge about KSRP with regard to the regulation of immunologically relevant targets, and the functional role of KSRP on immune responses and tumorigenesis. KSRP is involved in the control of myeloid hematopoiesis. Further, KSRP-mediated mRNA decay of pro-inflammatory factors is necessary to keep immune homeostasis. In case of infection, functional impairment of KSRP is important for the induction of robust immune responses. In this regard, KSRP seems to primarily dampen T helper cell 2 immune responses. In cancer, KSRP has often been associated with tumor growth and metastasis. In summary, aside of initiation of mRNA decay, the KSRP-mediated regulation of microRNA maturation seems to be especially important for its diverse biological functions, which warrants further in-depth examination.
Collapse
Affiliation(s)
- Kim-Alicia Palzer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Vanessa Bolduan
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (V.B.); (M.B.)
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (K.-A.P.); (R.K.); (H.K.)
- Correspondence: ; Tel.: +49-6131-179276; Fax: +49-6131-179042
| |
Collapse
|
15
|
Schmidtke L, Meineck M, Saurin S, Otten S, Gather F, Schrick K, Käfer R, Roth W, Kleinert H, Weinmann-Menke J, Pautz A. Knockout of the KH-Type Splicing Regulatory Protein Drives Glomerulonephritis in MRL-Fas lpr Mice. Cells 2021; 10:3167. [PMID: 34831390 PMCID: PMC8624031 DOI: 10.3390/cells10113167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 10/30/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
KH-type splicing regulatory protein (KSRP) is an RNA-binding protein that promotes mRNA decay and thereby negatively regulates cytokine expression at the post-transcriptional level. Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by dysregulated cytokine expression causing multiple organ manifestations; MRL-Faslpr mice are an established mouse model to study lupus disease pathogenesis. To investigate the impact of KSRP on lupus disease progression, we generated KSRP-deficient MRL-Faslpr mice (MRL-Faslpr/KSRP-/- mice). In line with the predicted role of KSRP as a negative regulator of cytokine expression, lupus nephritis was augmented in MRL-Faslpr/KSRP-/- mice. Increased infiltration of immune cells, especially of IFN-γ producing T cells and macrophages, driven by enhanced expression of T cell-attracting chemokines and adhesion molecules, seems to be responsible for worsened kidney morphology. Reduced expression of the anti-inflammatory interleukin-1 receptor antagonist may be another reason for severe inflammation. The increase of FoxP3+ T cells detected in the kidney seems unable to dampen the massive kidney inflammation. Interestingly, lymphadenopathy was reduced in MRL-Faslpr/KSRP-/- mice. Altogether, KSRP appears to have a complex role in immune regulation; however, it is clearly able to ameliorate lupus nephritis.
Collapse
Affiliation(s)
- Lisa Schmidtke
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Myriam Meineck
- First Medical Department, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Sabrina Saurin
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
- First Medical Department, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Svenja Otten
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Fabian Gather
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Katharina Schrick
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Wilfried Roth
- Institute of Pathology, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| | - Julia Weinmann-Menke
- First Medical Department, University Medical Center, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany; (L.S.); (S.S.); (S.O.); (F.G.); (K.S.); (R.K.); (H.K.)
| |
Collapse
|
16
|
Gokhale NS, Smith JR, Van Gelder RD, Savan R. RNA regulatory mechanisms that control antiviral innate immunity. Immunol Rev 2021; 304:77-96. [PMID: 34405416 DOI: 10.1111/imr.13019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 12/21/2022]
Abstract
From the initial sensing of viral nucleotides by pattern recognition receptors, through the induction of type I and III interferons (IFN), upregulation of antiviral effector proteins, and resolution of the inflammatory response, each step of innate immune signaling is under tight control. Though innate immunity is often associated with broad regulation at the level of gene transcription, RNA-centric post-transcriptional processes have emerged as critical mechanisms for ensuring a proper antiviral response. Here, we explore the diverse RNA regulatory mechanisms that modulate the innate antiviral immune response, with a focus on RNA sensing by RIG-I-like receptors (RLR), interferon (IFN) and IFN signaling pathways, viral pathogenesis, and host genetic variation that contributes to these processes. We address the post-transcriptional interactions with RNA-binding proteins, non-coding RNAs, transcript elements, and modifications that control mRNA stability, as well as alternative splicing events that modulate the innate immune antiviral response.
Collapse
Affiliation(s)
- Nandan S Gokhale
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Julian R Smith
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Rachel D Van Gelder
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Ram Savan
- Department of Immunology, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
17
|
Kirk SG, Murphy PR, Wang X, Cash CJ, Barley TJ, Bowman BA, Batty AJ, Ackerman WE, Zhang J, Nelin LD, Hafner M, Liu Y. Knockout of MAPK Phosphatase-1 Exaggerates Type I IFN Response during Systemic Escherichia coli Infection. THE JOURNAL OF IMMUNOLOGY 2021; 206:2966-2979. [PMID: 34039638 DOI: 10.4049/jimmunol.2001468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/05/2021] [Indexed: 11/19/2022]
Abstract
We have previously shown that Mkp-1-deficient mice produce elevated TNF-α, IL-6, and IL-10 following systemic Escherichia coli infection, and they exhibited increased mortality, elevated bacterial burden, and profound metabolic alterations. To understand the function of Mkp-1 during bacterial infection, we performed RNA-sequencing analysis to compare the global gene expression between E. coli-infected wild-type and Mkp-1 -/- mice. A large number of IFN-stimulated genes were more robustly expressed in E. coli-infected Mkp-1 -/- mice than in wild-type mice. Multiplex analysis of the serum cytokine levels revealed profound increases in IFN-β, IFN-γ, TNF-α, IL-1α and β, IL-6, IL-10, IL-17A, IL-27, and GMSF levels in E. coli-infected Mkp-1 -/- mice relative to wild-type mice. Administration of a neutralizing Ab against the receptor for type I IFN to Mkp-1 -/- mice prior to E. coli infection augmented mortality and disease severity. Mkp-1 -/- bone marrow-derived macrophages (BMDM) produced higher levels of IFN-β mRNA and protein than did wild-type BMDM upon treatment with LPS, E. coli, polyinosinic:polycytidylic acid, and herring sperm DNA. Augmented IFN-β induction in Mkp-1 -/- BMDM was blocked by a p38 inhibitor but not by an JNK inhibitor. Enhanced Mkp-1 expression abolished IFN-β induction by both LPS and E. coli but had little effect on the IFN-β promoter activity in LPS-stimulated RAW264.7 cells. Mkp-1 deficiency did not have an overt effect on IRF3/7 phosphorylation or IKK activation but modestly enhanced IFN-β mRNA stability in LPS-stimulated BMDM. Our results suggest that Mkp-1 regulates IFN-β production primarily through a p38-mediated mechanism and that IFN-β plays a beneficial role in E. coli-induced sepsis.
Collapse
Affiliation(s)
- Sean G Kirk
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Parker R Murphy
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Xiantao Wang
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Charles J Cash
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Timothy J Barley
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Bridget A Bowman
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - Abel J Batty
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH
| | - William E Ackerman
- Department of Obstetrics and Gynecology, University of Illinois at Chicago College of Medicine, Chicago, IL
| | - Jian Zhang
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA; and
| | - Leif D Nelin
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD
| | - Yusen Liu
- Center for Perinatal Research, The Research Institute at Nationwide Children's Hospital, Columbus, OH; .,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
18
|
Abstract
Posttranscriptional control of mRNA regulates various biological processes, including inflammatory and immune responses. RNA-binding proteins (RBPs) bind cis-regulatory elements in the 3' untranslated regions (UTRs) of mRNA and regulate mRNA turnover and translation. In particular, eight RBPs (TTP, AUF1, KSRP, TIA-1/TIAR, Roquin, Regnase, HuR, and Arid5a) have been extensively studied and are key posttranscriptional regulators of inflammation and immune responses. These RBPs sometimes collaboratively or competitively bind the same target mRNA to enhance or dampen regulatory activities. These RBPs can also bind their own 3' UTRs to negatively or positively regulate their expression. Both upstream signaling pathways and microRNA regulation shape the interactions between RBPs and target RNA. Dysregulation of RBPs results in chronic inflammation and autoimmunity. Here, we summarize the functional roles of these eight RBPs in immunity and their associated diseases.
Collapse
Affiliation(s)
- Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| | - Kazuhiko Maeda
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, Osaka 565-0874, Japan.,Department of Host Defense, Division of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, Osaka 565-0874, Japan;
| |
Collapse
|
19
|
microRNA-induced translational control of antiviral immunity by the cap-binding protein 4EHP. Mol Cell 2021; 81:1187-1199.e5. [PMID: 33581076 DOI: 10.1016/j.molcel.2021.01.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022]
Abstract
Type I interferons (IFNs) are critical cytokines in the host defense against invading pathogens. Sustained production of IFNs, however, is detrimental to the host, as it provokes autoimmune diseases. Thus, the expression of IFNs is tightly controlled. We report that the mRNA 5' cap-binding protein 4EHP plays a key role in regulating type I IFN concomitant with controlling virus replication, both in vitro and in vivo. Mechanistically, 4EHP suppresses IFN-β production by effecting the miR-34a-induced translational silencing of Ifnb1 mRNA. miR-34a is upregulated by both RNA virus infection and IFN-β induction, prompting a negative feedback regulatory mechanism that represses IFN-β expression via 4EHP. These findings demonstrate the direct involvement of 4EHP in virus-induced host response, underscoring a critical translational silencing mechanism mediated by 4EHP and miR-34a to impede sustained IFN production. This study highlights an intrinsic regulatory function for miRNA and the translation machinery in maintaining host homeostasis.
Collapse
|
20
|
Kotliar D, Lin AE, Logue J, Hughes TK, Khoury NM, Raju SS, Wadsworth MH, Chen H, Kurtz JR, Dighero-Kemp B, Bjornson ZB, Mukherjee N, Sellers BA, Tran N, Bauer MR, Adams GC, Adams R, Rinn JL, Melé M, Schaffner SF, Nolan GP, Barnes KG, Hensley LE, McIlwain DR, Shalek AK, Sabeti PC, Bennett RS. Single-Cell Profiling of Ebola Virus Disease In Vivo Reveals Viral and Host Dynamics. Cell 2020; 183:1383-1401.e19. [PMID: 33159858 PMCID: PMC7707107 DOI: 10.1016/j.cell.2020.10.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/10/2020] [Accepted: 10/02/2020] [Indexed: 12/14/2022]
Abstract
Ebola virus (EBOV) causes epidemics with high mortality yet remains understudied due to the challenge of experimentation in high-containment and outbreak settings. Here, we used single-cell transcriptomics and CyTOF-based single-cell protein quantification to characterize peripheral immune cells during EBOV infection in rhesus monkeys. We obtained 100,000 transcriptomes and 15,000,000 protein profiles, finding that immature, proliferative monocyte-lineage cells with reduced antigen-presentation capacity replace conventional monocyte subsets, while lymphocytes upregulate apoptosis genes and decline in abundance. By quantifying intracellular viral RNA, we identify molecular determinants of tropism among circulating immune cells and examine temporal dynamics in viral and host gene expression. Within infected cells, EBOV downregulates STAT1 mRNA and interferon signaling, and it upregulates putative pro-viral genes (e.g., DYNLL1 and HSPA5), nominating pathways the virus manipulates for its replication. This study sheds light on EBOV tropism, replication dynamics, and elicited immune response and provides a framework for characterizing host-virus interactions under maximum containment.
Collapse
Affiliation(s)
- Dylan Kotliar
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - Aaron E Lin
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard Program in Virology, Harvard Medical School, Boston, MA 02115, USA.
| | - James Logue
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Travis K Hughes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Nadine M Khoury
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Siddharth S Raju
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marc H Wadsworth
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Han Chen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan R Kurtz
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Bonnie Dighero-Kemp
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - Zach B Bjornson
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | | | - Brian A Sellers
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, National Institutes of Health, Bethesda, MD 20814, USA
| | - Nancy Tran
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Matthew R Bauer
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Gordon C Adams
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ricky Adams
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| | - John L Rinn
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Marta Melé
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia 08034, Spain
| | - Stephen F Schaffner
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Garry P Nolan
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Kayla G Barnes
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; MRC-University of Glasgow Centre for Virus Research, Glasgow G61 1QH, UK
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA.
| | - David R McIlwain
- Department of Pathology, Stanford University, Stanford, CA 94305, USA.
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemistry, Institute for Medical Engineering and Sciences (IMES), and Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA 02142, USA; Ragon Institute of MGH, Harvard, and MIT, Cambridge, MA 02139, USA
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD 21702, USA
| |
Collapse
|
21
|
Uehata T, Takeuchi O. RNA Recognition and Immunity-Innate Immune Sensing and Its Posttranscriptional Regulation Mechanisms. Cells 2020; 9:cells9071701. [PMID: 32708595 PMCID: PMC7407594 DOI: 10.3390/cells9071701] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
RNA acts as an immunostimulatory molecule in the innate immune system to activate nucleic acid sensors. It functions as an intermediate, conveying genetic information to control inflammatory responses. A key mechanism for RNA sensing is discriminating self from non-self nucleic acids to initiate antiviral responses reliably, including the expression of type I interferon (IFN) and IFN-stimulated genes. Another important aspect of the RNA-mediated inflammatory response is posttranscriptional regulation of gene expression, where RNA-binding proteins (RBPs) have essential roles in various RNA metabolisms, including splicing, nuclear export, modification, and translation and mRNA degradation. Recent evidence suggests that the control of mRNA stability is closely involved in signal transduction and orchestrates immune responses. In this study, we review the current understanding of how RNA is sensed by host RNA sensing machinery and discuss self/non-self-discrimination in innate immunity focusing on mammalian species. Finally, we discuss how posttranscriptional regulation by RBPs shape immune reactions.
Collapse
|
22
|
Lourou N, Gavriilidis M, Kontoyiannis DL. Lessons from studying the AU-rich elements in chronic inflammation and autoimmunity. J Autoimmun 2019; 104:102334. [PMID: 31604649 DOI: 10.1016/j.jaut.2019.102334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022]
Abstract
AU-rich elements (AREs) comprise one of the most widely studied families of regulatory RNA structures met in RNAs engaged in complex immunological reactions. A multitude of genetic, molecular, holistic and functional studies have been utilized for the analyses of the AREs and their interactions to proteins that bind to them. Data stemming from these studies brought forth a world of RNA-related check-points against infection, chronic inflammation, tumor associated immunity, and autoimmunity; and the interest to capitalize the interactions of AREs for clinical management and therapy. They also provided lessons on the cellular capabilities of post-transcriptional control. Originally thought as transcript-restricted regulators of turnover and translation, ARE-binding proteins do in fact harbor great versatility and interactivity across nuclear and cytoplasmic compartments; and act as functional coordinators of immune-cellular programs. Harnessing these deterministic functions requires extensive knowledge of their synergies or antagonisms at a cell-specific level; but holds great promise since it can provide the efficacy of combinatorial therapies with single agents.
Collapse
Affiliation(s)
- Niki Lourou
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece
| | - Maxim Gavriilidis
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece; Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Greece
| | - Dimitris L Kontoyiannis
- School of Biology, Department of Development, Genetics and Molecular Biology, Aristotle University of Thessaloniki, Greece; Division of Immunology, Alexander Fleming Biomedical Sciences Research Center, Greece.
| |
Collapse
|
23
|
Caiazza F, Oficjalska K, Tosetto M, Phelan JJ, Noonan S, Martin P, Killick K, Breen L, O'Neill F, Nolan B, Furney S, Power R, Fennelly D, Craik CS, O'Sullivan J, Sheahan K, Doherty GA, Ryan EJ. KH-Type Splicing Regulatory Protein Controls Colorectal Cancer Cell Growth and Modulates the Tumor Microenvironment. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1916-1932. [PMID: 31404541 PMCID: PMC6892187 DOI: 10.1016/j.ajpath.2019.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 06/06/2019] [Accepted: 07/03/2019] [Indexed: 01/18/2023]
Abstract
KH-type splicing regulatory protein (KHSRP) is a multifunctional nucleic acid binding protein implicated in key aspects of cancer cell biology: inflammation and cell-fate determination. However, the role KHSRP plays in colorectal cancer (CRC) tumorigenesis remains largely unknown. Using a combination of in silico analysis of large data sets, ex vivo analysis of protein expression in patients, and mechanistic studies using in vitro models of CRC, we investigated the oncogenic role of KHSRP. We demonstrated KHSRP expression in the epithelial and stromal compartments of both primary and metastatic tumors. Elevated expression was found in tumor versus matched normal tissue, and these findings were validated in larger independent cohorts in silico. KHSRP expression was a prognostic indicator of worse overall survival (hazard ratio, 3.74; 95% CI, 1.43-22.97; P = 0.0138). Mechanistic data in CRC cell line models supported a role of KHSRP in driving epithelial cell proliferation in both a primary and metastatic setting, through control of the G1/S transition. In addition, KHSRP promoted a proangiogenic extracellular environment by regulating the secretion of oncogenic proteins involved in diverse cellular processes, such as migration and response to cellular stress. Our study provides novel mechanistic insight into the tumor-promoting effects of KHSRP in CRC.
Collapse
Affiliation(s)
- Francesco Caiazza
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California.
| | - Katarzyna Oficjalska
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Miriam Tosetto
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - James J Phelan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Sinéad Noonan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - Petra Martin
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - Kate Killick
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Laura Breen
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Fiona O'Neill
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Blathnaid Nolan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland
| | - Simon Furney
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert Power
- School of Medicine, University College Dublin, Dublin, Ireland
| | - David Fennelly
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California
| | - Jacintha O'Sullivan
- Department of Surgery, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Kieran Sheahan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Glen A Doherty
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| | - Elizabeth J Ryan
- Centre for Colorectal Disease, St. Vincent's University Hospital, Dublin, Ireland; School of Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|
24
|
The RNA-Binding Protein KSRP Modulates Cytokine Expression of CD4 + T Cells. J Immunol Res 2019; 2019:4726532. [PMID: 31511826 PMCID: PMC6714327 DOI: 10.1155/2019/4726532] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 05/13/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
The KH-type splicing regulatory protein (KSRP) is a RNA-binding protein, which regulates the stability of many mRNAs encoding immune-relevant proteins. As KSRP regulates innate immune responses, for instance by the modulation of type I interferon mRNA stability, we were interested whether knockdown of the protein (KSRP−/−) interferes with T cell activation and polarization. Polyclonally stimulated KSRP−/− CD4+ T cells proliferated at a higher extent and higher frequency and expressed the activation marker CD25 more than wild-type T cells. In supernatants of stimulated KSRP−/− CD4+ T cells, levels of IL-5, IL-9, IL-10, and IL-13 were observed to be increased compared to those of the control group. KSRP−/− CD8+ T cells showed no altered proliferative capacity upon polyclonal stimulation, but supernatants contained lower levels of interferon-γ. Similar changes in the cytokine expression patterns were also detected in T cells derived from KSRP−/− mice undergoing arthritis induction indicative of a pathophysiological role of KSRP-dependent T cell polarization. We demonstrated the direct binding of KSRP to the 3′ untranslated region of IL-13, IL-10, and IFN-γ mRNA in in vitro experiments. Moreover, since IL-4 mRNA decay was reduced in KSRP−/− CD4+ T cells, we identify KSRP as a negative regulator of IL-4 expression. These data indicate that overexpression of IL-4, which constitutes the primary inducer of Th2 polarization, may cause the Th2 bias of polyclonally stimulated KSRP−/− CD4+ T cells. This is the first report demonstrating that KSRP is involved in the regulation of T cell responses. We present strong evidence that T cells derived from KSRP−/− mice favor Th2-driven immune responses.
Collapse
|
25
|
Schmidtke L, Schrick K, Saurin S, Käfer R, Gather F, Weinmann-Menke J, Kleinert H, Pautz A. The KH-type splicing regulatory protein (KSRP) regulates type III interferon expression post-transcriptionally. Biochem J 2019; 476:333-352. [PMID: 30578289 DOI: 10.1042/bcj20180522] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/14/2018] [Accepted: 12/21/2018] [Indexed: 12/12/2022]
Abstract
Type III interferons (IFNs) are the latest members of the IFN family. They play an important role in immune defense mechanisms, especially in antiviral responses at mucosal sites. Moreover, they control inflammatory reactions by modulating neutrophil and dendritic cell functions. Therefore, it is important to identify cellular mechanisms involved in the control of type III IFN expression. All IFN family members contain AU-rich elements (AREs) in the 3'-untranslated regions (3'-UTR) of their mRNAs that determine mRNA half-life and consequently the expressional level of these cytokines. mRNA stability is controlled by different proteins binding to these AREs leading to either stabilization or destabilization of the respective target mRNA. The KH-type splicing regulatory protein KSRP (also named KHSRP) is an important negative regulator of ARE-containing mRNAs. Here, we identify the interferon lambda 3 (IFNL3) mRNA as a new KSRP target by pull-down and immunoprecipitation experiments, as well as luciferase reporter gene assays. We characterize the KSRP-binding site in the IFNL3 3'-UTR and demonstrate that KSRP regulates the mRNA half-life of the IFNL3 transcript. In addition, we detect enhanced expression of IFNL3 mRNA in KSRP-/- mice, establishing a negative regulatory function of KSRP in type III IFN expression also in vivo Besides KSRP the RNA-binding protein AUF1 (AU-rich element RNA-binding protein 1) also seems to be involved in the regulation of type III IFN mRNA expression.
Collapse
Affiliation(s)
- Lisa Schmidtke
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | - Katharina Schrick
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | - Sabrina Saurin
- First Medical Department, University Medical Center of the Johannes Gutenberg-University, Langenbeck Str. 1, 55101 Mainz, Germany
| | - Rudolf Käfer
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | - Fabian Gather
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | - Julia Weinmann-Menke
- First Medical Department, University Medical Center of the Johannes Gutenberg-University, Langenbeck Str. 1, 55101 Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Str. 67, 55101 Mainz, Germany
| |
Collapse
|
26
|
Díaz-Muñoz MD, Turner M. Uncovering the Role of RNA-Binding Proteins in Gene Expression in the Immune System. Front Immunol 2018; 9:1094. [PMID: 29875770 PMCID: PMC5974052 DOI: 10.3389/fimmu.2018.01094] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022] Open
Abstract
Fighting external pathogens requires an ever-changing immune system that relies on tight regulation of gene expression. Transcriptional control is the first step to build efficient responses while preventing immunodeficiencies and autoimmunity. Post-transcriptional regulation of RNA editing, location, stability, and translation are the other key steps for final gene expression, and they are all controlled by RNA-binding proteins (RBPs). Nowadays we have a deep understanding of how transcription factors control the immune system but recent evidences suggest that post-transcriptional regulation by RBPs is equally important for both development and activation of immune responses. Here, we review current knowledge about how post-transcriptional control by RBPs shapes our immune system and discuss the perspective of RBPs being the key players of a hidden immune cell epitranscriptome.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043/CNRS U5282, Toulouse, France
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
27
|
Cyclin-dependent kinase activity is required for type I interferon production. Proc Natl Acad Sci U S A 2018; 115:E2950-E2959. [PMID: 29507205 DOI: 10.1073/pnas.1720431115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Recognition of nucleic acids results in the production of type I IFNs, which activate the JAK/STAT pathway and promote the expression of IFN-stimulated genes. In a search for modulators of this pathway, we discovered an unexpected requirement for cyclin-dependent kinases (CDK) in the production of type I IFN following nucleic acid sensing and virus infection. Inhibition of CDK activity or knockdown of CDK levels leads to a striking block in STAT activation and IFN-stimulated gene expression. CDKs are not required for the initial nucleic acid sensing leading to IFN-β mRNA induction, nor for the response to exogenous IFN-α/β, but are critical for IFN-β release into culture supernatants, suggesting a posttranscriptional role for CDKs in type I IFN production. In the absence of CDK activity, we demonstrate a translational block specific for IFN-β, in which IFN-β mRNA is removed from the actively translating polysomes, while the distribution of other cellular mRNAs or global translation rates are unaffected. Our findings reveal a critical role for CDKs in the translation of IFN-β.
Collapse
|
28
|
Li N, Cao M, Yi S, Cheng J, Wang L, Tao Y, Wu D, Peng J, Zhang M, Qi P, Zhao J. Effects of the RNA-binding protein, KSRP, on innate immune response against Helicobacter pylori infection in mice. Biochem Biophys Res Commun 2017; 495:1573-1579. [PMID: 29222050 DOI: 10.1016/j.bbrc.2017.12.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 11/29/2022]
Abstract
Helicobacter pylori (H. pylori) contributes to various gastric diseases such as chronic gastritis, gastric ulcer, and gastric carcinoma. Host innate immune response against the pathogen plays a significant role in elimination of pathogen infection. Importantly, pathogen elimination is closely related to numerous inflammatory-related genes that participate in complex biological response of cells to harmful stimuli. Here we studied effects of the KH-type splicing regulatory protein (KSRP), a RNA-binding protein, on innate immune response against H. pylori infection. We found that H. pylori infection downregulated KSRP expression directly, and that KSRP overexpression repressed upregulation of CXCL-2 expression induced by H. pylori and facilitated H. pylori proliferation in vitro. Similarly, KSRP overexpression in H. pylori mice also facilitated H. pylori proliferation and colonization, and induced more severe gastric mucosal damage. Intriguingly, CXCL-2 and HMOX-1 were upregulated in H. pylori infected mice after KSRP overexpression. This difference in expression of these genes implicated that KSRP was closely associated with and directly participated in the innate immune response against H. pylori. These results were beneficial for understanding the in vivo function of KSRP on innate immune response against pathogen infection.
Collapse
Affiliation(s)
- Ningzhe Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Mei Cao
- Core Laboratory, School of Medicine, Sichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Sijun Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Juan Cheng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Lei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yuwei Tao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Daoyan Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jingshan Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Mao Zhang
- Core Laboratory, School of Medicine, Sichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu 610072, PR China
| | - Panpan Qi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Jian Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
29
|
Zhao H, Wang X, Yi P, Si Y, Tan P, He J, Yu S, Ren Y, Ma Y, Zhang J, Wang D, Wang F, Yu J. KSRP specifies monocytic and granulocytic differentiation through regulating miR-129 biogenesis and RUNX1 expression. Nat Commun 2017; 8:1428. [PMID: 29127290 PMCID: PMC5681548 DOI: 10.1038/s41467-017-01425-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/15/2017] [Indexed: 01/11/2023] Open
Abstract
RNA-binding proteins (RBPs) integrate the processing of RNAs into post-transcriptional gene regulation, but the direct contribution of them to myeloid cell specification is poorly understood. Here, we report the first global RBP transcriptomic analysis of myeloid differentiation by combining RNA-seq analysis with myeloid induction in CD34+ hematopoietic progenitor cells. The downregulated expression of the KH-Type Splicing Regulatory Protein (KSRP) during monocytopoiesis and up-regulated expression during granulopoiesis suggests that KSRP has divergent roles during monocytic and granulocytic differentiation. A further comparative analysis of miRNA transcripts reveals that KSRP promotes the biogenesis of miR-129, and the expression patterns and roles of miR-129 in myeloid differentiation are equivalent to those of KSRP. Finally, miR-129 directly blocks the expression of Runt Related Transcription Factor 1 (RUNX1), which evokes transcriptional modulation by RUNX1. Based on our findings, KSRP, miR-129, and RUNX1 participate in a regulatory axis to control the outcome of myeloid differentiation.
Collapse
Affiliation(s)
- Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China.,State Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Ping Yi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, 401120, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Puwen Tan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Jinrong He
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Shan Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Junwu Zhang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China. .,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China.
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry & Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, 100005, China.
| |
Collapse
|
30
|
Takeuchi O. Endonuclease Regnase-1/Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) in controlling immune responses and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 28929622 DOI: 10.1002/wrna.1449] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
The activation of inflammatory cells is controlled at transcriptional and posttranscriptional levels. Posttranscriptional regulation modifies mRNA stability and translation, allowing for elaborate control of proteins required for inflammation, such as proinflammatory cytokines, prostaglandin synthases, cell surface co-stimulatory molecules, and even transcriptional modifiers. Such regulation is important for coordinating the initiation and resolution of inflammation, and is mediated by a set of RNA-binding proteins (RBPs), including Regnase-1, Roquin, Tristetraprolin (TTP), and AU-rich elements/poly(U)-binding/degradation factor 1 (AUF1). Among these, Regnase-1, also known as Zc3h12a and Monocyte chemotactic protein-1-induced protein-1 (MCPIP1), acts as an endoribonuclease responsible for the degradation of mRNAs involved in inflammatory responses. Conversely, the RBPs Roquin and TTP trigger exonucleolytic degradation of mRNAs by recruiting the CCR4-NOT deadenylase complex. Regnase-1 specifically recognizes stem-loop structures present in 3'-untranslated regions of cytokine mRNAs, and directly degrades the mRNAs in a translation- and ATP-dependent RNA helicase upframeshift 1 (UPF1)-dependent manner that is reminiscent of nonsense-mediated decay. Regnase-1 regulates the activation of innate and acquired immune cells, and is critical for maintaining immune homeostasis as well as preventing over-activation of the immune system under inflammatory conditions. Furthermore, recent studies have revealed that Regnase-1 and its family members are involved not only in immunity but also in various biological processes. In this article, I review molecular mechanisms of Regnase-1-mediated mRNA decay and its physiological roles. WIREs RNA 2018, 9:e1449. doi: 10.1002/wrna.1449 This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Osamu Takeuchi
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, AMED-CREST, AMED, Kyoto, Japan
| |
Collapse
|
31
|
Zhang H, Wang G, Liu L, Liang X, Lin Y, Lin YY, Chou CF, Liu MF, Huang H, Sun F. KH-type splicing regulatory protein is a new component of chromatoid body. Reproduction 2017; 154:723-733. [PMID: 28871057 DOI: 10.1530/rep-17-0169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/28/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022]
Abstract
The chromatoid body (CB) is a specific cloud-like structure in the cytoplasm of haploid spermatids. Recent findings indicate that CB is identified as a male germ cell-specific RNA storage and processing center, but its function has remained elusive for decades. In somatic cells, KH-type splicing regulatory protein (KSRP) is involved in regulating gene expression and maturation of select microRNAs (miRNAs). However, the function of KSRP in spermatogenesis remains unclear. In this study, we showed that KSRP partly localizes in CB, as a component of CB. KSRP interacts with proteins (mouse VASA homolog (MVH), polyadenylate-binding protein 1 (PABP1) and polyadenylate-binding protein 2 (PABP2)), mRNAs (Tnp2 and Odf1) and microRNAs (microRNA-182) in mouse CB. Moreover, KSRP may regulate the integrity of CB via DDX5-miRNA-182 pathway. In addition, we found abnormal expressions of CB component in testes of Ksrp-knockout mice and of patients with hypospermatogenesis. Thus, our results provide mechanistic insight into the role of KSRP in spermatogenesis.
Collapse
Affiliation(s)
- Huijuan Zhang
- International Peace Maternity and Child Health HospitalShanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China.,Reproductive Medicine CenterThe People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Guishuan Wang
- International Peace Maternity and Child Health HospitalShanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Lin Liu
- The Reproductive Medicine CenterThe First Hospital of Lanzhou University, Lanzhou, China
| | - Xiaolin Liang
- International Peace Maternity and Child Health HospitalShanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu Lin
- International Peace Maternity and Child Health HospitalShanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yi-Yu Lin
- Department of Biochemistry and Molecular GeneticsUniversity of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Chu-Fang Chou
- Department of Biochemistry and Molecular GeneticsUniversity of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Mo-Fang Liu
- Institute of Biochemistry and Cell BiologyShanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hefeng Huang
- International Peace Maternity and Child Health HospitalShanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Fei Sun
- International Peace Maternity and Child Health HospitalShanghai Key laboratory for Reproductive Medicine, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
32
|
Käfer R, Schrick K, Schmidtke L, Montermann E, Hobernik D, Bros M, Chen CY, Kleinert H, Pautz A. Inactivation of the KSRP gene modifies collagen antibody induced arthritis. Mol Immunol 2017; 87:207-216. [DOI: 10.1016/j.molimm.2017.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 12/14/2022]
|
33
|
Uehata T, Takeuchi O. Regnase-1 Is an Endoribonuclease Essential for the Maintenance of Immune Homeostasis. J Interferon Cytokine Res 2017; 37:220-229. [DOI: 10.1089/jir.2017.0001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Takuya Uehata
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, AMED-CREST, Kyoto, Japan
| | - Osamu Takeuchi
- Laboratory of Infection and Prevention, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- CREST, AMED-CREST, Kyoto, Japan
| |
Collapse
|
34
|
Soonthornvacharin S, Rodriguez-Frandsen A, Zhou Y, Galvez F, Huffmaster NJ, Tripathi S, Balasubramaniam VRMT, Inoue A, de Castro E, Moulton H, Stein DA, Sánchez-Aparicio MT, De Jesus PD, Nguyen Q, König R, Krogan NJ, García-Sastre A, Yoh SM, Chanda SK. Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation. Nat Microbiol 2017; 2:17022. [PMID: 28248290 PMCID: PMC5338947 DOI: 10.1038/nmicrobiol.2017.22] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/23/2017] [Indexed: 01/05/2023]
Abstract
Retinoic acid-inducible gene I (RIG-I) receptor recognizes 5'-triphosphorylated RNA and triggers a signalling cascade that results in the induction of type-I interferon (IFN)-dependent responses. Its precise regulation represents a pivotal balance between antiviral defences and autoimmunity. To elucidate the cellular cofactors that regulate RIG-I signalling, we performed two global RNA interference analyses to identify both positive and negative regulatory nodes operating on the signalling pathway during virus infection. These factors were integrated with experimentally and computationally derived interactome data to build a RIG-I protein interaction network. Our analysis revealed diverse cellular processes, including the unfolded protein response, Wnt signalling and RNA metabolism, as critical cellular components governing innate responses to non-self RNA species. Importantly, we identified K-Homology Splicing Regulatory Protein (KHSRP) as a negative regulator of this pathway. We find that KHSRP associates with the regulatory domain of RIG-I to maintain the receptor in an inactive state and attenuate its sensing of viral RNA (vRNA). Consistent with increased RIG-I antiviral signalling in the absence of KHSRP, viral replication is reduced when KHSRP expression is knocked down both in vitro and in vivo. Taken together, these data indicate that KHSRP functions as a checkpoint regulator of the innate immune response to pathogen challenge.
Collapse
Affiliation(s)
- Stephen Soonthornvacharin
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Ariel Rodriguez-Frandsen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Yingyao Zhou
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, USA
| | - Felipe Galvez
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Nicholas J Huffmaster
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Vinod R M T Balasubramaniam
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Atsushi Inoue
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
| | - Elisa de Castro
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Hong Moulton
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, 450 SW 30th Street, Oregon 97331, USA
| | - David A Stein
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, 450 SW 30th Street, Oregon 97331, USA
| | - María Teresa Sánchez-Aparicio
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Paul D De Jesus
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Quy Nguyen
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Renate König
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- Host-Pathogen-Interactions, Paul-Ehrlich-Institute, German Center for Infection Research (DZIF), Paul-Ehrlich-Straße 51-59, 63225 Langen, Germany
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, 1700 4th Street, Byers Hall 308D, Box 2530, San Francisco, California 94158, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Global Health and Emerging Pathogen Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, New York 10029, USA
| | - Sunnie M Yoh
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| | - Sumit K Chanda
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, California 92037, USA
- The San Diego Center for Systems Biology (SDCSB), La Jolla, California 92093, USA
| |
Collapse
|
35
|
Kung YA, Hung CT, Chien KY, Shih SR. Control of the negative IRES trans-acting factor KHSRP by ubiquitination. Nucleic Acids Res 2017; 45:271-287. [PMID: 27899653 PMCID: PMC5224474 DOI: 10.1093/nar/gkw1042] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 10/14/2016] [Accepted: 11/01/2016] [Indexed: 01/25/2023] Open
Abstract
Cells and viruses can utilize internal ribosome entry sites (IRES) to drive translation when cap-dependent translation is inhibited by stress or viral factors. IRES trans-acting factors (ITAFs) are known to participate in such cap-independent translation, but there are gaps in the understanding as to how ITAFs, particularly negative ITAFs, regulate IRES-driven translation. This study found that Lys109, Lys121 and Lys122 represent critical ubiquitination sites for far upstream element-binding protein 2 (KHSRP, also known as KH-type splicing regulatory protein or FBP2), a negative ITAF. Mutations at these sites subsequently reduced KHSRP ubiquitination and abolished its inhibitory effect on IRES-driven translation. We further found that interaction between the Kelch domain of Kelch-like protein 12 (KLHL12) and the C-terminal domain of KHSRP contributed to KHSRP ubiquitination, leading to downregulation of enterovirus IRES-mediated translation in infected cells and increased competition against other positive ITAFs. Together, these results show that ubiquitination can exert control over IRES-driven translation via modification of ITAFs, and to the best of our knowledge, this is the first description of such a regulatory mechanism for IRES-dependent translation.
Collapse
Affiliation(s)
- Yu-An Kung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Chuan-Tien Hung
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
| | - Kun-Yi Chien
- Department of Biochemistry and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Proteomics Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan
- Clinical Virology Laboratory, Department of Laboratory Medicine, Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan
| |
Collapse
|
36
|
Beta Interferon Production Is Regulated by p38 Mitogen-Activated Protein Kinase in Macrophages via both MSK1/2- and Tristetraprolin-Dependent Pathways. Mol Cell Biol 2016; 37:MCB.00454-16. [PMID: 27795299 PMCID: PMC5192081 DOI: 10.1128/mcb.00454-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/07/2016] [Indexed: 01/03/2023] Open
Abstract
Autocrine or paracrine signaling by beta interferon (IFN-β) is essential for many of the responses of macrophages to pathogen-associated molecular patterns. This feedback loop contributes to pathological responses to infectious agents and is therefore tightly regulated. We demonstrate here that macrophage expression of IFN-β is negatively regulated by mitogen- and stress-activated kinases 1 and 2 (MSK1/2). Lipopolysaccharide (LPS)-induced expression of IFN-β was elevated in both MSK1/2 knockout mice and macrophages. Although MSK1 and -2 promote the expression of the anti-inflammatory cytokine interleukin 10, it did not strongly contribute to the ability of MSKs to regulate IFN-β expression. Instead, MSK1 and -2 inhibit IFN-β expression via the induction of dual-specificity phosphatase 1 (DUSP1), which dephosphorylates and inactivates the mitogen-activated protein kinases p38 and Jun N-terminal protein kinase (JNK). Prolonged LPS-induced activation of p38 and JNK, phosphorylation of downstream transcription factors, and overexpression of IFN-β mRNA and protein were similar in MSK1/2 and DUSP1 knockout macrophages. Two distinct mechanisms were implicated in the overexpression of IFN-β: first, JNK-mediated activation of c-jun, which binds to the IFN-β promoter, and second, p38-mediated inactivation of the mRNA-destabilizing factor tristetraprolin, which we show is able to target the IFN-β mRNA.
Collapse
|
37
|
KH-type splicing regulatory protein (KHSRP) contributes to tumorigenesis by promoting miR-26a maturation in small cell lung cancer. Mol Cell Biochem 2016; 422:61-74. [DOI: 10.1007/s11010-016-2806-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/25/2016] [Indexed: 12/17/2022]
|
38
|
Khabar KSA. Hallmarks of cancer and AU-rich elements. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 8. [PMID: 27251431 PMCID: PMC5215528 DOI: 10.1002/wrna.1368] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/05/2016] [Accepted: 05/09/2016] [Indexed: 12/14/2022]
Abstract
Post‐transcriptional control of gene expression is aberrant in cancer cells. Sustained stabilization and enhanced translation of specific mRNAs are features of tumor cells. AU‐rich elements (AREs), cis‐acting mRNA decay determinants, play a major role in the posttranscriptional regulation of many genes involved in cancer processes. This review discusses the role of aberrant ARE‐mediated posttranscriptional processes in each of the hallmarks of cancer, including sustained cellular growth, resistance to apoptosis, angiogenesis, invasion, and metastasis. WIREs RNA 2017, 8:e1368. doi: 10.1002/wrna.1368 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Khalid S A Khabar
- King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
39
|
Malmo J, Moe N, Krokstad S, Ryan L, Loevenich S, Johnsen IB, Espevik T, Nordbø SA, Døllner H, Anthonsen MW. Cytokine Profiles in Human Metapneumovirus Infected Children: Identification of Genes Involved in the Antiviral Response and Pathogenesis. PLoS One 2016; 11:e0155484. [PMID: 27171557 PMCID: PMC4865088 DOI: 10.1371/journal.pone.0155484] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/29/2016] [Indexed: 12/29/2022] Open
Abstract
Human metapneumovirus (hMPV) causes severe airway infection in children that may be caused by an unfavorable immune response. The nature of the innate immune response to hMPV in naturally occurring infections in children is largely undescribed, and it is unknown if inflammasome activation is implicated in disease pathogenesis. We examined nasopharynx aspirates and blood samples from hMPV-infected children without detectable co-infections. The expression of inflammatory and antiviral genes were measured in nasal airway secretions by relative mRNA quantification while blood plasma proteins were determined by a multiplex immunoassay. Several genes were significantly up-regulated at mRNA and protein level in the hMPV infected children. Most apparent was the expression of the chemokine IP-10, the pro-inflammatory cytokine IL-18 in addition to the interferon inducible gene ISG54. Interestingly, children experiencing more severe disease, as indicated by a severity index, had significantly more often up-regulation of the inflammasome-associated genes IL-1β and NLRP3. Overall, our data point to cytokines, particularly inflammasome-associated, that might be important in hMPV mediated lung disease and the antiviral response in children with severe infection. Our study is the first to demonstrate that inflammasome components are associated with increased illness severity in hMPV-infected children.
Collapse
Affiliation(s)
- Jostein Malmo
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- * E-mail:
| | - Nina Moe
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Childhood Airway Infections Research Group, Children’s Clinic, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Sidsel Krokstad
- Childhood Airway Infections Research Group, Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Liv Ryan
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Simon Loevenich
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Ingvild B. Johnsen
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Terje Espevik
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Faculty of Medicine, Norwegian University of Science and Technology, 7489 Trondheim, Norway
| | - Svein Arne Nordbø
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Childhood Airway Infections Research Group, Department of Medical Microbiology, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Henrik Døllner
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Childhood Airway Infections Research Group, Children’s Clinic, St. Olav’s Hospital, Trondheim University Hospital, 7491 Trondheim, Norway
| | - Marit W. Anthonsen
- Childhood Airway Infections Research Group, Department of Laboratory Medicine, Children’s and Women’s Health, Faculty of Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
40
|
Schwerk J, Savan R. Translating the Untranslated Region. THE JOURNAL OF IMMUNOLOGY 2016; 195:2963-71. [PMID: 26386038 DOI: 10.4049/jimmunol.1500756] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Gene expression programs undergo constant regulation to quickly adjust to environmental stimuli that alter the physiological status of the cell, like cellular stress or infection. Gene expression is tightly regulated by multilayered regulatory elements acting in both cis and trans. Posttranscriptional regulation of the 3' untranslated region (UTR) is a powerful regulatory process that determines the rate of protein translation from mRNA. Regulatory elements targeting the 3' UTR include microRNAs, RNA-binding proteins, and long noncoding RNAs, which dramatically alter the immune response. We provide an overview of our current understanding of posttranscriptional regulation of immune gene expression. The focus of this review is on regulatory elements that target the 3' UTR. We delineate how the synergistic or antagonistic interactions of posttranscriptional regulators determine gene expression levels and how dysregulation of 3' UTR-mediated posttranscriptional control associates with human diseases.
Collapse
Affiliation(s)
- Johannes Schwerk
- Department of Immunology, University of Washington, Seattle, WA 98109
| | - Ram Savan
- Department of Immunology, University of Washington, Seattle, WA 98109
| |
Collapse
|
41
|
Zhou W, Chung YJ, Parrilla Castellar ER, Zheng Y, Chung HJ, Bandle R, Liu J, Tessarollo L, Batchelor E, Aplan PD, Levens D. Far Upstream Element Binding Protein Plays a Crucial Role in Embryonic Development, Hematopoiesis, and Stabilizing Myc Expression Levels. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:701-15. [PMID: 26774856 DOI: 10.1016/j.ajpath.2015.10.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/29/2015] [Accepted: 10/27/2015] [Indexed: 11/27/2022]
Abstract
The transcription factor far upstream element binding protein (FBP) binds and activates the MYC promoter when far upstream element is via TFIIH helicase activity early in the transcription cycle. The fundamental biology and pathology of FBP are complex. In some tumors FBP seems pro-oncogenic, whereas in others it is a tumor suppressor. We generated an FBP knockout (Fubp1(-/-)) mouse to study FBP deficiency. FBP is embryo lethal from embryonic day 10.5 to birth. A spectrum of pathology is associated with FBP loss; besides cerebral hyperplasia and pulmonary hypoplasia, pale livers, hypoplastic spleen, thymus, and bone marrow, cardiac hypertrophy, placental distress, and small size were all indicative of anemia. Immunophenotyping of hematopoietic cells in wild-type versus knockout livers revealed irregular trilineage anemia, with deficits in colony formation. Despite normal numbers of hematopoietic stem cells, transplantation of Fubp1(-/-) hematopoietic stem cells into irradiated mice entirely failed to reconstitute hematopoiesis. In competitive transplantation assays against wild-type donor bone marrow, Fubp1(-/-) hematopoietic stem cells functioned only sporadically at a low level. Although cultures of wild-type mouse embryo fibroblasts set Myc levels precisely, Myc levels of mouse varied wildly between fibroblasts harvested from different Fubp1(-/-) embryos, suggesting that FBP contributes to Myc set point fixation. FBP helps to hold multiple physiologic processes to close tolerances, at least in part by constraining Myc expression.
Collapse
Affiliation(s)
- Weixin Zhou
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Yang Jo Chung
- Laboratory of Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - Ying Zheng
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Hye-Jung Chung
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Russell Bandle
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Juhong Liu
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Lino Tessarollo
- Mouse Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Eric Batchelor
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - Peter D Aplan
- Laboratory of Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | - David Levens
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.
| |
Collapse
|
42
|
Briata P, Bordo D, Puppo M, Gorlero F, Rossi M, Perrone-Bizzozero N, Gherzi R. Diverse roles of the nucleic acid-binding protein KHSRP in cell differentiation and disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 7:227-40. [PMID: 26708421 DOI: 10.1002/wrna.1327] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/15/2022]
Abstract
The single-stranded nucleic acid-binding protein KHSRP (KH-type splicing regulatory protein) modulates RNA life and gene expression at various levels. KHSRP controls important cellular functions as different as proliferation, differentiation, metabolism, and response to infectious agents. We summarize and discuss experimental evidence providing a potential link between changes in KHSRP expression/function and human diseases including neuromuscular disorders, obesity, type II diabetes, and cancer.
Collapse
Affiliation(s)
- Paola Briata
- Gene Expression Regulation Laboratory, IRCCS AOU San Martino-IST, Genova, Italy
| | - Domenico Bordo
- Gene Expression Regulation Laboratory, IRCCS AOU San Martino-IST, Genova, Italy
| | - Margherita Puppo
- Gene Expression Regulation Laboratory, IRCCS AOU San Martino-IST, Genova, Italy
| | - Franco Gorlero
- S.C. Ginecologia e Ostetricia Galliera Hospital, Genova, Italy.,School of Medicine, DINOGMI, University of Genova, Genova, Italy
| | - Martina Rossi
- Gene Expression Regulation Laboratory, IRCCS AOU San Martino-IST, Genova, Italy
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, School of Medicine, University of New Mexico, Albuquerque, NM, USA
| | - Roberto Gherzi
- Gene Expression Regulation Laboratory, IRCCS AOU San Martino-IST, Genova, Italy
| |
Collapse
|
43
|
Kovarik P, Ebner F, Sedlyarov V. Posttranscriptional regulation of cytokine expression. Cytokine 2015; 89:21-26. [PMID: 26586165 DOI: 10.1016/j.cyto.2015.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/03/2015] [Indexed: 01/20/2023]
Abstract
Expression of cytokines and chemokines is regulated at multiple steps during the transfer of the genetic information from DNA sequence to the functional protein. The multilayered control of cytokine expression reflects the need of the immune system to precisely and rapidly adjust the magnitude and duration of immune responses to external cues. Common features of the regulation of cytokine expression are temporal and highly dynamic changes in cytokine mRNA stability. Failures in the timing and extent of mRNA decay can result in disease. Recent advances in transcriptome-wide approaches began to shed light into the complex network of cis-acting sequence elements and trans-acting factors controlling mRNA stability. These approaches led to the discovery of novel unexpected paradigms but they also revealed new questions. This review will discuss the control of cytokine mRNA stability both in the context of high content approaches as well as focused mechanistic studies and animal models. The article highlights the need for systems biology approaches as important means to understand how cytokine mRNA decay helps maintain the immune and tissue homeostasis, and to explore options for therapeutical exploitation of mRNA stability regulation.
Collapse
Affiliation(s)
- Pavel Kovarik
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria.
| | - Florian Ebner
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Vitaly Sedlyarov
- Max F. Perutz Laboratories, University of Vienna, Dr. Bohr-Gasse 9, A-1030 Vienna, Austria
| |
Collapse
|
44
|
Subcellular quantitative proteomic analysis reveals host proteins involved in human cytomegalovirus infection. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:967-78. [DOI: 10.1016/j.bbapap.2015.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/19/2015] [Accepted: 04/15/2015] [Indexed: 12/17/2022]
|
45
|
Boucas J, Fritz C, Schmitt A, Riabinska A, Thelen L, Peifer M, Leeser U, Nuernberg P, Altmueller J, Gaestel M, Dieterich C, Reinhardt HC. Label-Free Protein-RNA Interactome Analysis Identifies Khsrp Signaling Downstream of the p38/Mk2 Kinase Complex as a Critical Modulator of Cell Cycle Progression. PLoS One 2015; 10:e0125745. [PMID: 25993413 PMCID: PMC4439058 DOI: 10.1371/journal.pone.0125745] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/26/2015] [Indexed: 12/11/2022] Open
Abstract
Growing evidence suggests a key role for RNA binding proteins (RBPs) in genome stability programs. Additionally, recent developments in RNA sequencing technologies, as well as mass-spectrometry techniques, have greatly expanded our knowledge on protein-RNA interactions. We here use full transcriptome sequencing and label-free LC/MS/MS to identify global changes in protein-RNA interactions in response to etoposide-induced genotoxic stress. We show that RBPs have distinct binding patterns in response to genotoxic stress and that inactivation of the RBP regulator module, p38/MK2, can affect the entire spectrum of protein-RNA interactions that take place in response to stress. In addition to validating the role of known RBPs like Srsf1, Srsf2, Elavl1 in the genotoxic stress response, we add a new collection of RBPs to the DNA damage response. We identify Khsrp as a highly regulated RBP in response to genotoxic stress and further validate its role as a driver of the G(1/)S transition through the suppression of Cdkn1a(P21) transcripts. Finally, we identify KHSRP as an indicator of overall survival, as well as disease free survival in glioblastoma multiforme.
Collapse
Affiliation(s)
- Jorge Boucas
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Christian Fritz
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Anna Schmitt
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Arina Riabinska
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Lisa Thelen
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Martin Peifer
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department of Translational Genomics, University of Cologne, Cologne, Germany
| | - Uschi Leeser
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| | - Peter Nuernberg
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Janine Altmueller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Christoph Dieterich
- Computational RNA Biology and Ageing, Max Planck Institute for Biology of Ageing, Joseph-Stelzmann Straße 9b, 50913, Cologne, Germany
| | - H. Christian Reinhardt
- Department I of Internal Medicine, University Hospital of Cologne, Weyertal 115B, 50931, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, University of Cologne, Weyertal 115B, 50931, Cologne, Germany
| |
Collapse
|
46
|
King PH, Chen CY. Role of KSRP in control of type I interferon and cytokine expression. J Interferon Cytokine Res 2015; 34:267-74. [PMID: 24697204 DOI: 10.1089/jir.2013.0143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cytokines and chemokines are key participants in pathways that drive inflammatory, immune, and other cellular responses to exogenous insults such as infection, trauma, and physiological stress. Persistent and aberrant expression of these factors has been linked to autoimmune, degenerative, and neoplastic diseases. Consequently, cytokine and chemokine expression is tightly governed at each level of gene regulation. Recent studies have demonstrated a role for KH-type splicing regulatory protein (KSRP) in curtailing cytokine and chemokine expression through transcriptional and post-transcriptional mechanisms, including promotion of microRNA maturation. Understanding the role of KSRP in cytokine mRNA metabolism should identify promising targets for the modulation of immune and inflammatory responses.
Collapse
Affiliation(s)
- Peter H King
- 1 Department of Neurology, University of Alabama at Birmingham , Birmingham, Alabama
| | | |
Collapse
|
47
|
Herdy B, Karonitsch T, Vladimer GI, Tan CSH, Stukalov A, Trefzer C, Bigenzahn JW, Theil T, Holinka J, Kiener HP, Colinge J, Bennett KL, Superti-Furga G. The RNA-binding protein HuR/ELAVL1 regulates IFN-β mRNA abundance and the type I IFN response. Eur J Immunol 2015; 45:1500-11. [PMID: 25678110 DOI: 10.1002/eji.201444979] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/18/2014] [Accepted: 02/06/2015] [Indexed: 12/26/2022]
Abstract
Secretion of type I interferon (IFN) is the first cellular reaction to invading pathogens. Despite the protective function of these cytokines, an excessive response to their action can contribute to serious pathologies, such as autoimmune diseases. Transcripts of most cytokines contain adenylate-uridylate (A/U)-rich elements (AREs) that make them highly unstable. RNA-binding proteins (RBPs) are mediators of the regulatory mechanisms that determine the fate of mRNAs containing AREs. Here, we applied an affinity proteomic approach and identified lethal, abnormal vision, drosophila-like 1 (ELAVL1)/Hu antigen R (HuR) as the predominant RBP of the IFN-β mRNA ARE. Reduced expression or chemical inhibition of HuR severely hampered the type I IFN response in various cell lines and fibroblast-like synoviocytes isolated from joints of rheumatoid arthritis patients. These results define a role for HuR as a potent modulator of the type I IFN response. Taken together, HuR could be used as therapeutic target for diseases where type I IFN production is exaggerated.
Collapse
Affiliation(s)
- Barbara Herdy
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas Karonitsch
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gregory I Vladimer
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Chris S H Tan
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Alexey Stukalov
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Claudia Trefzer
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes W Bigenzahn
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Tamara Theil
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Johannes Holinka
- Department of Orthopedics, Medical University of Vienna, Vienna, Austria
| | - Hans P Kiener
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jacques Colinge
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Keiryn L Bennett
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Giulio Superti-Furga
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| |
Collapse
|
48
|
Chou CF, Zhu X, Lin YY, Gamble KL, Garvey WT, Chen CY. KSRP is critical in governing hepatic lipid metabolism through controlling Per2 expression. J Lipid Res 2014; 56:227-40. [PMID: 25514904 DOI: 10.1194/jlr.m050724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hepatic lipid metabolism is controlled by integrated metabolic pathways. Excess accumulation of hepatic TG is a hallmark of nonalcoholic fatty liver disease, which is associated with obesity and insulin resistance. Here, we show that KH-type splicing regulatory protein (KSRP) ablation reduces hepatic TG levels and diet-induced hepatosteatosis. Expression of period 2 (Per2) is increased during the dark period, and circadian oscillations of several core clock genes are altered with a delayed phase in Ksrp(-/-) livers. Diurnal expression of some lipid metabolism genes is also disturbed with reduced expression of genes involved in de novo lipogenesis. Using primary hepatocytes, we demonstrate that KSRP promotes decay of Per2 mRNA through an RNA-protein interaction and show that increased Per2 expression is responsible for the phase delay in cycling of several clock genes in the absence of KSRP. Similar to Ksrp(-/-) livers, both expression of lipogenic genes and intracellular TG levels are also reduced in Ksrp(-/-) hepatocytes due to increased Per2 expression. Using heterologous mRNA reporters, we show that the AU-rich element-containing 3' untranslated region of Per2 is responsible for KSRP-dependent mRNA decay. These findings implicate that KSRP is an important regulator of circadian expression of lipid metabolism genes in the liver likely through controlling Per2 mRNA stability.
Collapse
Affiliation(s)
- Chu-Fang Chou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Xiaolin Zhu
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Yi-Yu Lin
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Karen L Gamble
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
49
|
H19 long noncoding RNA controls the mRNA decay promoting function of KSRP. Proc Natl Acad Sci U S A 2014; 111:E5023-8. [PMID: 25385579 DOI: 10.1073/pnas.1415098111] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) interact with protein factors to regulate different layers of gene expression transcriptionally or posttranscriptionally. Here we report on the functional consequences of the unanticipated interaction of the RNA binding protein K homology-type splicing regulatory protein (KSRP) with the H19 lncRNA (H19). KSRP directly binds to H19 in the cytoplasm of undifferentiated multipotent mesenchymal C2C12 cells, and this interaction favors KSRP-mediated destabilization of labile transcripts such as myogenin. AKT activation induces KSRP dismissal from H19 and, as a consequence, myogenin mRNA is stabilized while KSRP is repurposed to promote maturation of myogenic microRNAs, thus favoring myogenic differentiation. Our data indicate that H19 operates as a molecular scaffold that facilitates effective association of KSRP with myogenin and other labile transcripts, and we propose that H19 works with KSRP to optimize an AKT-regulated posttranscriptional switch that controls myogenic differentiation.
Collapse
|
50
|
Bollmann F, Art J, Henke J, Schrick K, Besche V, Bros M, Li H, Siuda D, Handler N, Bauer F, Erker T, Behnke F, Mönch B, Härdle L, Hoffmann M, Chen CY, Förstermann U, Dirsch VM, Werz O, Kleinert H, Pautz A. Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity. Nucleic Acids Res 2014; 42:12555-69. [PMID: 25352548 PMCID: PMC4227754 DOI: 10.1093/nar/gku1033] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Resveratrol shows beneficial effects in inflammation-based diseases like cancer, cardiovascular and chronic inflammatory diseases. Therefore, the molecular mechanisms of the anti-inflammatory resveratrol effects deserve more attention. In human epithelial DLD-1 and monocytic Mono Mac 6 cells resveratrol decreased the expression of iNOS, IL-8 and TNF-α by reducing mRNA stability without inhibition of the promoter activity. Shown by pharmacological and siRNA-mediated inhibition, the observed effects are SIRT1-independent. Target-fishing and drug responsive target stability experiments showed selective binding of resveratrol to the RNA-binding protein KSRP, a central post-transcriptional regulator of pro-inflammatory gene expression. Knockdown of KSRP expression prevented resveratrol-induced mRNA destabilization in human and murine cells. Resveratrol did not change KSRP expression, but immunoprecipitation experiments indicated that resveratrol reduces the p38 MAPK-related inhibitory KSRP threonine phosphorylation, without blocking p38 MAPK activation or activity. Mutation of the p38 MAPK target site in KSRP blocked the resveratrol effect on pro-inflammatory gene expression. In addition, resveratrol incubation enhanced KSRP-exosome interaction, which is important for mRNA degradation. Finally, resveratrol incubation enhanced its intra-cellular binding to the IL-8, iNOS and TNF-α mRNA. Therefore, modulation of KSRP mRNA binding activity and, thereby, enhancement of mRNA degradation seems to be the common denominator of many anti-inflammatory effects of resveratrol.
Collapse
Affiliation(s)
- Franziska Bollmann
- Department of Pharmacology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Julia Art
- Department of Pharmacology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Jenny Henke
- Department of Pharmacology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Katharina Schrick
- Department of Pharmacology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Verena Besche
- Department of Dermatology, Johannes Gutenberg-University Medical Center, Mainz, Germany Core Facility Lentiviral Transduction Service, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, Johannes Gutenberg-University Medical Center, Mainz, Germany Core Facility Lentiviral Transduction Service, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Daniel Siuda
- Department of Pharmacology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Norbert Handler
- Department of Pharmaceutical/Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Florian Bauer
- Department of Pharmaceutical/Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Thomas Erker
- Department of Pharmaceutical/Medicinal Chemistry, University of Vienna, Vienna, Austria
| | - Felix Behnke
- Chair of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University, Jena, Germany
| | - Bettina Mönch
- pharmazentrum frankfurt/ZAFES, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lorena Härdle
- Institute of Immunology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Markus Hoffmann
- Department of Biochemistry & Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ching-Yi Chen
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ulrich Förstermann
- Department of Pharmacology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Verena M Dirsch
- Pharmaceutical Institute, University Tuebingen, Tuebingen, Germany
| | - Oliver Werz
- pharmazentrum frankfurt/ZAFES, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, Johannes Gutenberg-University Medical Center, Mainz, Germany
| |
Collapse
|