1
|
Huang Y, Urban C, Hubel P, Stukalov A, Pichlmair A. Protein turnover regulation is critical for influenza A virus infection. Cell Syst 2024; 15:911-929.e8. [PMID: 39368468 DOI: 10.1016/j.cels.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 08/16/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
The abundance of a protein is defined by its continuous synthesis and degradation, a process known as protein turnover. Here, we systematically profiled the turnover of proteins in influenza A virus (IAV)-infected cells using a pulse-chase stable isotope labeling by amino acids in cell culture (SILAC)-based approach combined with downstream statistical modeling. We identified 1,798 virus-affected proteins with turnover changes (tVAPs) out of 7,739 detected proteins (data available at pulsechase.innatelab.org). In particular, the affected proteins were involved in RNA transcription, splicing and nuclear transport, protein translation and stability, and energy metabolism. Many tVAPs appeared to be known IAV-interacting proteins that regulate virus propagation, such as KPNA6, PPP6C, and POLR2A. Notably, our analysis identified additional IAV host and restriction factors, such as the splicing factor GPKOW, that exhibit significant turnover rate changes while their total abundance is minimally affected. Overall, we show that protein turnover is a critical factor both for virus replication and antiviral defense.
Collapse
Affiliation(s)
- Yiqi Huang
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Christian Urban
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Philipp Hubel
- Core Facility Hohenheim, Universität Hohenheim, Stuttgart, Germany
| | - Alexey Stukalov
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Andreas Pichlmair
- Institute of Virology, Technical University of Munich, School of Medicine, Munich, Germany; Institute of Virology, Helmholtz Munich, Munich, Germany; German Centre for Infection Research (DZIF), Partner Site, Munich, Germany.
| |
Collapse
|
2
|
Zhou D, Zi H, Yang X, Li X, Li Y, Xu A, Zhang B, Zhang W, Ou X, Jia J, Huang J, You H. Dysfunction of ATP7B Splicing Variant Caused by Enhanced Interaction With COMMD1 in Wilson Disease. Cell Mol Gastroenterol Hepatol 2024; 19:101418. [PMID: 39389536 PMCID: PMC11629249 DOI: 10.1016/j.jcmgh.2024.101418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND & AIMS The association between Wilson disease and various ATP7B mutations is well-established; however, the molecular mechanism underlying the functional consequence of these mutations, particularly the splicing mutations, remains unclear. This study focused on the ATP7B c.1543+1G>C variant, to reveal a universal pathogenic mechanism of the ATP7B mutants with altered N-terminus. METHODS The splicing assay and RNA pull-down were performed to explore the mechanism of the aberrant splicing. The ATP7B knockout HuH-7 cell line and Atp7b-/- mice were created, and the functional consequence of the mutant ATP7B were evaluated in vitro and in vivo. RESULTS The c.1543+1G>C mutation resulted in the skipping of ATP7B exon 3, and the mutant ATP7B showed a loss of trans-Golgi network localization and was degraded via the ubiquitin-proteasome pathway, facilitated by enhanced interactions with COMMD1. Elevated intercellular copper concentration and reduced survival rate were observed in HuH-7 cells expressing mutant ATP7B. Restoration of wild-type ATP7B in Atp7b-/- mice resulted in a substantial improvement in phenotype, whereas mice treated with mutant ATP7B did not demonstrate equivalent benefits. CONCLUSIONS Our research investigated the pathogenicity and mechanism of ATP7B c.1543+1G>C variant, with particular focus on its enhanced interaction with COMMD1 as a potential universal mechanism contributing to the dysfunction of various ATP7B variants. These findings provide a foundation for the development of innovative therapeutic strategies that target abnormal splicing events in a range of hereditary diseases, including Wilson disease.
Collapse
Affiliation(s)
- Donghu Zhou
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University; Beijing, China; Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Huaduan Zi
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University; Beijing, China; Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaoxi Yang
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University; Beijing, China; Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaojin Li
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University; Beijing, China; Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yanmeng Li
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University; Beijing, China; Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Anjian Xu
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University; Beijing, China; Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Bei Zhang
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University; Beijing, China; Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Zhang
- Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China; Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, China
| | - Xiaojuan Ou
- Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China; Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, China
| | - Jidong Jia
- Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China; Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, China
| | - Jian Huang
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University; Beijing, China; Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China.
| | - Hong You
- Beijing Institute of Clinical Medicine, Beijing Friendship Hospital, Capital Medical University; Beijing, China; Clinical Research Center for Rare Liver Diseases, Capital Medical University, Beijing, China; National Clinical Research Center for Digestive Diseases, Beijing, China; Liver Research Center, Beijing Friendship Hospital, Capital Medical University; Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Beijing, China.
| |
Collapse
|
3
|
Bolikhova AK, Buyan AI, Mariasina SS, Rudenko AY, Chekh DS, Mazur AM, Prokhortchouk EB, Dontsova OA, Sergiev PV. Study of the RNA splicing kinetics via in vivo 5-EU labeling. RNA (NEW YORK, N.Y.) 2024; 30:1356-1373. [PMID: 39048310 PMCID: PMC11404452 DOI: 10.1261/rna.079937.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Splicing is an important step of gene expression in all eukaryotes. Splice sites might be used with different efficiency, giving rise to alternative splicing products. At the same time, splice sites might be used at a variable rate. We used 5-ethynyl uridine labeling to sequence a nascent transcriptome of HeLa cells and deduced the rate of splicing for each donor and acceptor splice site. The following correlation analysis showed a correspondence of primary transcript features with the rate of splicing. Some dependencies we revealed were anticipated, such as a splicing rate decrease with a decreased complementarity of the donor splice site to U1 and acceptor sites to U2 snRNAs. Other dependencies were more surprising, like a negative influence of a distance to the 5' end on the rate of the acceptor splicing site utilization, or the differences in splicing rate between long, short, and RBM17-dependent introns. We also observed a deceleration of last intron splicing with an increase of the distance to the poly(A) site, which might be explained by the cooperativity of the splicing and polyadenylation. Additional analysis of splicing kinetics of SF3B4 knockdown cells suggested the impairment of a U2 snRNA recognition step. As a result, we deconvoluted the effects of several examined features on the splicing rate into a single regression model. The data obtained here are useful for further studies in the field, as they provide general splicing rate dependencies as well as help to justify the existence of slowly removed splice sites.
Collapse
Affiliation(s)
- Anastasiia K Bolikhova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey I Buyan
- Institute of Protein Research, Russian Academy of Sciences, Pushchino 142290, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Sofia S Mariasina
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Y Rudenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Daria S Chekh
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander M Mazur
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Egor B Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Olga A Dontsova
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Functioning of Living Systems, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Petr V Sergiev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo 121205, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
4
|
Zhang X, Zhan X, Bian T, Yang F, Li P, Lu Y, Xing Z, Fan R, Zhang QC, Shi Y. Structural insights into branch site proofreading by human spliceosome. Nat Struct Mol Biol 2024; 31:835-845. [PMID: 38196034 DOI: 10.1038/s41594-023-01188-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
Selection of the pre-mRNA branch site (BS) by the U2 small nuclear ribonucleoprotein (snRNP) is crucial to prespliceosome (A complex) assembly. The RNA helicase PRP5 proofreads BS selection but the underlying mechanism remains unclear. Here we report the atomic structures of two sequential complexes leading to prespliceosome assembly: human 17S U2 snRNP and a cross-exon pre-A complex. PRP5 is anchored on 17S U2 snRNP mainly through occupation of the RNA path of SF3B1 by an acidic loop of PRP5; the helicase domain of PRP5 associates with U2 snRNA; the BS-interacting stem-loop (BSL) of U2 snRNA is shielded by TAT-SF1, unable to engage the BS. In the pre-A complex, an initial U2-BS duplex is formed; the translocated helicase domain of PRP5 stays with U2 snRNA and the acidic loop still occupies the RNA path. The pre-A conformation is specifically stabilized by the splicing factors SF1, DNAJC8 and SF3A2. Cancer-derived mutations in SF3B1 damage its association with PRP5, compromising BS proofreading. Together, these findings reveal key insights into prespliceosome assembly and BS selection or proofreading by PRP5.
Collapse
Affiliation(s)
- Xiaofeng Zhang
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
- Division of Reproduction and Genetics, The First Affiliated Hospital of USTC; MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Xiechao Zhan
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Tong Bian
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Fenghua Yang
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Pan Li
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yichen Lu
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
- College of Life Sciences, Fudan University, Shanghai, China
| | - Zhihan Xing
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Rongyan Fan
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China
| | - Qiangfeng Cliff Zhang
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China
| | - Yigong Shi
- Research Center for Industries of the Future, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China.
- Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure; Tsinghua-Peking Joint Center for Life Sciences; School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Surendran A, Huang C, Liu L. Circular RNAs and their roles in idiopathic pulmonary fibrosis. Respir Res 2024; 25:77. [PMID: 38321530 PMCID: PMC10848557 DOI: 10.1186/s12931-024-02716-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/29/2024] [Indexed: 02/08/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with limited treatment options. Circular RNAs (circRNAs) have emerged as a novel class of non-coding RNAs with diverse functions in cellular processes. This review paper aims to explore the potential involvement of circRNAs in the pathogenesis of IPF and their diagnostic and therapeutic implications. We begin by providing an overview of the epidemiology and risk factors associated with IPF, followed by a discussion of the pathophysiology underlying this complex disease. Subsequently, we delve into the history, types, biogenesis, and functions of circRNAs and then emphasize their regulatory roles in the pathogenesis of IPF. Furthermore, we examine the current methodologies for detecting circRNAs and explore their diagnostic applications in IPF. Finally, we discuss the potential utility of circRNAs in the treatment of IPF. In conclusion, circRNAs hold great promise as novel biomarkers and therapeutic targets in the management of IPF.
Collapse
Affiliation(s)
- Akshaya Surendran
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Chaoqun Huang
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lin Liu
- The Lundberg-Kienlen Lung Biology and Toxicology Laboratory, Department of Physiological Sciences, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, 74078, USA.
- Oklahoma Center for Respiratory and Infectious Diseases, Oklahoma State University, Stillwater, Oklahoma, USA.
| |
Collapse
|
6
|
Campagne S, Jutzi D, Malard F, Matoga M, Romane K, Feldmuller M, Colombo M, Ruepp MD, Allain FHT. Molecular basis of RNA-binding and autoregulation by the cancer-associated splicing factor RBM39. Nat Commun 2023; 14:5366. [PMID: 37666821 PMCID: PMC10477243 DOI: 10.1038/s41467-023-40254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/14/2023] [Indexed: 09/06/2023] Open
Abstract
Pharmacologic depletion of RNA-binding motif 39 (RBM39) using aryl sulfonamides represents a promising anti-cancer therapy but requires high levels of the adaptor protein DCAF15. Consequently, novel approaches to deplete RBM39 in an DCAF15-independent manner are required. Here, we uncover that RBM39 autoregulates via the inclusion of a poison exon into its own pre-mRNA and identify the cis-acting elements that govern this regulation. We also determine the NMR solution structures of RBM39's tandem RNA recognition motifs (RRM1 and RRM2) bound to their respective RNA targets, revealing how RRM1 recognises RNA stem loops whereas RRM2 binds specifically to single-stranded N(G/U)NUUUG. Our results support a model where RRM2 selects the 3'-splice site of a poison exon and the RRM3 and RS domain stabilise the U2 snRNP at the branchpoint. Our work provides molecular insights into RBM39-dependent 3'-splice site selection and constitutes a solid basis to design alternative anti-cancer therapies.
Collapse
Affiliation(s)
- Sébastien Campagne
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland.
- University of Bordeaux, Inserm U1212, CNRS UMR5320, ARNA Laboratory, 33077, Bordeaux, France.
| | - Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9NU, UK
| | - Florian Malard
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
- University of Bordeaux, Inserm U1212, CNRS UMR5320, ARNA Laboratory, 33077, Bordeaux, France
| | - Maja Matoga
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Ksenija Romane
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Miki Feldmuller
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland
| | - Martino Colombo
- University of Bern, Department of Chemistry and Biochemistry, 3012, Bern, Switzerland
- Celgene Institute of Translational Research in Europe (CITRE), Bristol Myers Squibb, 41092, Seville, Spain
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9NU, UK.
| | - Frédéric H-T Allain
- ETH Zurich, Department of Biology, Institute of Biochemistry, 8093, Zurich, Switzerland.
| |
Collapse
|
7
|
Jung H, Park HJ, Jo SH, Lee A, Lee HJ, Kim HS, Jung C, Cho HS. Nuclear OsFKBP20-1b maintains SR34 stability and promotes the splicing of retained introns upon ABA exposure in rice. THE NEW PHYTOLOGIST 2023; 238:2476-2494. [PMID: 36942934 DOI: 10.1111/nph.18892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Alternative splicing (AS) is a critical means by which plants respond to changes in the environment, but few splicing factors contributing to AS have been reported and functionally characterized in rice (Oryza sativa L.). Here, we explored the function and molecular mechanism of the spliceosome-associated protein OsFKBP20-1b during AS. We determined the AS landscape of wild-type and osfkbp20-1b knockout plants upon abscisic acid (ABA) treatment by transcriptome deep sequencing. To capture the dynamics of translating intron-containing mRNAs, we blocked transcription with cordycepin and performed polysome profiling. We also analyzed whether OsFKBP20-1b and the splicing factors OsSR34 and OsSR45 function together in AS using protoplast transfection assays. We show that OsFKBP20-1b interacts with OsSR34 and regulates its stability, suggesting a role as a chaperone-like protein in the spliceosome. OsFKBP20-1b facilitates the splicing of mRNAs with retained introns after ABA treatment; some of these mRNAs are translatable and encode functional transcriptional regulators of stress-responsive genes. In addition, interacting proteins, OsSR34 and OsSR45, regulate the splicing of the same retained introns as OsFKBP20-1b after ABA treatment. Our findings reveal that spliceosome-associated immunophilin functions in alternative RNA splicing in rice by positively regulating the splicing of retained introns to limit ABA response.
Collapse
Affiliation(s)
- Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Areum Lee
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, UST, Daejeon, 34113, South Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| |
Collapse
|
8
|
Zeng Y, Fair BJ, Zeng H, Krishnamohan A, Hou Y, Hall JM, Ruthenburg AJ, Li YI, Staley JP. Profiling lariat intermediates reveals genetic determinants of early and late co-transcriptional splicing. Mol Cell 2022; 82:4681-4699.e8. [PMID: 36435176 PMCID: PMC10448999 DOI: 10.1016/j.molcel.2022.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 09/10/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.
Collapse
Affiliation(s)
- Yi Zeng
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Benjamin J Fair
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Huilin Zeng
- 855 Jefferson Ave. Redwood City, CA 94063, USA
| | - Aiswarya Krishnamohan
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yichen Hou
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Johnathon M Hall
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alexander J Ruthenburg
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Yang I Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA; Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA.
| | - Jonathan P Staley
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
9
|
Tammer L, Hameiri O, Keydar I, Roy VR, Ashkenazy-Titelman A, Custódio N, Sason I, Shayevitch R, Rodríguez-Vaello V, Rino J, Lev Maor G, Leader Y, Khair D, Aiden EL, Elkon R, Irimia M, Sharan R, Shav-Tal Y, Carmo-Fonseca M, Ast G. Gene architecture directs splicing outcome in separate nuclear spatial regions. Mol Cell 2022; 82:1021-1034.e8. [PMID: 35182478 DOI: 10.1016/j.molcel.2022.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 12/13/2022]
Abstract
How the splicing machinery defines exons or introns as the spliced unit has remained a puzzle for 30 years. Here, we demonstrate that peripheral and central regions of the nucleus harbor genes with two distinct exon-intron GC content architectures that differ in the splicing outcome. Genes with low GC content exons, flanked by long introns with lower GC content, are localized in the periphery, and the exons are defined as the spliced unit. Alternative splicing of these genes results in exon skipping. In contrast, the nuclear center contains genes with a high GC content in the exons and short flanking introns. Most splicing of these genes occurs via intron definition, and aberrant splicing leads to intron retention. We demonstrate that the nuclear periphery and center generate different environments for the regulation of alternative splicing and that two sets of splicing factors form discrete regulatory subnetworks for the two gene architectures. Our study connects 3D genome organization and splicing, thus demonstrating that exon and intron definition modes of splicing occur in different nuclear regions.
Collapse
Affiliation(s)
- Luna Tammer
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ofir Hameiri
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ifat Keydar
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Vanessa Rachel Roy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Asaf Ashkenazy-Titelman
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Noélia Custódio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Itay Sason
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronna Shayevitch
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Victoria Rodríguez-Vaello
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Spain, ICREA, Barcelona, Spain
| | - José Rino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Galit Lev Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Yodfat Leader
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Doha Khair
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain. Universitat Pompeu Fabra (UPF), Barcelona, Spain, ICREA, Barcelona, Spain
| | - Roded Sharan
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
10
|
Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly. Proc Natl Acad Sci U S A 2022; 119:2114092119. [PMID: 35101980 PMCID: PMC8833184 DOI: 10.1073/pnas.2114092119] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2021] [Indexed: 01/14/2023] Open
Abstract
In mammals, the structural basis for the interaction between U1 and U2 small nuclear ribonucleoproteins (snRNPs) during the early steps of splicing is still elusive. The binding of the ubiquitin-like (UBL) domain of SF3A1 to the stem-loop 4 of U1 snRNP (U1-SL4) contributes to this interaction. Here, we determined the 3D structure of the complex between the UBL of SF3A1 and U1-SL4 RNA. Our crystallography, NMR spectroscopy, and cross-linking mass spectrometry data show that SF3A1-UBL recognizes, sequence specifically, the GCG/CGC RNA stem and the apical UUCG tetraloop of U1-SL4. In vitro and in vivo mutational analyses support the observed intermolecular contacts and demonstrate that the carboxyl-terminal arginine-glycine-glycine-arginine (RGGR) motif of SF3A1-UBL binds sequence specifically by inserting into the RNA major groove. Thus, the characterization of the SF3A1-UBL/U1-SL4 complex expands the repertoire of RNA binding domains and reveals the capacity of RGG/RG motifs to bind RNA in a sequence-specific manner.
Collapse
|
11
|
Jobbins AM, Campagne S, Weinmeister R, Lucas CM, Gosliga AR, Clery A, Chen L, Eperon LP, Hodson MJ, Hudson AJ, Allain FHT, Eperon IC. Exon-independent recruitment of SRSF1 is mediated by U1 snRNP stem-loop 3. EMBO J 2022; 41:e107640. [PMID: 34779515 PMCID: PMC8724738 DOI: 10.15252/embj.2021107640] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022] Open
Abstract
SRSF1 protein and U1 snRNPs are closely connected splicing factors. They both stimulate exon inclusion, SRSF1 by binding to exonic splicing enhancer sequences (ESEs) and U1 snRNPs by binding to the downstream 5' splice site (SS), and both factors affect 5' SS selection. The binding of U1 snRNPs initiates spliceosome assembly, but SR proteins such as SRSF1 can in some cases substitute for it. The mechanistic basis of this relationship is poorly understood. We show here by single-molecule methods that a single molecule of SRSF1 can be recruited by a U1 snRNP. This reaction is independent of exon sequences and separate from the U1-independent process of binding to an ESE. Structural analysis and cross-linking data show that SRSF1 contacts U1 snRNA stem-loop 3, which is required for splicing. We suggest that the recruitment of SRSF1 to a U1 snRNP at a 5'SS is the basis for exon definition by U1 snRNP and might be one of the principal functions of U1 snRNPs in the core reactions of splicing in mammals.
Collapse
Affiliation(s)
- Andrew M Jobbins
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Present address:
MRC London Institute of Medical SciencesLondonUK
- Present address:
Institute of Clinical SciencesImperial College LondonLondonUK
| | - Sébastien Campagne
- Institute of BiochemistryETH ZürichSwitzerland
- Present address:
Inserm U1212CNRS UMR5320ARNA LaboratoryBordeaux CedexFrance
| | - Robert Weinmeister
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Leicester Institute of Structural & Chemical Biology and Department of ChemistryUniversity of LeicesterLeicesterUK
| | - Christian M Lucas
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Alison R Gosliga
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
- Present address:
Institut für Industrielle GenetikAbt.(eilung) SystembiologieUniversität StuttgartStuttgartGermany
| | | | - Li Chen
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Lucy P Eperon
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Mark J Hodson
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| | - Andrew J Hudson
- Leicester Institute of Structural & Chemical Biology and Department of ChemistryUniversity of LeicesterLeicesterUK
| | | | - Ian C Eperon
- Leicester Institute of Structural & Chemical Biology and Department of Molecular & Cell BiologyUniversity of LeicesterLeicesterUK
| |
Collapse
|
12
|
Zhang B, Ding Z, Li L, Xie LK, Fan YJ, Xu YZ. Two oppositely-charged sf3b1 mutations cause defective development, impaired immune response, and aberrant selection of intronic branch sites in Drosophila. PLoS Genet 2021; 17:e1009861. [PMID: 34723968 PMCID: PMC8559932 DOI: 10.1371/journal.pgen.1009861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/06/2021] [Indexed: 11/18/2022] Open
Abstract
SF3B1 mutations occur in many cancers, and the highly conserved His662 residue is one of the hotspot mutation sites. To address effects on splicing and development, we constructed strains carrying point mutations at the corresponding residue His698 in Drosophila using the CRISPR-Cas9 technique. Two mutations, H698D and H698R, were selected due to their frequent presence in patients and notable opposite charges. Both the sf3b1-H698D and–H698R mutant flies exhibit developmental defects, including less egg-laying, decreased hatching rates, delayed morphogenesis and shorter lifespans. Interestingly, the H698D mutant has decreased resistance to fungal infection, while the H698R mutant shows impaired climbing ability. Consistent with these phenotypes, further analysis of RNA-seq data finds altered expression of immune response genes and changed alternative splicing of muscle and neural-related genes in the two mutants, respectively. Expression of Mef2-RB, an isoform of Mef2 gene that was downregulated due to splicing changes caused by H698R, partly rescues the climbing defects of the sf3b1-H698R mutant. Lariat sequencing reveals that the two sf3b1-H698 mutations cause aberrant selection of multiple intronic branch sites, with the H698R mutant using far upstream branch sites in the changed alternative splicing events. This study provides in vivo evidence from Drosophila that elucidates how these SF3B1 hotspot mutations alter splicing and their consequences in development and in the immune system. In the past decade, one of the important findings in the RNA splicing field has been that somatic SF3B1 mutations widely occur in many cancers. Including R625, H662, K666, K700 and E902, there are five hotspot mutation sites in the highly conserved HEAT repeats of SF3B1. Several kinds of H662 mutations have been found widely in MDS, AML, CLL and breast cancers; however, it remains unclear how these H662 mutations alter splicing and whether they have in vivo effects on development. To address these questions, in this manuscript, we first summarized the H662 mutations in human diseases and constructed two corresponding Drosophila mutant strains, sf3b1-H698D and -H698R using CRISPR-Cas9. Analyses of these two fly strains find that the two oppositely charged Sf3b1-H698 mutants are defective in development. In addition, one mutant has decreased climbing ability, whereas the other mutant has impaired immune response. Further RNA-seq allows us to find responsible genes in each mutant strain, and lariat sequencing reveals that both mutations cause aberrant selection of the intronic branch sites. Our findings provide the first in vivo evidence that Sf3b1 mutations result in defective development, and also reveal a molecular mechanism of these hotspot histidine mutations that enhance the use of cryptic branch sites to alter splicing. Importantly, we demonstrate that the H698R mutant prefers to use far upstream branch sites.
Collapse
Affiliation(s)
- Bei Zhang
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Zhan Ding
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Liang Li
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Insect Developmental and Evolutionary Biology, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences; Shanghai, China
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Ling-Kun Xie
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Yu-Jie Fan
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
| | - Yong-Zhen Xu
- RNA Institute, State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Hubei, China
- * E-mail:
| |
Collapse
|
13
|
Hümmer S, Borao S, Guerra-Moreno A, Cozzuto L, Hidalgo E, Ayté J. Cross talk between the upstream exon-intron junction and Prp2 facilitates splicing of non-consensus introns. Cell Rep 2021; 37:109893. [PMID: 34706246 DOI: 10.1016/j.celrep.2021.109893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 04/27/2021] [Accepted: 10/06/2021] [Indexed: 10/20/2022] Open
Abstract
Splicing of mRNA precursors is essential in the regulation of gene expression. U2AF65 recognizes the poly-pyrimidine tract and helps in the recognition of the branch point. Inactivation of fission yeast U2AF65 (Prp2) blocks splicing of most, but not all, pre-mRNAs, for reasons that are not understood. Here, we have determined genome-wide the splicing efficiency of fission yeast cells as they progress into synchronous meiosis in the presence or absence of functional Prp2. Our data indicate that in addition to the splicing elements at the 3' end of any intron, the nucleotides immediately upstream the intron will determine whether Prp2 is required or dispensable for splicing. By changing those nucleotides in any given intron, we regulate its Prp2 dependency. Our results suggest a model in which Prp2 is required for the coordinated recognition of both intronic ends, placing Prp2 as a key regulatory element in the determination of the exon-intron boundaries.
Collapse
Affiliation(s)
- Stefan Hümmer
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| | - Sonia Borao
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Angel Guerra-Moreno
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Luca Cozzuto
- CRG Bioinformatics Core, Centre de Regulació Genòmica (CRG), 08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - José Ayté
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra, 08003 Barcelona, Spain.
| |
Collapse
|
14
|
Li Z, Yang J, Peng J, Cheng Z, Liu X, Zhang Z, Bhadauria V, Zhao W, Peng YL. Transcriptional Landscapes of Long Non-coding RNAs and Alternative Splicing in Pyricularia oryzae Revealed by RNA-Seq. FRONTIERS IN PLANT SCIENCE 2021; 12:723636. [PMID: 34589103 PMCID: PMC8475275 DOI: 10.3389/fpls.2021.723636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Pyricularia oryzae causes the rice blast, which is one of the most devastating crop diseases worldwide, and is a model fungal pathogen widely used for dissecting the molecular mechanisms underlying fungal virulence/pathogenicity. Although the whole genome sequence of P. oryzae is publicly available, its current transcriptomes remain incomplete, lacking the information on non-protein coding genes and alternative splicing. Here, we performed and analyzed RNA-Seq of conidia and hyphae, resulting in the identification of 3,374 novel genes. Interestingly, the vast majority of these novel genes likely transcribed long non-coding RNAs (lncRNAs), and most of them were localized in the intergenic regions. Notably, their expressions were concomitant with the transcription of neighboring genes thereof in conidia and hyphae. In addition, 2,358 genes were found to undergo alternative splicing events. Furthermore, we exemplified that a lncRNA was important for hyphal growth likely by regulating the neighboring protein-coding gene and that alternative splicing of the transcription factor gene CON7 was required for appressorium formation. In summary, results from this study indicate that lncRNA transcripts and alternative splicing events are two important mechanisms for regulating the expression of genes important for conidiation, hyphal growth, and pathogenesis, and provide new insights into transcriptomes and gene regulation in the rice blast fungus.
Collapse
Affiliation(s)
- Zhigang Li
- College of Plant Protection/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, Hainan University, Haikou, China
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jun Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Junbo Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihua Cheng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xinsen Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Vijai Bhadauria
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Wensheng Zhao
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - You-Liang Peng
- Ministry of Agriculture and Rural Affairs Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Kao CY, Cao EC, Wai HL, Cheng SC. Evidence for complex dynamics during U2 snRNP selection of the intron branchpoint. Nucleic Acids Res 2021; 49:9965-9977. [PMID: 34387687 PMCID: PMC8464032 DOI: 10.1093/nar/gkab695] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/27/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022] Open
Abstract
Splicing of pre-mRNA is initiated by binding of U1 to the 5′ splice site and of Msl5-Mud2 heterodimer to the branch site (BS). Subsequent binding of U2 displaces Msl5-Mud2 from the BS to form the prespliceosome, a step governing branchpoint selection and hence 3′ splice site choice, and linking splicing to myelodysplasia and many cancers in human. Two DEAD-box proteins, Prp5 and Sub2, are required for this step, but neither is stably associated with the pre-mRNA during the reaction. Using BS-mutated ACT1 pre-mRNA, we previously identified a splicing intermediate complex, FIC, which contains U2 and Prp5, but cannot bind the tri-snRNP. We show here that Msl5 remains associated with the upstream cryptic branch site (CBS) in the FIC, with U2 binding a few bases downstream of the BS. U2 mutants that restore U2-BS base pairing enable dissociation of Prp5 and allows splicing to proceed. The CBS is required for splicing rescue by compensatory U2 mutants, and for formation of FIC, demonstrating a role for Msl5 in directing U2 to the BS, and of U2-BS base pairing for release of Prp5 and Msl5-Mud2 to form the prespliceosome. Our results provide insights into how the prespliceosome may form in normal splicing reaction.
Collapse
Affiliation(s)
- Ching-Yang Kao
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan 106, Republic of China.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - En-Cih Cao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Hsu Lei Wai
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | - Soo-Chen Cheng
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan 106, Republic of China.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan 115, Republic of China
| |
Collapse
|
16
|
Zhang Z, Rigo N, Dybkov O, Fourmann JB, Will CL, Kumar V, Urlaub H, Stark H, Lührmann R. Structural insights into how Prp5 proofreads the pre-mRNA branch site. Nature 2021; 596:296-300. [PMID: 34349264 PMCID: PMC8357632 DOI: 10.1038/s41586-021-03789-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
During the splicing of introns from precursor messenger RNAs (pre-mRNAs), the U2 small nuclear ribonucleoprotein (snRNP) must undergo stable integration into the spliceosomal A complex-a poorly understood, multistep process that is facilitated by the DEAD-box helicase Prp5 (refs. 1-4). During this process, the U2 small nuclear RNA (snRNA) forms an RNA duplex with the pre-mRNA branch site (the U2-BS helix), which is proofread by Prp5 at this stage through an unclear mechanism5. Here, by deleting the branch-site adenosine (BS-A) or mutating the branch-site sequence of an actin pre-mRNA, we stall the assembly of spliceosomes in extracts from the yeast Saccharomyces cerevisiae directly before the A complex is formed. We then determine the three-dimensional structure of this newly identified assembly intermediate by cryo-electron microscopy. Our structure indicates that the U2-BS helix has formed in this pre-A complex, but is not yet clamped by the HEAT domain of the Hsh155 protein (Hsh155HEAT), which exhibits an open conformation. The structure further reveals a large-scale remodelling/repositioning of the U1 and U2 snRNPs during the formation of the A complex that is required to allow subsequent binding of the U4/U6.U5 tri-snRNP, but that this repositioning is blocked in the pre-A complex by the presence of Prp5. Our data suggest that binding of Hsh155HEAT to the bulged BS-A of the U2-BS helix triggers closure of Hsh155HEAT, which in turn destabilizes Prp5 binding. Thus, Prp5 proofreads the branch site indirectly, hindering spliceosome assembly if branch-site mutations prevent the remodelling of Hsh155HEAT. Our data provide structural insights into how a spliceosomal helicase enhances the fidelity of pre-mRNA splicing.
Collapse
Affiliation(s)
- Zhenwei Zhang
- Department of Structural Dynamics, MPI for Biophysical Chemistry, Göttingen, Germany
| | - Norbert Rigo
- Cellular Biochemistry, MPI for Biophysical Chemistry, Göttingen, Germany
| | - Olexandr Dybkov
- Cellular Biochemistry, MPI for Biophysical Chemistry, Göttingen, Germany
| | | | - Cindy L Will
- Cellular Biochemistry, MPI for Biophysical Chemistry, Göttingen, Germany
| | - Vinay Kumar
- Cellular Biochemistry, MPI for Biophysical Chemistry, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, MPI for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Holger Stark
- Department of Structural Dynamics, MPI for Biophysical Chemistry, Göttingen, Germany.
| | - Reinhard Lührmann
- Cellular Biochemistry, MPI for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
17
|
Královičová J, Borovská I, Pengelly R, Lee E, Abaffy P, Šindelka R, Grutzner F, Vořechovský I. Restriction of an intron size en route to endothermy. Nucleic Acids Res 2021; 49:2460-2487. [PMID: 33550394 PMCID: PMC7969005 DOI: 10.1093/nar/gkab046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 11/15/2022] Open
Abstract
Ca2+-insensitive and -sensitive E1 subunits of the 2-oxoglutarate dehydrogenase complex (OGDHC) regulate tissue-specific NADH and ATP supply by mutually exclusive OGDH exons 4a and 4b. Here we show that their splicing is enforced by distant lariat branch points (dBPs) located near the 5' splice site of the intervening intron. dBPs restrict the intron length and prevent transposon insertions, which can introduce or eliminate dBP competitors. The size restriction was imposed by a single dominant dBP in anamniotes that expanded into a conserved constellation of four dBP adenines in amniotes. The amniote clusters exhibit taxon-specific usage of individual dBPs, reflecting accessibility of their extended motifs within a stable RNA hairpin rather than U2 snRNA:dBP base-pairing. The dBP expansion took place in early terrestrial species and was followed by a uridine enrichment of large downstream polypyrimidine tracts in mammals. The dBP-protected megatracts permit reciprocal regulation of exon 4a and 4b by uridine-binding proteins, including TIA-1/TIAR and PUF60, which promote U1 and U2 snRNP recruitment to the 5' splice site and BP, respectively, but do not significantly alter the relative dBP usage. We further show that codons for residues critically contributing to protein binding sites for Ca2+ and other divalent metals confer the exon inclusion order that mirrors the Irving-Williams affinity series, linking the evolution of auxiliary splicing motifs in exons to metallome constraints. Finally, we hypothesize that the dBP-driven selection for Ca2+-dependent ATP provision by E1 facilitated evolution of endothermy by optimizing the aerobic scope in target tissues.
Collapse
Affiliation(s)
- Jana Královičová
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Borovská
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Reuben Pengelly
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| | - Eunice Lee
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Pavel Abaffy
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Radek Šindelka
- Czech Academy of Sciences, Institute of Biotechnology, 25250 Vestec, Czech Republic
| | - Frank Grutzner
- School of Biological Sciences, University of Adelaide, Adelaide 5005, SA, Australia
| | - Igor Vořechovský
- University of Southampton, Faculty of Medicine, HDH, Southampton SO16 6YD, UK
| |
Collapse
|
18
|
Zhu Y, Wu W, Shao W, Chen J, Shi X, Ma X, Xu YZ, Huang W, Huang J. SPLICING FACTOR1 Is Important in Chloroplast Development under Cold Stress. PLANT PHYSIOLOGY 2020; 184:973-987. [PMID: 32732348 PMCID: PMC7536683 DOI: 10.1104/pp.20.00706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/20/2020] [Indexed: 05/20/2023]
Abstract
RNA SPLICING FACTOR1 (SF1) is responsible for recognizing the branch point site (BPS) sequence in introns and is critical for pre-mRNA splicing. In Arabidopsis (Arabidopsis thaliana), splicing factor1 (AtSF1) has been shown to retain the conserved function, but it is unexpected that null atsf1 mutants are viable. Here, we identified an allele of atsf1, named suppressor of thf1-4 (sot4), from suppressor screening for leaf variegation of thylakoid formation1 The sot4 mutant resulting from the G-to-R mutation at the highly conserved 198th amino acid residue within the functionally unknown domain exhibits leaf virescence associated with less accumulation of mature plastid ribosomal RNA, particularly under cold stress. Interestingly, the same point mutation in yeast Saccharomyces cerevisiae MUD synthetic-lethal 5p (SF1/Msl5p) also causes hypersensitivity to coldness and a low splicing activity for the introns with suboptimal BPS sequences. Transcriptomic profiling and reverse-transcription quantitative PCR analyses showed that expression of many genes were up- or downregulated in atsf1 via insufficient intron splicing. Our search for a BPS consensus from the retained introns in atsf1 transcriptomes, combined with RNA electrophoresis mobility shift assays, revealed that AtSF1 directly binds to the BPS consensus containing 5'-CU(U/A)AU-3'. Taken together, our data provide insight into a role for AtSF1 in regulating intron splicing efficiency, which helps plants acclimate to coldness.
Collapse
Affiliation(s)
- Yajuan Zhu
- Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjuan Wu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wei Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jingli Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoning Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xiaoyu Ma
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yong-Zhen Xu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Weihua Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
19
|
Alvarez MEV, Chivers M, Borovska I, Monger S, Giannoulatou E, Kralovicova J, Vorechovsky I. Transposon clusters as substrates for aberrant splice-site activation. RNA Biol 2020; 18:354-367. [PMID: 32965162 PMCID: PMC7951965 DOI: 10.1080/15476286.2020.1805909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transposed elements (TEs) have dramatically shaped evolution of the exon-intron structure and significantly contributed to morbidity, but how recent TE invasions into older TEs cooperate in generating new coding sequences is poorly understood. Employing an updated repository of new exon-intron boundaries induced by pathogenic mutations, termed DBASS, here we identify novel TE clusters that facilitated exon selection. To explore the extent to which such TE exons maintain RNA secondary structure of their progenitors, we carried out structural studies with a composite exon that was derived from a long terminal repeat (LTR78) and AluJ and was activated by a C > T mutation optimizing the 5ʹ splice site. Using a combination of SHAPE, DMS and enzymatic probing, we show that the disease-causing mutation disrupted a conserved AluJ stem that evolved from helix 3.3 (or 5b) of 7SL RNA, liberating a primordial GC 5ʹ splice site from the paired conformation for interactions with the spliceosome. The mutation also reduced flexibility of conserved residues in adjacent exon-derived loops of the central Alu hairpin, revealing a cross-talk between traditional and auxilliary splicing motifs that evolved from opposite termini of 7SL RNA and were approximated by Watson-Crick base-pairing already in organisms without spliceosomal introns. We also identify existing Alu exons activated by the same RNA rearrangement. Collectively, these results provide valuable TE exon models for studying formation and kinetics of pre-mRNA building blocks required for splice-site selection and will be useful for fine-tuning auxilliary splicing motifs and exon and intron size constraints that govern aberrant splice-site activation.
Collapse
Affiliation(s)
| | - Martin Chivers
- School of Medicine, University of Southampton, Southampton, UK
| | - Ivana Borovska
- Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | - Steven Monger
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia
| | - Eleni Giannoulatou
- Computational Genomics Laboratory, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.,St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Jana Kralovicova
- School of Medicine, University of Southampton, Southampton, UK.,Slovak Academy of Sciences, Institute of Molecular Physiology and Genetics, Bratislava, Slovak Republic
| | | |
Collapse
|
20
|
Shao W, Ding Z, Zheng ZZ, Shen JJ, Shen YX, Pu J, Fan YJ, Query CC, Xu YZ. Prp5-Spt8/Spt3 interaction mediates a reciprocal coupling between splicing and transcription. Nucleic Acids Res 2020; 48:5799-5813. [PMID: 32399566 PMCID: PMC7293005 DOI: 10.1093/nar/gkaa311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 04/08/2020] [Accepted: 05/03/2020] [Indexed: 01/23/2023] Open
Abstract
Transcription and pre-mRNA splicing are coupled to promote gene expression and regulation. However, mechanisms by which transcription and splicing influence each other are still under investigation. The ATPase Prp5p is required for pre-spliceosome assembly and splicing proofreading at the branch-point region. From an open UV mutagenesis screen for genetic suppressors of prp5 defects and subsequent targeted testing, we identify components of the TBP-binding module of the Spt–Ada–Gcn5 Acetyltransferase (SAGA) complex, Spt8p and Spt3p. Spt8Δ and spt3Δ rescue the cold-sensitivity of prp5-GAR allele, and prp5 mutants restore growth of spt8Δ and spt3Δ strains on 6-azauracil. By chromatin immunoprecipitation (ChIP), we find that prp5 alleles decrease recruitment of RNA polymerase II (Pol II) to an intron-containing gene, which is rescued by spt8Δ. Further ChIP-seq reveals that global effects on Pol II-binding are mutually rescued by prp5-GAR and spt8Δ. Inhibited splicing caused by prp5-GAR is also restored by spt8Δ. In vitro assays indicate that Prp5p directly interacts with Spt8p, but not Spt3p. We demonstrate that Prp5p's splicing proofreading is modulated by Spt8p and Spt3p. Therefore, this study reveals that interactions between the TBP-binding module of SAGA and the spliceosomal ATPase Prp5p mediate a balance between transcription initiation/elongation and pre-spliceosome assembly.
Collapse
Affiliation(s)
- Wei Shao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China.,State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhan Ding
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zeng-Zhang Zheng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ji-Jia Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu-Xian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jia Pu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yu-Jie Fan
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of Medicine, NY 10461, USA
| | - Yong-Zhen Xu
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
21
|
Tellier M, Maudlin I, Murphy S. Transcription and splicing: A two-way street. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1593. [PMID: 32128990 DOI: 10.1002/wrna.1593] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/18/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
Abstract
RNA synthesis by RNA polymerase II and RNA processing are closely coupled during the transcription cycle of protein-coding genes. This coupling affords opportunities for quality control and regulation of gene expression and the effects can go in both directions. For example, polymerase speed can affect splice site selection and splicing can increase transcription and affect the chromatin landscape. Here we review the many ways that transcription and splicing influence one another, including how splicing "talks back" to transcription. We will also place the connections between transcription and splicing in the context of other RNA processing events that define the exons that will make up the final mRNA. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Isabella Maudlin
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
22
|
Erkelenz S, Poschmann G, Ptok J, Müller L, Schaal H. Profiling of cis- and trans-acting factors supporting noncanonical splice site activation. RNA Biol 2020; 18:118-130. [PMID: 32693676 DOI: 10.1080/15476286.2020.1798111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Recently, by combining transcriptomics with functional splicing reporter assays we were able to identify GT > GC > TT as the three highest ranked dinucleotides of human 5' splice sites (5'ss). Here, we have extended our investigations to the proteomic characterization of nuclear proteins that bind to canonical and noncanonical 5'ss. Surprisingly, we found that U1 snRNP binding to functional 5'ss sequences prevented components of the DNA damage response (DDR) from binding to the RNA, suggesting a close link between spliceosome arrangement and genome stability. We demonstrate that all tested noncanonical 5'ss sequences are bona-fide targets of the U2-type spliceosome and are bound by U1 snRNP, including U1-C, in the presence of splicing enhancers. The quantity of precipitated U1-C protein was similar for all noncanonical 5'ss dinucleotides, so that the highly different 5'ss usage was likely due to a later step after early U1 snRNP binding. In addition, we show that an internal GT at positions +5/+6 can be advantageous for splicing at position +1 of noncanonical splice sites. Likewise, and in agreement with previous observations, splicing inactive U1 snRNP binding sites could serve as splicing enhancers, which may also explain the higher abundance of U1 snRNPs compared to other U snRNPs. Finally, we observe that an arginine-serine (RS)-rich domain recruitment to stem loop I of the U1 snRNA is functionally sufficient to promote exon-definition and upstream 3'ss activation.
Collapse
Affiliation(s)
- Steffen Erkelenz
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany.,Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne , Cologne, Germany
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, BMFZ, Universitätsklinikum Düsseldorf , Düsseldorf, Germany
| | - Johannes Ptok
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| | - Heiner Schaal
- Institute of Virology, Medical Faculty, Heinrich Heine University Düsseldorf , Düsseldorf, Germany
| |
Collapse
|
23
|
Qiu C, Zhang Y, Fan YJ, Pang TL, Su Y, Zhan S, Xu YZ. HITS-CLIP reveals sex-differential RNA binding and alterative splicing regulation of SRm160 in Drosophila. J Mol Cell Biol 2020; 11:170-181. [PMID: 29750417 DOI: 10.1093/jmcb/mjy029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 03/20/2018] [Accepted: 05/07/2018] [Indexed: 12/27/2022] Open
Abstract
Serine/arginine (SR)-rich proteins are critical for the regulation of alternative splicing (AS), which generates multiple mRNA isoforms from one gene and provides protein diversity for cell differentiation and tissue development. Genetic evidence suggests that Drosophila genital-specific overexpression of SR-related nuclear matrix protein of 160 kDa (SRm160), an SR protein with a PWI RNA-binding motif, causes defective development only in male flies and results in abnormal male genital structures and abnormal testis. However, the molecular characterization of SRm160 is limited. Using the high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) method in two sex-specific embryonic cell lines, S2 from the male and Kc from the female, we first identified the genome-wide RNA-binding characteristics of SRm160, which preferred binding to the exonic tri-nucleotide repeats GCA and AAC. We then validated this binding through both in vitro gel-shift assay and in vivo splicing of minigenes and found that SRm160 level affects AS of many transcripts. Furthermore, we identified 492 differential binding sites (DBS) of SRm160 varying between the two sex-specific cell lines. Among these DBS-containing genes, splicing factors were highly enriched, including transformer, a key regulator in the sex determination cascade. Analyses of fly mutants demonstrated that the SRm160 level affects AS isoforms of transformer. These findings shed crucial light on SRm160's RNA-binding specificity and regulation of AS in Drosophila sex determination and development.
Collapse
Affiliation(s)
- Chen Qiu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yu Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yu-Jie Fan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Ting-Lin Pang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Yan Su
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Zhen Xu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
24
|
Molecular architecture of the human 17S U2 snRNP. Nature 2020; 583:310-313. [PMID: 32494006 DOI: 10.1038/s41586-020-2344-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/19/2020] [Indexed: 11/08/2022]
Abstract
The U2 small nuclear ribonucleoprotein (snRNP) has an essential role in the selection of the precursor mRNA branch-site adenosine, the nucleophile for the first step of splicing1. Stable addition of U2 during early spliceosome formation requires the DEAD-box ATPase PRP52-7. Yeast U2 small nuclear RNA (snRNA) nucleotides that form base pairs with the branch site are initially sequestered in a branchpoint-interacting stem-loop (BSL)8, but whether the human U2 snRNA folds in a similar manner is unknown. The U2 SF3B1 protein, a common mutational target in haematopoietic cancers9, contains a HEAT domain (SF3B1HEAT) with an open conformation in isolated SF3b10, but a closed conformation in spliceosomes11, which is required for stable interaction between U2 and the branch site. Here we report a 3D cryo-electron microscopy structure of the human 17S U2 snRNP at a core resolution of 4.1 Å and combine it with protein crosslinking data to determine the molecular architecture of this snRNP. Our structure reveals that SF3B1HEAT interacts with PRP5 and TAT-SF1, and maintains its open conformation in U2 snRNP, and that U2 snRNA forms a BSL that is sandwiched between PRP5, TAT-SF1 and SF3B1HEAT. Thus, substantial remodelling of the BSL and displacement of BSL-interacting proteins must occur to allow formation of the U2-branch-site helix. Our studies provide a structural explanation of why TAT-SF1 must be displaced before the stable addition of U2 to the spliceosome, and identify RNP rearrangements facilitated by PRP5 that are required for stable interaction between U2 and the branch site.
Collapse
|
25
|
Ág N, Kavalecz N, Pénzes F, Karaffa L, Scazzocchio C, Flipphi M, Fekete E. Complex intron generation in the yeast genus Lipomyces. Sci Rep 2020; 10:6022. [PMID: 32265493 PMCID: PMC7138796 DOI: 10.1038/s41598-020-63239-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/27/2020] [Indexed: 11/16/2022] Open
Abstract
In primary transcripts of eukaryotic nuclear genes, coding sequences are often interrupted by U2-type introns. Such intervening sequences can constitute complex introns excised by consecutive splicing reactions. The origin of spliceosomal introns is a vexing problem. Sequence variation existent across fungal taxa provides means to study their structure and evolution. In one class of complex introns called [D] stwintrons, an (internal) U2 intron is nested within the 5'-donor element of another (external) U2 intron. In the gene for a reticulon-like protein in species of the ascomycete yeast genus Lipomyces, the most 5' terminal intron position is occupied by one of three complex intervening sequences consistent of differently nested U2 intron units, as demonstrated in L. lipofer, L. suomiensis, and L. starkeyi. In L. starkeyi, the donor elements of the constituent introns are abutting and the complex intervening sequence can be excised alternatively either with one standard splicing reaction or, as a [D] stwintron, by two consecutive reactions. Our work suggests how [D] stwintrons could emerge by the appearance of new functional splice sites within an extant intron. The stepwise stwintronisation mechanism may involve duplication of the functional intron donor element of the ancestor intron.
Collapse
Affiliation(s)
- Norbert Ág
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary
| | - Napsugár Kavalecz
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Fruzsina Pénzes
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.,Juhász-Nagy Pál Doctoral School of Biology and Environmental Sciences, University of Debrecen, Debrecen, 4032, Hungary
| | - Levente Karaffa
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary
| | - Claudio Scazzocchio
- Dept. of Microbiology, Imperial College London, SW7 2AZ, London, UK.,Institut de Biologie Intégrative de la Cellule, Centre National de la Recherche Scientifique - Unité Mixte de Recherche UMR 9198, Gif-sur-Yvette, 91190, France
| | - Michel Flipphi
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary
| | - Erzsébet Fekete
- Dept. of Biochemical Engineering, Faculty of Science and Technology, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
26
|
Abstract
High-throughput sequencing-based methods and their applications in the study of transcriptomes have revolutionized our understanding of alternative splicing. Networks of functionally coordinated and biologically important alternative splicing events continue to be discovered in an ever-increasing diversity of cell types in the context of physiologically normal and disease states. These studies have been complemented by efforts directed at defining sequence codes governing splicing and their cognate trans-acting factors, which have illuminated important combinatorial principles of regulation. Additional studies have revealed critical roles of position-dependent, multivalent protein-RNA interactions that direct splicing outcomes. Investigations of evolutionary changes in RNA binding proteins, splice variants, and associated cis elements have further shed light on the emergence, mechanisms, and functions of splicing networks. Progress in these areas has emphasized the need for a coordinated, community-based effort to systematically address the functions of individual splice variants associated with normal and disease biology.
Collapse
|
27
|
Subramania S, Gagné LM, Campagne S, Fort V, O'Sullivan J, Mocaer K, Feldmüller M, Masson JY, Allain FHT, Hussein SM, Huot MÉ. SAM68 interaction with U1A modulates U1 snRNP recruitment and regulates mTor pre-mRNA splicing. Nucleic Acids Res 2019; 47:4181-4197. [PMID: 30767021 PMCID: PMC6486544 DOI: 10.1093/nar/gkz099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/14/2019] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Src associated in mitosis (SAM68) plays major roles in regulating RNA processing events, such as alternative splicing and mRNA translation, implicated in several developmental processes. It was previously shown that SAM68 regulates the alternative splicing of the mechanistic target of rapamycin (mTor), but the mechanism regulating this process remains elusive. Here, we report that SAM68 interacts with U1 small nuclear ribonucleoprotein (U1 snRNP) to promote splicing at the 5′ splice site in intron 5 of mTor. We also show that this direct interaction is mediated through U1A, a core-component of U1snRNP. SAM68 was found to bind the RRM1 domain of U1A through its C-terminal tyrosine rich region (YY domain). Deletion of the U1A-SAM68 interaction domain or mutation in SAM68-binding sites in intron 5 of mTor abrogates U1A recruitment and 5′ splice site recognition by the U1 snRNP, leading to premature intron 5 termination and polyadenylation. Taken together, our results provide the first mechanistic study by which SAM68 modulates alternative splicing decision, by affecting U1 snRNP recruitment at 5′ splice sites.
Collapse
Affiliation(s)
- Suryasree Subramania
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Laurence M Gagné
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Sébastien Campagne
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Victoire Fort
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Julia O'Sullivan
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Karel Mocaer
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada
| | - Miki Feldmüller
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Jean-Yves Masson
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Frédéric H T Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Samer M Hussein
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| | - Marc-Étienne Huot
- Centre de recherche du CHU de Québec-Université Laval (axe Oncologie), Québec, QC G1R 3S3, Canada.,CRCHU de Québec - Axe Oncologie, Québec, QC G1R 3S3, Canada
| |
Collapse
|
28
|
van der Feltz C, Hoskins AA. Structural and functional modularity of the U2 snRNP in pre-mRNA splicing. Crit Rev Biochem Mol Biol 2019; 54:443-465. [PMID: 31744343 DOI: 10.1080/10409238.2019.1691497] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The U2 small nuclear ribonucleoprotein (snRNP) is an essential component of the spliceosome, the cellular machine responsible for removing introns from precursor mRNAs (pre-mRNAs) in all eukaryotes. U2 is an extraordinarily dynamic splicing factor and the most frequently mutated in cancers. Cryo-electron microscopy (cryo-EM) has transformed our structural and functional understanding of the role of U2 in splicing. In this review, we synthesize these and other data with respect to a view of U2 as an assembly of interconnected functional modules. These modules are organized by the U2 small nuclear RNA (snRNA) for roles in spliceosome assembly, intron substrate recognition, and protein scaffolding. We describe new discoveries regarding the structure of U2 components and how the snRNP undergoes numerous conformational and compositional changes during splicing. We specifically highlight large scale movements of U2 modules as the spliceosome creates and rearranges its active site. U2 serves as a compelling example for how cellular machines can exploit the modular organization and structural plasticity of an RNP.
Collapse
Affiliation(s)
| | - Aaron A Hoskins
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
29
|
Královicová J, Ševcíková I, Stejskalová E, Obuca M, Hiller M, Stanek D, Vorechovský I. PUF60-activated exons uncover altered 3' splice-site selection by germline missense mutations in a single RRM. Nucleic Acids Res 2019; 46:6166-6187. [PMID: 29788428 PMCID: PMC6093180 DOI: 10.1093/nar/gky389] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 05/01/2018] [Indexed: 12/27/2022] Open
Abstract
PUF60 is a splicing factor that binds uridine (U)-rich tracts and facilitates association of the U2 small nuclear ribonucleoprotein with primary transcripts. PUF60 deficiency (PD) causes a developmental delay coupled with intellectual disability and spinal, cardiac, ocular and renal defects, but PD pathogenesis is not understood. Using RNA-Seq, we identify human PUF60-regulated exons and show that PUF60 preferentially acts as their activator. PUF60-activated internal exons are enriched for Us upstream of their 3′ splice sites (3′ss), are preceded by longer AG dinucleotide exclusion zones and more distant branch sites, with a higher probability of unpaired interactions across a typical branch site location as compared to control exons. In contrast, PUF60-repressed exons show U-depletion with lower estimates of RNA single-strandedness. We also describe PUF60-regulated, alternatively spliced isoforms encoding other U-bound splicing factors, including PUF60 partners, suggesting that they are co-regulated in the cell, and identify PUF60-regulated exons derived from transposed elements. PD-associated amino-acid substitutions, even within a single RNA recognition motif (RRM), altered selection of competing 3′ss and branch points of a PUF60-dependent exon and the 3′ss choice was also influenced by alternative splicing of PUF60. Finally, we propose that differential distribution of RNA processing steps detected in cells lacking PUF60 and the PUF60-paralog RBM39 is due to the RBM39 RS domain interactions. Together, these results provide new insights into regulation of exon usage by the 3′ss organization and reveal that germline mutation heterogeneity in RRMs can enhance phenotypic variability at the level of splice-site and branch-site selection.
Collapse
Affiliation(s)
- Jana Královicová
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK.,Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Ivana Ševcíková
- Slovak Academy of Sciences, Centre for Biosciences, 840 05 Bratislava, Slovak Republic
| | - Eva Stejskalová
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Mina Obuca
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics and Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - David Stanek
- Czech Academy of Sciences, Institute of Molecular Genetics, 142 20 Prague, Czech Republic
| | - Igor Vorechovský
- University of Southampton Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
30
|
Kavalecz N, Ág N, Karaffa L, Scazzocchio C, Flipphi M, Fekete E. A spliceosomal twin intron (stwintron) participates in both exon skipping and evolutionary exon loss. Sci Rep 2019; 9:9940. [PMID: 31289343 PMCID: PMC6616335 DOI: 10.1038/s41598-019-46435-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/28/2019] [Indexed: 01/06/2023] Open
Abstract
Spliceosomal twin introns (stwintrons) are introns where any of the three consensus sequences involved in splicing is interrupted by another intron (internal intron). In Aspergillus nidulans, a donor-disrupted stwintron (intron-1) is extant in the transcript encoding a reticulon-like protein. The orthologous transcript of Aspergillus niger can be alternatively spliced; the exon downstream the stwintron could be skipped by excising a sequence that comprises this stwintron, the neighbouring intron-2, and the exon bounded by these. This process involves the use of alternative 3' splice sites for the internal intron, the resulting alternative intervening sequence being a longer 3'-extended stwintron. In 29 species of Onygenales, a multi-step splicing process occurs in the orthologous transcript, in which a complex intervening sequence including the stwintron and neigbouring intron-2, generates by three splicing reactions a "second order intron" which must then be excised with a fourth splicing event. The gene model in two species can be envisaged as one canonical intron (intron-1) evolved from this complex intervening sequence of nested canonical introns found elsewhere in Onygenales. Postulated splicing intermediates were experimentally verified in one or more species. This work illustrates a role of stwintrons in both alternative splicing and the evolution of intron structure.
Collapse
Affiliation(s)
- Napsugár Kavalecz
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Norbert Ág
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Levente Karaffa
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Claudio Scazzocchio
- Department of Microbiology, Imperial College London, London, SW7 2AZ, UK.,Institut de Biologie Intégrative de la Cellule, Centre National de la Recherche Scientifique - Unité Mixte de Recherche 9198, Gif-sur-Yvette, 91405, France
| | - Michel Flipphi
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary
| | - Erzsébet Fekete
- Department of Biochemical Engineering, University of Debrecen, Debrecen, 4032, Hungary.
| |
Collapse
|
31
|
Lee B, Kim YR, Kim SJ, Goh SH, Kim JH, Oh SK, Baek JI, Kim UK, Lee KY. Modified U1 snRNA and antisense oligonucleotides rescue splice mutations in SLC26A4 that cause hereditary hearing loss. Hum Mutat 2019; 40:1172-1180. [PMID: 31033086 DOI: 10.1002/humu.23774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/15/2019] [Accepted: 04/23/2019] [Indexed: 11/11/2022]
Abstract
One of most important factors for messenger RNA (mRNA) transcription is the spliceosomal component U1 small nuclear RNA (snRNA), which recognizes 5' splicing donor sites at specific regions in pre-mRNA. Mutations in these sites disrupt U1 snRNA binding and cause abnormal splicing. In this study, we investigated mutations at splice sites in SLC26A4 (HGNC 8818), one of the major causative genes of hearing loss, which may result in the synthesis of abnormal pendrin, the channel protein encoded by the gene. Seventeen SLC26A4 variants with mutations in the U1 snRNA binding sites were assessed by minigene splicing assays, and 11 were found to result in abnormal splicing. Interestingly, eight of the 11 pathogenic mutations were intronic, suggesting the importance of conserved sequences at the intronic splice site. The application of modified U1 snRNA effectively rescued the abnormal splicing for most of these mutations. Although three were cryptic mutations, they were rescued by cotransfection of modified U1 snRNA and modified antisense oligonucleotides. Our results demonstrate the important role of snRNA in SLC26A4 mutations, suggesting the therapeutic potential of modified U1 snRNA and antisense oligonucleotides for neutralizing the pathogenic effect of the splice-site mutations that may result in hearing loss.
Collapse
Affiliation(s)
- Byeonghyeon Lee
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Joo Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sung-Ho Goh
- Therapeutic Target Discovery Branch, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jong-Heun Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Se-Kyung Oh
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jeong-In Baek
- Department of Aroma-Applied Industry, Daegu Haany University, Gyeongsan, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea.,BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
32
|
Plaschka C, Newman AJ, Nagai K. Structural Basis of Nuclear pre-mRNA Splicing: Lessons from Yeast. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a032391. [PMID: 30765413 DOI: 10.1101/cshperspect.a032391] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Noncoding introns are removed from nuclear precursor messenger RNA (pre-mRNA) in a two-step phosphoryl transfer reaction by the spliceosome, a dynamic multimegadalton enzyme. Cryo-electron microscopy (cryo-EM) structures of the Saccharomyces cerevisiae spliceosome were recently determined in eight key states. Combined with the wealth of available genetic and biochemical data, these structures have revealed new insights into the mechanisms of spliceosome assembly, activation, catalysis, and disassembly. The structures show how a single RNA catalytic center forms during activation and accomplishes both steps of the splicing reaction. The structures reveal how spliceosomal helicases remodel the spliceosome for active site formation, substrate docking, reaction product undocking, and spliceosome disassembly and how they facilitate splice site proofreading. Although human spliceosomes contain additional proteins, their cryo-EM structures suggest that the underlying mechanism is conserved across all eukaryotes. In this review, we summarize the current structural understanding of pre-mRNA splicing.
Collapse
Affiliation(s)
- Clemens Plaschka
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Andrew J Newman
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Kiyoshi Nagai
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
33
|
Singh RN, Singh NN. A novel role of U1 snRNP: Splice site selection from a distance. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:634-642. [PMID: 31042550 DOI: 10.1016/j.bbagrm.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/23/2022]
Abstract
Removal of introns by pre-mRNA splicing is fundamental to gene function in eukaryotes. However, understanding the mechanism by which exon-intron boundaries are defined remains a challenging endeavor. Published reports support that the recruitment of U1 snRNP at the 5'ss marked by GU dinucleotides defines the 5'ss as well as facilitates 3'ss recognition through cross-exon interactions. However, exceptions to this rule exist as U1 snRNP recruited away from the 5'ss retains the capability to define the splice site, where the cleavage takes place. Independent reports employing exon 7 of Survival Motor Neuron (SMN) genes suggest a long-distance effect of U1 snRNP on splice site selection upon U1 snRNP recruitment at target sequences with or without GU dinucleotides. These findings underscore that sequences distinct from the 5'ss may also impact exon definition if U1 snRNP is recruited to them through partial complementarity with the U1 snRNA. In this review we discuss the expanded role of U1 snRNP in splice-site selection due to U1 ability to be recruited at more sites than predicted solely based on GU dinucleotides.
Collapse
Affiliation(s)
- Ravindra N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America.
| | - Natalia N Singh
- Department of Biomedical Sciences, Iowa State University, Ames, IA 50011, United States of America
| |
Collapse
|
34
|
de Francisco Amorim M, Willing EM, Szabo EX, Francisco-Mangilet AG, Droste-Borel I, Maček B, Schneeberger K, Laubinger S. The U1 snRNP Subunit LUC7 Modulates Plant Development and Stress Responses via Regulation of Alternative Splicing. THE PLANT CELL 2018; 30:2838-2854. [PMID: 30309899 PMCID: PMC6305971 DOI: 10.1105/tpc.18.00244] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 09/11/2018] [Accepted: 10/05/2018] [Indexed: 05/21/2023]
Abstract
Introns are removed by the spliceosome, a large macromolecular complex composed of five ribonucleoprotein subcomplexes (U snRNPs). The U1 snRNP, which binds to 5' splice sites, plays an essential role in early steps of the splicing reaction. Here, we show that Arabidopsis thaliana LETHAL UNLESS CBC7 (LUC7) proteins, which are encoded by a three-member gene family in Arabidopsis, are important for plant development and stress resistance. We show that LUC7 is a U1 snRNP accessory protein by RNA immunoprecipitation experiments and LUC7 protein complex purifications. Transcriptome analyses revealed that LUC7 proteins are not only important for constitutive splicing, but also affect hundreds of alternative splicing events. Interestingly, LUC7 proteins specifically promote splicing of a subset of terminal introns. Splicing of LUC7-dependent introns is a prerequisite for nuclear export, and some splicing events are modulated by stress in a LUC7-dependent manner. Taken together, our results highlight the importance of the U1 snRNP component LUC7 in splicing regulation and suggest a previously unrecognized role of a U1 snRNP accessory factor in terminal intron splicing.
Collapse
Affiliation(s)
- Marcella de Francisco Amorim
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
| | - Eva-Maria Willing
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Emese X Szabo
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
- Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Anchilie G Francisco-Mangilet
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
- Carl von Ossietzky University, 26129 Oldenburg, Germany
| | | | - Boris Maček
- Proteome Centre, University of Tuebingen, 72076 Tuebingen, Germany
| | | | - Sascha Laubinger
- Centre for Plant Molecular Biology (ZMBP), University of Tuebingen, 72076 Tuebingen, Germany
- Chemical Genomics Centre of the Max Planck Society, 44227 Dortmund, Germany
- Max Planck Institute for Developmental Biology, 72076 Tuebingen, Germany
- Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|
35
|
Herzel L, Straube K, Neugebauer KM. Long-read sequencing of nascent RNA reveals coupling among RNA processing events. Genome Res 2018; 28:1008-1019. [PMID: 29903723 PMCID: PMC6028129 DOI: 10.1101/gr.232025.117] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 05/24/2018] [Indexed: 12/13/2022]
Abstract
Pre-mRNA splicing is accomplished by the spliceosome, a megadalton complex that assembles de novo on each intron. Because spliceosome assembly and catalysis occur cotranscriptionally, we hypothesized that introns are removed in the order of their transcription in genomes dominated by constitutive splicing. Remarkably little is known about splicing order and the regulatory potential of nascent transcript remodeling by splicing, due to the limitations of existing methods that focus on analysis of mature splicing products (mRNAs) rather than substrates and intermediates. Here, we overcome this obstacle through long-read RNA sequencing of nascent, multi-intron transcripts in the fission yeast Schizosaccharomyces pombe. Most multi-intron transcripts were fully spliced, consistent with rapid cotranscriptional splicing. However, an unexpectedly high proportion of transcripts were either fully spliced or fully unspliced, suggesting that splicing of any given intron is dependent on the splicing status of other introns in the transcript. Supporting this, mild inhibition of splicing by a temperature-sensitive mutation in prp2, the homolog of vertebrate U2AF65, increased the frequency of fully unspliced transcripts. Importantly, fully unspliced transcripts displayed transcriptional read-through at the polyA site and were degraded cotranscriptionally by the nuclear exosome. Finally, we show that cellular mRNA levels were reduced in genes with a high number of unspliced nascent transcripts during caffeine treatment, showing regulatory significance of cotranscriptional splicing. Therefore, overall splicing of individual nascent transcripts, 3′ end formation, and mRNA half-life depend on the splicing status of neighboring introns, suggesting crosstalk among spliceosomes and the polyA cleavage machinery during transcription elongation.
Collapse
Affiliation(s)
- Lydia Herzel
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Korinna Straube
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
36
|
Wang W, Zhou Y, Wu Y, Dai X, Liu Y, Qian Y, Li M, Jiang X, Wang Y, Gao L, Xia T. Insight into Catechins Metabolic Pathways of Camellia sinensis Based on Genome and Transcriptome Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:4281-4293. [PMID: 29606002 DOI: 10.1021/acs.jafc.8b00946] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Tea is an important economic crop with a 3.02 Gb genome. It accumulates various bioactive compounds, especially catechins, which are closely associated with tea flavor and quality. Catechins are biosynthesized through the phenylpropanoid and flavonoid pathways, with 12 structural genes being involved in their synthesis. However, we found that in Camellia sinensis the understanding of the basic profile of catechins biosynthesis is still unclear. The gene structure, locus, transcript number, transcriptional variation, and function of multigene families have not yet been clarified. Our previous studies demonstrated that the accumulation of flavonoids in tea is species, tissue, and induction specific, which indicates that gene coexpression patterns may be involved in tea catechins and flavonoids biosynthesis. In this paper, we screened candidate genes of multigene families involved in the phenylpropanoid and flavonoid pathways based on an analysis of genome and transcriptome sequence data. The authenticity of candidate genes was verified by PCR cloning, and their function was validated by reverse genetic methods. In the present study, 36 genes from 12 gene families were identified and were accessed in the NCBI database. During this process, some intron retention events of the CsCHI and CsDFR genes were found. Furthermore, the transcriptome sequencing of various tea tissues and subcellular location assays revealed coexpression and colocalization patterns. The correlation analysis showed that CsCHIc, CsF3'H, and CsANRb expression levels are associated significantly with the concentration of soluble PA as well as the expression levels of CsPALc and CsPALf with the concentration of insoluble PA. This work provides insights into catechins metabolism in tea and provides a foundation for future studies.
Collapse
Affiliation(s)
- Wenzhao Wang
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| | - Yihui Zhou
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| | - Yingling Wu
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| | - Xinlong Dai
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| | - Yajun Liu
- School of Life Science , Anhui Agricultural University , Hefei 230036 , China
| | - Yumei Qian
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
- School of Biological and Food Engineering , Suzhou University , 49 Middle Bianhe Road , Suzhou , 234000 Anhui , China
| | - Mingzhuo Li
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
- Department of Plant and Microbial Biology , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| | - Yunsheng Wang
- School of Life Science , Anhui Agricultural University , Hefei 230036 , China
| | - Liping Gao
- School of Life Science , Anhui Agricultural University , Hefei 230036 , China
| | - Tao Xia
- State Key Laboratory of Tea Plant Biochemistry and Utilization , Anhui Agricultural University , Hefei 230036 , China
| |
Collapse
|
37
|
Physiological and Pathological Function of Serine/Arginine-Rich Splicing Factor 4 and Related Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:3819719. [PMID: 29789787 PMCID: PMC5896335 DOI: 10.1155/2018/3819719] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/03/2018] [Accepted: 01/17/2018] [Indexed: 01/06/2023]
Abstract
Serine/arginine-rich splicing factors (SRSFs) have one or two RNA recognition motifs in the N terminal and a serine/arginine-enriched domain in the C terminal. SRSFs are essential components of spliceosomes and are involved in alternative splicing, spliceosome assembly, mRNA export, and nonsense-mediated mRNA decay. The maintenance of cellular and tissue homeostasis relies on accurate alternative splicing, and various patterns of abnormal alternative splicing can cause different diseases. SRSF4 is associated with many physiological and pathological processes and has applications in the diagnosis and prognosis of specific diseases. In this review, we discuss knowledge of SRSF4 in physiological and pathological processes and highlight the applications of SRSF4 in the regulation of gene expression and associated diseases.
Collapse
|
38
|
Melangath G, Sen T, Kumar R, Bawa P, Srinivasan S, Vijayraghavan U. Functions for fission yeast splicing factors SpSlu7 and SpPrp18 in alternative splice-site choice and stress-specific regulated splicing. PLoS One 2017; 12:e0188159. [PMID: 29236736 PMCID: PMC5728500 DOI: 10.1371/journal.pone.0188159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023] Open
Abstract
Budding yeast spliceosomal factors ScSlu7 and ScPrp18 interact and mediate intron 3'ss choice during second step pre-mRNA splicing. The fission yeast genome with abundant multi-intronic transcripts, degenerate splice signals and SR proteins is an apt unicellular fungal model to deduce roles for core spliceosomal factors in alternative splice-site choice, intron retention and to study the cellular implications of regulated splicing. From our custom microarray data we deduce a stringent reproducible subset of S. pombe alternative events. We examined the role of factors SpSlu7 or SpPrp18 for these splice events and investigated the relationship to growth phase and stress. Wild-type log and stationary phase cells showed ats1+ exon 3 skipped and intron 3 retained transcripts. Interestingly the non-consensus 5'ss in ats1+ intron 3 caused SpSlu7 and SpPrp18 dependent intron retention. We validated the use of an alternative 5'ss in dtd1+ intron 1 and of an upstream alternative 3'ss in DUF3074 intron 1. The dtd1+ intron 1 non-canonical 5'ss yielded an alternative mRNA whose levels increased in stationary phase. Utilization of dtd1+ intron 1 sub-optimal 5' ss required functional SpPrp18 and SpSlu7 while compromise in SpSlu7 function alone hampered the selection of the DUF3074 intron 1 non canonical 3'ss. We analysed the relative abundance of these splice isoforms during mild thermal, oxidative and heavy metal stress and found stress-specific splice patterns for ats1+ and DUF3074 intron 1 some of which were SpSlu7 and SpPrp18 dependent. By studying ats1+ splice isoforms during compromised transcription elongation rates in wild-type, spslu7-2 and spprp18-5 mutant cells we found dynamic and intron context-specific effects in splice-site choice. Our work thus shows the combinatorial effects of splice site strength, core splicing factor functions and transcription elongation kinetics to dictate alternative splice patterns which in turn serve as an additional recourse of gene regulation in fission yeast.
Collapse
Affiliation(s)
- Geetha Melangath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Titash Sen
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rakesh Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Pushpinder Bawa
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Subha Srinivasan
- Institute of Bioinformatics and Applied Biotechnology, Bangalore, Karnataka, India
| | - Usha Vijayraghavan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
39
|
Carrocci TJ, Zoerner DM, Paulson JC, Hoskins AA. SF3b1 mutations associated with myelodysplastic syndromes alter the fidelity of branchsite selection in yeast. Nucleic Acids Res 2017; 45:4837-4852. [PMID: 28062854 PMCID: PMC5416834 DOI: 10.1093/nar/gkw1349] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/22/2016] [Indexed: 12/19/2022] Open
Abstract
RNA and protein components of the spliceosome work together to identify the 5΄ splice site, the 3΄ splice site, and the branchsite (BS) of nascent pre-mRNA. SF3b1 plays a key role in recruiting the U2 snRNP to the BS. Mutations in human SF3b1 have been linked to many diseases such as myelodysplasia (MDS) and cancer. We have used SF3b1 mutations associated with MDS to interrogate the role of the yeast ortholog, Hsh155, in BS selection and splicing. These alleles change how the spliceosome recognizes the BS and alter splicing when nonconsensus nucleotides are present at the −2, −1 and +1 positions relative to the branchpoint adenosine. This indicates that changes in BS usage observed in humans with SF3b1 mutations may result from perturbation of a conserved mechanism of BS recognition. Notably, different HSH155 alleles elicit disparate effects on splicing: some increase the fidelity of BS selection while others decrease fidelity. Our data support a model wherein conformational changes in SF3b1 promote U2 association with the BS independently of the action of the DEAD-box ATPase Prp5. We propose that SF3b1 functions to stabilize weak U2/BS duplexes to drive spliceosome assembly and splicing.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Douglas M Zoerner
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Joshua C Paulson
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| | - Aaron A Hoskins
- Department of Biochemistry, U. Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
40
|
Nissen KE, Homer CM, Ryan CJ, Shales M, Krogan NJ, Patrick KL, Guthrie C. The histone variant H2A.Z promotes splicing of weak introns. Genes Dev 2017; 31:688-701. [PMID: 28446597 PMCID: PMC5411709 DOI: 10.1101/gad.295287.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/22/2017] [Indexed: 12/12/2022]
Abstract
In this study, Nissen et al. investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast S. pombe. The findings suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Multiple lines of evidence implicate chromatin in the regulation of premessenger RNA (pre-mRNA) splicing. However, the influence of chromatin factors on cotranscriptional splice site usage remains unclear. Here we investigated the function of the highly conserved histone variant H2A.Z in pre-mRNA splicing using the intron-rich model yeast Schizosaccharomyces pombe. Using epistatic miniarray profiles (EMAPs) to survey the genetic interaction landscape of the Swr1 nucleosome remodeling complex, which deposits H2A.Z, we uncovered evidence for functional interactions with components of the spliceosome. In support of these genetic connections, splicing-specific microarrays show that H2A.Z and the Swr1 ATPase are required during temperature stress for the efficient splicing of a subset of introns. Notably, affected introns are enriched for H2A.Z occupancy and more likely to contain nonconsensus splice sites. To test the significance of the latter correlation, we mutated the splice sites in an affected intron to consensus and found that this suppressed the requirement for H2A.Z in splicing of that intron. These data suggest that H2A.Z occupancy promotes cotranscriptional splicing of suboptimal introns that may otherwise be discarded via proofreading ATPases. Consistent with this model, we show that overexpression of splicing ATPase Prp16 suppresses both the growth and splicing defects seen in the absence of H2A.Z.
Collapse
Affiliation(s)
- Kelly E Nissen
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| | - Christina M Homer
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| | - Colm J Ryan
- Systems Biology Ireland, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco 94158, California, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco 94158, California, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco 94158, California, USA.,California Institute for Quantitative Biosciences (QB3), San Francisco 94158, California, USA.,J. David Gladstone Institutes, San Francisco 94158, California, USA
| | - Kristin L Patrick
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA.,Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Bryan, Texas 77807, USA
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco 94158, California, USA
| |
Collapse
|
41
|
Protein 4.1R Exon 16 3' Splice Site Activation Requires Coordination among TIA1, Pcbp1, and RBM39 during Terminal Erythropoiesis. Mol Cell Biol 2017; 37:MCB.00446-16. [PMID: 28193846 DOI: 10.1128/mcb.00446-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/03/2017] [Indexed: 12/18/2022] Open
Abstract
Exon 16 of protein 4.1R encodes a spectrin/actin-binding peptide critical for erythrocyte membrane stability. Its expression during erythroid differentiation is regulated by alternative pre-mRNA splicing. A UUUUCCCCCC motif situated between the branch point and the 3' splice site is crucial for inclusion. We show that the UUUU region and the last three C residues in this motif are necessary for the binding of splicing factors TIA1 and Pcbp1 and that these proteins appear to act in a collaborative manner to enhance exon 16 inclusion. This element also activates an internal exon when placed in a corresponding intronic position in a heterologous reporter. The impact of these two factors is further enhanced by high levels of RBM39, whose expression rises during erythroid differentiation as exon 16 inclusion increases. TIA1 and Pcbp1 associate in a complex containing RBM39, which interacts with U2AF65 and SF3b155 and promotes U2 snRNP recruitment to the branch point. Our results provide a mechanism for exon 16 3' splice site activation in which a coordinated effort among TIA1, Pcbp1, and RBM39 stabilizes or increases U2 snRNP recruitment, enhances spliceosome A complex formation, and facilitates exon definition through RBM39-mediated splicing regulation.
Collapse
|
42
|
Loh TJ, Moon H, Jang HN, Liu Y, Choi N, Shen S, Williams DR, Jung DW, Zheng X, Shen H. SR proteins regulate V6 exon splicing of CD44 pre-mRNA. BMB Rep 2017; 49:612-616. [PMID: 27530682 PMCID: PMC5346321 DOI: 10.5483/bmbrep.2016.49.11.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Indexed: 11/26/2022] Open
Abstract
CD44 pre-mRNA includes 20 exons, of which exons 1–5 (C1–C5) and exons 16–20 (C6–C10) are constant exons, whereas exons 6–15 (V1–V10) are variant exons. V6-exon-containing isoforms have been known to be implicated in tumor cell invasion and metastasis. In the present study, we performed a SR protein screen for CD44 V6 splicing using overexpression and lentivirus-mediated shRNA treatment. Using a CD44 V6 minigene, we demonstrate that increased SRSF3 and SRSF4 expression do not affect V6 splicing, but increased expression of SRSF1, SRSF6 and SRSF9 significantly inhibit V6 splicing. In addition, using a constitutive exon-specific primer set, we could not detect alterations of CD44 splicing after SR protein-targeting shRNA treatment. However, using a V6 specific primer, we identified that reduced SRSF2 expression significantly reduced the V6 isoform, but increased V6–10 and V6,8–10 isoforms. Our results indicate that SR proteins are important regulatory proteins for CD44 V6 splicing.
Collapse
Affiliation(s)
- Tiing Jen Loh
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Heegyum Moon
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Ha Na Jang
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Yongchao Liu
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Namjeong Choi
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Shengfu Shen
- Willston Northampton School, Easthampton, MA 01027, USA
| | - Darren Reece Williams
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Da-Woon Jung
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Xuexiu Zheng
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Haihong Shen
- School of life Sciences, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
43
|
Tang Q, Rodriguez-Santiago S, Wang J, Pu J, Yuste A, Gupta V, Moldón A, Xu YZ, Query CC. SF3B1/Hsh155 HEAT motif mutations affect interaction with the spliceosomal ATPase Prp5, resulting in altered branch site selectivity in pre-mRNA splicing. Genes Dev 2016; 30:2710-2723. [PMID: 28087715 PMCID: PMC5238730 DOI: 10.1101/gad.291872.116] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 12/12/2016] [Indexed: 11/25/2022]
Abstract
Mutations in the U2 snRNP component SF3B1 are prominent in myelodysplastic syndromes (MDSs) and other cancers and have been shown recently to alter branch site (BS) or 3' splice site selection in splicing. However, the molecular mechanism of altered splicing is not known. We show here that hsh155 mutant alleles in Saccharomyces cerevisiae, counterparts of SF3B1 mutations frequently found in cancers, specifically change splicing of suboptimal BS pre-mRNA substrates. We found that Hsh155p interacts directly with Prp5p, the first ATPase that acts during spliceosome assembly, and localized the interacting regions to HEAT (Huntingtin, EF3, PP2A, and TOR1) motifs in SF3B1 associated with disease mutations. Furthermore, we show that mutations in these motifs from both human disease and yeast genetic screens alter the physical interaction with Prp5p, alter branch region specification, and phenocopy mutations in Prp5p. These and other data demonstrate that mutations in Hsh155p and Prp5p alter splicing because they change the direct physical interaction between Hsh155p and Prp5p. This altered physical interaction results in altered loading (i.e., "fidelity") of the BS-U2 duplex into the SF3B complex during prespliceosome formation. These results provide a mechanistic framework to explain the consequences of intron recognition and splicing of SF3B1 mutations found in disease.
Collapse
Affiliation(s)
- Qing Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032 China
| | | | - Jing Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032 China
| | - Jia Pu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032 China
| | - Andrea Yuste
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461 USA
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461 USA
| | - Alberto Moldón
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461 USA
| | - Yong-Zhen Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032 China
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York 10461 USA
| |
Collapse
|
44
|
Mai S, Qu X, Li P, Ma Q, Cao C, Liu X. Global regulation of alternative RNA splicing by the SR-rich protein RBM39. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1014-24. [PMID: 27354116 DOI: 10.1016/j.bbagrm.2016.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND RBM39 is a serine/arginine-rich RNA-binding protein that is highly homologous to the splicing factor U2AF65. However, the role of RBM39 in alternative splicing is poorly understood. METHODS In this study, RBM39-mediated global alternative splicing was investigated using RNA-Seq and genome-wide RBM39-RNA interactions were mapped via cross-linking and immunoprecipitation coupled with deep sequencing (CLIP-Seq) in wild-type and RBM39-knockdown MCF-7 cells. RESULTS RBM39 was involved in the up- or down-regulation of the transcript levels of various genes. Hundreds of alternative splicing events regulated by endogenous RBM39 were identified. The majority of these events were cassette exons. Genes containing RBM39-regulated alternative exons were found to be linked to G2/M transition, cellular response to DNA damage, adherens junctions and endocytosis. CLIP-Seq analysis showed that the binding site of RBM39 was mainly in proximity to 5' and 3' splicing sites. Considerable RBM39 binding to mRNAs encoding proteins involved in translation was observed. Of particular importance, ~20% of the alternative splicing events that were significantly regulated by RBM39 were similarly regulated by U2AF65. CONCLUSIONS RBM39 is extensively involved in alternative splicing of RNA and helps regulate transcript levels. RBM39 may modulate alternative splicing similarly to U2AF65 by either directly binding to RNA or recruiting other splicing factors, such as U2AF65. GENERAL SIGNIFICANCE The current study offers a genome-wide view of RBM39's regulatory function in alternative splicing. RBM39 may play important roles in multiple cellular processes by regulating both alternative splicing of RNA molecules and transcript levels.
Collapse
Affiliation(s)
- Sanyue Mai
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Xiuhua Qu
- General Navy Hospital of PLA, 6 Fucheng Rd, Haidian District, Beijing 100037, China
| | - Ping Li
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Qingjun Ma
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| | - Xuan Liu
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| |
Collapse
|
45
|
Wu G, Adachi H, Ge J, Stephenson D, Query CC, Yu YT. Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. EMBO J 2016; 35:654-67. [PMID: 26873591 DOI: 10.15252/embj.201593113] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
Pseudouridine (Ψ) is the most abundant internal modification identified in RNA, and yet little is understood of its effects on downstream reactions. Yeast U2 snRNA contains three conserved Ψs (Ψ35, Ψ42, and Ψ44) in the branch site recognition region (BSRR), which base pairs with the pre-mRNA branch site during splicing. Here, we show that blocks to pseudouridylation at these positions reduce the efficiency of pre-mRNA splicing, leading to growth-deficient phenotypes. Restoration of pseudouridylation at these positions using designer snoRNAs results in near complete rescue of splicing and cell growth. These Ψs interact genetically with Prp5, an RNA-dependent ATPase involved in monitoring the U2 BSRR-branch site base-pairing interaction. Biochemical analysis indicates that Prp5 has reduced affinity for U2 snRNA that lacks Ψ42 and Ψ44 and that Prp5 ATPase activity is reduced when stimulated by U2 lacking Ψ42 or Ψ44 relative to wild type, resulting in inefficient spliceosome assembly. Furthermore, in vivo DMS probing analysis reveals that pseudouridylated U2, compared to U2 lacking Ψ42 and Ψ44, adopts a slightly different structure in the branch site recognition region. Taken together, our results indicate that the Ψs in U2 snRNA contribute to pre-mRNA splicing by directly altering the binding/ATPase activity of Prp5.
Collapse
Affiliation(s)
- Guowei Wu
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Junhui Ge
- Department of Pathology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - David Stephenson
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, The Rochester Aging Research (RoAR) Center, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
46
|
Stepankiw N, Raghavan M, Fogarty EA, Grimson A, Pleiss JA. Widespread alternative and aberrant splicing revealed by lariat sequencing. Nucleic Acids Res 2015; 43:8488-501. [PMID: 26261211 PMCID: PMC4787815 DOI: 10.1093/nar/gkv763] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/15/2015] [Indexed: 12/11/2022] Open
Abstract
Alternative splicing is an important and ancient feature of eukaryotic gene structure, the existence of which has likely facilitated eukaryotic proteome expansions. Here, we have used intron lariat sequencing to generate a comprehensive profile of splicing events in Schizosaccharomyces pombe, amongst the simplest organisms that possess mammalian-like splice site degeneracy. We reveal an unprecedented level of alternative splicing, including alternative splice site selection for over half of all annotated introns, hundreds of novel exon-skipping events, and thousands of novel introns. Moreover, the frequency of these events is far higher than previous estimates, with alternative splice sites on average activated at ∼3% the rate of canonical sites. Although a subset of alternative sites are conserved in related species, implying functional potential, the majority are not detectably conserved. Interestingly, the rate of aberrant splicing is inversely related to expression level, with lowly expressed genes more prone to erroneous splicing. Although we validate many events with RNAseq, the proportion of alternative splicing discovered with lariat sequencing is far greater, a difference we attribute to preferential decay of aberrantly spliced transcripts. Together, these data suggest the spliceosome possesses far lower fidelity than previously appreciated, highlighting the potential contributions of alternative splicing in generating novel gene structures.
Collapse
Affiliation(s)
- Nicholas Stepankiw
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Madhura Raghavan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Elizabeth A Fogarty
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Andrew Grimson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Jeffrey A Pleiss
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
47
|
Patrick KL, Ryan CJ, Xu J, Lipp JJ, Nissen KE, Roguev A, Shales M, Krogan NJ, Guthrie C. Genetic interaction mapping reveals a role for the SWI/SNF nucleosome remodeler in spliceosome activation in fission yeast. PLoS Genet 2015; 11:e1005074. [PMID: 25825871 PMCID: PMC4380400 DOI: 10.1371/journal.pgen.1005074] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/16/2015] [Indexed: 12/19/2022] Open
Abstract
Although numerous regulatory connections between pre-mRNA splicing and chromatin have been demonstrated, the precise mechanisms by which chromatin factors influence spliceosome assembly and/or catalysis remain unclear. To probe the genetic network of pre-mRNA splicing in the fission yeast Schizosaccharomyces pombe, we constructed an epistatic mini-array profile (E-MAP) and discovered many new connections between chromatin and splicing. Notably, the nucleosome remodeler SWI/SNF had strong genetic interactions with components of the U2 snRNP SF3 complex. Overexpression of SF3 components in ΔSWI/SNF cells led to inefficient splicing of many fission yeast introns, predominantly those with non-consensus splice sites. Deletion of SWI/SNF decreased recruitment of the splicing ATPase Prp2, suggesting that SWI/SNF promotes co-transcriptional spliceosome assembly prior to first step catalysis. Importantly, defects in SWI/SNF as well as SF3 overexpression each altered nucleosome occupancy along intron-containing genes, illustrating that the chromatin landscape both affects—and is affected by—co-transcriptional splicing. It has recently become apparent that most introns are removed from pre-mRNA while the transcript is still engaged with RNA polymerase II (RNAPII). To gain insight into possible roles for chromatin in co-transcriptional splicing, we generated a genome-wide genetic interaction map in fission yeast and uncovered numerous connections between splicing and chromatin. The SWI/SNF remodeling complex is typically thought to activate gene expression by relieving barriers to polymerase elongation imposed by nucleosomes. Here we show that this remodeler is important for an early step in splicing in which Prp2, an RNA-dependent ATPase, is recruited to the assembling spliceosome to promote catalytic activation. Interestingly, introns with sub-optimal splice sites are particularly dependent on SWI/SNF, suggesting the impact of nucleosome dynamics on the kinetics of spliceosome assembly and catalysis. By monitoring nucleosome occupancy, we show significant alterations in nucleosome density in particular splicing and chromatin mutants, which generally paralleled the levels of RNAPII. Taken together, our findings challenge the notion that nucleosomes simply act as barriers to elongation; rather, we suggest that polymerase pausing at nucleosomes can activate gene expression by allowing more time for co-transcriptional splicing.
Collapse
Affiliation(s)
- Kristin L. Patrick
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Colm J. Ryan
- Systems Biology Ireland, University College Dublin, Dublin, Ireland
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Jesse J. Lipp
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Kelly E. Nissen
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
| | - Assen Roguev
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California, United States of America
- California Institute for Quantitative Biosciences, QB3, San Francisco, California, United States of America
- J. David Gladstone Institutes, San Francisco, California, United States of America
| | - Christine Guthrie
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
48
|
Kralovicova J, Knut M, Cross NCP, Vorechovsky I. Identification of U2AF(35)-dependent exons by RNA-Seq reveals a link between 3' splice-site organization and activity of U2AF-related proteins. Nucleic Acids Res 2015; 43:3747-63. [PMID: 25779042 PMCID: PMC4402522 DOI: 10.1093/nar/gkv194] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/24/2015] [Indexed: 01/05/2023] Open
Abstract
The auxiliary factor of U2 small nuclear RNA (U2AF) is a heterodimer consisting of 65- and 35-kD proteins that bind the polypyrimidine tract (PPT) and AG dinucleotides at the 3′ splice site (3′ss). The gene encoding U2AF35 (U2AF1) is alternatively spliced, giving rise to two isoforms U2AF35a and U2AF35b. Here, we knocked down U2AF35 and each isoform and characterized transcriptomes of HEK293 cells with varying U2AF35/U2AF65 and U2AF35a/b ratios. Depletion of both isoforms preferentially modified alternative RNA processing events without widespread failure to recognize 3′ss or constitutive exons. Over a third of differentially used exons were terminal, resulting largely from the use of known alternative polyadenylation (APA) sites. Intronic APA sites activated in depleted cultures were mostly proximal whereas tandem 3′UTR APA was biased toward distal sites. Exons upregulated in depleted cells were preceded by longer AG exclusion zones and PPTs than downregulated or control exons and were largely activated by PUF60 and repressed by CAPERα. The U2AF(35) repression and activation was associated with a significant interchange in the average probabilities to form single-stranded RNA in the optimal PPT and branch site locations and sequences further upstream. Although most differentially used exons were responsive to both U2AF subunits and their inclusion correlated with U2AF levels, a small number of transcripts exhibited distinct responses to U2AF35a and U2AF35b, supporting the existence of isoform-specific interactions. These results provide new insights into function of U2AF and U2AF35 in alternative RNA processing.
Collapse
Affiliation(s)
- Jana Kralovicova
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Marcin Knut
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| | - Nicholas C P Cross
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury SP2 8BJ, UK
| | - Igor Vorechovsky
- University of Southampton, Faculty of Medicine, Southampton SO16 6YD, UK
| |
Collapse
|
49
|
Liang WW, Cheng SC. A novel mechanism for Prp5 function in prespliceosome formation and proofreading the branch site sequence. Genes Dev 2015; 29:81-93. [PMID: 25561497 PMCID: PMC4281567 DOI: 10.1101/gad.253708.114] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The DEAD-box RNA helicase Prp5 is required for the formation of the prespliceosome through an ATP-dependent function to remodel U2 snRNPs and an ATP-independent function of unknown mechanism. Liang and Cheng show that Prp5 binds to the spliceosome in association with U2 by interacting with the branchpoint-interacting stem–loop and is released upon base-pairing of U2 with the branch site to allow the recruitment of the tri-snRNP. The DEAD-box RNA helicase Prp5 is required for the formation of the prespliceosome through an ATP-dependent function to remodel U2 small nuclear ribonucleoprotein particles (snRNPs) and an ATP-independent function of unknown mechanism. Prp5 has also been implicated in proofreading the branch site sequence, but the molecular mechanism has not been well characterized. Using actin precursor mRNA (pre-mRNA) carrying branch site mutations, we identified a Prp5-containing prespliceosome with Prp5 directly bound to U2 small nuclear RNA (snRNA). Prp5 is in contact with U2 in regions on and near the branchpoint-interacting stem–loop (BSL), suggesting that Prp5 may function in stabilizing the BSL. Regardless of its ATPase activity, Prp5 mutants that suppress branch site mutations associate with the spliceosome less tightly and allow more tri-snRNP binding for the reaction to proceed. Our results suggest a novel mechanism for how Prp5 functions in prespliceosome formation and proofreading of the branch site sequence. Prp5 binds to the spliceosome in association with U2 by interacting with the BSL and is released upon the base-pairing of U2 with the branch site to allow the recruitment of the tri-snRNP. Mutations impairing U2–branch site base-pairing retard Prp5 release and impede tri-snRNP association. Prp5 mutations that destabilize the Prp5–U2 interaction suppress branch site mutations by allowing progression of the pathway.
Collapse
Affiliation(s)
- Wen-Wei Liang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan; Institute of Microbiology and Immunology, National Yang-Ming University, Taipei 112, Taiwan
| | - Soo-Chen Cheng
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
50
|
Sharma S, Wongpalee SP, Vashisht A, Wohlschlegel JA, Black DL. Stem-loop 4 of U1 snRNA is essential for splicing and interacts with the U2 snRNP-specific SF3A1 protein during spliceosome assembly. Genes Dev 2015; 28:2518-31. [PMID: 25403181 PMCID: PMC4233244 DOI: 10.1101/gad.248625.114] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The pairing of 5′ and 3′ splice sites across an intron is a critical step in spliceosome formation and its regulation. Sharma et al. report a new interaction between stem–loop 4 (SL4) of the U1 snRNA, which recognizes the 5′ splice, and a component of the U2 snRNP complex, which assembles across the intron at the 3′ splice site. U1-SL4 interacts with the SF3A1 protein of the U2 snRNP, and this interaction occurs within prespliceosomal complexes assembled on the pre-mRNA. The pairing of 5′ and 3′ splice sites across an intron is a critical step in spliceosome formation and its regulation. Interactions that bring the two splice sites together during spliceosome assembly must occur with a high degree of specificity and fidelity to allow expression of functional mRNAs and make particular alternative splicing choices. Here, we report a new interaction between stem–loop 4 (SL4) of the U1 snRNA, which recognizes the 5′ splice site, and a component of the U2 small nuclear ribonucleoprotein particle (snRNP) complex, which assembles across the intron at the 3′ splice site. Using a U1 snRNP complementation assay, we found that SL4 is essential for splicing in vivo. The addition of free U1-SL4 to a splicing reaction in vitro inhibits splicing and blocks complex assembly prior to formation of the prespliceosomal A complex, indicating a requirement for a SL4 contact in spliceosome assembly. To characterize the interactions of this RNA structure, we used a combination of stable isotope labeling by amino acids in cell culture (SILAC), biotin/Neutravidin affinity pull-down, and mass spectrometry. We show that U1-SL4 interacts with the SF3A1 protein of the U2 snRNP. We found that this interaction between the U1 snRNA and SF3A1 occurs within prespliceosomal complexes assembled on the pre-mRNA. Thus, SL4 of the U1 snRNA is important for splicing, and its interaction with SF3A1 mediates contact between the 5′ and 3′ splice site complexes within the assembling spliceosome.
Collapse
Affiliation(s)
- Shalini Sharma
- Department of Basic Medical Sciences, University of Arizona, College of Medicine-Phoenix, Phoenix, Arizona 85004, USA; Department of Microbiology, Immunology, and Molecular Genetics
| | | | | | | | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|