1
|
Marciano O, Mehazri L, Shpungin S, Varvak A, Zacksenhaus E, Nir U. Fer and FerT Govern Mitochondrial Susceptibility to Metformin and Hypoxic Stress in Colon and Lung Carcinoma Cells. Cells 2021; 10:cells10010097. [PMID: 33430475 PMCID: PMC7826929 DOI: 10.3390/cells10010097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/26/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
Aerobic glycolysis is an important metabolic adaptation of cancer cells. However, there is growing evidence that reprogrammed mitochondria also play an important metabolic role in metastatic dissemination. Two constituents of the reprogrammed mitochondria of cancer cells are the intracellular tyrosine kinase Fer and its cancer- and sperm-specific variant, FerT. Here, we show that Fer and FerT control mitochondrial susceptibility to therapeutic and hypoxic stress in metastatic colon (SW620) and non-small cell lung cancer (NSCLC-H1299) cells. Fer- and FerT-deficient SW620 and H1299 cells (SW∆Fer/FerT and H∆Fer/FerT cells, respectively) become highly sensitive to metformin treatment and to hypoxia under glucose-restrictive conditions. Metformin impaired mitochondrial functioning that was accompanied by ATP deficiency and robust death in SW∆Fer/FerT and H∆Fer/FerT cells compared to the parental SW620 and H1299 cells. Notably, selective knockout of the fer gene without affecting FerT expression reduced sensitivity to metformin and hypoxia seen in SW∆Fer/FerT cells. Thus, Fer and FerT modulate the mitochondrial susceptibility of metastatic cancer cells to hypoxia and metformin. Targeting Fer/FerT may therefore provide a novel anticancer treatment by efficient, selective, and more versatile disruption of mitochondrial function in malignant cells.
Collapse
Affiliation(s)
- Odeya Marciano
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Linoy Mehazri
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Sally Shpungin
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Alexander Varvak
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
| | - Eldad Zacksenhaus
- Laboratory of Medicine & Pathology, University of Toronto, Toronto, ON M5G 2M1, Canada;
| | - Uri Nir
- The Mina and Everard Goodman Faculty of Life-Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (O.M.); (L.M.); (S.S.); (A.V.)
- Correspondence: ; Tel.: +972-52-4416968
| |
Collapse
|
2
|
Sponges: A Reservoir of Genes Implicated in Human Cancer. Mar Drugs 2018; 16:md16010020. [PMID: 29320389 PMCID: PMC5793068 DOI: 10.3390/md16010020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/21/2017] [Accepted: 01/04/2018] [Indexed: 12/22/2022] Open
Abstract
Recently, it was shown that the majority of genes linked to human diseases, such as cancer genes, evolved in two major evolutionary transitions—the emergence of unicellular organisms and the transition to multicellularity. Therefore, it has been widely accepted that the majority of disease-related genes has already been present in species distantly related to humans. An original way of studying human diseases relies on analyzing genes and proteins that cause a certain disease using model organisms that belong to the evolutionary level at which these genes have emerged. This kind of approach is supported by the simplicity of the genome/proteome, body plan, and physiology of such model organisms. It has been established for quite some time that sponges are an ideal model system for such studies, having a vast variety of genes known to be engaged in sophisticated processes and signalling pathways associated with higher animals. Sponges are considered to be the simplest multicellular animals and have changed little during evolution. Therefore, they provide an insight into the metazoan ancestor genome/proteome features. This review compiles current knowledge of cancer-related genes/proteins in marine sponges.
Collapse
|
3
|
Dual Roles of Fer Kinase Are Required for Proper Hematopoiesis and Vascular Endothelium Organization during Zebrafish Development. BIOLOGY 2017; 6:biology6040040. [PMID: 29168762 PMCID: PMC5745445 DOI: 10.3390/biology6040040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 11/17/2017] [Accepted: 11/18/2017] [Indexed: 11/17/2022]
Abstract
Fer kinase, a protein involved in the regulation of cell-cell adhesion and proliferation, has been shown to be required during invertebrate development and has been implicated in leukemia, gastric cancer, and liver cancer. However, in vivo roles for Fer during vertebrate development have remained elusive. In this study, we bridge the gap between the invertebrate and vertebrate realms by showing that Fer kinase is required during zebrafish embryogenesis for normal hematopoiesis and vascular organization with distinct kinase dependent and independent functions. In situ hybridization, quantitative PCR and fluorescence activated cell sorting (FACS) analyses revealed an increase in both erythrocyte numbers and gene expression patterns as well as a decrease in the organization of vasculature endothelial cells. Furthermore, rescue experiments have shown that the regulation of hematopoietic proliferation is dependent on Fer kinase activity, while vascular organizing events only require Fer in a kinase-independent manner. Our data suggest a model in which separate kinase dependent and independent functions of Fer act in conjunction with Notch activity in a divergent manner for hematopoietic determination and vascular tissue organization.
Collapse
|
4
|
Alvau A, Battistone MA, Gervasi MG, Navarrete FA, Xu X, Sánchez-Cárdenas C, De la Vega-Beltran JL, Da Ros VG, Greer PA, Darszon A, Krapf D, Salicioni AM, Cuasnicu PS, Visconti PE. The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm. Development 2016; 143:2325-33. [PMID: 27226326 DOI: 10.1242/dev.136499] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/12/2016] [Indexed: 11/20/2022]
Abstract
Sperm capacitation is required for fertilization. At the molecular level, this process is associated with fast activation of protein kinase A. Downstream of this event, capacitating conditions lead to an increase in tyrosine phosphorylation. The identity of the tyrosine kinase(s) mediating this process has not been conclusively demonstrated. Recent experiments using stallion and human sperm have suggested a role for PYK2 based on the use of small molecule inhibitors directed against this kinase. However, crucially, loss-of-function experiments have not been reported. Here, we used both pharmacological inhibitors and genetically modified mice models to investigate the identity of the tyrosine kinase(s) mediating the increase in tyrosine phosphorylation in mouse sperm. Similar to stallion and human, PF431396 blocks the capacitation-associated increase in tyrosine phosphorylation. Yet, sperm from Pyk2(-/-) mice displayed a normal increase in tyrosine phosphorylation, implying that PYK2 is not responsible for this phosphorylation process. Here, we show that PF431396 can also inhibit FER, a tyrosine kinase known to be present in sperm. Sperm from mice targeted with a kinase-inactivating mutation in Fer failed to undergo capacitation-associated increases in tyrosine phosphorylation. Although these mice are fertile, their sperm displayed a reduced ability to fertilize metaphase II-arrested eggs in vitro.
Collapse
Affiliation(s)
- Antonio Alvau
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | | | - Maria Gracia Gervasi
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Felipe A Navarrete
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Xinran Xu
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80521, USA
| | - Claudia Sánchez-Cárdenas
- Departamento de Genética del Desarrollo y Fisiología Molecular, IBT-UNAM, Cuernavaca 62210, México
| | | | - Vanina G Da Ros
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires C1428ADN, Argentina
| | - Peter A Greer
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, IBT-UNAM, Cuernavaca 62210, México
| | - Diego Krapf
- Department of Electrical and Computer Engineering and School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80521, USA
| | - Ana Maria Salicioni
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| | - Patricia S Cuasnicu
- Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires C1428ADN, Argentina
| | - Pablo E Visconti
- Department of Veterinary and Animal Science, Integrated Sciences Building, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Abstract
AbstractThe olfactory system represents a perfect model to study the interactions between the central and peripheral nervous systems in order to establish a neural circuit during early embryonic development. In addition, another important feature of this system is the capability to integrate new cells generated in two neurogenic zones: the olfactory epithelium in the periphery and the wall of the lateral ventricles in the CNS, both during development and adulthood. In all these processes the combination and sequence of specific molecular signals plays a critical role in the wiring of the olfactory axons, as well as the precise location of the incoming cell populations to the olfactory bulb. The purpose of this review is to summarize recent insights into the cellular and molecular events that dictate cell settling position and axonal trajectories from their origin in the olfactory placode to the formation of synapses in the olfactory bulb to ensure rapid and reliable transmission of olfactory information from the nose to the brain.
Collapse
|
6
|
Kierszenbaum AL, Rivkin E, Tres LL. Expression of Fer testis (FerT) tyrosine kinase transcript variants and distribution sites of FerT during the development of the acrosome-acroplaxome-manchette complex in rat spermatids. Dev Dyn 2009; 237:3882-91. [PMID: 18985748 DOI: 10.1002/dvdy.21789] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report the association of testicular Fer, a non-receptor tyrosine kinase, with acrosome development and remodeling of the acrosome-associated acroplaxome plate during spermatid head shaping. A single gene expresses two forms of Fer tyrosine kinases in testis: a somatic form (FerS) and a truncated testis-type form (FerT). FerT transcript variants are seen in spermatocytes and spermatids. FerS transcripts are not detected in round spermatids but are moderately transcribed in spermatocytes. FerT protein is associated with the spermatid medial/trans-Golgi region, proacrosomal vesicles, the cytosolic side of the outer acrosome membrane and adjacent to the inner acrosome membrane facing the acroplaxome. FerT coexist in the acroplaxome with phosphorylated cortactin, a regulator of F-actin dynamics. We propose that FerT participates in acrosome development and that phosphorylated cortactin may contribute to structural changes in F-actin in the acroplaxome during spermatid head shaping.
Collapse
Affiliation(s)
- Abraham L Kierszenbaum
- Department of Cell Biology and Anatomy, CUNY Medical School, Harris Hall Suite 306, 160 Convent Avenue, New York, NY 10031, USA.
| | | | | |
Collapse
|
7
|
Aspenström P. Roles of F-BAR/PCH proteins in the regulation of membrane dynamics and actin reorganization. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 272:1-31. [PMID: 19121815 DOI: 10.1016/s1937-6448(08)01601-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The Pombe Cdc15 Homology (PCH) proteins have emerged in many species as important coordinators of signaling pathways that regulate actomyosin assembly and membrane dynamics. The hallmark of the PCH proteins is the presence of a Fes/CIP4 homology-Bin/Amphiphysin/Rvsp (F-BAR) domain; therefore they are commonly referred to as F-BAR proteins. The prototype F-BAR protein, Cdc15p of Schizosaccharomyces pombe, has a role in the formation of the contractile actomyosin ring during cytokinesis. Vertebrate F-BAR proteins have an established role in binding phospholipids and they participate in membrane deformations, for instance, during the internalization of transmembrane receptors. This way the F-BAR proteins will function as linkers between the actin polymerization apparatus and the machinery regulating membrane dynamics. Interestingly, some members of the F-BAR proteins are implicated in inflammatory or neurodegenerative disorders and the observations can be expected to have clinical implications for the treatment of the diseases.
Collapse
Affiliation(s)
- Pontus Aspenström
- Ludwig Institute for Cancer Research, Uppsala University, SE-751 24 Uppsala, Sweden
| |
Collapse
|
8
|
Pasder O, Shpungin S, Salem Y, Makovsky A, Vilchick S, Michaeli S, Malovani H, Nir U. Downregulation of Fer induces PP1 activation and cell-cycle arrest in malignant cells. Oncogene 2006; 25:4194-206. [PMID: 16732323 DOI: 10.1038/sj.onc.1209695] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fer is a nuclear and cytoplasmic intracellular tyrosine kinase. Herein we show that Fer is required for cell-cycle progression in malignant cells. Decreasing the level of Fer using the RNA interference (RNAi) approach impeded the proliferation of prostate and breast carcinoma cells and led to their arrest at the G0/G1 phase. At the molecular level, knockdown of Fer resulted in the activation of the retinoblastoma protein (pRB), and this was reflected by profound hypo-phosphorylation of pRB on both cyclin-dependent kinase CDK4 and CDK2 phosphorylation sites. Dephosphorylation of pRB was not seen upon the direct targeting of either CDK4 or CDK2 expression, and was only partially achieved by the simultaneous depletion of these two kinases. Amino-acid sequence analysis revealed two protein phosphatase 1 (PP1) binding motifs in the kinase domain of Fer and the association of Fer with the pRB phosphatase PP1alpha was verified using co-immunoprecipitation analysis. Downregulation of Fer potentiated the activation of PP1alpha and overexpression of Fer decreased the enzymatic activity of that phosphatase. Our findings portray Fer as a regulator of cell-cycle progression in malignant cells and as a potential target for cancer intervention.
Collapse
Affiliation(s)
- O Pasder
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Putzke AP, Hikita ST, Clegg DO, Rothman JH. Essential kinase-independent role of a Fer-like non-receptor tyrosine kinase inCaenorhabditis elegansmorphogenesis. Development 2005; 132:3185-95. [PMID: 15958510 DOI: 10.1242/dev.01900] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphogenesis requires coordination of cell surface activity and cytoskeletal architecture. During the initial stage of morphogenesis in Caenorhabditis elegans, the concerted movement of surface epithelial cells results in enclosure of the embryo by the epidermis. We report that Fer-related kinase-1 (FRK-1), an ortholog of the mammalian non-receptor tyrosine kinase Fer, is necessary for embryonic enclosure and morphogenesis in C. elegans. Expression of FRK-1 in epidermal cells is sufficient to rescue a chromosomal deficiency that removes the frk-1locus, demonstrating its autonomous requirement in the epidermis. The essential function of FRK-1 is independent of its kinase domain, suggesting a non-enzymatic role in morphogenesis. Localization of FRK-1 to the plasma membrane requires β-catenin, but not cadherin or α-catenin, and muscle-expressed β-integrin is non-autonomously required for this localization; in the absence of these components FRK-1 becomes nuclear. Mouse FerT rescues the morphogenetic defects of frk-1 mutants and expression of FRK-1 in mammalian cells results in loss of adhesion, implying a conserved function for FRK-1/FerT in cell adhesion and morphogenesis. Thus,FRK-1 performs a kinase-independent function in differentiation and morphogenesis of the C. elegans epidermis during embryogenesis.
Collapse
Affiliation(s)
- Aaron P Putzke
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
10
|
Lee NPY, Cheng CY. Protein kinases and adherens junction dynamics in the seminiferous epithelium of the rat testis. J Cell Physiol 2005; 202:344-60. [PMID: 15389520 DOI: 10.1002/jcp.20119] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Earlier studies in multiple epithelia have shown that cell-cell actin-based adherens junction (AJ) dynamics are regulated, at least in part, by the interplay of kinases and phosphatases that determines the intracellular phosphoprotein content. Yet it is virtually unknown regarding the role of protein kinases in Sertoli-germ cell AJ dynamics in the seminiferous epithelium of the testis. To address this issue, an in vitro coculture system utilizing Sertoli and germ cells was used to study the regulation of several protein kinases, including c-Src (the cellular form of the v-src transforming gene of Rous Sarcoma virus, RSV), carboxyl-terminal Src kinase (Csk), and casein kinase 2 (CK2), during AJ assembly. Both Sertoli and germ cells were shown to express c-Src, Csk, and CK2 with a relative Sertoli:germ cell ratio of approximately 1:1, suggesting both cell types contributed equally to the pool of these kinases in the epithelium. c-Src and Csk were shown to be stage-specific proteins during the epithelial cycle, being highest at stages VII-VIII. Studies using immunoprecipitation have illustrated that these kinases were structurally associated with the N-cadherin/beta-catenin, but not the nectin/afadin, protein complex, implicating that the cadherin/catenin protein complex is their likely putative substrate. An induction in c-Src, Csk, and CK2 were detected during Sertoli-germ cell AJ assembly in vitro but not when Sertoli cells were cultured alone. When adult rats were treated with 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide (AF-2364), a compound known to induce germ cell loss from the seminiferous epithelium, in particular elongating/elongate and round spermatids, by disrupting Sertoli-germ cell AJs, an induction of c-Src and Csk, but not CK2, was detected. Furthermore, a transient increase in the intrinsic kinase activities of c-Src, but not CK2, was also detected. This event was also associated with a loss of protein-protein association of N-cadherin and beta-catenin from the cadherin/catenin/c-Src/Csk/CK2 protein complex. Administration of PP1, a c-Src inhibitor, into adult rats via the jugular vein could induce the loss of spermatocytes and round spermatids, but not elongating/elongate spermatids, from the seminiferous epithelium. This result thus implicates the importance of c-Src in maintaining the integrity of AJs and possibly desmosome-like junctions between Sertoli cells and spermatocytes/round spermatids. In short, the data reported herein have shown that c-Src, Csk, and CK2 are novel protein kinases in AJ dynamics in the testis.
Collapse
Affiliation(s)
- Nikki P Y Lee
- Population Council, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
11
|
Kleene KC. Sexual selection, genetic conflict, selfish genes, and the atypical patterns of gene expression in spermatogenic cells. Dev Biol 2005; 277:16-26. [PMID: 15572136 DOI: 10.1016/j.ydbio.2004.09.031] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Revised: 06/23/2004] [Accepted: 09/03/2004] [Indexed: 11/18/2022]
Abstract
This review proposes that the peculiar patterns of gene expression in spermatogenic cells are the consequence of powerful evolutionary forces known as sexual selection. Sexual selection is generally characterized by intense competition of males for females, an enormous variety of the strategies to maximize male reproductive success, exaggerated male traits at all levels of biological organization, co-evolution of sexual traits in males and females, and conflict between the sexual advantage of the male trait and the reproductive fitness of females and the individual fitness of both sexes. In addition, spermatogenesis is afflicted by selfish genes that promote their transmission to progeny while causing deleterious effects. Sexual selection, selfish genes, and genetic conflict provide compelling explanations for many atypical features of gene expression in spermatogenic cells including the gross overexpression of certain mRNAs, transcripts encoding truncated proteins that cannot carry out basic functions of the proteins encoded by the same genes in somatic cells, the large number of gene families containing paralogous genes encoding spermatogenic cell-specific isoforms, the large number of testis-cancer-associated genes that are expressed only in spermatogenic cells and malignant cells, and the overbearing role of Sertoli cells in regulating the number and quality of spermatozoa.
Collapse
Affiliation(s)
- Kenneth C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125-3393, USA.
| |
Collapse
|
12
|
Kitajima K, Matsumoto K, Tahara M, Takahashi H, Nakamura T, Nakamura T. A newly identified AMSH-family protein is specifically expressed in haploid stages of testicular germ cells. Biochem Biophys Res Commun 2003; 309:135-42. [PMID: 12943674 DOI: 10.1016/s0006-291x(03)01550-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Associated Molecule with SH3 domain of STAM (AMSH) plays a critical role in the cytokine-mediated intracellular signal transduction downstream of the Jak2/Jak3-STAM complex. We newly identified a family molecule of AMSH, AMSH-FP (AMSH-Family Protein) in the mouse brain. AMSH-FP encodes the intracellular protein and has a highly conserved JAB1 Subdomain Homologous (JSH) region, suggesting that AMSH-FP may act as adaptor of gene transcription and/or regulation system. AMSH-FP has two splicing forms, one is expressed in various tissues, whereas the other one is restricted to expression in testis. We named the abundant type AMSH-FPalpha and the testis type AMSH-FPbeta. AMSH-FPbeta is a variant lacking N-terminal 166 amino acid residues of AMSH-FPalpha. Analysis of the 5(')-untranslated regions in AMSH-FPalpha and AMSH-FPbeta mRNAs and exon-intron structure of AMSH-FP gene suggests that testis-specific transcripts are generated due to alternative promoter usage and/or alternative splicing. Importantly, AMSH-FPbeta mRNA was not detected in juvenile and infertile mouse testis but was restrictively expressed in the haploid stage of testicular germ cells in the normal mature testis. We suggested that AMSH-FPbeta had a functional role in the spermiogenesis.
Collapse
Affiliation(s)
- Keiko Kitajima
- Division of Molecular Regenerative Medicine, Course of Advanced Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
13
|
Chen YM, Lee NPY, Mruk DD, Lee WM, Cheng CY. Fer kinase/FerT and adherens junction dynamics in the testis: an in vitro and in vivo study. Biol Reprod 2003; 69:656-72. [PMID: 12700184 DOI: 10.1095/biolreprod.103.016881] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Fer kinase is a 94-kDa cytoplasmic cell-cell actin-based adherens junction (AJ)-associated nonreceptor protein tyrosine kinase (PTK) found in multiple epithelia including the testis, whereas FerT kinase (51 kDa) is the truncated testis-specific form of Fer kinase, lacking the Fps/Fes/Fer/CIP4 (products of oncogenes identified in avian and feline sarcoma, encoding tyrosine protein kinases) and the three coiled-coil domains versus Fer kinase. Yet the role(s) of Fer kinase in AJ dynamics in the testis remains largely unexplored. We have used an in vitro model of AJ assembly with Sertoli-germ cell cocultures and an in vivo model of AJ disassembly in which adult rats were treated with 1-(2,4-dichlorobenzyl)-indazole-3-carbohydrazide (AF-2364) to study changes in the expression and/or localization of Fer kinase during AJ restructuring. Fer kinase/FerT was expressed by Sertoli and germ cells when cultured in vitro. Using an antibody prepared against a synthetic peptide, NH2-SAPQNCPEEIFTIMMKCWDYK-COOH, corresponding to residues 779-799 of Fer kinase in the rat, which failed to cross-react with FerT kinase, for immunohistochemistry, Fer kinase was detected in the seminiferous epithelium in virtually all stages of the epithelial cycle. At stages XIII-VI, Fer kinase was associated largely with round and elongating spermatids. At stages VII-VIII, Fer kinase associated almost exclusively with round spermatids with very weak staining associated with elongated spermatids. This stage-specific localization of Fer kinase in the epithelium was confirmed by using staged tubules for semiquantitative reverse transcription-polymerase chain reaction. Studies by immunoprecipitation revealed that Fer kinase associated with N-cadherin, gamma-catenin, p120ctn, c-Src (a putative PTK and the product of the transforming, sarcoma-inducing gene of Rous sarcoma virus), Rab 8 (a GTPase), actin, vimentin, but not E-cadherin, afadin, nectin-3, and integrin beta1, suggesting Fer kinase associates not only with the actin-based cell-cell AJ structures, such as the N-cadherin/catenin complex (but not the alpha6beta1 integrin/laminin and the afadin/nectin complex), but also with intermediate filament-based cell-cell desmosomes. An induction in Fer kinase expression was detected during Sertoli-germ cell AJ assembly in vitro but not during AF-2364-induced AJ disruption in vivo. Yet this AF-2364-induced Fer kinase plummeting associated with an induction in N-cadherin, beta-catenin, and p120ctn, particularly at the base of the seminiferous epithelium. In summary, Fer kinase structurally associates with the N-cadherin/catenin protein complex in the testis and can possibly be used to mediate signaling function via the cadherin/catenin protein complex.
Collapse
|
14
|
Orlovsky K, Theodor L, Malovani H, Chowers Y, Nir U. Gamma interferon down-regulates Fer and induces its association with inactive Stat3 in colon carcinoma cells. Oncogene 2002; 21:4997-5001. [PMID: 12118379 DOI: 10.1038/sj.onc.1205624] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2002] [Revised: 04/08/2002] [Accepted: 04/26/2002] [Indexed: 11/09/2022]
Abstract
Gamma interferon (IFN-gamma) is a regulator of cell growth, which suppresses the proliferation of HT-29 colon carcinoma cells. Here we show that in HT-29 cells IFN-gamma transiently increased the cellular level of the tyrosine kinase Fer, whose functioning was found to be essential for the proliferation of malignant cell-lines. The transient elevation in the level of Fer, was followed by its down-regulation, an effect which was most prominent after 6-8 h of IFN-gamma treatment. Up- and down-regulation of Fer was paralleled by the activation and subsequent deactivation of Stat3, which is a potent oncogene and a putative substrate of the tyrosine kinase Fer. Moreover, IFN-gamma induced the association of Fer and Stat3 and the newly formed complex was most stable at the down-regulated states of the two proteins. Formation of the Fer/Stat3 complex was accompanied by an attenuation in cell-cycle progression and accumulation of cells in the G1 phase. Thus, Fer and Stat3 are two proliferation-promoting factors whose down-regulation could contribute to the cytostatic activity of IFN-gamma in colon carcinoma cells.
Collapse
Affiliation(s)
- Kira Orlovsky
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | |
Collapse
|
15
|
McCafferty DM, Craig AWB, Senis YA, Greer PA. Absence of Fer protein-tyrosine kinase exacerbates leukocyte recruitment in response to endotoxin. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:4930-5. [PMID: 11994443 DOI: 10.4049/jimmunol.168.10.4930] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The group IV cytoplasmic protein-tyrosine kinase Fer has been linked to cellular signaling responses to many different stimuli, including growth factors and cytokines. However, the biological relevance of Fer activation in vivo has not been demonstrated to date. Recently, we generated a transgenic mouse line in which Fer protein is expressed but lacks catalytic activity. Homozygous mutant mice were viable and fertile, and showed no overt defects. In this study, we used intravital microscopy to examine the role of Fer kinase in leukocyte recruitment (rolling adhesion and emigration) in response to LPS challenge in skeletal muscle microcirculation. In addition, we measured vascular permeability changes (FITC-albumin leakage, venular-to-interstitial space) in response to Ag to examine general endothelial cell function. Local administration of LPS induced decreased leukocyte rolling velocity and increased leukocyte adhesion and emigration in wild-type mice. LPS-induced changes in leukocyte rolling velocity and rolling flux were not significantly different in Fer mutants. However, LPS-induced leukocyte adhesion (23 +/- 3 vs 11 +/- 3 cells/100 microm) and emigration (100 +/- 5 vs 28 +/- 7 cells/field) were significantly elevated in Fer-mutant mice relative to wild-type mice, respectively, suggesting an essential role for the Fer kinase in regulating inflammation-induced leukocyte emigration. Vascular permeability increases in response to Ag were similar between the two groups, indicating that the ability of endothelial cells to retract is intact in the absence of Fer kinase. These data provide the first evidence for a biological role for Fer in regulation of leukocyte recruitment during the innate immune response.
Collapse
MESH Headings
- Animals
- Capillary Permeability/genetics
- Capillary Permeability/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Endothelium, Vascular/immunology
- Endothelium, Vascular/pathology
- Hemodynamics/genetics
- Hemodynamics/immunology
- Hypersensitivity, Immediate/genetics
- Hypersensitivity, Immediate/immunology
- Inflammation/genetics
- Inflammation/immunology
- Inflammation/pathology
- Injections, Subcutaneous
- Kinetics
- Leukocytes/pathology
- Lipopolysaccharides/administration & dosage
- Mice
- Mice, Mutant Strains
- Mice, Transgenic
- Muscle, Skeletal/blood supply
- Muscle, Skeletal/immunology
- Muscle, Skeletal/pathology
- Nuclear Proteins/deficiency
- Nuclear Proteins/genetics
- Nuclear Proteins/physiology
- Ovalbumin/administration & dosage
- Ovalbumin/immunology
- Protein-Tyrosine Kinases/deficiency
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Rheology
Collapse
Affiliation(s)
- Donna-Marie McCafferty
- Immunology Research Group, Department of Medical Physiology, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | |
Collapse
|
16
|
Abstract
Fps/Fes and Fer are the only known members of a distinct subfamily of the non-receptor protein-tyrosine kinase family. Recent studies indicate that these kinases have roles in regulating cytoskeletal rearrangements and inside out signalling that accompany receptor ligand, cell matrix and cell cell interactions. Genetic analysis using transgenic mouse models also implicates these kinases in the regulation of inflammation and innate immunity.
Collapse
MESH Headings
- Animals
- Biological Evolution
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 5/genetics
- Fusion Proteins, gag-onc/chemistry
- Fusion Proteins, gag-onc/genetics
- Fusion Proteins, gag-onc/physiology
- Humans
- Inflammation/physiopathology
- Mice
- Mice, Knockout
- Mice, Transgenic
- Models, Biological
- Models, Molecular
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/chemistry
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/physiology
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Receptor Cross-Talk
- Receptors, Platelet-Derived Growth Factor/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Peter Greer
- Division of Cancer Research and Genetics, Queen's University Cancer Research Institute, Kingston, Ontario K7L 3N6, Canada.
| |
Collapse
|
17
|
Kleene KC. A possible meiotic function of the peculiar patterns of gene expression in mammalian spermatogenic cells. Mech Dev 2001; 106:3-23. [PMID: 11472831 DOI: 10.1016/s0925-4773(01)00413-0] [Citation(s) in RCA: 171] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This review focuses on the striking differences in the patterns of transcription and translation in somatic and spermatogenic cells in mammals. In early haploid cells, mRNA translation evidently functions to restrict the synthesis of certain proteins, notably protamines, to transcriptionally inert late haploid cells. However, this does not explain why a substantial proportion of virtually all mRNA species are sequestered in translationally inactive free-messenger ribonucleoprotein particles (free-mRNPs) in meiotic cells, since most mRNAs undergo little or no increase in translational activity in transcriptionally active early haploid cells. In addition, most mRNAs in meiotic cells appear to be overexpressed because they are never fully loaded on polysomes and the levels of the corresponding protein are often much lower than the mRNA and are sometimes undetectable. A large number of genes are expressed at grossly higher levels in meiotic and/or early haploid spermatogenic cells than in somatic cells, yet they too are translated inefficiently. Many genes utilize alternative promoters in somatic and spermatogenic cells. Some of the resulting spermatogenic cell-altered transcripts (SCATs) encode proteins with novel functions, while others contain features in their 5'-UTRs, secondary structure or upstream reading frames, that are predicted to inhibit translation. This review proposes that the transcriptional machinery is modified to provide access to specific DNA sequences during meiosis, which leads to mRNA overexpression and creates a need for translational fine-tuning to prevent deleterious consequences of overproducing proteins.
Collapse
Affiliation(s)
- K C Kleene
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125-3393, USA..
| |
Collapse
|
18
|
Abstract
The murine double minute 2 (mdm2) gene is essential for embryogenesis in mice that express the p53 tumor suppressor protein. Mdm2 levels must be regulated tightly because overexpression of mdm2 contributes to tumorigenesis. We investigated whether the 5' and 3' untranslated regions (UTRs) of murine mdm2 affect the expression of MDM2 proteins. Induction of mdm2 expression by p53 results in synthesis of an mdm2 mRNA with a short 5' UTR. The long 5' UTR increases internal initiation of translation of a minor MDM2 protein, p76(MDM2), without affecting the efficiency of translation of the full-length p90(MDM2). We discovered two alternative 3' untranslated regions in murine mdm2 mRNA expressed in the testis. The longer 3' UTR contains a consensus instability element, but mdm2 mRNAs containing the long and short 3' UTRs have comparable half-lives. The 3' UTRs do not affect either initiation codon use or translation efficiency. Thus, the murine 5' UTR, but not the 3'UTR, influences the ratio of the two MDM2 proteins but neither UTR affects MDM2 abundance significantly.
Collapse
Affiliation(s)
- S M Mendrysa
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, WI, Madison, USA
| | | | | |
Collapse
|
19
|
Priel-Halachmi S, Ben-Dor I, Shpungin S, Tennenbaum T, Molavani H, Bachrach M, Salzberg S, Nir U. FER kinase activation of Stat3 is determined by the N-terminal sequence. J Biol Chem 2000; 275:28902-10. [PMID: 10878010 DOI: 10.1074/jbc.m003402200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
p94(fer) and p51(ferT) are two tyrosine kinases that share identical SH2 and kinase domains but differ in their N-terminal regions. To further explore the cellular functions of these two highly related tyrosine kinases, their subcellular distribution profiles and in vivo phosphorylation activity were followed using double immunofluorescence assay. When combined with immunoprecipitation analysis, this assay showed that p94(fer) can lead to the tyrosine phosphorylation and activation of Stat3 but not of Stat1 or Stat2. Native p94(fer) exerted this activity when residing in the cytoplasm. However, modified forms of p94(fer), which are constitutively nuclear, could also lead to the phosphorylation of Stat3. Endogenous Stat3 and p94(fer) co-immunoprecipitated with each other, thus proving the interaction of these two proteins in vivo. Unlike p94(fer), p51(ferT) did not induce the phosphorylation of Stat3 but led to the phosphorylation of other nuclear proteins. Replacing the unique 43-amino acid-long N-terminal tail of p51(ferT) with a parallel segment from the N-terminal tail of p94(fer) did not change the subcellular localization of p51(ferT) but enabled it to activate Stat3. Thus the different N-terminal sequences of p94(fer) and p51(ferT) can affect their ability to induce phosphorylation of Stat3 and most probably direct their different cellular functions.
Collapse
Affiliation(s)
- S Priel-Halachmi
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Carmel M, Shpungin S, Nir U. Role of positive and negative regulation in modulation of the Fer promoter activity. Gene 2000; 241:87-99. [PMID: 10607902 DOI: 10.1016/s0378-1119(99)00464-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
p94(fer) is a cytoplasmic and nuclear tyrosine kinase whose function has been linked to cell growth. p94(fer) accumulates at different levels in various cell types and is not detected in pre-B, pre-T and T-cells (Halachmy, S., Bern, O., Schreiber, L., Carmel, M., Sharabi, Y., Shoham, J., Nir, U., 1997. p94(fer) facilitates cellular recovery of gamma irradiated pre-T cells. Oncogene 14, 2871-2880). The fer RNA, encoding p94fer, is transcribed from the FER locus in human rat and mouse. In the present work, a Fer gene transcription initiation point was determined, and the Fer promoter was cloned. A DNA genomic fragment, extending 3698bp upstream of the fer RNA start site, was isolated, sequenced and functionally characterized. A transient transfection assay, carried out in fibroblastic cell lines, revealed the presence of the Fer promoter within the cloned genomic fragment. The Fer promoter contains neither an obvious 'TATA' element nor a putative initiator sequence, but is composed of positive and negative, cis-acting elements. Negative regulation was found to be the main cause for dysfunctioning of the Fer promoter in a T-cell leukemia cell line (Jurkat). The minimal Fer promoter that is still active in fibroblasts consists of an AP1 binding site located 14bp upstream of the fer transcription initiation point. This minimal promoter was not active in the Jurkat T-cell leukemia cells and did not bind AP1 in these cells. Three additional AP1 sites were identified in functional sequences of the Fer promoter. Thus, the availability of AP1 activity may contribute as well to the modulation of the Fer promoter activity. The presumed regulatory role of AP1 in modulating the Fer promoter activity implies a link between cell growth and the Fer gene expression level. Indeed, exposure of fibroblasts to low serum growth conditions reduced the cellular level of the fer RNA.
Collapse
Affiliation(s)
- M Carmel
- Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | |
Collapse
|
21
|
Craig AW, Zirngibl R, Greer P. Disruption of coiled-coil domains in Fer protein-tyrosine kinase abolishes trimerization but not kinase activation. J Biol Chem 1999; 274:19934-42. [PMID: 10391941 DOI: 10.1074/jbc.274.28.19934] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The protein-tyrosine kinase Fer and the highly homologous proto-oncoprotein Fps/Fes are implicated in signaling from a variety of growth factor and cytokine receptors. Here we examine the molecular basis of Fer kinase activation with an emphasis on the role of oligomerization. We show that Fer forms trimers in vivo and that disruption of either the first or second coiled-coil domain abolishes oligomerization, suggesting a cooperative interaction between these two domains. Although Fps/Fes also forms homotypic oligomers, probably via homologous coiled-coil domains, no heterotypic interactions were observed between Fer and Fps/Fes. Incorporation of catalytically inactive Fer peptides into the oligomeric complex caused only mild reduction of wild type Fer kinase activity, suggesting that kinase-inactive Fer would not behave as a potent dominant negative. Although oligomerization of Fer can potentiate autophosphorylation in trans at three major phosphorylation sites, these residues can likely also be phosphorylated in cis. In contrast, the testis-specific FerT isomer does not oligomerize and is able to autophosphorylate in cis at two of the same three residues autophosphorylated in Fer. These results suggest that although oligomerization potentiates autophosphorylation in trans, this is apparently not necessary for Fer activation.
Collapse
Affiliation(s)
- A W Craig
- Cancer Research Laboratories, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | | | | |
Collapse
|
22
|
Quinn JM, Nakamoto SS, Merchant S. Induction of coproporphyrinogen oxidase in Chlamydomonas chloroplasts occurs via transcriptional regulation of Cpx1 mediated by copper response elements and increased translation from a copper deficiency-specific form of the transcript. J Biol Chem 1999; 274:14444-54. [PMID: 10318870 DOI: 10.1074/jbc.274.20.14444] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Coproporphyrinogen III oxidase, encoded by a single nuclear gene in Chlamydomonas reinhardtii, produces three distinct transcripts. One of these transcripts is greatly induced in copper-deficient cells by transcriptional activation, whereas the other forms are copper-insensitive. The induced form of the transcript was expressed coordinately with the cytochrome c6-encoding (Cyc6) gene, which is known to be transcriptionally regulated in copper-deficient cells. The sequence GTAC, which forms the core of a copper response element associated with the Cyc6 gene, is also essential for induction of the Cpx1 gene, suggesting that both are targets of the same signal transduction pathway. The constitutive and induced Cpx1 transcripts have the same half-lives in vivo, and all encode the same polypeptide with a chloroplast-targeting transit sequence, but the shortest one representing the induced form is a 2-4-fold better template for translation than are either of the constitutive forms. The enzyme remains localized to a soluble compartment in the chloroplast even in induced cells, and its abundance is not affected when the tetrapyrrole pathway is manipulated either genetically or by gabaculine treatment.
Collapse
Affiliation(s)
- J M Quinn
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, USA
| | | | | |
Collapse
|
23
|
Sugihara T, Wadhwa R, Kaul SC, Mitsui Y. A novel testis-specific metallothionein-like protein, tesmin, is an early marker of male germ cell differentiation. Genomics 1999; 57:130-6. [PMID: 10191092 DOI: 10.1006/geno.1999.5756] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have cloned a novel cDNA encoding testis-specific metallothionein-like protein, tesmin, by randomized RT-PCR on RNA from mouse tissues. Two tesmin-related transcripts (2.2 and 1.8 kb) in mouse and one (2.1 kb) in human were detected and cloned. These encode a cysteine-rich 32-kDa protein that contained a metallothionein-like motif. In situ hybridization analysis in adult mouse testis showed that tesmin is specifically expressed in spermatocytes. Quantitative RT-PCR at different stages of mouse postnatal development (days 4, 8, 12, 18, and 42) revealed that tesmin is expressed as early as day 8 and coincides with the entry of germ cells into meiosis. Furthermore, adult W/Wv sterile mice that harbor the c-kit mutation lacked tesmin expression. The gene is assigned to mouse chromosome 19B, which has been reported to translocate (11;19) in male sterile mice.
Collapse
Affiliation(s)
- T Sugihara
- National Institute of Bioscience and Human-Technology, Agency of Industrial Science and Technology, 1-1 Higashi, Tsukuba, 305-8566, Japan.
| | | | | | | |
Collapse
|
24
|
Cole LA, Zirngibl R, Craig AW, Jia Z, Greer P. Mutation of a highly conserved aspartate residue in subdomain IX abolishes Fer protein-tyrosine kinase activity. PROTEIN ENGINEERING 1999; 12:155-62. [PMID: 10195287 DOI: 10.1093/protein/12.2.155] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Before the structure of cAMP-dependent protein kinase had been solved, sequence alignments had already suggested that several highly conserved peptide motifs described as kinase subdomains I through XI might play some functional role in catalysis. Crystal structures of several members of the protein kinase superfamily have suggested that the nearly invariant aspartate residue within subdomain IX contributes to the conformational stability of the catalytic loop by forming hydrogen bonds with backbone amides within subdomain VI. However, substitution of this aspartate with alanine or threonine in some protein kinases have indicated that these interactions are not essential for activity. In contrast, we show here that conversion of this aspartate to arginine abolished the catalytic activity of the Fer protein-tyrosine kinase when expressed either in mammalian cells or in bacteria. Structural modeling predicted that the catalytic loop of the FerD743R mutant was disrupted by van der Waal's repulsion between the side chains of the substituted arginine residue in subdomain IX and histidine-683 in subdomain VI. The FerD743R mutant model predicted a shift in the peptide backbone of the catalytic loop, and an outward rotation of histidine-683 and arginine-684 side chains. However, the position and orientation of the presumptive catalytic base, aspartate-685, was not substantially changed. The proposed model explains how substitutions of some, but not all residues could be tolerated at this nearly invariant aspartate in kinase subdomain IX.
Collapse
Affiliation(s)
- L A Cole
- Cancer Research Laboratories, Department of Biochemistry, Queen's University, Kingston, Ontario, Canada
| | | | | | | | | |
Collapse
|
25
|
Schwartz Y, Ben-Dor I, Navon A, Motro B, Nir U. Tyrosine phosphorylation of the TATA element modulatory factor by the FER nuclear tyrosine kinases. FEBS Lett 1998; 434:339-45. [PMID: 9742951 DOI: 10.1016/s0014-5793(98)01003-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The FER locus in the mouse encodes two tyrosine kinases, p94fer and p51ferT. While p94fer accumulates in the cytoplasm and nucleus of most mammalian cells the expression of p51ferT is restricted to the nucleus of meiotic primary spermatocytes. The cellular function of the FER kinases is not understood, nor has a substrate for these enzymes been characterized. To identify putative substrates of p94fer and p51ferT, the two enzymes were used as 'baits' in the yeast two-hybrid screening system. cDNAs encoding the mouse TATA element modulatory factor (TMF) were repeatedly isolated in this assay. TMF was previously shown to bind the TATA element in RNA polymerase II promoters and impaired their functioning in a cell free transcription system. Both p94fer and p51ferT phosphorylated the TMF protein in in vitro and in vivo kinase assays. Sequential deletions showed that the carboxy-terminal region of TMF was essential for phosphorylation. In situ hybridization analysis revealed the preferential accumulation of TMF transcripts in meiotic spermatogenic and oogenic cells. p94fer and p51ferT may thus modulate the suppressive activity of TMF during cellular growth and in defined differentiation processes.
Collapse
Affiliation(s)
- Y Schwartz
- Department of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | | | | | | | | |
Collapse
|
26
|
Cetkovic H, Müller IM, Müller WE, Gamulin V. Characterization and phylogenetic analysis of a cDNA encoding the Fes/FER related, non-receptor protein-tyrosine kinase in the marine sponge sycon raphanus. Gene 1998; 216:77-84. [PMID: 9714748 DOI: 10.1016/s0378-1119(98)00320-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In search of ancient versions of phylogenetically conserved genes/proteins, which are typical for multicellular animals, we have decided to analyse marine sponges (Porifera), the most ancient and most primitive metazoan organisms. We report here the complete nucleotide sequence of Sycon raphanus cDNA coding for a 879 aa long protein, which displays high overall similarity in primary structure and organization of domains with non-receptor tyrosine kinases (TKs) from the Fes/FER family. The encoded protein, which we named Fes/FER_SR, has a highly conserved, 260 aa long tyrosine kinase domain at the C-terminus. Amino-terminal to the catalytic domain is an 85 aa long SH2 domain. The N-terminus is over 500 aa long and displays homology only with N-terminal domains of protein-tyrosine kinases (PTKs) from the Fes/FER family. Mammalian Fes/FER proteins show around 58% overall homology with Fes/FER_SR (identity and similarity) and lower homology was found with Drosophila melanogaster Fps (FER) protein (49%). Homologies in TK, SH2 and N-terminal domains are on average 78%, 65% and 49%, respectively. Fes/FER_SR shows next to best homology with the Abl family of non-receptor PTKs, while Src-related PTKs from the fresh-water sponge Spongilla lacustris are related only distantly to Fes/FER_SR. Phylogenetic analysis shows that the S. raphanus TK is indeed the most ancient known member of the Fes/FER family of non-receptor PTKs. The role of these PTKs in signal transduction in higher animals is still enigmatic; they are present in the nucleus as well as in the cytoplasm and FER is found in all cell types examined. The function of Fes/FER_SR in sponge, the most primitive multicellular animal which lacks specialized organ systems, remains to be elucidated.
Collapse
Affiliation(s)
- H Cetkovic
- Institute Rudjer Boskovic, Department of Molecular Genetics, HR-10000, Zagreb, Croatia
| | | | | | | |
Collapse
|
27
|
Takahashi H, Koshimizu U, Nakamura T. A novel transcript encoding truncated LIM kinase 2 is specifically expressed in male germ cells undergoing meiosis. Biochem Biophys Res Commun 1998; 249:138-45. [PMID: 9705845 DOI: 10.1006/bbrc.1998.9094] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
LIM kinases, composed of LIMK1 and LIMK2, have unique structural features that contain two LIM motifs at the N-terminus and a catalytic domain at the C-terminus. We report evidence of a novel type of mouse LIMK2 (Limk2) transcript specifically expressed in testis. cDNA cloning showed this Limk2 variant, designated tLimk2, lacked LIM domains at the N-terminus, due to usage of a testis-specific, alternative initiation exon. In Northern blot analysis, tLimk2 was detected in intact adult testis, but not in germ-cell-deficient or immature testis, indicating the stage-specific expression of tLimk2 in spermatogenic cells. In situ hybridization clearly demonstrated that tLimk2 was restrictedly expressed in differentiated germ cells (pachytene spermatocytes to round spermatids) and not expressed in early stages of spermatogenic cells and somatic cells in testis. These results suggested the possibility that the tLimk2 product is involved in spermatogenesis, especially in meiotic and/or postmeiotic processes.
Collapse
Affiliation(s)
- H Takahashi
- Department of Oncology, Osaka University Medical School, Japan
| | | | | |
Collapse
|
28
|
Hecht NB. Molecular mechanisms of male germ cell differentiation. Bioessays 1998. [PMID: 9723004 DOI: 10.1002/(sici)1521-1878(199807)20:7%3c555::aid-bies6%3e3.0.co;2-j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
During spermatogenesis, diploid stem cells differentiate, undergo meiosis, and transform into haploid spermatozoa. As this precisely timed series of events proceeds, chromosomal ploidy is reduced and the nucleosomes of the chromatin are replaced by a transcriptionally quiescent protamine-containing nucleus. The premature termination of transcription during the haploid phase of spermatogenesis necessitates an especially prominent role for posttranscriptional regulation in the temporal and spatial expression of many testis-specific proteins and isozymes. In this review article, discussion will focus on novel mechanisms regulating gene expression in mammalian male germ cells from genome to protein.
Collapse
Affiliation(s)
- N B Hecht
- Center for Research on Reproduction and Women's Health, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Abstract
During spermatogenesis, diploid stem cells differentiate, undergo meiosis, and transform into haploid spermatozoa. As this precisely timed series of events proceeds, chromosomal ploidy is reduced and the nucleosomes of the chromatin are replaced by a transcriptionally quiescent protamine-containing nucleus. The premature termination of transcription during the haploid phase of spermatogenesis necessitates an especially prominent role for posttranscriptional regulation in the temporal and spatial expression of many testis-specific proteins and isozymes. In this review article, discussion will focus on novel mechanisms regulating gene expression in mammalian male germ cells from genome to protein.
Collapse
Affiliation(s)
- N B Hecht
- Center for Research on Reproduction and Women's Health, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Taniguchi Y, Matsuzaka Y, Fujimoto H, Miyado K, Kohda A, Okumura K, Kimura M, Inoko H. Nucleotide sequence of the ring3 gene in the class II region of the mouse MHC and its abundant expression in testicular germ cells. Genomics 1998; 51:114-23. [PMID: 9693039 DOI: 10.1006/geno.1998.5262] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The RING3 (NAT) gene is the first and only locus with no obvious function associated with the immune system in the class II region of the human major histocompatibility complex. This gene is a homologue of the Drosophila homeotic gene female sterile homeotic (fsh) and encodes a nuclear serine-threonine kinase. To study more about the physiological function of the RING3 gene, we isolated a mouse homologue from a genomic library, determined its gene structure, and investigated its expression profile. The mouse Ring3 gene spans approximately 8 kb and consists of 12 exons encoding a 798-amino-acid protein, sharing as high as 96% amino acid identity with the human RING3 protein. Northern hybridization revealed that the Ring3 gene abundantly produced 3.8- and 3.0-kb transcripts in the testis but was weakly expressed with 4.6- and 3.8-kb transcripts in somatic tissues. It appears that testis-specific 3.0-kb transcript gives rise to a smaller size Ring3 protein resulting from the usage of the second ATG codon for translational initiation compared to the almost ubiquitous 4.6-kb transcript. In RNAs isolated from fractionated testicular germ cells, the two testicular mRNAs were detected exclusively in the fractions containing a large population of round spermatids and pachytene spermatocytes. Furthermore, in situ hybridization on cross sections of seminiferous tubules in the testis showed that the expression of the Ring3 gene was initiated at the pachytene spermatocyte stage during meiosis and persisted throughout the round spermatid stage during spermiogenesis. These results suggest that the Ring3 gene plays an important role in spermatogenesis.
Collapse
Affiliation(s)
- Y Taniguchi
- Department of Molecular Life Science, Tokai University School of Medicine, Bohseidai, Isehara, Kanagawa, 259-11, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ohsugi M, Kuramochi S, Matsuda S, Yamamoto T. Molecular cloning and characterization of a novel cytoplasmic protein-tyrosine phosphatase that is specifically expressed in spermatocytes. J Biol Chem 1997; 272:33092-9. [PMID: 9407093 DOI: 10.1074/jbc.272.52.33092] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We identified a novel gene encoding protein-tyrosine phosphatase using a polymerase chain reaction-based method. Northern blot hybridization of RNAs from various tissues with the polymerase chain reaction-amplified DNA fragment showed that this gene was expressed exclusively in the testis. Complementary DNAs for this gene, termed typ (testis-specific tyrosine phosphatase), were obtained from a mouse testis cDNA library. Nucleotide sequencing of the cDNAs revealed an open reading frame that encoded 426 amino acids. The predicted Typ protein contained a single catalytic domain at the carboxyl-terminal half. No hydrophobic stretch for a possible transmembrane sequence or signal sequence was found, suggesting that Typ is a cytoplasmic protein-tyrosine phosphatase. The amino-terminal half of Typ did not share significant homologies with the other known proteins but contained a region rich in PEST residues. Indirect immunofluorescence studies and in situ hybridization analysis showed that Typ was specifically expressed in testicular germ cells that underwent meiosis. Developmentally, Typ was detected between 2 and 3 weeks after birth, in parallel with the onset of meiosis. Thus, Typ is a new member of the cytoplasmic protein-tyrosine phosphatases that may play an important role(s) in spermatogenesis and/or meiosis.
Collapse
Affiliation(s)
- M Ohsugi
- Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku Tokyo 108, Japan
| | | | | | | |
Collapse
|
32
|
Abstract
Intracellular signal transduction following the extracellular ligation of a wide variety of different types of surface molecules on leukocytes involves the activation of protein tyrosine kinases. The dependence of successful intracellular signaling on the functions of the nontransmembrane class of protein tyrosine kinases coupled with the cell type-specific expression patterns for several of these enzymes makes them appealing targets for therapeutic intervention. Development of drugs that can interfere with the catalytic functions of the nontransmembrane protein tyrosine kinases or that can disrupt critical interactions with regulatory molecules and/or substrates should find clinical applications in the treatment of allergic diseases, autoimmunity, transplantation rejection, and cancer.
Collapse
Affiliation(s)
- J B Bolen
- DNAX Research Institute, Palo Alto, California 94304, USA.
| | | |
Collapse
|
33
|
Mittelman M, Gardyn J, Carmel M, Malovani H, Barak Y, Nir U. Analysis of the erythropoietin receptor gene in patients with myeloproliferative and myelodysplastic syndromes. Leuk Res 1996; 20:459-66. [PMID: 8709617 DOI: 10.1016/0145-2126(96)00002-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The human erythropoietin receptor (EpoR) gene has been cloned and characterized. Very few EpoR genetic abnormalities have been reported so far. Polycythemia vera (PV) is characterized by low/normal serum erythropoietin (Epo) levels with proposed Epo hypersensitivity. Myelodysplastic syndromes (MDS) are characterized by refractory anemia with variable serum Epo levels. Several reports have suggested EpoR abnormalities in both types of stem cell disorders. We analyzed DNA obtained from peripheral blood mononuclear cells of seven healthy controls, 20 patients with myeloproliferative disorders (MPD, 11 patients with PV, five agnogenic myeloid metaplasia with myelofibrosis, four essential thrombocytosis) and eight patients with refractory anemia with ringed sideroblasts (RARS), an MDS variant. The DNA was digested with four restriction enzymes (BamHI, Bgl II, Sacl and HindIII), followed by Southern blot, using a 32P radiolabeled probe, containing 1.5 kb of the human EpoR cDNA. All 20 MPD patients and seven out of the eight MDS patients demonstrated a restriction pattern which was identical to the seven normal controls, as well as to the erythroid cell line K562, and also consistent with the expected restriction map, for all four enzymes tested. One RARS patient had a normal pattern with three enzymes but a different one with HindIII. The HindIII 12 kb large band was replaced by a faint 12 kb band and a new (about 9 kb) band appeared. The EpoR restriction map and the normal pattern obtained with the other three enzymes suggest that this patient has a 3 kb upstream deletion in one allelic EpoR gene. The same molecular pattern was detected in the patient's sister, who suffers from anemia with mild bone marrow (BM) dyserythropoiesis and plasmacytosis. Northern blot analysis showed that the patient's BM RNA carried normal EpoR message. This familial pattern may represent polymorphism. However, the patient's very high serum Epo level, her resistance to treatment with recombinant Epo, and the abnormally low growth rate of in vitro erythroid cultures, suggesting poor response to Epo in this MDS patient as well as the hematological abnormalities in her sister, support the speculation that the different EpoR gene might serve as a genetic predisposing marker and potentially could be involved (probably via post-transcriptional mechanisms and by an interaction with other factors or cytokines) in the pathogenesis. Our data suggest that the EpoR is intact in MPD and in most patients with RARS. One RARS patient had a familial different genetic structure, which could represent polymorphism. However, we can speculate also that it might be involved in the pathogenesis of the disease.
Collapse
Affiliation(s)
- M Mittelman
- Department of Medicine B, Hasharon Hospital, Petah-Tikva, Tel-Aviv University, Israel
| | | | | | | | | | | |
Collapse
|
34
|
MacCalman CD, Furth EE, Omigbodun A, Bronner M, Coutifaris C, Strauss JF. Regulated expression of cadherin-11 in human epithelial cells: a role for cadherin-11 in trophoblast-endometrium interactions? Dev Dyn 1996; 206:201-11. [PMID: 8725287 DOI: 10.1002/(sici)1097-0177(199606)206:2<201::aid-aja9>3.0.co;2-m] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Cadherin-11 is a novel member of the cadherin supergene family. Cadherin-11 expression is localized to mesenchymal tissue and specific regions of the neural tube during mouse embryogenesis. Here we report that cadherin-11 is spatiotemporally expressed in the epithelial cells of the human placenta. Cadherin-11 mRNA levels were low in freshly isolated cytotrophoblast cells but increased as the cytotrophoblast cells aggregated and fused to form syncytiotrophoblast cells in vitro. The increase in cadherin-11 mRNA levels was concomitant with a decrease in E-cadherin expression. Cadherin-11 was localized to the syncytial trophoblast and extravillous cytotrophoblasts, but not the villous cytotrophoblasts of the human placenta by immunohistochemistry. As both of the former cell types have intimate interactions with the endometrium, we examined cadherin-11 expression in the human endometrium. Cadherin-11 was detected in the glandular and surface epithelium of the endometrium at all stages of the menstrual cycle. However, cadherin-11 was abundant only in the stroma in the late secretory stage of the menstrual cycle. The accumulation of cadherin-11 in the stroma correlated with decidualization. Taken together, our observations demonstrate that cadherin-11 is expressed in certain epithelial cell lineages and suggest the possibility that cadherin-11 plays an important role in mediating trophoblast-endometrium interactions.
Collapse
Affiliation(s)
- C D MacCalman
- Department of Obstetrics and Gynecology, University of Pennsylvania School of Medicine, Philadelphia 19104, USA
| | | | | | | | | | | |
Collapse
|
35
|
Brown JL, Stowers L, Baer M, Trejo J, Coughlin S, Chant J. Human Ste20 homologue hPAK1 links GTPases to the JNK MAP kinase pathway. Curr Biol 1996; 6:598-605. [PMID: 8805275 DOI: 10.1016/s0960-9822(02)00546-8] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND The Rho-related GTP-binding proteins Cdc42 and Rac1 have been shown to regulate signaling pathways involved in cytoskeletal reorganization and stress-responsive JNK (Jun N-terminal kinase) activation. However, to date, the GTPase targets that mediate these effects have not been identified. PAK defines a growing family of mammalian kinases that are related to yeast Ste20 and are activated in vitro through binding to Cdc42 and Rac1 (PAK: p21 Cdc42-/Rac-activated kinase). Clues to PAK function have come from studies of Ste20, which controls the activity of the yeast mating mitogen-activated protein (MAP) kinase cascade, in response to a heterotrimeric G protein and Cdc42. RESULTS To initiate studies of mammalian Ste20-related kinases, we identified a novel human PAK isoform, hPAK1. When expressed in yeast, hPAK1 was able to replace Ste20 in the pheromone response pathway. Chemical mutagenesis of a plasmid encoding hPAK1, followed by transformation into yeast, led to the identification of a potent constitutively active hPAK1 with a substitution of a highly conserved amino-acid residue (L107F) in the Cdc42-binding domain. Expression of the hPAK1(L107F) allele in mammalian cells led to specific activation of the Jun N-terminal kinase MAP kinase pathway, but not the mechanistically related extracellular signal-regulated MAP kinase pathway. CONCLUSIONS These results demonstrate that hPAK1 is a GTPase effector controlling a downstream MAP kinase pathway in mammalian cells, as Ste20 does in yeast. Thus, PAK and Ste20 kinases play key parts in linking extracellular signals from membrane components, such as receptor-associated G proteins and Rho-related GTPases, to nuclear responses, such as transcriptional activation.
Collapse
Affiliation(s)
- J L Brown
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | |
Collapse
|
36
|
Kavanaugh WM, Pot DA, Chin SM, Deuter-Reinhard M, Jefferson AB, Norris FA, Masiarz FR, Cousens LS, Majerus PW, Williams LT. Multiple forms of an inositol polyphosphate 5-phosphatase form signaling complexes with Shc and Grb2. Curr Biol 1996; 6:438-45. [PMID: 8723348 DOI: 10.1016/s0960-9822(02)00511-0] [Citation(s) in RCA: 193] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Shc and Grb2 form a complex in cells in response to growth factor stimulation and link tyrosine kinases to Ras during the resulting signaling process. Shc and Grb2 each contain domains that mediate interactions with other unidentified intracellular proteins. For example, the Shc PTB domain binds to 130 kDa and 145 kDa tyrosine-phosphorylated proteins in response to stimulation of cells by growth factors, cytokines and crosslinking of antigen receptors. The Grb2 SH3 domains bind to an unidentified 116 kDa protein in T cells. We have identified three proteins, of 110 kDa, 130 kDa and 145 kDa, as a new family of molecules encoded by the same gene. In vivo studies show that these proteins form signal transduction complexes with Shc and with Grb2. RESULTS The 130 kDa and 145 kDa tyrosine-phosphorylated proteins that associate with the Shc PTB domain were purified by conventional chromatographic methods. Partial peptide and cDNA sequences corresponding to these proteins, termed SIP-145 and SIP-130 (SIP for signaling inositol polyphosphate 5-phosphatase), identified them as SH2 domain-containing products of a single gene and as members of the inositol polyphosphate 5-phosphatase family. The SIP-130 and SIP-145 proteins and inositol polyphosphate 5-phosphatase activity associated with Shc in vivo in response to B-cell activation. By using an independent approach, expression cloning, we found that the Grb2 SH3 domains bind specifically to SIP-110, a 110 kDa splice variant of SIP-145 and SIP-130, which lacks the SH2 domain. The SIP proteins hydrolyzed phosphatidylinositol (3,4,5)-trisphosphate (PtdIns (3,4,5)-P3) and Ins (1,3,4,5)-P4, but not PtdIns (4,5)-P2 or Ins (1,4,5)-P3. CONCLUSIONS These findings strongly implicate the inositol polyphosphate 5-phosphatases in Shc- and Grb2-mediated signal transduction. Furthermore, SIP-110, SIP-130 and SIP-145 prefer 3-phosphorylated substrates, suggesting a link to the phosphatidylinositol 3-kinase signaling pathway.
Collapse
Affiliation(s)
- W M Kavanaugh
- Chiron Corporation, Emeryville, California 94608, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The study of oncogenes has provided numerous insights, not only into the mechanisms by which growth regulation becomes uncontrolled in cancer cells, but also into signal transduction processes which regulate the orderly proliferation and maturation of cells. c-fes/fps is a cellular oncogene which has been transduced frequently by mammalian and avian retroviruses. There are several features about Fes which suggest it may play a unique role in myeloid cell growth and differentiation. While it contains a tyrosine kinase and SH2 domain, there is no SH3 domain or carboxy terminal regulatory phosphotyrosine such as found in the Src family of kinases. Fes has a unique N-terminal domain of over 400 amino acids of unknown function. It has been implicated in signaling by a variety of hematopoietic growth factors, and is predominantly a nuclear protein.
Collapse
Affiliation(s)
- K E Yates
- Department of Medicine, UCLA School of Medicine 90095-1678, USA
| | | |
Collapse
|
38
|
Hacker A, Capel B, Goodfellow P, Lovell-Badge R. Expression of Sry, the mouse sex determining gene. Development 1995; 121:1603-14. [PMID: 7600978 DOI: 10.1242/dev.121.6.1603] [Citation(s) in RCA: 361] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the mouse, Sry is expressed by germ cells in the adult testis and by somatic cells in the genital ridge. Transcripts in the former exist as circular RNA molecules of 1.23 kb, which are unlikely to be efficiently translated. We have used RNase protection to map the extent of the less abundant Sry transcript in the developing gonad. We demonstrate that it is a linear mRNA derived from a single exon. This begins in the unique region 5′ of the protein coding region and extends several kilobases into the 3′ arm of the large inverted repeat which bounds the Sry genomic locus. Knowledge of this transcript, which is very different from that of the human SRY gene, allows us to predict its protein product and reveals several features which may be involved in translational control. Our data is also consistent with there being two promoters for the Sry gene, a proximal one that gives functional transcripts in the genital ridge and a distal promoter used in germ cells in the adult testis. As RNase protection is a quantitative technique, a detailed timecourse of Sry expression was carried out using accurately staged samples. Sry transcripts are first detectable just after 10.5 days post coitum, they reach a peak at 11.5 days and then decline sharply so that none are detected 24 hours later. This was compared with anti-Mullerian hormone gene expression, an early marker of Sertoli cells and the first known downstream gene of Sry. Amh expression begins 20 hours after the onset of Sry expression at a time when Sry transcripts are at their peak. While this result does not prove a direct interaction between the two genes, it defines the critical period during which Sry must act to initiate Sertoli cell differentiation.
Collapse
Affiliation(s)
- A Hacker
- Laboratory of Developmental Genetics, Medical Research Council, National Institute for Medical Research, London, UK
| | | | | | | |
Collapse
|
39
|
Broceño C, Ruiz P, Reina M, Vilaró S, Pons G. The muscle-specific phosphoglycerate mutase gene is specifically expressed in testis during spermatogenesis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 227:629-35. [PMID: 7867621 DOI: 10.1111/j.1432-1033.1995.tb20182.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Spermatogenesis is a dramatic differentiation process which involves very selective but poorly characterized gene-expression patterns. To gain insight into this process, we have investigated the expression during spermatogenesis of the genes that encode phosphoglycerate mutase, an essential glycolytic enzyme for the spermatozoa energy supply. By using cDNA and genomic probes we demonstrate the presence in testis of a mRNA corresponding to the muscle-specific phosphoglycerate mutase which shows a longer poly(A) tail. This muscle-specific gene is submitted to developmental regulation during testis maturation and begins to be expressed at postnatal day 22, when germ cells start to enter into meiosis. Northern blot and in situ hybridization experiments show that in contrast to what happens during skeletal-muscle differentiation, PGAM-M gene expression during spermatogenesis is not coupled to constitutive phosphoglycerate mutase (PGAM-B) gene repression. Thus, the muscle-specific PGAM-M gene constitutes a meiotic gene and therefore represents a very interesting model to study differential tissue-specific gene expression.
Collapse
Affiliation(s)
- C Broceño
- Facultat de Medicina, Departament de Ciències Fisiològiques, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
40
|
Brady JP, Kantorow M, Sax CM, Donovan DM, Piatigorsky J. Murine transcription factor alpha A-crystallin binding protein I. Complete sequence, gene structure, expression, and functional inhibition via antisense RNA. J Biol Chem 1995; 270:1221-9. [PMID: 7836383 DOI: 10.1074/jbc.270.3.1221] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
alpha A-crystallin binding protein I (alpha A-CRYBP1) is a ubiquitously expressed DNA binding protein that was previously identified by its ability to interact with a functionally important sequence in the mouse alpha A-crystallin gene promoter. Here, we have cloned a single copy gene with 10 exons spanning greater than 70 kb of genomic DNA that encodes alpha A-CRYBP1. The mouse alpha A-CRYBP1 gene specifies a 2,688-amino acid protein with 72% amino acid identity to its human homologue, PRDII-BF1. Both the human and the mouse proteins contain two sets of consensus C2H2 zinc fingers at each end as well a central nonconsensus zinc finger. The alpha A-CRYBP1 gene produces a 9.5-kb transcript in 11 different tissues as well as a testis-specific, 7.7-kb transcript. alpha A-CRYBP1 cDNA clones were isolated from adult mouse brain and testis as well as from cell lines derived from mouse lens (alpha TN4-1) and muscle (C2C12). A single clone isolated from the muscle C2C12 library contains an additional exon near the 5'-end that would prevent production of a functional protein if the normal translation start site were utilized; however, there is another potential initiation codon located downstream that is in frame with the rest of the coding region. In addition, we identified multiple cDNAs from the testis in which the final intron is still present. Finally, we used an antisense expression construct derived from an alpha A-CRYBP1 cDNA clone to provide the first functional evidence that alpha A-CRYBP1 regulates gene expression. When introduced into the alpha TN4-1 mouse lens cell line, the antisense construct significantly inhibited expression from a heterologous promoter that utilized the alpha A-CRYBP1 binding site as an enhancer.
Collapse
Affiliation(s)
- J P Brady
- Laboratory of Molecular and Developmental Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892
| | | | | | | | | |
Collapse
|
41
|
Gu W, Morales C, Hecht NB. In male mouse germ cells, copper-zinc superoxide dismutase utilizes alternative promoters that produce multiple transcripts with different translation potential. J Biol Chem 1995; 270:236-43. [PMID: 7814380 DOI: 10.1074/jbc.270.1.236] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Copper-zinc superoxide dismutase (SOD-1) is an enzyme that is widely expressed in eukaryotic cells and performs a vital role in protecting cells against free radical damage. In mouse testis, three different sizes of SOD-1 mRNAs of about 0.73, 0.80, and 0.93 kilobases (kb) are detected. The 0.73-kb mRNA is found in early stages of male germ cells and in all somatic tissues. The mRNAs of 0.80 and 0.93 kb are exclusively detected in post-meiotic germ cells. RNase H digestions and Northern blot analyses reveal that the three SOD-1 mRNAs are derived from two transcripts, a ubiquitously expressed transcript and a post-meiotic transcript, which differ by 114-120 nucleotides. RNase protection assays demonstrate that the additional nucleotides present in the post-meiotic mRNA are solely in the 5'-untranslated region. Using a probe derived from the 5'-untranslated region of the 0.93-kb SOD-1 mRNA, we have established that it originates from an alternative upstream promoter contiguous with the somatic SOD-1 promoter. Polysomal gradient analysis of the three mouse testis SOD-1 mRNAs reveals that the 0.93-kb SOD-1 mRNA is primarily non-polysomal, while the 0.80- and 0.73-kb SOD-1 mRNAs are mostly polysome associated. A faster migrating form of the 0.93-kb SOD-1 mRNA is present on polysomes as a result of partial deadenylation. In a cell-free translation system, the 0.73-kb SOD-1 mRNA translates about 2-fold more efficiently than the 0.93-kb SOD-1 mRNA. These data demonstrate that male germ cells transcribe two size classes of SOD-1 mRNAs with different translation potential by utilizing two different promoters, post-meiotic SOD-1 mRNAs undergo adenylation changes, and one of the post-meiotic SOD-1 mRNAs is transcribed during mid-spermiogenesis and translated days later in a partially deadenylated form.
Collapse
Affiliation(s)
- W Gu
- Department of Biology, Tufts University, Medford, Massachusetts 02155
| | | | | |
Collapse
|
42
|
Asada Y, Nadeau JH. Fert is on mouse chromosome 11, not chromosome 17. Mamm Genome 1994; 5:830. [PMID: 7894174 DOI: 10.1007/bf00292028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Y Asada
- Jackson Laboratory, Bar Harbor, Maine 04609
| | | |
Collapse
|
43
|
Navon A, Schwarz Y, Hazan B, Kassir Y, Nir U. Meiosis-dependent tyrosine phosphorylation of a yeast protein related to the mouse p51ferT. MOLECULAR & GENERAL GENETICS : MGG 1994; 244:160-7. [PMID: 8052235 DOI: 10.1007/bf00283517] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The FER locus of the mouse encodes two mRNA species: one is constitutively transcribed, giving rise to a 94 kDa tyrosine kinase (p94ferT); the second is a meiosis-specific RNA that gives rise to a 51 kDa tyrosine kinase (p51ferT). The p51ferT RNA and protein accumulate in primary spermatocytes that are in prophase of the first meiotic division. By using polyclonal antibodies directed against synthetic peptides derived from the unique amino-terminus of the mouse p51ferT, a 51 kDa phosphotyrosyl protein --p51y-- was identified in Saccharomyces cerevisiae. The p51y protein is constitutively expressed in yeast, but in meiotic cells, concomitantly with commitment to meiotic recombination, its level of phosphorylation on tyrosine residues is increased. A different pattern of phosphorylation is observed on serine residues: at early meiotic times the level is decreased, while in later meiotic time the level increases, reaching the vegetative level. When p51ferT is ectopically expressed in yeast, it is active, leading to preferential phosphorylation of an approx. 65 kDa protein. A similar pattern of phosphorylation by p51ferT is seen in mammalian cells.
Collapse
Affiliation(s)
- A Navon
- Department of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | | | | | | |
Collapse
|
44
|
Don J, Winer MA, Wolgemuth DJ. Developmentally regulated expression during gametogenesis of the murine gene meg1 suggests a role in meiosis. Mol Reprod Dev 1994; 38:16-23. [PMID: 8049060 DOI: 10.1002/mrd.1080380104] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Previous studies have shown that in adult male mice, expression of the meg1 gene is restricted to meiotic and early postmeiotic testicular germ cells. We have now analyzed the expression of meg1 during postnatal testicular development and the comparable meiotic stages in the female. The 0.75 kb transcript for meg1 begins to accumulate in testes at d8-9 of postnatal (pn) development, coincident with the entry of germ cells into meiosis, and is expressed most abundantly at pn d14 and subsequent stages, when the spermatocytes have entered pachytene. In situ hybridization analysis shows that meg1 is expressed at very low levels in leptotene cells and increases as the cells progress through zygotene and pachytene stages. In the embryonic ovary, meg1 is not detected until after day 15 of gestation when the cells have entered the pachytene stage of meiosis I. In situ hybridization analysis suggests that meg1 transcripts are expressed at higher levels in degenerating rather than in healthy pachytene stage oocytes; meg1 is not expressed in any cells of the adult ovary, regardless of the stage of follicular development. These results suggest that meg1 is indeed a meiosis-associated gene in both male and female germ cells through the pachytene stage of meiosis I and appears to exhibit sex-specific differences in its expression thereafter.
Collapse
Affiliation(s)
- J Don
- Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | | |
Collapse
|
45
|
Capel B, Swain A, Nicolis S, Hacker A, Walter M, Koopman P, Goodfellow P, Lovell-Badge R. Circular transcripts of the testis-determining gene Sry in adult mouse testis. Cell 1993; 73:1019-30. [PMID: 7684656 DOI: 10.1016/0092-8674(93)90279-y] [Citation(s) in RCA: 879] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Sry is expressed at higher levels in the adult testis, where no function has been determined, than in the genital ridge, its critical site of action. cDNA and 5' RACE clones isolated from testis or from Sry-transfected cell lines have an unusual structure, with 3' sequences located in a 5' position. RNAase protection assays and reverse transcription polymerase chain reactions confirmed that these unusual RNA molecules represent the most abundant transcript in testis. Furthermore, oligonucleotide hybridization and RNAase H digestion proved that these Sry RNA molecules are circular. Similar transcripts were detected in the testes of mice with Mus musculus musculus, Mus musculus domesticus, and Mus spretus Sry genes. The circular RNA is found in the cytoplasm but is not substantially bound to polysomes. We suggest that the circles arise from normal splicing processes as a consequence of the unusual genomic structure surrounding the Sry locus in the mouse.
Collapse
Affiliation(s)
- B Capel
- Laboratory of Eukaryotic Molecular Genetics, Medical Research Council, National Institute for Medical Research, London, England
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hake L, Hecht N. Utilization of an alternative transcription initiation site of somatic cytochrome c in the mouse produces a testis-specific cytochrome c mRNA. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53466-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Means AR, Cruzalegui F. Differential gene expression from a single transcription unit during spermatogenesis. RECENT PROGRESS IN HORMONE RESEARCH 1993; 48:79-97. [PMID: 8441865 DOI: 10.1016/b978-0-12-571148-7.50007-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- A R Means
- Department of Pharmacology, Duke University Medical Center, Durham North Carolina 27710
| | | |
Collapse
|
48
|
Miyasaka H, Li SS. Molecular cloning, nucleotide sequence and expression of a cDNA encoding an intracellular protein tyrosine phosphatase, PTPase-2, from mouse testis and T-cells. Mol Cell Biochem 1992; 118:91-8. [PMID: 1283199 DOI: 10.1007/bf00249698] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The PTP-2 cDNA encoding an intracellular protein tyrosine phosphatase (PTPase-2) was isolated and sequenced from mouse testis and T-cell cDNA libraries. This PTP-2 cDNA was found to be homologous to human PTP-TC and rat PTP-S, and contained 1,551 nucleotides, including 1,146 nucleotides encoding 382 amino acids as well as 5' (61 nucleotides) and 3' (344 nucleotides) non-coding regions. Northern blot analysis indicated that PTP-2 mRNA of 1.9 Kb was most abundant in testis and kidney, although it was also present in spleen, muscle, liver, heart and brain.
Collapse
Affiliation(s)
- H Miyasaka
- Laboratory of Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
49
|
Miyasaka H, Li SS. The cDNA cloning, nucleotide sequence and expression of an intracellular protein tyrosine phosphatase from mouse testis. Biochem Biophys Res Commun 1992; 185:818-25. [PMID: 1378268 DOI: 10.1016/0006-291x(92)91700-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The PTP-1 cDNA encoding an intracellular protein tyrosine phosphatase (PTPase) was isolated and sequenced from a mouse testis cDNA library. This PTP-1 cDNA was found to contain an open reading frame of 1,296 nucleotides as well as 5' (83 nucleotides) and 3' (289 nucleotides) non-coding regions. The deduced sequence of 432 amino acids of mouse PTPase-1 exhibited 93% and 83% identity to that of rat PTPase-1 and human PTPase-1B, respectively. Thus, this PTP-1 is a mouse homologue of human PTP-1B and rat PTP-1. Northern blot analysis indicated that PTP-1 mRNAs were most abundant in testis, and were detected in sizes of 4.4 Kb, 2.4 Kb and 2.2 Kb, 2.0 Kb. The PTP-1 transcripts of 4.4 Kb and 2.0 Kb, but not 2.4 Kb and 2.2 Kb, were also present in kidney, spleen, muscle, liver, heart and brain. Genomic blot analysis showed that a single copy of the PTP-1 gene is contained in the mouse genome and that introns are present in mammalian PTP-1 genes.
Collapse
Affiliation(s)
- H Miyasaka
- Laboratory of Genetics, National Institute of Environmental Health Sciences, National Institutes of Health Research Triangle Park, North Carolina 27709
| | | |
Collapse
|
50
|
Shen SH, Bastien L, Posner BI, Chrétien P. A protein-tyrosine phosphatase with sequence similarity to the SH2 domain of the protein-tyrosine kinases. Nature 1991; 352:736-9. [PMID: 1652101 DOI: 10.1038/352736a0] [Citation(s) in RCA: 344] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The phosphorylation of proteins at tyrosine residues is critical in cellular signal transduction, neoplastic transformation and control of the mitotic cycle. These mechanisms are regulated by the activities of both protein-tyrosine kinases (PTKs) and protein-tyrosine phosphatases (PTPases). As in the PTKs, there are two classes of PTPases: membrane associated, receptor-like enzymes and soluble proteins. Here we report the isolation of a complementary DNA clone encoding a new form of soluble PTPase, PTP1C. The enzyme possesses a large noncatalytic region at the N terminus which unexpectedly contains two adjacent copies of the Src homology region 2 (the SH2 domain) found in various nonreceptor PTKs and other cytoplasmic signalling proteins. As with other SH2 sequences, the SH2 domains of PTP1C formed high-affinity complexes with the activated epidermal growth factor receptor and other phosphotyrosine-containing proteins. These results suggest that the SH2 regions in PTP1C may interact with other cellular components to modulate its own phosphatase activity against interacting substrates. PTPase activity may thus directly link growth factor receptors and other signalling proteins through protein-tyrosine phosphorylation.
Collapse
Affiliation(s)
- S H Shen
- Section of Molecular Genetics, National Research Council of Canada, Montréal, Québec
| | | | | | | |
Collapse
|