1
|
Qin K, Yu M, Fan J, Wang H, Zhao P, Zhao G, Zeng W, Chen C, Wang Y, Wang A, Schwartz Z, Hong J, Song L, Wagstaff W, Haydon RC, Luu HH, Ho SH, Strelzow J, Reid RR, He TC, Shi LL. Canonical and noncanonical Wnt signaling: Multilayered mediators, signaling mechanisms and major signaling crosstalk. Genes Dis 2024; 11:103-134. [PMID: 37588235 PMCID: PMC10425814 DOI: 10.1016/j.gendis.2023.01.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/01/2022] [Accepted: 01/29/2023] [Indexed: 08/18/2023] Open
Abstract
Wnt signaling plays a major role in regulating cell proliferation and differentiation. The Wnt ligands are a family of 19 secreted glycoproteins that mediate their signaling effects via binding to Frizzled receptors and LRP5/6 coreceptors and transducing the signal either through β-catenin in the canonical pathway or through a series of other proteins in the noncanonical pathway. Many of the individual components of both canonical and noncanonical Wnt signaling have additional functions throughout the body, establishing the complex interplay between Wnt signaling and other signaling pathways. This crosstalk between Wnt signaling and other pathways gives Wnt signaling a vital role in many cellular and organ processes. Dysregulation of this system has been implicated in many diseases affecting a wide array of organ systems, including cancer and embryological defects, and can even cause embryonic lethality. The complexity of this system and its interacting proteins have made Wnt signaling a target for many therapeutic treatments. However, both stimulatory and inhibitory treatments come with potential risks that need to be addressed. This review synthesized much of the current knowledge on the Wnt signaling pathway, beginning with the history of Wnt signaling. It thoroughly described the different variants of Wnt signaling, including canonical, noncanonical Wnt/PCP, and the noncanonical Wnt/Ca2+ pathway. Further description involved each of its components and their involvement in other cellular processes. Finally, this review explained the various other pathways and processes that crosstalk with Wnt signaling.
Collapse
Affiliation(s)
- Kevin Qin
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Michael Yu
- Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jiaming Fan
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Ministry of Education Key Laboratory of Diagnostic Medicine, and Department of Clinical Biochemistry, The School of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China
| | - Hongwei Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wei Zeng
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Interventional Neurology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, Guangdong 523475, China
| | - Connie Chen
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Yonghui Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Department of Clinical Laboratory Medicine, Shanghai Jiaotong University School of Medicine, Shanghai 200000, China
| | - Annie Wang
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Zander Schwartz
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- School of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jeffrey Hong
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lily Song
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Sherwin H. Ho
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Jason Strelzow
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Russell R. Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Laboratory of Craniofacial Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Lewis L. Shi
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Aspenström P. The Role of Fast-Cycling Atypical RHO GTPases in Cancer. Cancers (Basel) 2022; 14:cancers14081961. [PMID: 35454871 PMCID: PMC9029563 DOI: 10.3390/cancers14081961] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary For many years, cancer-associated mutations in RHO GTPases were not identified and observations suggesting roles for RHO GTPases in cancer were sparse. Instead, RHO GTPases were considered primarily to regulate cell morphology and cell migration, processes that rely on the dynamic behavior of the cytoskeleton. This notion is in contrast to the RAS proteins, which are famous oncogenes and found to be mutated at high incidence in human cancers. Recent advancements in the tools for large-scale genome analysis have resulted in a paradigm shift and RHO GTPases are today found altered in many cancer types. This review article deals with the recent views on the roles of RHO GTPases in cancer, with a focus on the so-called fast-cycling RHO GTPases. Abstract The RHO GTPases comprise a subfamily within the RAS superfamily of small GTP-hydrolyzing enzymes and have primarily been ascribed roles in regulation of cytoskeletal dynamics in eukaryotic cells. An oncogenic role for the RHO GTPases has been disregarded, as no activating point mutations were found for genes encoding RHO GTPases. Instead, dysregulated expression of RHO GTPases and their regulators have been identified in cancer, often in the context of increased tumor cell migration and invasion. In the new landscape of cancer genomics, activating point mutations in members of the RHO GTPases have been identified, in particular in RAC1, RHOA, and CDC42, which has suggested that RHO GTPases can indeed serve as oncogenes in certain cancer types. This review describes the current knowledge of these cancer-associated mutant RHO GTPases, with a focus on how their altered kinetics can contribute to cancer progression.
Collapse
Affiliation(s)
- Pontus Aspenström
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology (IGP), Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
3
|
Molecular subversion of Cdc42 signalling in cancer. Biochem Soc Trans 2021; 49:1425-1442. [PMID: 34196668 PMCID: PMC8412110 DOI: 10.1042/bst20200557] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 12/21/2022]
Abstract
Cdc42 is a member of the Rho family of small GTPases and a master regulator of the actin cytoskeleton, controlling cell motility, polarity and cell cycle progression. This small G protein and its regulators have been the subject of many years of fruitful investigation and the advent of functional genomics and proteomics has opened up new avenues of exploration including how it functions at specific locations in the cell. This has coincided with the introduction of new structural techniques with the ability to study small GTPases in the context of the membrane. The role of Cdc42 in cancer is well established but the molecular details of its action are still being uncovered. Here we review alterations found to Cdc42 itself and to key components of the signal transduction pathways it controls in cancer. Given the challenges encountered with targeting small G proteins directly therapeutically, it is arguably the regulators of Cdc42 and the effector signalling pathways downstream of the small G protein which will be the most tractable targets for therapeutic intervention. These will require interrogation in order to fully understand the global signalling contribution of Cdc42, unlock the potential for mapping new signalling axes and ultimately produce inhibitors of Cdc42 driven signalling.
Collapse
|
4
|
Kilian LS, Voran J, Frank D, Rangrez AY. RhoA: a dubious molecule in cardiac pathophysiology. J Biomed Sci 2021; 28:33. [PMID: 33906663 PMCID: PMC8080415 DOI: 10.1186/s12929-021-00730-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
The Ras homolog gene family member A (RhoA) is the founding member of Rho GTPase superfamily originally studied in cancer cells where it was found to stimulate cell cycle progression and migration. RhoA acts as a master switch control of actin dynamics essential for maintaining cytoarchitecture of a cell. In the last two decades, however, RhoA has been coined and increasingly investigated as an essential molecule involved in signal transduction and regulation of gene transcription thereby affecting physiological functions such as cell division, survival, proliferation and migration. RhoA has been shown to play an important role in cardiac remodeling and cardiomyopathies; underlying mechanisms are however still poorly understood since the results derived from in vitro and in vivo experiments are still inconclusive. Interestingly its role in the development of cardiomyopathies or heart failure remains largely unclear due to anomalies in the current data available that indicate both cardioprotective and deleterious effects. In this review, we aimed to outline the molecular mechanisms of RhoA activation, to give an overview of its regulators, and the probable mechanisms of signal transduction leading to RhoA activation and induction of downstream effector pathways and corresponding cellular responses in cardiac (patho)physiology. Furthermore, we discuss the existing studies assessing the presented results and shedding light on the often-ambiguous data. Overall, we provide an update of the molecular, physiological and pathological functions of RhoA in the heart and its potential in cardiac therapeutics.
Collapse
Affiliation(s)
- Lucia Sophie Kilian
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Jakob Voran
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany
| | - Derk Frank
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Internal Medicine III (Cardiology, Angiology, Intensive Care), University Medical Center Kiel, Rosalind-Franklin Str. 12, 24105, Kiel, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 24105, Kiel, Germany. .,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Koizumi Y, Ito T, Mizutari K, Kakehata S. Regenerative Effect of a ROCK Inhibitor, Y-27632, on Excitotoxic Trauma in an Organotypic Culture of the Cochlea. Front Cell Neurosci 2020; 14:572434. [PMID: 33328888 PMCID: PMC7717995 DOI: 10.3389/fncel.2020.572434] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/26/2020] [Indexed: 11/28/2022] Open
Abstract
In the past, most inner ear diseases were thought to start with the impairment of the sensory epithelium of the cochlea before subsequently progressing to secondary neural degeneration. However, recent studies show that loss of primary synapses accompanied by excitotoxic degeneration of peripheral axons is likely to be the underlying pathology in sensorineural hearing loss. Rho-associated coiled-coil containing protein kinase (ROCK) inhibition has been reported to have neuroprotective and regenerative effects on synaptic pathways. Therefore, we analyzed the effect of ROCK inhibition using Y-27632 in a model of peripheral axonal damage in the spiral ganglion neurons created using the glutamate agonists, N-methyl-D-aspartate (NMDA) and kainic acid, to induce excitotoxic trauma in the explanted cochlea. The number of axons projecting to hair cells in the cochlea treated with Y-27632 was significantly greater than those in the cochlea treated only with NMDA + kainic acid. Furthermore, there was a significant increase in synapses between the spiral ganglion and the inner hair cells in the cochlea treated with Y-27632. The findings of this study suggest that ROCK inhibition could be a potential strategy for the regeneration of peripheral axons in the spiral ganglion and synapse formation in the inner hair cells of a cochlea that has sustained excitotoxic injury, which is one of the primary etiologies of inner ear disease.
Collapse
Affiliation(s)
- Yutaka Koizumi
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Tsukasa Ito
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Kunio Mizutari
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Seiji Kakehata
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine, Yamagata University, Yamagata, Japan
| |
Collapse
|
6
|
Bai H, Zhou T, Zhao J, Chen B, Pu F, Bai Y, Wu Y, Chen L, Shi Y, Ke Q, Yu X, Xu P. Transcriptome analysis reveals the temporal gene expression patterns in skin of large yellow croaker (Larimichthys crocea) in response to Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2020; 99:462-472. [PMID: 32070786 DOI: 10.1016/j.fsi.2020.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. In the past decades, cryptocaryonosis caused by Cryptocryon irritans has led to huge economic losses, posing great threat to the healthy and sustainable development of L. crocea mariculture industry. As the largest immunologically active mucosal organ in fish, skin provides the first defense line against external pathogens. To better understand the gene expression dynamics, the large yellow croakers were artificially infected with C. irritans and their skin tissues were collected at 0 h, 24 h, 48 h, 72 h and 96 h post infection. The total RNA in the skin tissues were extracted and the transcriptome were sequenced. After sequencing, a total of 1,131, 311, 140 million high quality RNA-seq reads were collected. A set of 215, 473, 968, 1055 differentially expressed genes were identified at 24 h, 48 h, 72 h and 96 h post infection respectively. Further analysis clustered these DEGs into six profiles and 75 hub genes for six profiles were identified. Among these hub genes, 18 immune related genes including TLR5, TOPK, NFKBIZ, MAPK14A were identified post C. irritans infection. Cytokine-cytokine receptor interaction was the only pathway that significantly enriched at four timepoints post infection. This study provides an in-depth understanding of skin transcriptome variance of large yellow croaker after C. irritans infection, which would be helpful for further understanding of the molecular mechanism of L. crocea in response to C. irritans infection.
Collapse
Affiliation(s)
- Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yidi Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Xunkai Yu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
7
|
Activated Rho GTPases in Cancer-The Beginning of a New Paradigm. Int J Mol Sci 2018; 19:ijms19123949. [PMID: 30544828 PMCID: PMC6321241 DOI: 10.3390/ijms19123949] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022] Open
Abstract
Involvement of Rho GTPases in cancer has been a matter of debate since the identification of the first members of this branch of the Ras superfamily of small GTPases. The Rho GTPases were ascribed important roles in the cell, although these were restricted to regulation of cytoskeletal dynamics, cell morphogenesis, and cell locomotion, with initially no clear indications of direct involvement in cancer progression. This paradigm has been challenged by numerous observations that Rho-regulated pathways are often dysregulated in cancers. More recently, identification of point mutants in the Rho GTPases Rac1, RhoA, and Cdc42 in human tumors has finally given rise to a new paradigm, and we can now state with confidence that Rho GTPases serve as oncogenes in several human cancers. This article provides an exposé of current knowledge of the roles of activated Rho GTPases in cancers.
Collapse
|
8
|
Gallo Castro D, Martin SG. Differential GAP requirement for Cdc42-GTP polarization during proliferation and sexual reproduction. J Cell Biol 2018; 217:4215-4229. [PMID: 30279276 PMCID: PMC6279383 DOI: 10.1083/jcb.201806016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/06/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
The formation of a local zone of Cdc42 GTPase activity, which governs cell polarization in many cell types, requires not only local activation but also switch-off mechanisms. In this study, we identify Rga3, a paralog of Rga4, as a novel Cdc42 GTPase-activating protein (GAP) in the fission yeast Schizosaccharomyces pombe Contrary to Rga4, Rga3 localizes with Cdc42-GTP to sites of polarity. Rga3 is dispensable for cell polarization during mitotic growth, but it limits the lifetime of unstable Cdc42-GTP patches that underlie cell pairing during sexual reproduction, masking a partly compensatory patch-wandering motion. In consequence, cells lacking rga3 hyperpolarize and lose out in mating competition. Rga3 synergizes with the Cdc42 GAPs Rga4 and Rga6 to restrict Cdc42-GTP zone sizes during mitotic growth. Surprisingly, triple-mutant cells, which are almost fully round, retain pheromone-dependent dynamic polarization of Cdc42-GTP, extend a polarized projection, and mate. Thus, the requirement for Cdc42-GTP hydrolysis by GAPs is distinct during polarization by intrinsic or extrinsic cues.
Collapse
Affiliation(s)
- Daniela Gallo Castro
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Sophie G Martin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Ascer LG, Magalhaes YT, Espinha G, Osaki JH, Souza RC, Forti FL. CDC42 Gtpase Activation Affects Hela Cell DNA Repair and Proliferation Following UV Radiation-Induced Genotoxic Stress. J Cell Biochem 2016; 116:2086-97. [PMID: 25780896 DOI: 10.1002/jcb.25166] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 03/13/2015] [Indexed: 12/25/2022]
Abstract
Cell division control protein 42 (CDC42) homolog is a small Rho GTPase enzyme that participates in such processes as cell cycle progression, migration, polarity, adhesion, and transcription. Recent studies suggest that CDC42 is a potent tumor suppressor in different tissues and is related to aging processes. Although DNA damage is crucial in aging, a potential role for CDC42 in genotoxic stress remains to be explored. Migration, survival/proliferation and DNA damage/repair experiments were performed to demonstrate CDC42 involvement in the recovery of HeLa cells exposed to ultraviolet radiation-induced stress. Sub-lines of HeLa cells ectopically expressing the constitutively active CDC42-V12 mutant were generated to examine whether different CDC42-GTP backgrounds might reflect different sensitivities to UV radiation. Our results show that CDC42 constitutive activation does not interfere with HeLa cell migration after UV radiation. However, the minor DNA damage exhibited by the CDC42-V12 mutant exposed to UV radiation most likely results in cell cycle arrest at the G2/M checkpoint and reduced proliferation and survival. HeLa cells and Mock clones, which express endogenous wild-type CDC42 and show normal activity, are more resistant to UV radiation. None of these effects are altered by pharmacological CDC42 inhibition. Finally, the phosphorylation status of the DNA damage response proteins γ-H2AX and p-Chk1 was found to be delayed and attenuated, respectively, in CDC42-V12 clones. In conclusion, the sensitivity of HeLa cells to ultraviolet radiation increases with CDC42 over-activation due to inadequate DNA repair signaling, culminating in G2/M cell accumulation, which is translated into reduced cellular proliferation and survival.
Collapse
Affiliation(s)
- Liv G Ascer
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Yuli T Magalhaes
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Gisele Espinha
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana H Osaki
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Renan C Souza
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| | - Fabio L Forti
- Laboratory of Signaling in Biomolecular Systems, Department of Biochemistry, Institute of Chemistry, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
10
|
Abstract
The Ras superfamily of small GTPases is composed of more than 150 members, which share a conserved structure and biochemical properties, acting as binary molecular switches turned on by binding GTP and off by hydrolyzing GTP to GDP. However, despite considerable structural and biochemical similarities, these proteins play multiple and divergent roles, being versatile and key regulators of virtually all fundamental cellular processes. Conversely, their dysfunction plays a crucial role in the pathogenesis of serious human diseases, including cancer and developmental syndromes. Fuelled by the original identification in 1982 of mutationally activated and transforming human Ras genes in human cancer cell lines, a variety of powerful experimental techniques have been intensively focused on discovering and studying structure, biochemistry, and biology of Ras and Ras-related small GTPases, leading to fundamental research breakthroughs into identification and structural and functional characterization of a huge number of Ras superfamily members, as well as of their multiple regulators and effectors. In this review we provide a general overview of the major milestones that eventually allowed to unlock the secret treasure chest of this large and important superfamily of proteins.
Collapse
|
11
|
Zhang D, Wang Y, Zhang S. Asymmetric cell division in polyploid giant cancer cells and low eukaryotic cells. BIOMED RESEARCH INTERNATIONAL 2014; 2014:432652. [PMID: 25045675 PMCID: PMC4089188 DOI: 10.1155/2014/432652] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 06/08/2014] [Indexed: 12/25/2022]
Abstract
Asymmetric cell division is critical for generating cell diversity in low eukaryotic organisms. We previously have reported that polyploid giant cancer cells (PGCCs) induced by cobalt chloride demonstrate the ability to use an evolutionarily conserved process for renewal and fast reproduction, which is normally confined to simpler organisms. The budding yeast, Saccharomyces cerevisiae, which reproduces by asymmetric cell division, has long been a model for asymmetric cell division studies. PGCCs produce daughter cells asymmetrically in a manner similar to yeast, in that both use budding for cell polarization and cytokinesis. Here, we review the results of recent studies and discuss the similarities in the budding process between yeast and PGCCs.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pathology, Tianjin Union Medicine Center (Nankai University Affiliated Hospital), Tianjin 300121, China
| | - Yijia Wang
- Clinical and Translation Medicine Lab, Tianjin Union Medicine Center, Tianjin 300121, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medicine Center (Nankai University Affiliated Hospital), Tianjin 300121, China
- Clinical and Translation Medicine Lab, Tianjin Union Medicine Center, Tianjin 300121, China
| |
Collapse
|
12
|
Martin SG, Arkowitz RA. Cell polarization in budding and fission yeasts. FEMS Microbiol Rev 2014; 38:228-53. [DOI: 10.1111/1574-6976.12055] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 11/13/2013] [Accepted: 12/03/2013] [Indexed: 11/30/2022] Open
|
13
|
Abstract
The Rho family of GTP binding proteins, also commonly referred to as the Rho GTPases, are master regulators of the platelet cytoskeleton and platelet function. These low-molecular-weight or 'small' GTPases act as signaling switches in the spatial and temporal transduction, and amplification of signals from platelet cell surface receptors to the intracellular signaling pathways that drive platelet function. The Rho GTPase family members RhoA, Cdc42 and Rac1 have emerged as key regulators in the dynamics of the actin cytoskeleton in platelets and play key roles in platelet aggregation, secretion, spreading and thrombus formation. Rho GTPase regulators, including GEFs and GAPs and downstream effectors, such as the WASPs, formins and PAKs, may also regulate platelet activation and function. In this review, we provide an overview of Rho GTPase signaling in platelet physiology. Previous studies of Rho GTPases and platelets have had a shared history, as platelets have served as an ideal, non-transformed cellular model to characterize Rho function. Likewise, recent studies of the cell biology of Rho GTPase family members have helped to build an understanding of the molecular regulation of platelet function and will continue to do so through the further characterization of Rho GTPases as well as Rho GAPs, GEFs, RhoGDIs and Rho effectors in actin reorganization and other Rho-driven cellular processes.
Collapse
Affiliation(s)
- J E Aslan
- Department of Biomedical Engineering and Cell & Developmental Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA.
| | | |
Collapse
|
14
|
Fernandez-Piñar P, Alemán A, Sondek J, Dohlman HG, Molina M, Martín H. The Salmonella Typhimurium effector SteC inhibits Cdc42-mediated signaling through binding to the exchange factor Cdc24 in Saccharomyces cerevisiae. Mol Biol Cell 2012; 23:4430-43. [PMID: 23015760 PMCID: PMC3496616 DOI: 10.1091/mbc.e12-03-0243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Expression of the Salmonella effector SteC in yeast leads to down-regulation of the mating and HOG pathways by Cdc42 inhibition. This is mediated by the SteC N-terminal domain through binding to the GEF Cdc24. SteC alters Cdc24 localization and also interacts with human GEF Vav1, suggesting that SteC could target Cdc42 function in host cells. Intracellular survival of Salmonella relies on the activity of proteins translocated into the host cell by type III secretion systems (T3SS). The protein kinase activity of the T3SS effector SteC is required for F-actin remodeling in host cells, although no SteC target has been identified so far. Here we show that expression of the N-terminal non-kinase domain of SteC down-regulates the mating and HOG pathways in Saccharomyces cerevisiae. Epistasis analyses using constitutively active components of these pathways indicate that SteC inhibits signaling at the level of the GTPase Cdc42. We demonstrate that SteC interacts through its N-terminal domain with the catalytic domain of Cdc24, the sole S. cerevisiae Cdc42 guanine nucleotide exchange factor (GEF). SteC also binds to the human Cdc24-like GEF protein Vav1. Moreover, expression of human Cdc42 suppresses growth inhibition caused by SteC. Of interest, the N-terminal SteC domain alters Cdc24 cellular localization, preventing its nuclear accumulation. These data reveal a novel functional domain within SteC, raising the possibility that this effector could also target GTPase function in mammalian cells. Our results also highlight the key role of the Cdc42 switch in yeast mating and HOG pathways and provide a new tool to study the functional consequences of Cdc24 localization.
Collapse
Affiliation(s)
- Pablo Fernandez-Piñar
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, and Instituto Ramón y Cajal de Investigaciones Sanitarias, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
15
|
Differential oncogene-related gene expressions in myeloma cells resistant to prednisone and vincristine. Biomed Pharmacother 2012; 66:506-11. [PMID: 22681910 DOI: 10.1016/j.biopha.2012.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 02/29/2012] [Indexed: 11/20/2022] Open
Abstract
Multidrug resistance in cancer may arise due to alterations in gene expression. In this study, sublines of drug-resistant multiple myeloma (MM) cells, namely RPMI-8226 and U-266, were examined for their differential oncogene-related gene expression levels and the relations to drug resistance were analyzed. Drug resistance was induced by application of the prednisone or vincristine using stepwise dose increments. XTT cytotoxicity assay was used for determination of resistance levels. Microarray analysis was carried out and the genes up- or downregulated more than two-folds were considered as significantly changed. Different types of oncogenes were altered in different drug-resistant RPMI-8226 and U-266 multiple myeloma sublines. The oncogenes which belong to Ras superfamily, especially Rho family of GTPases, were upregulated in prednisone-resistant MM cell lines whereas they were either downregulated or not changed in vincristine resistance. ETS and NF-κB2 are among transcription factors which were downregulated in prednisone-resistant cells. Transforming growth factor beta receptor (TGFß) was downregulated in prednisone-resistant MM cell lines while it was upregulated in vincristine-resistant cell lines. Different types of interleukin gene expressions were seen to be altered in resistant MM sublines whereas suppressors of cytokine signalling genes such as SOCS2, SOCS4 and WSB2 were all downregulated. In conclusion, it is seen that different drugs can induce totally different pathways leading to resistance in the same cancer cell lines. Every drug resistance should be evaluated separately. These facts must be considered in cancer chemotherapy and reversal of drug resistance.
Collapse
|
16
|
Cdc42: An important regulator of neuronal morphology. Int J Biochem Cell Biol 2012; 44:447-51. [DOI: 10.1016/j.biocel.2011.11.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 12/21/2022]
|
17
|
Rodríguez-Escudero I, Ferrer NL, Rotger R, Cid VJ, Molina M. Interaction of the Salmonella Typhimurium effector protein SopB with host cell Cdc42 is involved in intracellular replication. Mol Microbiol 2011; 80:1220-40. [DOI: 10.1111/j.1365-2958.2011.07639.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Lang DM. Imperfect DNA mirror repeats in E. coli TnsA and other protein-coding DNA. Biosystems 2005; 81:183-207. [PMID: 15967569 DOI: 10.1016/j.biosystems.2005.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 03/27/2005] [Accepted: 03/29/2005] [Indexed: 11/19/2022]
Abstract
DNA imperfect mirror repeats (DNA-IMRs) are ubiquitous in protein-coding DNA. However, they overlap and often have different centers of symmetry, making it difficult to evaluate their relationship to each other and to specific DNA and protein motifs and structures. This paper describes a systematic method of determining a hierarchy for DNA-IMRs and evaluates their relationship to protein structural elements (PSEs)--helices, turns and beta-sheets. DNA-IMRs are identifed by two different methods--DNA-IMRs terminated by reverse dinucleotides (rd-IMRs) and DNA-IMRs terminated by a single (mono) matching nucleotide (m-IMRs). Both rd-IMRs and m-IMRs are evaluated in 17 proteins, and illustrated in detail for TnsA. For each of the proteins, Fisher's exact test (FET) is used to measure the coincidence between the terminal dinucleotides of rd-IMRs and the terminal amino acids of individual PSEs. A significant correlation over a span of about 3 nt was found for each protein. The correlation is robust and for most genes, all rd-IMRs<or=13 nt can be removed without the loss of statistical significance. In TnsA, the protein intervals translated by rd-IMRs>16 nt contain approximately 88% of the potential functional motifs. The protein translation of the longest rd- and m-IMRs span sequences important to the protein's structure and function. In all 17 proteins studied, the population of rd-IMRs is substantially less than the expected number and the population of m-IMRs greater than the expected number, indicating strong selective pressures. The association of rd-IMRs with PSEs restricts their spatial distribution, and therefore, their number. The greater than predicted number of m-IMRs indicates that DNA symmetry exists throughout the entire protein-coding region and may stabilize the sequence.
Collapse
Affiliation(s)
- Dorothy M Lang
- School of Contemporary Sciences, University of Abertay-Dundee, Bell Street, Dundee DD1 1HG, Scotland, UK.
| |
Collapse
|
19
|
Daigo Y, Takayama I, Ponder BAJ, Caldas C, Ward SM, Sanders KM, Fujino MA. Novel human, mouse and xenopus genes encoding a member of the RAS superfamily of low-molecular-weight GTP-binding proteins and its downregulation in W/WV mouse jejunum. J Gastroenterol Hepatol 2004; 19:211-7. [PMID: 14731133 DOI: 10.1111/j.1440-1746.2004.03298.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Interstitial cells of Cajal (ICC) are pacemakers and mediators of neurotransmission in gastroenteric smooth muscles. Interstitial cells of Cajal require cellular signaling via KIT, a receptor tyrosine kinase, for development and maintenance of cellular phenotype. Much of the evidence demonstrating the functions of ICC comes from studies of W/W V mutant mice, which have reduced KIT function. The aim of the present study was to differentially examine gene expression in the small intestines of wild-type and W/W V mice. METHODS RNA from the jejunum of wild-type and W/W V mice was analyzed using a differential gene display method. RESULTS One candidate gene, encoding a novel small GTPase of the RAS superfamily, was significantly suppressed both in fed and starved W/WV mice. The full-length clone of the murine gene and its human and xenopus counterparts were designated GTP-binding protein, 28 kDa (G28K). Human G28K cDNA encodes a protein of 258 amino acids with homology to the human cell division cycle 42/G25K protein. This gene is located at 1q42.11-q42.3. G28K was abundantly expressed in the human stomach and the small intestine. Semi-quantitative reverse transcription-polymerase chain reaction analysis revealed expression of G28K mRNA within single isolated ICC. CONCLUSIONS Gene analysis showed that G28K was differentially expressed in the small intestines of wild-type and W/W V mice. Interstitial cells of Cajal within the small intestine expressed mRNA for G28K. The specific downregulation of G28K in the jejunum of W/W V mice, and high expression in human intestinal tissue suggest that the G28K gene might be associated with ICC function in mice and in humans.
Collapse
Affiliation(s)
- Yataro Daigo
- Department of Medicine, University of Yamanashi School of Medicine, Yamanashi, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW This review focuses on recent developments in understanding the roles and regulation of the cytoskeleton in the function of leukocytes. RECENT FINDINGS New studies have shed light on the regulation and dynamics of actin and microtubules in leukocytes relevant both to cell motility generally and to immune function specifically. The roles of cytoskeletal dynamics in processes such as cell activation, cell migration, and phagocytosis are being elucidated. Dramatic progress has been made recently in understanding the mechanisms of leukocyte directional sensing, polarization, and chemotaxis. SUMMARY Leukocytes need to be activated, polarize, change shape, move, or phagocytose in response to their environment. Leukocytes accomplish these processes by remodeling their cytoskeleton, the active musculoskeletal system of the cell that is not just the ultimate effector of motile responses but is also a dynamic framework for subcellular organization and regional signaling. Active areas of research include the direct and indirect reciprocal interactions between the cytoskeleton and the membrane and among cytoskeletal elements. The pervasive and multi-layered roles played by small GTPases of the Rho family and phosphoinositides in leukocyte function are also becoming clearer.
Collapse
Affiliation(s)
- Gabriel Fenteany
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois 60607-7061, USA.
| | | |
Collapse
|
21
|
Gagiano M, Bauer FF, Pretorius IS. The sensing of nutritional status and the relationship to filamentous growth in Saccharomyces cerevisiae. FEMS Yeast Res 2002; 2:433-70. [PMID: 12702263 DOI: 10.1111/j.1567-1364.2002.tb00114.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Heterotrophic organisms rely on the ingestion of organic molecules or nutrients from the environment to sustain energy and biomass production. Non-motile, unicellular organisms have a limited ability to store nutrients or to take evasive action, and are therefore most directly dependent on the availability of nutrients in their immediate surrounding. Such organisms have evolved numerous developmental options in order to adapt to and to survive the permanently changing nutritional status of the environment. The phenotypical, physiological and molecular nature of nutrient-induced cellular adaptations has been most extensively studied in the yeast Saccharomyces cerevisiae. These studies have revealed a network of sensing mechanisms and of signalling pathways that generate and transmit the information on the nutritional status of the environment to the cellular machinery that implements specific developmental programmes. This review integrates our current knowledge on nutrient sensing and signalling in S. cerevisiae, and suggests how an integrated signalling network may lead to the establishment of a specific developmental programme, namely pseudohyphal differentiation and invasive growth.
Collapse
Affiliation(s)
- Marco Gagiano
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch University, South Africa
| | | | | |
Collapse
|
22
|
Rodríguez-Pachón JM, Martín H, North G, Rotger R, Nombela C, Molina M. A novel connection between the yeast Cdc42 GTPase and the Slt2-mediated cell integrity pathway identified through the effect of secreted Salmonella GTPase modulators. J Biol Chem 2002; 277:27094-102. [PMID: 12016210 DOI: 10.1074/jbc.m201527200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Modulation of host cellular GTPases through the injection of the effector proteins SopE2 and SptP is essential for Salmonella typhimurium to enter into non-phagocytic cells. Here we show that expression of the guanine nucleotide exchange factor for Cdc42 SopE2 in Saccharomyces cerevisiae leads to the activation of Fus3 and Kss1 MAPKs, which operate in the mating and filamentation pathways, causing filamentous growth in haploid yeast cells. Furthermore, it promotes the activation of the cell integrity MAPK Slt2. Cdc42 activation by removal of its putative intrinsic GTPase-activating proteins (GAPs), Rga1, Rga2, and Bem3, also results in the phosphorylation of Kss1, Fus3, and Slt2 MAPKs. These data support the role of these GAP proteins as negative regulators of Cdc42, confirm the modulating effect of this GTPase on the filamentation and mating pathways and point to a novel connection between Cdc42 and the cell integrity pathway. Cdc42-induced activation of Slt2 occurs in a mating and filamentation pathway-dependent manner, but it does not require the function of Rho1, which is the GTPase that operates in the cell integrity pathway. Moreover, we report that Salmonella SptP can act as a GAP for Cdc42 in S. cerevisiae, down-regulating MAPK-mediated signaling. Thus, yeast provides a useful system to study the interaction of bacterial pathogenic proteins with eukaryotic signaling pathways. Furthermore, these proteins can be used as a tool to gain insight into the mechanisms that regulate MAPK-mediated signaling in eukaryotes.
Collapse
Affiliation(s)
- José M Rodríguez-Pachón
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal s/n, Madrid 28040, Spain
| | | | | | | | | | | |
Collapse
|
23
|
Bose I, Irazoqui JE, Moskow JJ, Bardes ES, Zyla TR, Lew DJ. Assembly of scaffold-mediated complexes containing Cdc42p, the exchange factor Cdc24p, and the effector Cla4p required for cell cycle-regulated phosphorylation of Cdc24p. J Biol Chem 2001; 276:7176-86. [PMID: 11113154 DOI: 10.1074/jbc.m010546200] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In budding yeast cells, the cytoskeletal polarization and depolarization events that shape the bud are triggered at specific times during the cell cycle by the cyclin-dependent kinase Cdc28p. Polarity establishment also requires the small GTPase Cdc42p and its exchange factor, Cdc24p, but the mechanism whereby Cdc28p induces Cdc42p-dependent polarization is unknown. Here we show that Cdc24p becomes phosphorylated in a cell cycle-dependent manner, triggered by Cdc28p. However, the role of Cdc28p is indirect, and the phosphorylation appears to be catalyzed by the p21-activated kinase family member Cla4p and also depends on Cdc42p and the scaffold protein Bem1p. Expression of GTP-Cdc42p, the product of Cdc24p-mediated GDP/GTP exchange, stimulated Cdc24p phosphorylation independent of cell cycle cues, raising the possibility that the phosphorylation is part of a feedback regulatory pathway. Bem1p binds directly to Cdc24p, to Cla4p, and to GTP-bound Cdc42p and can mediate complex formation between these proteins in vitro. We suggest that Bem1p acts to concentrate polarity establishment proteins at a discrete site, facilitating polarization and promoting Cdc24p phosphorylation at specific times during the cell cycle.
Collapse
Affiliation(s)
- I Bose
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | |
Collapse
|
24
|
Von Pawel-Rammingen U, Telepnev MV, Schmidt G, Aktories K, Wolf-Watz H, Rosqvist R. GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure. Mol Microbiol 2000; 36:737-48. [PMID: 10844661 DOI: 10.1046/j.1365-2958.2000.01898.x] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The YopE cytotoxin of Yersinia pseudotuberculosis is an essential virulence determinant that is injected into the eukaryotic target cell via a plasmid-encoded type III secretion system. Injection of YopE into eukaryotic cells induces depolymerization of actin stress fibres. Here, we show that YopE exhibits a GTPase-activating protein (GAP) activity and that the presence of YopE stimulates downregulation of Rho, Rac and Cdc42 activity. YopE has an arginine finger motif showing homology with those found in other GAP proteins. Exchange of arginine 144 with alanine, located in this arginine finger motif, results in an inactive form of YopE that can no longer stimulate GTP hydrolysis by the GTPase. Furthermore, a yopE(R144A) mutant is unable to induce cytotoxicity on cultured HeLa cells in contrast to the corresponding wild-type strain. Expression of wild-type YopE in cells of Saccharomyces cerevisiae inhibits growth, while in contrast, expression of the inactive form of YopE, YopE(R144A), does not affect the yeast cells. Co-expression of proteins belonging to the Rho1 pathway of yeast, Rho1, Rom2p, Bck1 and Ste20, suppressed the growth phenotype of YopE in yeast cells. These results provide evidence that YopE exhibits a GAP activity to inactivate RhoGTPases, leading to depolymerization of the actin stress fibres in eukaryotic cells and growth inhibition in yeast.
Collapse
|
25
|
Wang B, Zou JX, Ek-Rylander B, Ruoslahti E. R-Ras contains a proline-rich site that binds to SH3 domains and is required for integrin activation by R-Ras. J Biol Chem 2000; 275:5222-7. [PMID: 10671570 DOI: 10.1074/jbc.275.7.5222] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
R-Ras contains a proline-rich motif that resembles SH3 domain-binding sites but that has escaped notice previously. We show here that this site in R-Ras is capable of binding SH3 domains and that the SH3 domain binding may be important for R-Ras function. A fusion protein containing the SH3 domains of the adaptor protein Nck interacted strongly with the R-Ras proline-rich sequence and with the intact protein. The binding was independent of whether R-Ras was in its GDP or GTP form. The Nck binding, which was mediated by the second of the three SH3 domains of Nck, was obliterated by mutations in the proline-rich sequence of R-Ras. The interaction of Nck with R-Ras could also be shown in yeast two-hybrid assays and by co-immunoprecipitation in human cells transfected with Nck and R-Ras. Previous results have shown that the expression of a constitutively active R-Ras mutant, R-Ras(38V), converts mouse 32D monocytic cells into highly adherent cells. Introducing the proline mutations into R-Ras(38V) suppressed the effect of R-Ras on 32D cell adhesion while not affecting GTP binding. These results reveal an unexpected regulatory pathway that controls R-Ras through an SH3 domain interaction. This pathway appears to be important for the ability of R-Ras to control cell adhesion.
Collapse
Affiliation(s)
- B Wang
- Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
26
|
Abstract
The actin cytoskeleton provides the structural basis for cell polarity in Saccharomyces cerevisiae as well as most other eukaryotes. In Part I of this two-part commentary, presented in the previous issue of Journal of Cell Science, we discussed the basis by which yeast establishes and maintains different states of polarity through Ρ GTPases and cyclin-dependent protein kinase signaling. Here we discuss how, in response to those signals, the actin cytoskeleton guides growth of the yeast cell. A polarized array of actin cables at the cell cortex is the primary structural determinant of polarity. Motors such as class V myosins use this array to transport secretory vesicles, mRNA and organelles towards growth sites, where they are anchored by a cap of cytoskeletal and regulatory proteins. Cortical actin patches enhance and maintain this polarity, probably through endocytic recycling, which allows reuse of materials and prevents continued growth at old sites. The dynamic arrangement of targeting and recycling provides flexibility for the precise control of morphogenesis.
Collapse
Affiliation(s)
- D Pruyne
- Department of Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
27
|
Kozminski KG, Chen AJ, Rodal AA, Drubin DG. Functions and functional domains of the GTPase Cdc42p. Mol Biol Cell 2000; 11:339-54. [PMID: 10637312 PMCID: PMC14778 DOI: 10.1091/mbc.11.1.339] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cdc42p, a Rho family GTPase of the Ras superfamily, is a key regulator of cell polarity and morphogenesis in eukaryotes. Using 37 site-directed cdc42 mutants, we explored the functions and interactions of Cdc42p in the budding yeast Saccharomyces cerevisiae. Cytological and genetic analyses of these cdc42 mutants revealed novel and diverse phenotypes, showing that Cdc42p possesses at least two distinct essential functions and acts as a nodal point of cell polarity regulation in vivo. In addition, mapping the functional data for each cdc42 mutation onto a structural model of the protein revealed as functionally important a surface of Cdc42p that is distinct from the canonical protein-interacting domains (switch I, switch II, and the C terminus) identified previously in members of the Ras superfamily. This region overlaps with a region (alpha5-helix) recently predicted by structural models to be a specificity determinant for Cdc42p-protein interactions.
Collapse
Affiliation(s)
- K G Kozminski
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3202, USA
| | | | | | | |
Collapse
|
28
|
Vaduva G, Martinez-Quiles N, Anton IM, Martin NC, Geha RS, Hopper AK, Ramesh N. The human WASP-interacting protein, WIP, activates the cell polarity pathway in yeast. J Biol Chem 1999; 274:17103-8. [PMID: 10358064 DOI: 10.1074/jbc.274.24.17103] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WIP, the Wiskott-Aldrich syndrome protein-interacting protein, is a human protein involved in actin polymerization and redistribution in lymphoid cells. The mechanism by which WIP reorganizes actin cytoskeleton is unknown. WIP is similar to yeast verprolin, an actin- and myosin-interacting protein required for polarized morphogenesis. To determine whether WIP and verprolin are functional homologues, we analyzed the function of WIP in yeast. WIP suppresses the growth defects of VRP1 missense and null mutations as well as the defects in cytoskeletal organization and endocytosis observed in vrp1-1 cells. The ability of WIP to replace verprolin is dependent on its WH2 actin binding domain and a putative profilin binding domain. Immunofluorescence localization of WIP in yeast cells reveals a pattern consistent with its function at the cortical sites of growth. Thus, like verprolin, WIP functions in yeast to link the polarity development pathway and the actin cytoskeleton to generate cytoskeletal asymmetry. A role for WIP in cell polarity provides a framework for unifying, under a common paradigm, distinct molecular defects associated with immunodeficiencies like Wiskott-Aldrich syndrome.
Collapse
Affiliation(s)
- G Vaduva
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Kang SS, Kwon T, Kwon DY, Do SI. Akt protein kinase enhances human telomerase activity through phosphorylation of telomerase reverse transcriptase subunit. J Biol Chem 1999; 274:13085-90. [PMID: 10224060 DOI: 10.1074/jbc.274.19.13085] [Citation(s) in RCA: 340] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
With the amino acid sequences of all reported Akt kinase physiological substrates, the possible Akt kinase substrate specificity has been suggested. The serine/threonine residue to be phosphorylated in these proteins is placed within stretches of amino acids with homology, and the arginine residues on the -5 and -3 positions and a hydrophobic amino acid on the +2 position are conserved relative to those of serine/threonine residues (XXRXRXXS/TXX). We noticed two putative Akt kinase phosphorylation sites (220GARRRGGSAS229) and (817AVRIRGKSYV826) in human telomerase reverse transcriptase (hTERT) subunit. To demonstrate that hTERT is an Akt kinase substrate protein, we performed the nonradioactive protein kinase assay with the fluorescein hTERT peptide (817AVRIRGKSYV826). We observed the phosphorylation of hTERT peptide by the human melanoma cell lysate or the activated recombinant Akt kinase proteins in vitro. With the treatment of the growth factor deprivation or okadaic acid, we also observed the up-regulation of both hTERT peptide phosphorylation and the telomerase activity. We noticed that Wortmannin down-regulates hTERT peptide phosphorylation and telomerase activity together. In addition, we observed the enhancement of telomerase activity with the pretreatment of Akt kinase in vitro. Thus, these observations suggest that Akt kinase enhances human telomerase activity through phosphorylation of hTERT subunit as one of its substrate proteins.
Collapse
Affiliation(s)
- S S Kang
- Shin Dong Bang R&D Center, Seoul 137-132, Republic of Korea
| | | | | | | |
Collapse
|
30
|
Affiliation(s)
- E Manser
- Glaxo-IMCB Group, Institute of Molecular & Cell Biology, Singapore
| | | |
Collapse
|
31
|
Barthe C, de Bettignies G, Louvet O, Peypouquet MF, Morel C, Doignon F, Crouzet M. First characterization of the gene RGD1 in the yeast Saccharomyces cerevisiae. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 1998; 321:453-62. [PMID: 9769859 DOI: 10.1016/s0764-4469(98)80776-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We identified the ORF YBR260c during systematic sequencing of one region of chromosome II of Saccharomyces cerevisiae. This ORF encodes a putative protein of 666 aa, of which the C-terminal part of the deduced amino acid sequence resembles human and yeast Rho/Rac GTPase activating proteins (GAP). An initial study is reported in the paper. This gene was expressed in haploid and diploid cells and was called RGD1 for related GAP domain 1. Inactivation of RGD1 was carried out and phenotypic analysis of the mutant strain revealed only a slight viability defect when cells grown in minimal medium were close to stationary phase. Northern and western analyses showed that the RGD1 transcript and the corresponding protein were still abundant in cells cultivated in YNB during the stationary phase. No functional link seems to exist with the highly conserved GTPase Cdc42 involved in cytoskeletal polarization and cell polarity.
Collapse
Affiliation(s)
- C Barthe
- Laboratoire de Biologie Moléculaire et de séquençage, UPR CNRS 9026, Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Davis CR, Richman TJ, Deliduka SB, Blaisdell JO, Collins CC, Johnson DI. Analysis of the mechanisms of action of the Saccharomyces cerevisiae dominant lethal cdc42G12V and dominant negative cdc42D118A mutations. J Biol Chem 1998; 273:849-58. [PMID: 9422741 DOI: 10.1074/jbc.273.2.849] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Saccharomyces cerevisiae Cdc42p GTPase is localized to the plasma membrane and involved in signal transduction mechanisms controlling cell polarity. The mechanisms of action of the dominant negative cdc42(D118A) mutant and the lethal, gain of function cdc42(G12V) mutant were examined. Cdc42(D118A,C188S)p and its guanine-nucleotide exchange factor Cdc24p displayed a temperature-dependent interaction in the two-hybrid system, which correlated with the temperature dependence of the cdc42(D118A) phenotype and supported a Cdc24p sequestration model for the mechanism of cdc42(D118A) action. Five cdc42 mutations were isolated that led to decreased interactions with Cdc24p. The isolation of one mutation (V44A) correlated with the observations that the T35A effector domain mutation could interfere with Cdc42(D118A, C188S)p-Cdc24p interactions and could suppress the cdc42(D118A) mutation, suggesting that Cdc24p may interact with Cdc42p through its effector domain. The cdc42(G12V) mutant phenotypes were suppressed by the intragenic T35A and K183-187Q mutations and in skm1Delta and cla4Delta cells but not ste20Delta cells, suggesting that the mechanism of cdc42(G12V) action is through the Skm1p and Cla4p protein kinases at the plasma membrane. Two intragenic suppressors of cdc42(G12V) were also identified that displayed a dominant negative phenotype at 16 degrees C, which was not suppressed by overexpression of Cdc24p, suggesting an alternate mechanism of action for these dominant negative mutations.
Collapse
Affiliation(s)
- C R Davis
- Department of Microbiology and Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405, USA
| | | | | | | | | | | |
Collapse
|
33
|
Cabib E, Drgonová J, Drgon T. Role of small G proteins in yeast cell polarization and wall biosynthesis. Annu Rev Biochem 1998; 67:307-33. [PMID: 9759491 PMCID: PMC4781572 DOI: 10.1146/annurev.biochem.67.1.307] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the vegetative (mitotic) cycle and during sexual conjugation, yeast cells display polarized growth, giving rise to a bud or to a mating projection, respectively. In both cases one can distinguish three steps in these processes: choice of a growth site, organization of the growth site, and actual growth and morphogenesis. In all three steps, small GTP-binding proteins (G proteins) and their regulators play essential signaling functions. For the choice of a bud site, Bud1, a small G protein, Bud2, a negative regulator of Bud1, and Bud5, an activator, are all required. If any of them is defective, the cell loses its ability to select a proper bud position and buds randomly. In the organization of the bud site or of the site in which a mating projection appears, Cdc42, its activator Cdc24, and its negative regulators play a fundamental role. In the absence of Cdc42 or Cdc24, the actin cytoskeleton does not become organized and budding does not take place. Finally, another small G protein, Rho1, is required for activity of beta (1-->3)glucan synthase, the enzyme that catalyzes the synthesis of the major structural component of the yeast cell wall. In all of the above processes, G proteins can work as molecular switches because of their ability to shift between an active GTP-bound state and an inactive GDP-bound state.
Collapse
Affiliation(s)
- E Cabib
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | |
Collapse
|
34
|
Olenik C, Barth H, Just I, Aktories K, Meyer DK. Gene expression of the small GTP-binding proteins RhoA, RhoB, Rac1, and Cdc42 in adult rat brain. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1997; 52:263-9. [PMID: 9495548 DOI: 10.1016/s0169-328x(97)00270-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
GTPases of the Rho subfamily, i.e. Rho, Rac and Cdc42, are molecular switches in various signaling pathways. Best characterized are their functions in the regulation of the actin cytoskeleton. In neuronal cell lines they are involved in the mechanisms leading to synapse formation and plasticity. It is still unknown whether they have respective functions in the mammalian CNS. In this case, they should be present in the adult brain, especially in areas known for their synaptic remodeling. We have studied the expression of the Rho GTPases in adult rat brain with in situ hybridization and Western blot analysis. High amounts of RhoA, RhoB, Rac1 and Cdc42 mRNAs were detected in neurons of the hippocampus, i.e. in pyramidal cells of the CA1-CA4 regions as well as in granule cells of the dentate gyrus and in hilar cells. Also in cerebellum, Purkinje and granular cells expressed the four mRNAs. Strong gene expression was also found in brainstem, thalamus and neocortex. Using Western blot analysis, RhoA and Cdc42 proteins were detected in hippocampus, cerebellum, thalamus and neocortex. It is concluded that GTPases of the Rho family play a role in the regulation of cellular functions in the adult brain.
Collapse
Affiliation(s)
- C Olenik
- Institut für Pharmakologie der Albert-Ludwigs-Universität Freiburg, Germany
| | | | | | | | | |
Collapse
|
35
|
Gong TW, Shin JJ, Burmeister M, Lomax MI. Complete cDNAs for CDC42 from chicken cochlea and mouse liver. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:282-92. [PMID: 9224952 DOI: 10.1016/s0167-4781(97)00027-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CDC42 is a member of the ras superfamily of small GTP-binding proteins that are related through the highly conserved GTP-binding domain and are involved in signal transduction pathways. Two full-length CDC42 cDNAs have been isolated: a 2148-bp chick cochlea cDNA and a 2063-bp mouse liver cDNA. Each encodes a CDC42 protein of 191 amino acids. The avian CDC42 protein differs from the mouse at only one amino acid residue, a Thr for a Ser at position 185. Both CDC42 proteins are more similar to the ubiquitous human isoform originally isolated from placenta than to the isoform isolated from fetal brain. Using a probe from the 3' UTR of the mouse liver CDC42 cDNA, we demonstrated that the mouse gene is expressed in all tissues examined. Southern blot analysis of a mouse inter-specific backcross with this gene-specific probe identified at least three CDC42-like (Cdc42l) genes in the mouse genome. Cdc42l1 was mapped to distal mouse Chromosome 4, near Cappb1. Cdc42l2 mapped more proximal on Chromosome 4, whereas Cdc42l3 mapped to the X Chromosome.
Collapse
Affiliation(s)
- T W Gong
- Kresge Hearing Research Institute, Department of Otolaryngology/Head-Neck Surgery, Ann Arbor, MI 48109-0648, USA
| | | | | | | |
Collapse
|
36
|
Koelle DM, Johnson ML, Ekstrom AN, Byers P, Kwok WW. Preferential presentation of herpes simplex virus T-cell antigen by HLA DQA1*0501/DQB1*0201 in comparison to HLA DQA1*0201/DQB1*0201. Hum Immunol 1997; 53:195-205. [PMID: 9129979 DOI: 10.1016/s0198-8859(97)00034-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The HLA DQA1 locus is polymorphic. Haplotypes containing HLA DQA1*0501, but not HLA DQA1*0201, together with HLA DQB1*0201 are associated with Grave's disease and celiac sprue. In this report, we demonstrate a functional correlate of DQA1 polymorphism. T cells infiltrating a herpes simplex virus (HSV) lesion from a HLA DQ 2,7 individual yielded a virus-specific CD4+ clone restricted by DQ2. Presentation of viral peptide and protein segregated with DQA1 allele, because cell lines bearing DQA1*0501/DQB1*0201 heterodimers presented antigen in proliferation and cytotoxicity assays much more efficiently than cell lines bearing DQA1*0201/DQB1*0201. Binding of viral peptide to cell lines bearing DQA1*0201, in comparison to DQA1*0501, was only moderately reduced and may not explain this effect. Truncation and substitution analyses of peptide binding and T-cell activation were performed to determine which viral peptide residues contacting TCR might therefore be presented in an altered conformation by DQA1*0201/DQB1*0201. Residues 432, 435, 437, 438, and 440 (position P1, P4, P6, P7, and P9) contributed to DQ2 binding, whereas residues 431, 433, 434, and 436 (positions P 1, P2, P3, and P5) contributed to TCR contact. Differential presentation of peptide by HLA DQ2 heterodimers varying at the DQA1 locus may have relevance to host defense and the pathogenesis of HLA DQ2-associated autoimmune diseases.
Collapse
Affiliation(s)
- D M Koelle
- Department of Medicine, University of Washington, School of Medicine, Seattle, USA
| | | | | | | | | |
Collapse
|
37
|
Drechsel DN, Hyman AA, Hall A, Glotzer M. A requirement for Rho and Cdc42 during cytokinesis in Xenopus embryos. Curr Biol 1997; 7:12-23. [PMID: 8999996 DOI: 10.1016/s0960-9822(06)00023-6] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND During cytokinesis in animal cells, an equatorial actomyosin-based contractile ring divides the cell into two daughter cells. The position of the contractile ring is specified by a signal that emanates from the mitotic spindle. This signal has not been identified and it is not understood how the components of the contractile ring assemble. It is also unclear how the ring constricts or how new plasma membrane inserts specifically behind the leading edge of the constricting furrow. The Rho family of small GTPases regulate polarized changes in cell growth and cell shape by affecting the formation of actin structures beneath the plasma membrane, but their role in cytokinesis is unclear. RESULTS We have studied the function of two Rho family members during the early cell divisions of Xenopus embryos by injecting modified forms of Rho and Cdc42. Both inhibition and constitutive activation of either GTPase blocked cytokinesis. Furrow specification occurred normally, but ingression of the furrow was inhibited. Newly inserted cleavage membranes appeared aberrantly on the outer surface of the embryo. Microinjected Rho localized to the cortex and regulated the levels of cortical F-actin. CONCLUSIONS These results show that Rho regulates the assembly of actin filaments in the cortex during cytokinesis, that local activation of Rho is important for proper constriction of the contractile furrow, and that Cdc42 plays a role in furrow ingression. Moreover, our observations reveal that furrow ingression and membrane insertion are not strictly linked. Neither Rho nor Cdc42 appear to be required for establishment of the cell-division plane.
Collapse
Affiliation(s)
- D N Drechsel
- MRC Laboratory for Molecular Cell Biology, University College, London WC1E 6BT, UK
| | | | | | | |
Collapse
|
38
|
Mirbod F, Nakashima S, Kitajima Y, Cannon R, Nozawa Y. Molecular cloning of a Rho family,CDC42Cagene fromCandida albicansand its mRNA expression changes during morphogenesis. Med Mycol 1997. [DOI: 10.1080/02681219780001111] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
39
|
Zalcman G, Closson V, Camonis J, Honoré N, Rousseau-Merck MF, Tavitian A, Olofsson B. RhoGDI-3 is a new GDP dissociation inhibitor (GDI). Identification of a non-cytosolic GDI protein interacting with the small GTP-binding proteins RhoB and RhoG. J Biol Chem 1996; 271:30366-74. [PMID: 8939998 DOI: 10.1074/jbc.271.48.30366] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RhoB is a small GTP-binding protein highly homologous to the RhoA protein. While RhoA is known to regulate the assembly of focal adhesions and stress fibers in response to growth factors, the function of RhoB remains unknown. We have reported that the transient expression of the endogenous RhoB protein is regulated during the cell cycle, contrasting with the permanent RhoA protein expression (). Using the yeast two-hybrid system to characterize proteins interacting with RhoB, we identified a new mouse Rho GDP dissociation inhibitor, referenced as RhoGDI-3. The NH2-terminal alpha helix of RhoGDI-3 is strongly amphipatic and differs thus from that found in previously described bovine, human, and yeast RhoGDI proteins and mouse and human D4/Ly-GDIs. Contrary to the cytosolic localization of all known GDI proteins, acting on Rab or Rho, RhoGDI-3 is associated to a Triton X-100-insoluble membranous or cytoskeletal subcellular fraction. In the two-hybrid system, RhoGDI-3 interacts specifically with GDP- and GTP-bound forms of post-translationally processed RhoB and RhoG proteins, both of which show a growth-regulated expression in mammalian cells. No interaction is found with RhoA, RhoC, or Rac1 proteins. We show that GDI-3 is able to inhibit GDP/GTP exchange of RhoB and to release GDP-bound but not GTP-bound RhoB from cell membranes.
Collapse
Affiliation(s)
- G Zalcman
- Unité INSERM 248, Section de Recherche, Institut Curie, 26 rue d'Ulm, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
40
|
Cussac D, Leblanc P, L'Heritier A, Bertoglio J, Lang P, Kordon C, Enjalbert A, Saltarelli D. Rho proteins are localized with different membrane compartments involved in vesicular trafficking in anterior pituitary cells. Mol Cell Endocrinol 1996; 119:195-206. [PMID: 8807639 DOI: 10.1016/0303-7207(96)03814-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In order to explore the role of certain GTP binding proteins in the rat anterior pituitary, we have analyzed the subcellular distribution of the proteins rho and rab. They were found in both membrane and cytosolic fractions. Rab1 and rab2 were localized in both Golgi and endoplasmic reticulum (ER) membranes, while rab4 and rab6 were found in fractions enriched with Golgi and plasma membranes, implicating these proteins in the control of vesicular intracellular trafficking as described in other systems. Rab3 was localized like a fraction of synaptophysin, suggesting a role for rab3 in the targeting of "synaptic-like' microvesicles. We have identified three substrates of C. botulinum exoenzyme C3. A 26-kDa substrate with an isoelectric point (pI) of 5.2, probably rhoB, was localized in the lightest fractions such as rab3 and synaptophysin proteins. Two other 23-24 kDa substrates with pI of 5.5-5.8, probably rhoA and/or rhoC, were found in both fractions enriched with ER and secretory granules. Rho proteins have been implicated in the control of actin polymerization. Their localization in anterior pituitary suggests that rhoB could control the association of synaptic-like microvesicles and plasma membrane, and that rhoA/rhoC could play a role in secretory granule exocytosis; these two pathways being involved in cytoskeleton protein reorganisation in response to extracellular signals.
Collapse
Affiliation(s)
- D Cussac
- I.C.N.E. UMR 9941 CNRS Institut Jean Roche Faculté de Médecine Nord, Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Satoh T, Kato J, Nishida K, Kaziro Y. Tyrosine phosphorylation of ACK in response to temperature shift-down, hyperosmotic shock, and epidermal growth factor stimulation. FEBS Lett 1996; 386:230-4. [PMID: 8647288 DOI: 10.1016/0014-5793(96)00449-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian Cdc42 protein regulates various kinds of cellular responses, including formation of filopodia, polarization of T cells, and cell cycle progression. A non-receptor tyrosine kinase ACK, which specifically binds to the GTP-bound form of Cdc42, was isolated as a putative target of Cdc42. Here we show the induction of tyrosine phosphorylation of ACK in response to temperature shift-down to 25 degrees C, and hypertonic shock, as well as stimulation with epidermal growth factor (EGF) in human embryonic kidney (HEK) 293 cells. The increased tyrosine phosphorylation level upon temperature shift-down was sustained for at least 60 min, whereas reversion of the temperature to 37 degrees C caused rapid tyrosine dephosphorylation to the initial level. The responses to EGF and the high osmolarity were transient. Furthermore, we observed association of ACK with an adaptor protein Grb2, which may suggest the involvement of Grb2 in EGF receptor-mediated tyrosine phosphorylation of ACK.
Collapse
Affiliation(s)
- T Satoh
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Japan
| | | | | | | |
Collapse
|
42
|
Dutartre H, Davoust J, Gorvel JP, Chavrier P. Cytokinesis arrest and redistribution of actin-cytoskeleton regulatory components in cells expressing the Rho GTPase CDC42Hs. J Cell Sci 1996; 109 ( Pt 2):367-77. [PMID: 8838660 DOI: 10.1242/jcs.109.2.367] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammalian cells, Rho GTPases control the reorganisation of the actin cytoskeleton in response to growth factors. In the cytoplasm, the polymerisation of actin filaments and their organisation into complex architectures is orchestrated by numerous proteins which act either directly, by interacting with actin, or by producing secondary messengers which serve as mediators between signal transduction pathways and the microfilament organisation. We sought to determine whether the intracellular distribution of some of these regulatory components may be controlled by the Rho GTPase CDC42Hs. With this aim, we have established HeLa-derived human cell lines in which expression of a constitutively activated mutant of CDC42Hs is inducible. Morphological analysis by immunofluorescence labelling and confocal laser scanning microscopy revealed a massive reorganisation of F-actin in cortical microspikes as well as podosome-like structures located at the ventral face of the cells. Concomitantly, the cells became giant and multinucleate indicating that cytokinesis was impaired. The actin bundling protein T-plastin, the vasodilatator-stimulated phosphoprotein (VASP), a profilin ligand, as well as the 85 kDa regulatory subunit of the phosphoinosite 3-kinase redistributed with F-actin into the CDC42Hs-induced structures.
Collapse
Affiliation(s)
- H Dutartre
- Centre d'Immunologie INSERM/CNRS de Marseille Luminy, France
| | | | | | | |
Collapse
|
43
|
Laminet AA, Apell G, Conroy L, Kavanaugh WM. Affinity, specificity, and kinetics of the interaction of the SHC phosphotyrosine binding domain with asparagine-X-X-phosphotyrosine motifs of growth factor receptors. J Biol Chem 1996; 271:264-9. [PMID: 8550571 DOI: 10.1074/jbc.271.1.264] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The phosphotyrosine binding (PTB) domain specifically binds to tyrosine-phosphorylated proteins, but differs in structure and mechanism of action from the SH2 domain family. We quantitated the affinity, specificity, and kinetics of the interaction of the SHC PTB domain with a sequence motif, asparagine-X-X-phosphotyrosine (NXX(pY)), found in several receptor tyrosine kinases and oncogenic proteins. PTB domain-mediated interaction with the NXX(pY) motif of c-ErbB2 was characterized by similar overall affinity but slower kinetics than that reported for SH2 domains. This suggested that unlike SH2 domains, PTB domains may not rapidly exchange among associated proteins. Furthermore, when directly and quantitatively compared, PTB domain binding specificity did not significantly overlap with a panel of seven SH2 domains. Thus, signaling pathways involving PTB and SH2 domain-mediated interactions can be regulated separately. Finally, our data define the minimal SHC PTB domain binding motif as NXX(pY), not NPX(pY) as suggested by other authors, and suggest a high affinity motif, hydrophobic residue-(D/E)-N-X-X-pY-(W/F), found in the Trk and ErbB receptor tyrosine kinase families. We conclude that PTB domains mediate specific protein-protein interactions independent from those mediated by SH2 domains.
Collapse
Affiliation(s)
- A A Laminet
- Chiron Corporation, Emeryville, California 94608, USA
| | | | | | | |
Collapse
|
44
|
Giese K, Fantl WJ, Vitt C, Stephans JC, Cousens L, Wachowicz M, Williams LT. Reduction of Food Intake and Weight Gain by the ob Protein Requires a Specific Secondary Structure and Is Reversible. Mol Med 1996. [DOI: 10.1007/bf03402202] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
45
|
[20] Subcellular distribution and posttranslational modifications of GTP-binding proteins in insulin-secreting cells. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1043-9471(96)80056-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
46
|
Giese K, Fantl WJ, Vitt C, Stephans JC, Cousens L, Wachowicz M, Williams LT. Reduction of food intake and weight gain by the ob protein requires a specific secondary structure and is reversible. Mol Med 1996; 2:50-8. [PMID: 8900534 PMCID: PMC2230025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Obesity, the condition of excessive accumulation of fat is a poorly understood disorder and is a risk factor for type II diabetes, hypertension, and hyperlipidaemia. Recently, a putative mouse obese gene was cloned and its product, termed ob protein, was shown to be involved in the regulation of body weight. MATERIALS AND METHODS Bacterial and insect cells were used for expression of recombinant mouse ob protein. Amino-terminal sequence analysis and site-directed mutagenesis were used to identify and characterize the mature form of ob protein. Genetically obese mice and wild-type rats were used to determine the biological activity of ob protein. RESULTS Mouse ob protein is synthesized as a precursor molecule, the mature form of which was found in mouse serum. Biochemical analysis identified the processing site in the ob precursor molecule and an intramolecular disulfide bond in the mature form that is necessary for activity. Reduction of food intake and weight gain after administration of ob protein to genetically obese mice and wild-type rats is reversible. DISCUSSION This study demonstrates that ob protein is a secreted satiety factor which regulates body weight and reduces food intake even in animals with no genetic body weight abnormalities. The failure of ob protein to effect these parameters in db/db mice supports the hypothesis that these mice are deficient in a signaling molecule that normally responds to the ob protein.
Collapse
Affiliation(s)
- K Giese
- Department of Chiron Technologies, Chiron Corporation, Emeryville, California 94608, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Mischke MD, Chant J. The shape of things to come: morphogenesis in yeast and related patterns in other systems. ACTA ACUST UNITED AC 1995. [DOI: 10.1139/b95-252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The elaboration of cell form has fascinated biologists for generations. A vast body of literature details the life cycles, anatomy, and developmental programs of many species. The mechanisms responsible for the observed diversity of structure involve polarization, directed growth, and spatial memory. These issues of morphogenesis are currently under study in the budding yeast Saccharomyces cerevisiae and other fungi. In yeast, a number of genes are known that specifically affect either the orientation or the assembly of a polarity axis. These include the bud-site selection genes, BUD1–BUD5, as well as the polarity establishment genes, CDC24, CDC42, CDC43, and BEM1. Members of each of these classes encode elements in signal transduction type pathways. This review examines our present understanding of the molecular machinery responsible for orienting and assembling cell polarity as best understood in S. cerevisiae, and speculates about how similar machinery might function in other fungi. Key words: morphogenesis, polarity, yeast, Saccharomyces, development.
Collapse
|
48
|
Teo M, Manser E, Lim L. Identification and molecular cloning of a p21cdc42/rac1-activated serine/threonine kinase that is rapidly activated by thrombin in platelets. J Biol Chem 1995; 270:26690-7. [PMID: 7592896 DOI: 10.1074/jbc.270.44.26690] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The brain-enriched p21cdc42/rac1-activated serine/threonine kinase, p65PAK, was identified and purified on the basis of overlays with [gamma-32P]GTP-Cdc42 onto SDS-fractionated proteins (Manser, E., Leung, T., Salihuddin, H., Zhao, Z.-S., and Lim, L. (1994) Nature 367, 40-46). In this study, the ubiquitously expressed p21cdc42/rac1 binding protein with relative molecular weight of 62,000 was purified from rat testes and shown to contain peptides related to PAK. It has thus been designated as the gamma-PAK isoform (alpha- and beta-isoforms being brain enriched). Isolation of gamma-PAK cDNAs show that the kinase is highly conserved with alpha-PAK in both the p2 binding and kinase domains. The purified protein exhibited kinase activity that was activated by GTP-Cdc42 or GTP-Rac1 in vitro. In platelets, a p62 in situ renaturable kinase was recognized by antibodies raised against gamma-PAK. This thrombin-activated protein kinase appears to coprecipitate with another kinase of M(r) 86,000, suggesting that PAK may be part of a thrombin-responsive signaling complex.
Collapse
Affiliation(s)
- M Teo
- Glaxo-IMCB Group, Institute of Molecular and Cell Biology, National University of Singapore, Kent Ridge, Singapore
| | | | | |
Collapse
|
49
|
Manser E, Chong C, Zhao ZS, Leung T, Michael G, Hall C, Lim L. Molecular cloning of a new member of the p21-Cdc42/Rac-activated kinase (PAK) family. J Biol Chem 1995; 270:25070-8. [PMID: 7559638 DOI: 10.1074/jbc.270.42.25070] [Citation(s) in RCA: 198] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A number of "target" proteins for the Rho family of small GTP-binding proteins have now been identified, including the protein kinases ACK and p65PAK (Manser, E., Leung, T., Salihuddin, H., Zhao, Z.-S., and Lim, L. (1994) Nature 367, 40-46). The purified serine/threonine kinase p65PAK has been shown to be directly activated by GTP-Rac1 or GTP-Cdc42. Here we report the cDNA sequence encoding a new brain-enriched PAK isoform beta-PAK, which shares 79% amino acid identity with the previously described alpha-isoform. Their mRNAs are differentially expressed in the brain, with alpha-PAK mRNA being particularly abundant in motor-associated regions. In vitro translation products of the alpha- and beta-PAK cDNAs exhibited relative molecular masses of 68,000 and 65,000, respectively, by SDS-polyacrylamide analysis. A specific beta-PAK peptide sequence was obtained from rat brain-purified p65PAK. Recombinant alpha- and beta-PAKs exhibited an increase in kinase activity mediated by GTP-p21 induced autophosphorylation. Cdc42 was a more potent activator in vitro of alpha-PAK kinase, and the fully activated enzyme is 300 times more active than the unphosphorylated form. Interestingly the down-regulation in the binding of p21s to recombinant beta-PAK and brain p65PAK, which is observed upon kinase activation does not occur with recombinant alpha-PAK.
Collapse
Affiliation(s)
- E Manser
- Institute of Molecular and Cell Biology, National University of Singapore, Kent Ridge, Singapore
| | | | | | | | | | | | | |
Collapse
|
50
|
Simon MN, De Virgilio C, Souza B, Pringle JR, Abo A, Reed SI. Role for the Rho-family GTPase Cdc42 in yeast mating-pheromone signal pathway. Nature 1995; 376:702-5. [PMID: 7651520 DOI: 10.1038/376702a0] [Citation(s) in RCA: 173] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In the budding yeast Saccharomyces cerevisiae, the process of conjugation of haploid cells of genotype MATa and MAT alpha to form MATa/alpha diploids is triggered by pheromones produced by each mating type. These pheromones stimulate a cellular response by interaction with receptors linked to a heterotrimeric G protein. Although genetic analysis indicates that the pheromone signal is transmitted through the G beta gamma dimer, the initial target(s) of G protein activation remain to be determined. Temperature-sensitive cells with mutations of the CDC24 and CDC42 genes, which are incapable of budding and of generating cell polarity at the restrictive temperature, are also unable to mate. Cdc24 acts as a guanylyl-nucleotide-exchange factor for the Rho-type GTPase Cdc42, which has been shown to be a fundamental component of the molecular machinery controlling morphogenesis in eukaryotic cells. Therefore, the inability of cdc24 and cdc42 mutants to mate has been presumed to be due to a requirement for generation of cell polarity and related morphogenetic events during conjugation. But here we show that Cdc42 has a direct signalling role in the mating-pheromone response between the G protein and the downstream protein kinase cascade.
Collapse
Affiliation(s)
- M N Simon
- Scripps Research Institute, Department of Molecular Biology, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|