1
|
Gupta R, Gaikwad S, Qui H, Bou-Nader C, Zhang J, Hinnebusch AG. Purification and Analysis of eIF2α Phosphorylation by Stress-Activated Protein Kinase Gcn2 from S. cerevisiae. Methods Mol Biol 2025; 2882:195-220. [PMID: 39992511 DOI: 10.1007/978-1-0716-4284-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Gcn2 is the sole eIF2α kinase in budding yeast, responsible for inhibiting general translation while inducing translation of transcriptional activator Gcn4, a master regulator of amino acid biosynthesis, in nutrient-starved cells. Gcn2 is activated by interactions between multiple regulatory domains that overcome the inherent latency of its protein kinase domain, including a pseudokinase domain, one related to histidyl-tRNA synthetase, a ribosome-binding and dimerization domain, and a region that binds the trans-acting activators Gcn1/Gcn20, which respond to deacylated tRNAs engendered by amino acid starvation or other impediments to translation elongation that lead to ribosome stalling and collisions. Here, we describe methods for purifying Gcn2 from yeast cells and assaying its protein kinase activity against a recombinant segment of eIF2α.
Collapse
Affiliation(s)
- Ritu Gupta
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hongfang Qui
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Charles Bou-Nader
- Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institutes of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Jendruchová K, Gaikwad S, Poncová K, Gunišová S, Valášek LS, Hinnebusch AG. Differential effects of 40S ribosome recycling factors on reinitiation at regulatory uORFs in GCN4 mRNA are not dictated by their roles in bulk 40S recycling. Commun Biol 2024; 7:1083. [PMID: 39232119 PMCID: PMC11375166 DOI: 10.1038/s42003-024-06761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
Recycling of 40S ribosomal subunits following translation termination, entailing release of deacylated tRNA and dissociation of the empty 40S from mRNA, involves yeast Tma20/Tma22 heterodimer and Tma64, counterparts of mammalian MCTS1/DENR and eIF2D. MCTS1/DENR enhance reinitiation (REI) at short upstream open reading frames (uORFs) harboring penultimate codons that confer heightened dependence on these factors in bulk 40S recycling. Tma factors, by contrast, inhibited REI at particular uORFs in extracts; however, their roles at regulatory uORFs in vivo were unknown. We examined effects of eliminating Tma proteins on REI at regulatory uORFs mediating translational control of GCN4 optimized for either promoting (uORF1) or preventing (uORF4) REI. We found that the Tma proteins generally impede REI at native uORF4 and its variants equipped with various penultimate codons regardless of their Tma-dependence in bulk recycling. The Tma factors have no effect on REI at native uORF1 and equipping it with Tma-hyperdependent penultimate codons generally did not confer Tma-dependent REI; nor did converting the uORFs to AUG-stop elements. Thus, effects of the Tma proteins vary depending on the REI potential of the uORF and penultimate codon, but unlike in mammals, are not principally dictated by the Tma-dependence of the codon in bulk 40S recycling.
Collapse
Affiliation(s)
- Kristína Jendruchová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00, Prague, Czech Republic
| | - Swati Gaikwad
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kristýna Poncová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic.
| | - Alan G Hinnebusch
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
3
|
Jendruchová K, Gaikwad S, Poncová K, Gunišová S, Valášek LS, Hinnebusch AG. Impacts of yeast Tma20/MCTS1, Tma22/DENR and Tma64/eIF2D on translation reinitiation and ribosome recycling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583729. [PMID: 38903097 PMCID: PMC11188067 DOI: 10.1101/2024.03.06.583729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Recycling of 40S ribosomal subunits following translation termination, entailing release of deacylated tRNA and dissociation of the empty 40S subunit from mRNA, involves yeast Tma20/Tma22 heterodimer and Tma64, counterparts of mammalian MCTS1/DENR and eIF2D. MCTS1/DENR enhance reinitiation at short upstream open reading frames (uORFs) harboring penultimate codons that confer dependence on these factors in bulk 40S recycling. Tma factors, by contrast, inhibited reinitiation at particular uORFs in extracts; however, their roles at regulatory uORFs in vivo were unknown. We examined effects of eliminating Tma proteins on reinitiation at regulatory uORFs mediating translational control of GCN4 optimized for either promoting (uORF1) or preventing (uORF4) reinitiation. We found that the Tma proteins generally impede reinitiation at native uORF4 and uORF4 variants equipped with various penultimate codons regardless of their Tma-dependence in bulk recycling. The Tma factors have no effect on reinitiation at native uORF1, and equipping uORF1 with Tma-dependent penultimate codons generally did not confer Tma-dependent reinitiation; nor did converting the uORFs to AUG-stop elements. Thus, effects of the Tma proteins vary depending on the reinitiation potential of the uORF and the penultimate codon, but unlike in mammals, are not principally dictated by the Tma-dependence of the codon in bulk 40S recycling.
Collapse
Affiliation(s)
- Kristína Jendruchová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, the Czech Republic
- Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic
| | - Swati Gaikwad
- Divsion of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kristýna Poncová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, the Czech Republic
| | - Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, the Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20, Prague, the Czech Republic
| | - Alan G Hinnebusch
- Divsion of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Shestakova ED, Smirnova VV, Shatsky IN, Terenin IM. Specific mechanisms of translation initiation in higher eukaryotes: the eIF4G2 story. RNA (NEW YORK, N.Y.) 2023; 29:282-299. [PMID: 36517212 PMCID: PMC9945437 DOI: 10.1261/rna.079462.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The eukaryotic initiation factor 4G2 (eIF4G2, DAP5, Nat1, p97) was discovered in 1997. Over the past two decades, dozens of papers have presented contradictory data on eIF4G2 function. Since its identification, eIF4G2 has been assumed to participate in noncanonical translation initiation mechanisms, but recent results indicate that it can be involved in scanning as well. In particular, eIF4G2 provides leaky scanning through some upstream open reading frames (uORFs), which are typical for long 5' UTRs of mRNAs from higher eukaryotes. It is likely the protein can also help the ribosome overcome other impediments during scanning of the 5' UTRs of animal mRNAs. This may explain the need for eIF4G2 in higher eukaryotes, as many mRNAs that encode regulatory proteins have rather long and highly structured 5' UTRs. Additionally, they often bind to various proteins, which also hamper the movement of scanning ribosomes. This review discusses the suggested mechanisms of eIF4G2 action, denotes obscure or inconsistent results, and proposes ways to uncover other fundamental mechanisms in which this important protein factor may be involved in higher eukaryotes.
Collapse
Affiliation(s)
- Ekaterina D Shestakova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Sirius University of Science and Technology, Sochi 354349, Russia
| |
Collapse
|
5
|
Dang TTV, Colin J, Janbon G. Alternative Transcription Start Site Usage and Functional Implications in Pathogenic Fungi. J Fungi (Basel) 2022; 8:1044. [PMID: 36294609 PMCID: PMC9604717 DOI: 10.3390/jof8101044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Pathogenic fungi require delicate gene regulation mechanisms to adapt to diverse living environments and escape host immune systems. Recent advances in sequencing technology have exposed the complexity of the fungal genome, thus allowing the gradual disentanglement of multiple layers of gene expression control. Alternative transcription start site (aTSS) usage, previously reported to be prominent in mammals and to play important roles in physiopathology, is also present in fungi to fine-tune gene expression. Depending on the alteration in their sequences, RNA isoforms arising from aTSSs acquire different characteristics that significantly alter their stability and translational capacity as well as the properties and biologic functions of the resulting proteins. Disrupted control of aTSS usage has been reported to severely impair growth, virulence, and the infectious capacity of pathogenic fungi. Here, we discuss principle concepts, mechanisms, and the functional implication of aTSS usage in fungi.
Collapse
Affiliation(s)
- Thi Tuong Vi Dang
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| | - Jessie Colin
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, F-75014 Paris, France
| | - Guilhem Janbon
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Université de Paris Cité, F-75015 Paris, France
| |
Collapse
|
6
|
Hei Z, Wu S, Zheng L, Zhou J, Liu Z, Wang J, Fang P. Crystal structures reveal a novel dimer of the RWD domain of human general control nonderepressible 2. Biochem Biophys Res Commun 2021; 549:164-170. [PMID: 33676185 DOI: 10.1016/j.bbrc.2021.02.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/23/2021] [Indexed: 10/22/2022]
Abstract
General control nonderepressible 2 (GCN2) is a serine/threonine protein kinase, detecting a variety of stresses including amino acid starvation, reactive oxygen species, etc. in eukaryotic cells. Activation of GCN2 requires the interaction of the N-terminal RWD domain with the upstream GCN1 protein and the dimerization by the kinase domain. In this study, we determined two crystal structures of the RWD domain of human GCN2 in two different crystal packing modes. These two different crystal structures reveal a same dimer of the RWD domain, which has not been reported in previous studies. We further confirmed this novel dimer interaction in solution using gel filtration experiments, and in human embryonic kidney (HEK) 293 cells using bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (co-IP) assays. Together, this study discovers a potential protein-protein interface on the RWD domain of human GCN2, and suggests a possible regulation between the interaction of GCN1 and the formation of GCN2 dimer.
Collapse
Affiliation(s)
- Zhoufei Hei
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Siqi Wu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Li Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Jintong Zhou
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Zaizhou Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
7
|
Daian F, Esper BS, Ashrafi N, Yu GQ, Luciano G, Moorthi S, Luberto C. Regulation of human sphingomyelin synthase 1 translation through its 5'-untranslated region. FEBS Lett 2020; 594:3751-3764. [PMID: 33037626 PMCID: PMC7756225 DOI: 10.1002/1873-3468.13952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 09/04/2020] [Indexed: 11/11/2022]
Abstract
Bcr‐abl1 oncogene causes a shift in the transcription start site of the SMS1 gene (SGMS1) encoding the sphingomyelin (SM) synthesizing enzyme, sphingomyelin synthase 1 (SMS1). This results in an mRNA with a significantly shorter 5′‐UTR, called 7‐SGMS1, which is translated more efficiently than another transcript (IIb‐SGMS1) with a longer 5′UTR in Bcr‐abl1‐positive cells. Here, we determine the effects of these alternative 5′UTRs on SMS1 translation and investigate the key features underlying such regulation. First, the presence of the longer IIb 5′UTR is sufficient to greatly impair translation of a reporter gene. Deletion of the upstream open reading frame (−164 nt) or of the predicted stem‐loops in the 5′UTR of IIb‐SGMS1 has minimal effects on SGMS1 translation. Conversely, deletion of nucleotides −310 to −132 enhanced transcription of IIb‐SGMS1 to reach that of 7‐SGMS1. We thus suggest that regulatory features within nucleotides −310 and −132 modulate IIb‐SGMS1 translation efficiency.
Collapse
Affiliation(s)
- Foysal Daian
- Renaissance School of Medicine, Stony Brook University, NY, USA
| | | | - Navid Ashrafi
- Department of Physiology and Biophysics, Stony Brook University, NY, USA
| | - Gui-Qin Yu
- Department of Physiology and Biophysics, Stony Brook University, NY, USA
| | - Gabriella Luciano
- Department of Physiology and Biophysics, Stony Brook University, NY, USA
| | - Sitapriya Moorthi
- Department of Physiology and Biophysics, Stony Brook University, NY, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, NY, USA
| |
Collapse
|
8
|
Xu L, Yuan Y. Two microPeptides are translated from a KSHV polycistronic RNA in human cells by leaky scanning mechanism. Biochem Biophys Res Commun 2020; 522:568-573. [PMID: 31785817 DOI: 10.1016/j.bbrc.2019.11.087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/14/2019] [Indexed: 11/20/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a 3.0 kb polyadenylated RNA (T3.0) in the opposite strand of the open reading frame 50 (RTA) gene. The T3.0 was mis-annotated as a noncoding RNA but found to be associated with ribosomes and carries at least four translatable sORFs. Two of them, namely vSP-1 and vSP-2, have been characterized. vSP-1 enhances RTA expression by blocking RTA self-ubiquitylation and proteasome-associated degradation. T3.0 RNA is a polycistronic RNA. Furthermore, polycistronic translation has been observed in most of the cases of small peptides (microPeptides) translated from previously annotated noncoding RNAs in eukaryotes. In an effort to elucidate the mechanism underlying polycistronic sORF translation in eukaryotic cells, we found that T3.0 RNA translates vSP-1 and vSP-2 through a leaky scanning mechanism.
Collapse
Affiliation(s)
- Lei Xu
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yan Yuan
- Institute of Human Virology and Ministry of Education Key Laboratory of Tropical Disease Control, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Department of Microbiology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
9
|
Lopes Fischer N, Naseer N, Shin S, Brodsky IE. Effector-triggered immunity and pathogen sensing in metazoans. Nat Microbiol 2019; 5:14-26. [DOI: 10.1038/s41564-019-0623-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 10/29/2019] [Indexed: 01/06/2023]
|
10
|
Rodriguez CM, Chun SY, Mills RE, Todd PK. Translation of upstream open reading frames in a model of neuronal differentiation. BMC Genomics 2019; 20:391. [PMID: 31109297 PMCID: PMC6528255 DOI: 10.1186/s12864-019-5775-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Upstream open reading frames (uORFs) initiate translation within mRNA 5' leaders, and have the potential to alter main coding sequence (CDS) translation on transcripts in which they reside. Ribosome profiling (RP) studies suggest that translating ribosomes are pervasive within 5' leaders across model systems. However, the significance of this observation remains unclear. To explore a role for uORF usage in a model of neuronal differentiation, we performed RP on undifferentiated and differentiated human neuroblastoma cells. RESULTS Using a spectral coherence algorithm (SPECtre), we identify 4954 consistently translated uORFs across 31% of all neuroblastoma transcripts. These uORFs predominantly utilize non-AUG initiation codons and exhibit translational efficiencies (TE) comparable to annotated coding regions. On a population basis, the global impact of both AUG and non-AUG initiated uORFs on basal CDS translation were small, even when analysis is limited to conserved and consistently translated uORFs. However, uORFs did alter the translation of a subset of genes, including the Diamond-Blackfan Anemia associated ribosomal gene RPS24. With retinoic acid induced differentiation, we observed an overall positive correlation in translational shifts between uORF/CDS pairs. However, CDSs downstream of uORFs show smaller shifts in TE with differentiation relative to CDSs without a predicted uORF, suggesting that uORF translation buffers cell state dependent fluctuations in CDS translation. CONCLUSION This work provides insights into the dynamic relationships and potential regulatory functions of uORF/CDS pairs in a model of neuronal differentiation.
Collapse
Affiliation(s)
- Caitlin M Rodriguez
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | - Sang Y Chun
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Peter K Todd
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
- VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Preissler S, Ron D. Early Events in the Endoplasmic Reticulum Unfolded Protein Response. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033894. [PMID: 30396883 PMCID: PMC6442202 DOI: 10.1101/cshperspect.a033894] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The physiological consequences of the unfolded protein response (UPR) are mediated by changes in gene expression. Underlying them are rapid processes involving preexisting components. We review recent insights gained into the regulation of the endoplasmic reticulum (ER) Hsp70 chaperone BiP, whose incorporation into inactive oligomers and reversible AMPylation and de-AMPylation present a first line of response to fluctuating levels of unfolded proteins. BiP activity is tied to the regulation of the UPR transducers by a recently discovered cycle of ER-localized, J protein-mediated formation of a repressive IRE1-BiP complex, whose working we contrast to an alternative model for UPR regulation that relies on direct recognition of unfolded proteins. We conclude with a discussion of mechanisms that repress messenger RNA (mRNA) translation to limit the flux of newly synthesized proteins into the ER, a rapid adaptation that does not rely on new macromolecule biosynthesis.
Collapse
|
12
|
Fernandes R, Nogueira G, da Costa PJ, Pinto F, Romão L. Nonsense-Mediated mRNA Decay in Development, Stress and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1157:41-83. [DOI: 10.1007/978-3-030-19966-1_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Robert F, Pelletier J. Exploring the Impact of Single-Nucleotide Polymorphisms on Translation. Front Genet 2018; 9:507. [PMID: 30425729 PMCID: PMC6218417 DOI: 10.3389/fgene.2018.00507] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Over the past 15 years, sequencing of the human genome and The Cancer Genome Atlas (TCGA) project have led to comprehensive lists of single-nucleotide polymorphisms (SNPs) and gene mutations across a large number of human samples. However, our ability to predict the functional impact of SNPs and mutations on gene expression is still in its infancy. Here, we provide key examples to help understand how mutations present in genes can affect translational output.
Collapse
Affiliation(s)
- Francis Robert
- Department of Biochemistry, McGill University, Montreal, QC, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, QC, Canada.,Department of Oncology, McGill University, Montreal, QC, Canada.,Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
14
|
Crawford RA, Pavitt GD. Translational regulation in response to stress in Saccharomyces cerevisiae. Yeast 2018; 36:5-21. [PMID: 30019452 PMCID: PMC6492140 DOI: 10.1002/yea.3349] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/08/2018] [Accepted: 06/25/2018] [Indexed: 12/19/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae must dynamically alter the composition of its proteome in order to respond to diverse stresses. The reprogramming of gene expression during stress typically involves initial global repression of protein synthesis, accompanied by the activation of stress‐responsive mRNAs through both translational and transcriptional responses. The ability of specific mRNAs to counter the global translational repression is therefore crucial to the overall response to stress. Here we summarize the major repressive mechanisms and discuss mechanisms of translational activation in response to different stresses in S. cerevisiae. Taken together, a wide range of studies indicate that multiple elements act in concert to bring about appropriate translational responses. These include regulatory elements within mRNAs, altered mRNA interactions with RNA‐binding proteins and the specialization of ribosomes that each contribute towards regulating protein expression to suit the changing environmental conditions.
Collapse
Affiliation(s)
- Robert A Crawford
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Michael Smith Building, Dover Street, Manchester, M13 9PT, UK
| |
Collapse
|
15
|
Castilho-Valavicius B, Thompson GM, Donahue TF. Mutation analysis of the Cys-X2-Cys-X19-Cys-X2-Cys motif in the beta subunit of eukaryotic translation initiation factor 2. Gene Expr 2018; 2:297-309. [PMID: 1450666 PMCID: PMC6057382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recessive lethal mutations in the beta subunit of eIF-2 that restore HIS4 expression in the absence of an AUG start codon were isolated from diploid Saccharomyces cerevisiae strains. DNA sequence analysis of these alleles and of eIF-2 beta suppressor alleles isolated from haploid strains, identified point mutations that altered one of six amino acids that map to a Cys-X2-Cys-X19-Cys-X2-Cys "zinc finger" motif and immediately adjacent residues. Five of the affected amino acids are identical in the human and yeast eIF-2 beta protein. Together with earlier studies (Donahue et al., 1988), these point mutations implicate the zinc finger domain of eIF-2 beta in start-site selection during the scanning process. We have supplemented the mutations obtained by genetic selection with an additional set of constructed mutations in this region. Our studies indicate that the cysteine residues and the intervening amino acids of this motif are essential for eIF-2 beta function in translation initiation in vivo. However, the effects observed in cells containing a copy of eIF-2 beta with a deletion of this motif suggest that this mutated form is still able to associate with other components of the initiation complex, imparting defects on translation initiation. Thus, this motif may be required only for later events that lead to initiator codon recognition. Alterations in defined positions, as found in our suppressor alleles, could lead to recognition of non-AUG codons.
Collapse
Affiliation(s)
- B Castilho-Valavicius
- Department of Microbiology, Immunology, and Parasitology, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | |
Collapse
|
16
|
Wek RC. Role of eIF2α Kinases in Translational Control and Adaptation to Cellular Stress. Cold Spring Harb Perspect Biol 2018; 10:a032870. [PMID: 29440070 PMCID: PMC6028073 DOI: 10.1101/cshperspect.a032870] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A central mechanism regulating translation initiation in response to environmental stress involves phosphorylation of the α subunit of eukaryotic initiation factor 2 (eIF2α). Phosphorylation of eIF2α causes inhibition of global translation, which conserves energy and facilitates reprogramming of gene expression and signaling pathways that help to restore protein homeostasis. Coincident with repression of protein synthesis, many gene transcripts involved in the stress response are not affected or are even preferentially translated in response to increased eIF2α phosphorylation by mechanisms involving upstream open reading frames (uORFs). This review highlights the mechanisms regulating eIF2α kinases, the role that uORFs play in translational control, and the impact that alteration of eIF2α phosphorylation by gene mutations or small molecule inhibitors can have on health and disease.
Collapse
Affiliation(s)
- Ronald C Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5126
| |
Collapse
|
17
|
Gunišová S, Hronová V, Mohammad MP, Hinnebusch AG, Valášek LS. Please do not recycle! Translation reinitiation in microbes and higher eukaryotes. FEMS Microbiol Rev 2018; 42:165-192. [PMID: 29281028 PMCID: PMC5972666 DOI: 10.1093/femsre/fux059] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022] Open
Abstract
Protein production must be strictly controlled at its beginning and end to synthesize a polypeptide that faithfully copies genetic information carried in the encoding mRNA. In contrast to viruses and prokaryotes, the majority of mRNAs in eukaryotes contain only one coding sequence, resulting in production of a single protein. There are, however, many exceptional mRNAs that either carry short open reading frames upstream of the main coding sequence (uORFs) or even contain multiple long ORFs. A wide variety of mechanisms have evolved in microbes and higher eukaryotes to prevent recycling of some or all translational components upon termination of the first translated ORF in such mRNAs and thereby enable subsequent translation of the next uORF or downstream coding sequence. These specialized reinitiation mechanisms are often regulated to couple translation of the downstream ORF to various stimuli. Here we review all known instances of both short uORF-mediated and long ORF-mediated reinitiation and present our current understanding of the underlying molecular mechanisms of these intriguing modes of translational control.
Collapse
Affiliation(s)
- Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| | - Vladislava Hronová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, Prague, 142 20, the Czech Republic
| |
Collapse
|
18
|
Piper MDW, Partridge L. Drosophila as a model for ageing. Biochim Biophys Acta Mol Basis Dis 2017; 1864:2707-2717. [PMID: 28964875 DOI: 10.1016/j.bbadis.2017.09.016] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/12/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
Drosophila melanogaster has been a key model in developing our current understanding of the molecular mechanisms of ageing. Of particular note is its role in establishing the evolutionary conservation of reduced insulin and IGF-1-like signaling in promoting healthy ageing. Capitalizing on its many advantages for experimentation, more recent work has revealed how precise nutritional and genetic interventions can improve fly lifespan without obvious detrimental side effects. We give a brief summary of these recent findings as well as examples of how they may modify ageing via actions in the gut and muscle. These discoveries highlight how expanding our understanding of metabolic and signaling interconnections will provide even greater insight into how these benefits may be harnessed for anti-ageing interventions.
Collapse
Affiliation(s)
- Matthew D W Piper
- School of Biological Sciences, Monash University, Clayton, Victoria 3800, Australia
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Köln 50931, Germany; Institute of Healthy Ageing, Department GEE, UCL, Darwin Building, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
19
|
Jacobson A. The moment when translational control had a theory of everything. Nat Rev Mol Cell Biol 2017; 18:344. [PMID: 28400611 DOI: 10.1038/nrm.2017.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Allan Jacobson
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
20
|
Gunišová S, Beznosková P, Mohammad MP, Vlčková V, Valášek LS. In-depth analysis of cis-determinants that either promote or inhibit reinitiation on GCN4 mRNA after translation of its four short uORFs. RNA (NEW YORK, N.Y.) 2016; 22:542-558. [PMID: 26822200 PMCID: PMC4793210 DOI: 10.1261/rna.055046.115] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/18/2015] [Indexed: 05/29/2023]
Abstract
Translational control in eukaryotes is exerted by many means, one of which involves a ribosome translating multiple cistrons per mRNA as in bacteria. It is called reinitiation (REI) and occurs on mRNAs where the main ORF is preceded by a short upstream uORF(s). Some uORFs support efficient REI on downstream cistrons, whereas some others do not. The mRNA of yeast transcriptional activator GCN4 contains four uORFs of both types that together compose an intriguing regulatory mechanism of its expression responding to nutrients' availability and various stresses. Here we subjected all GCN4 uORFs to a comprehensive analysis to identify all REI-promoting and inhibiting cis-determinants that contribute either autonomously or in synergy to the overall efficiency of REI on GCN4. We found that the 3' sequences of uORFs 1-3 contain a conserved AU1-2A/UUAU2 motif that promotes REI in position-specific, autonomous fashion such as the REI-promoting elements occurring in 5' sequences of uORF1 and uORF2. We also identified autonomous and transferable REI-inhibiting elements in the 3' sequences of uORF2 and uORF3, immediately following their AU-rich motif. Furthermore, we analyzed contributions of coding triplets and terminating stop codon tetranucleotides of GCN4 uORFs showing a negative correlation between the efficiency of reinitiation and efficiency of translation termination. Together we provide a complex overview of all cis-determinants of REI with their effects set in the context of the overall GCN4 translational control.
Collapse
Affiliation(s)
- Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Petra Beznosková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Mahabub Pasha Mohammad
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Vladislava Vlčková
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology AS CR, Prague 142 20, Czech Republic
| |
Collapse
|
21
|
Schumpert CA, Dudycha JL, Patel RC. Development of an efficient RNA interference method by feeding for the microcrustacean Daphnia. BMC Biotechnol 2015; 15:91. [PMID: 26446824 PMCID: PMC4597761 DOI: 10.1186/s12896-015-0209-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022] Open
Abstract
Background RNA interference (RNAi) is an important molecular tool for analysis of gene function in vivo. Daphnia, a freshwater microcrustacean, is an emerging model organism for studying cellular and molecular processes involved in aging, development, and ecotoxicology especially in the context of environmental variation. However, in spite of the availability of a fully sequenced genome of Daphnia pulex, meaningful mechanistic studies have been hampered by a lack of molecular techniques to alter gene expression. A microinjection method for gene knockdown by RNAi has been described but the need for highly specialized equipment as well as technical expertise limits the wider application of this technique. In addition to being expensive and technically challenging, microinjections can only target genes expressed during embryonic stages, thus making it difficult to achieve effective RNAi in adult organisms. Results In our present study we present a bacterial feeding method for RNAi in Daphnia. We used a melanic Daphnia species (Daphnia melanica) that exhibits dark pigmentation to target phenoloxidase, a key enzyme in the biosynthesis of melanin. We demonstrate that our RNAi method results in a striking phenotype and that the phenoloxidase mRNA expression and melanin content, as well as survival following UV insults, are diminished as a result of RNAi. Conclusions Overall, our results establish a new method for RNAi in Daphnia that significantly advances further use of Daphnia as a model organism for functional genomics studies. The method we describe is relatively simple and widely applicable for knockdown of a variety of genes in adult organisms.
Collapse
Affiliation(s)
- Charles A Schumpert
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC, 29208, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC, 29208, USA
| | - Rekha C Patel
- Department of Biological Sciences, University of South Carolina, 700 Sumter Street, Columbia, SC, 29208, USA.
| |
Collapse
|
22
|
Chantranupong L, Wolfson RL, Sabatini DM. Nutrient-sensing mechanisms across evolution. Cell 2015; 161:67-83. [PMID: 25815986 DOI: 10.1016/j.cell.2015.02.041] [Citation(s) in RCA: 242] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Indexed: 12/11/2022]
Abstract
For organisms to coordinate their growth and development with nutrient availability, they must be able to sense nutrient levels in their environment. Here, we review select nutrient-sensing mechanisms in a few diverse organisms. We discuss how these mechanisms reflect the nutrient requirements of specific species and how they have adapted to the emergence of multicellularity in eukaryotes.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Rachel L Wolfson
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Massachusetts Institute of Technology, Department of Biology, 9 Cambridge Center, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
23
|
Wethmar K. The regulatory potential of upstream open reading frames in eukaryotic gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:765-78. [DOI: 10.1002/wrna.1245] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 01/04/2023]
Affiliation(s)
- Klaus Wethmar
- Max-Delbrueck-Center for Molecular Medicine; Berlin Germany
- Helios Klinikum Berlin-Buch; Berlin Germany
| |
Collapse
|
24
|
Ghosh A, Jindal S, Bentley AA, Hinnebusch AG, Komar AA. Rps5-Rps16 communication is essential for efficient translation initiation in yeast S. cerevisiae. Nucleic Acids Res 2014; 42:8537-55. [PMID: 24948608 PMCID: PMC4117775 DOI: 10.1093/nar/gku550] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Conserved ribosomal proteins frequently harbor additional segments in eukaryotes not found in bacteria, which could facilitate eukaryotic-specific reactions in the initiation phase of protein synthesis. Here we provide evidence showing that truncation of the N-terminal domain (NTD) of yeast Rps5 (absent in bacterial ortholog S7) impairs translation initiation, cell growth and induction of GCN4 mRNA translation in a manner suggesting incomplete assembly of 48S preinitiation complexes (PICs) at upstream AUG codons in GCN4 mRNA. Rps5 mutations evoke accumulation of factors on native 40S subunits normally released on conversion of 48S PICs to 80S initiation complexes (ICs) and this abnormality and related phenotypes are mitigated by the SUI5 variant of eIF5. Remarkably, similar effects are observed by substitution of Lys45 in the Rps5-NTD, involved in contact with Rps16, and by eliminating the last two residues of the C-terminal tail (CTT) of Rps16, believed to contact initiator tRNA base-paired to AUG in the P site. We propose that Rps5-NTD-Rps16-NTD interaction modulates Rps16-CTT association with Met-tRNAi (Met) to promote a functional 48S PIC.
Collapse
Affiliation(s)
- Arnab Ghosh
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Supriya Jindal
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Amber A Bentley
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, Eunice K. Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
25
|
Sundaram A, Grant CM. A single inhibitory upstream open reading frame (uORF) is sufficient to regulate Candida albicans GCN4 translation in response to amino acid starvation conditions. RNA (NEW YORK, N.Y.) 2014; 20:559-67. [PMID: 24570481 PMCID: PMC3964917 DOI: 10.1261/rna.042267.113] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Candida albicans is a major fungal pathogen that responds to various environmental cues as part of its infection mechanism. We show here that the expression of C. albicans GCN4, which encodes a transcription factor that regulates morphogenetic and metabolic responses, is translationally regulated in response to amino acid starvation induced by exposure to the histidine analog 3-aminotriazole (3AT). However, in contrast to the well-known translational control mechanisms that regulate yeast GCN4 and mammalian ATF4 expression via multiple upstream open reading frames (uORFs) in their 5'-leader sequences, a single inhibitory uORF is necessary and sufficient for C. albicans GCN4 translational control. The 5'-leader sequence of GCN4 contains three uORFs, but uORF3 alone is sufficient for translational regulation. Under nonstress conditions, uORF3 inhibits GCN4 translation. Amino acid starvation conditions promote Gcn2-mediated phosphorylation of eIF2α and leaky ribosomal scanning to bypass uORF3, inducing GCN4 translation. GCN4 expression is also transcriptionally regulated, although maximal induction is observed at higher concentrations of 3AT compared with translational regulation. C. albicans GCN4 expression is therefore highly regulated by both transcriptional and translational control mechanisms. We suggest that it is particularly important that Gcn4 levels are tightly controlled since Gcn4 regulates morphogenetic changes during amino acid starvation conditions, which are important determinants of virulence in this fungus.
Collapse
Affiliation(s)
- Arunkumar Sundaram
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
- Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia
| | - Chris M. Grant
- Faculty of Life Sciences, The University of Manchester, Manchester M13 9PT, United Kingdom
- Corresponding authorE-mail
| |
Collapse
|
26
|
Gunišová S, Valášek LS. Fail-safe mechanism of GCN4 translational control--uORF2 promotes reinitiation by analogous mechanism to uORF1 and thus secures its key role in GCN4 expression. Nucleic Acids Res 2014; 42:5880-93. [PMID: 24623812 PMCID: PMC4027193 DOI: 10.1093/nar/gku204] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
One of the extensively studied mechanisms of gene-specific translational regulation is reinitiation. It takes place on messenger RNAs (mRNAs) where main ORF is preceded by upstream ORF (uORF). Even though uORFs generally down-regulate main ORF expression, specific uORFs exist that allow high level of downstream ORF expression. The key is their ability to retain 40S subunits on mRNA upon termination of their translation to resume scanning for the next AUG. Here, we took advantage of the exemplary model system of reinitiation, the mRNA of yeast transcriptional activator GCN4 containing four short uORFs, and show that contrary to previous reports, not only the first but the first two of its uORFs allow efficient reinitiation. Strikingly, we demonstrate that they utilize a similar molecular mechanism relying on several cis-acting 5' reinitiation-promoting elements, one of which they share, and the interaction with the a/TIF32 subunit of translation initiation factor eIF3. Since a similar mechanism operates also on YAP1 uORF, our findings strongly suggest that basic principles of reinitiation are conserved. Furthermore, presence of two consecutive reinitiation-permissive uORFs followed by two reinitiation-non-permissive uORFs suggests that tightness of GCN4 translational control is ensured by a fail-safe mechanism that effectively prevents or triggers GCN4 expression under nutrient replete or deplete conditions, respectively.
Collapse
Affiliation(s)
- Stanislava Gunišová
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| | - Leoš Shivaya Valášek
- Laboratory of Regulation of Gene Expression, Institute of Microbiology ASCR, Videnska 1083, 142 20 Prague, the Czech Republic
| |
Collapse
|
27
|
Wethmar K, Barbosa-Silva A, Andrade-Navarro MA, Leutz A. uORFdb--a comprehensive literature database on eukaryotic uORF biology. Nucleic Acids Res 2013; 42:D60-7. [PMID: 24163100 PMCID: PMC3964959 DOI: 10.1093/nar/gkt952] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Approximately half of all human transcripts contain at least one upstream translational initiation site that precedes the main coding sequence (CDS) and gives rise to an upstream open reading frame (uORF). We generated uORFdb, publicly available at http://cbdm.mdc-berlin.de/tools/uorfdb, to serve as a comprehensive literature database on eukaryotic uORF biology. Upstream ORFs affect downstream translation by interfering with the unrestrained progression of ribosomes across the transcript leader sequence. Although the first uORF-related translational activity was observed >30 years ago, and an increasing number of studies link defective uORF-mediated translational control to the development of human diseases, the features that determine uORF-mediated regulation of downstream translation are not well understood. The uORFdb was manually curated from all uORF-related literature listed at the PubMed database. It categorizes individual publications by a variety of denominators including taxon, gene and type of study. Furthermore, the database can be filtered for multiple structural and functional uORF-related properties to allow convenient and targeted access to the complex field of eukaryotic uORF biology.
Collapse
Affiliation(s)
- Klaus Wethmar
- Max Delbrück Center for Molecular Medicine (MDC), Cell Differentiation and Tumorigenesis, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany, Hematology, Oncology and Tumor Immunology, Helios Klinikum Berlin-Buch, Schwanebecker Chaussee 50, D-13125 Berlin, Germany, Max Delbrück Center for Molecular Medicine (MDC), Computational Biology and Data Mining, Robert-Rössle-Strasse 10, D-13092 Berlin, Germany and Humoldt-University, Department of Biology, Invalidenstrasse 43, D-10115 Berlin, Germany
| | | | | | | |
Collapse
|
28
|
Malzer E, Szajewska-Skuta M, Dalton LE, Thomas SE, Hu N, Skaer H, Lomas DA, Crowther DC, Marciniak SJ. Coordinate regulation of eIF2α phosphorylation by PPP1R15 and GCN2 is required during Drosophila development. J Cell Sci 2013; 126:1406-15. [PMID: 23418347 DOI: 10.1242/jcs.117614] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) by the kinase GCN2 attenuates protein synthesis during amino acid starvation in yeast, whereas in mammals a family of related eIF2α kinases regulate translation in response to a variety of stresses. Unlike single-celled eukaryotes, mammals also possess two specific eIF2α phosphatases, PPP1R15a and PPP1R15b, whose combined deletion leads to a poorly understood early embryonic lethality. We report the characterisation of the first non-mammalian eIF2α phosphatase and the use of Drosophila to dissect its role during development. The Drosophila protein demonstrates features of both mammalian proteins, including limited sequence homology and association with the endoplasmic reticulum. Of note, although this protein is not transcriptionally regulated, its expression is controlled by the presence of upstream open reading frames in its 5'UTR, enabling induction in response to eIF2α phosphorylation. Moreover, we show that its expression is necessary for embryonic and larval development and that this is to oppose the inhibitory effects of GCN2 on anabolic growth.
Collapse
Affiliation(s)
- Elke Malzer
- Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Singleton CK, Xiong Y, Kirsten JH, Pendleton KP. eIF2α kinases regulate development through the BzpR transcription factor in Dictyostelium discoideum. PLoS One 2012; 7:e32500. [PMID: 22403666 PMCID: PMC3293825 DOI: 10.1371/journal.pone.0032500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 01/27/2012] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND A major mechanism of translational regulation in response to a variety of stresses is mediated by phosphorylation of eIF2α to reduce delivery of initiator tRNAs to scanning ribosomes. For some mRNAs, often encoding a bZIP transcription factor, eIF2α phosphorylation leads to enhanced translation due to delayed reinitiation at upstream open reading frames. Dictyostelium cells possess at least three eIF2α kinases that regulate various portions of the starvation-induced developmental program. Cells possessing an eIF2α that cannot be phosphorylated (BS167) show abnormalities in growth and development. We sought to identify a bZIP protein in Dictyostelium whose production is controlled by the eIF2α regulatory system. PRINCIPAL FINDINGS Cells disrupted in the bzpR gene had similar developmental defects as BS167 cells, including small entities, stalk defects, and reduced spore viability. β-galactosidase production was used to examine translation from mRNA containing the bzpR 5' UTR. While protein production was readily apparent and regulated temporally and spatially in wild type cells, essentially no β-galactosidase was produced in developing BS167 cells even though the lacZ mRNA levels were the same as those in wild type cells. Also, no protein production was observed in strains lacking IfkA or IfkB eIF2α kinases. GFP fusions, with appropriate internal controls, were used to directly demonstrate that the bzpR 5' UTR, possessing 7 uORFs, suppressed translation by 12 fold. Suppression occurred even when all but one uORF was deleted, and translational suppression was removed when the ATG of the single uORF was mutated. CONCLUSIONS The findings indicate that BzpR regulates aspects of the development program in Dictyostelium, serving as a downstream effector of eIF2α phosphorylation. Its production is temporally and spatially regulated by eIF2α phosphorylation by IfkA and IfkB and through the use of uORFs within the bzpR 5' UTR.
Collapse
Affiliation(s)
- Charles K Singleton
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America.
| | | | | | | |
Collapse
|
30
|
Dalton LE, Healey E, Irving J, Marciniak SJ. Phosphoproteins in stress-induced disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 106:189-221. [PMID: 22340719 DOI: 10.1016/b978-0-12-396456-4.00003-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The integrated stress response (ISR) is an evolutionarily conserved homeostatic program activated by specific pathological states. These include amino acid deprivation, viral infection, iron deficiency, and the misfolding of proteins within the endoplasmic reticulum (ER), the so-called ER stress. Although apparently disparate, each of these stresses induces phosphorylation of a translation initiation factor, eIF2α, to attenuate new protein translation while simultaneously triggering a transcriptional program. This is achieved by four homologous stress-sensing kinases: GCN2, PKR, HRI, and PERK. In addition to these kinases, mammals possess two specific eIF2α phosphatases, GADD34 and CReP, which play crucial roles in the recovery of protein synthesis following the initial insult. They are not only important in embryonic development but also appear to play important roles in disease, particularly cancer. In this chapter, we discuss each of the eIF2α kinases, in turn, with particular emphasis on their regulation and the new insights provided by recent structural studies. We also discuss the potential for developing novel drug therapies that target the ISR.
Collapse
Affiliation(s)
- Lucy E Dalton
- Division of Respiratory Medicine, Department of Medicine, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
31
|
Wang A, Xu S, Zhang X, He J, Yan D, Yang Z, Xiao S. Ribosomal protein RPL41 induces rapid degradation of ATF4, a transcription factor critical for tumour cell survival in stress. J Pathol 2011; 225:285-92. [DOI: 10.1002/path.2918] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 04/04/2011] [Accepted: 04/09/2011] [Indexed: 12/28/2022]
|
32
|
Tan BSN, Lonic A, Morris MB, Rathjen PD, Rathjen J. The amino acid transporter SNAT2 mediates l-proline-induced differentiation of ES cells. Am J Physiol Cell Physiol 2011; 300:C1270-9. [DOI: 10.1152/ajpcell.00235.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
There is an increasing appreciation that amino acids can act as signaling molecules in the regulation of cellular processes through modulation of intracellular cell signaling pathways. In culture, embryonic stem (ES) cells can be differentiated to a second, pluripotent cell population, early primitive ectoderm-like cells in response to biological activities within the conditioned medium MEDII. The amino acid l-proline has been identified as a component of MEDII required for ES cell differentiation. Here, we define the primary l-proline transporter on ES and early primitive ectoderm-like cells as sodium-coupled neutral amino acid transporter 2 (SNAT2). SNAT2 uptake of l-proline can be inhibited by the addition of millimolar concentrations of other substrates. The addition of excess amino acids was used to regulate the uptake of l-proline by ES cells, and the effect on differentiation was analyzed. The ability of SNAT2 substrates, but not other amino acids, to prevent changes in morphology, gene expression, and differentiation kinetics suggested that l-proline uptake through SNAT2 was required for ES cell differentiation. These data reveal an unexpected role for amino acid uptake and the amino acid transporter SNAT2 in regulation of pluripotent cells in culture and provides a number of specific, inexpensive, and nontoxic culture additives with the potential to improve the quality of ES cell culture.
Collapse
Affiliation(s)
| | - Ana Lonic
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Michael B. Morris
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Peter D. Rathjen
- Department of Zoology, University of Melbourne, Melbourne, Victoria
- School of Molecular and Biomedical Science, University of Adelaide, South Australia; and
- Australian Stem Cell Centre, Monash University, Clayton, Victoria, Australia
| | - Joy Rathjen
- Department of Zoology, University of Melbourne, Melbourne, Victoria
| |
Collapse
|
33
|
Shin BS, Acker MG, Kim JR, Maher KN, Arefin SM, Lorsch JR, Dever TE. Structural integrity of {alpha}-helix H12 in translation initiation factor eIF5B is critical for 80S complex stability. RNA (NEW YORK, N.Y.) 2011; 17:687-696. [PMID: 21335519 PMCID: PMC3062179 DOI: 10.1261/rna.2412511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 12/21/2010] [Indexed: 05/30/2023]
Abstract
Translation initiation factor eIF5B promotes GTP-dependent ribosomal subunit joining in the final step of the translation initiation pathway. The protein resembles a chalice with the α-helix H12 forming the stem connecting the GTP-binding domain cup to the domain IV base. Helix H12 has been proposed to function as a rigid lever arm governing domain IV movements in response to nucleotide binding and as a molecular ruler fixing the distance between domain IV and the G domain of the factor. To investigate its function, helix H12 was lengthened or shortened by one or two turns. In addition, six consecutive residues in the helix were substituted by Gly to alter the helical rigidity. Whereas the mutations had minimal impacts on the factor's binding to the ribosome and its GTP binding and hydrolysis activities, shortening the helix by six residues impaired the rate of subunit joining in vitro and both this mutation and the Gly substitution mutation lowered the yield of Met-tRNA(i)(Met) bound to 80S complexes formed in the presence of nonhydrolyzable GTP. Thus, these two mutations, which impair yeast cell growth and enhance ribosome leaky scanning in vivo, impair the rate of formation and stability of the 80S product of subunit joining. These data support the notion that helix H12 functions as a ruler connecting the GTPase center of the ribosome to the P site where Met-tRNA(i)(Met) is bound and that helix H12 rigidity is required to stabilize Met-tRNA(i)(Met) binding.
Collapse
Affiliation(s)
- Byung-Sik Shin
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Racine T, Duncan R. Facilitated leaky scanning and atypical ribosome shunting direct downstream translation initiation on the tricistronic S1 mRNA of avian reovirus. Nucleic Acids Res 2010; 38:7260-72. [PMID: 20610435 PMCID: PMC2978376 DOI: 10.1093/nar/gkq611] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The S1 mRNA of avian reovirus is functionally tricistronic, encoding three unrelated proteins, p10, p17 and σC, from three sequential, partially overlapping open reading frames (ORFs). The mechanism of translation initiation at the 3'-proximal σC ORF is currently unknown. Transient RNA transfections using Renilla luciferase reporter constructs revealed only a modest reduction in reporter expression upon optimization of either the p10 or p17 start sites. Insertion of multiple upstream AUG (uAUG) codons in a preferred start codon sequence context resulted in a substantial retention of downstream translation initiation on the S1 mRNA, but not on a heterologous mRNA. The S1 mRNA therefore facilitates leaky scanning to promote ribosome access to the σC start codon. Evidence also indicates that σC translation is mediated by a second scanning-independent mechanism capable of bypassing upstream ORFs. This alternate mechanism is cap-dependent and requires a sequence-dependent translation enhancer element that is complementary to 18S rRNA. Downstream translation initiation of the tricistronic S1 mRNA is therefore made possible by two alternate mechanisms, facilitated leaky scanning and an atypical form of ribosome shunting. This dual mechanism of downstream translation initiation ensures sufficient expression of the σC cell attachment protein that is essential for infectious progeny virus production.
Collapse
Affiliation(s)
- Trina Racine
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada B3H1X5
| | | |
Collapse
|
35
|
Roy B, Vaughn JN, Kim BH, Zhou F, Gilchrist MA, Von Arnim AG. The h subunit of eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames. RNA (NEW YORK, N.Y.) 2010; 16:748-61. [PMID: 20179149 PMCID: PMC2844622 DOI: 10.1261/rna.2056010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Upstream open reading frames (uORFs) are protein coding elements in the 5' leader of messenger RNAs. uORFs generally inhibit translation of the main ORF because ribosomes that perform translation elongation suffer either permanent or conditional loss of reinitiation competence. After conditional loss, reinitiation competence may be regained by, at the minimum, reacquisition of a fresh methionyl-tRNA. The conserved h subunit of Arabidopsis eukaryotic initiation factor 3 (eIF3) mitigates the inhibitory effects of certain uORFs. Here, we define more precisely how this occurs, by combining gene expression data from mutated 5' leaders of Arabidopsis AtbZip11 (At4g34590) and yeast GCN4 with a computational model of translation initiation in wild-type and eif3h mutant plants. Of the four phylogenetically conserved uORFs in AtbZip11, three are inhibitory to translation, while one is anti-inhibitory. The mutation in eIF3h has no major effect on uORF start codon recognition. Instead, eIF3h supports efficient reinitiation after uORF translation. Modeling suggested that the permanent loss of reinitiation competence during uORF translation occurs at a faster rate in the mutant than in the wild type. Thus, eIF3h ensures that a fraction of uORF-translating ribosomes retain their competence to resume scanning. Experiments using the yeast GCN4 leader provided no evidence that eIF3h fosters tRNA reaquisition. Together, these results attribute a specific molecular function in translation initiation to an individual eIF3 subunit in a multicellular eukaryote.
Collapse
Affiliation(s)
- Bijoyita Roy
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | | | | | |
Collapse
|
36
|
Van Der Kelen K, Beyaert R, Inzé D, De Veylder L. Translational control of eukaryotic gene expression. Crit Rev Biochem Mol Biol 2009; 44:143-68. [PMID: 19604130 DOI: 10.1080/10409230902882090] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Translational control mechanisms are, besides transcriptional control and mRNA stability, the most determining for final protein levels. A large number of accessory factors that assist the ribosome during initiation, elongation, and termination of translation are required for protein synthesis. Cap-dependent translational control occurs mainly during the initiation step, involving eukaryotic initiation factors (eIFs) and accessory proteins. Initiation is affected by various stimuli that influence the phosphorylation status of both eIF4E and eIF2 and through binding of 4E-binding proteins to eIF4E, which finally inhibits cap- dependent translation. Under conditions where cap-dependent translation is hampered, translation of transcripts containing an internal ribosome entry site can still be supported in a cap-independent manner. An interesting example of translational control is the switch between cap-independent and cap-dependent translation during the eukaryotic cell cycle. At the G1-to-S transition, translation occurs predominantly in a cap-dependent manner, while during the G2-to-M transition, cap-dependent translation is inhibited and transcripts are predominantly translated through a cap-independent mechanism.
Collapse
|
37
|
Post-transcriptional regulation of gene expression in plants during abiotic stress. Int J Mol Sci 2009; 10:3168-3185. [PMID: 19742130 PMCID: PMC2738917 DOI: 10.3390/ijms10073168] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/04/2009] [Accepted: 07/09/2009] [Indexed: 12/22/2022] Open
Abstract
Land plants are anchored in one place for most of their life cycle and therefore must constantly adapt their growth and metabolism to abiotic stresses such as light intensity, temperature and the availability of water and essential minerals. Thus, plants’ subsistence depends on their ability to regulate rapidly gene expression in order to adapt their physiology to their environment. Recent studies indicate that post-transcriptional regulations of gene expression play an important role in how plants respond to abiotic stresses. We will review the different mechanisms of post-transcriptional regulation of nuclear genes expression including messenger RNA (mRNA) processing, stability, localization and protein translation, and discuss their relative importance for plant adaptation to abiotic stress.
Collapse
|
38
|
Dong J, Nanda JS, Rahman H, Pruitt MR, Shin BS, Wong CM, Lorsch JR, Hinnebusch AG. Genetic identification of yeast 18S rRNA residues required for efficient recruitment of initiator tRNA(Met) and AUG selection. Genes Dev 2008; 22:2242-55. [PMID: 18708582 DOI: 10.1101/gad.1696608] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
High-resolution structures of bacterial 70S ribosomes have provided atomic details about mRNA and tRNA binding to the decoding center during elongation, but such information is lacking for preinitiation complexes (PICs). We identified residues in yeast 18S rRNA critical in vivo for recruiting methionyl tRNA(i)(Met) to 40S subunits during initiation by isolating mutations that derepress GCN4 mRNA translation. Several such Gcd(-) mutations alter the A928:U1389 base pair in helix 28 (h28) and allow PICs to scan through the start codons of upstream ORFs that normally repress GCN4 translation. The A928U substitution also impairs TC binding to PICs in a reconstituted system in vitro. Mutation of the bulge G926 in h28 and certain other residues corresponding to direct contacts with the P-site codon or tRNA in bacterial 70S complexes confer Gcd(-) phenotypes that (like A928 substitutions) are suppressed by overexpressing tRNA(i)(Met). Hence, the nonconserved 928:1389 base pair in h28, plus conserved 18S rRNA residues corresponding to P-site contacts in bacterial ribosomes, are critical for efficient Met-tRNA(i)(Met) binding and AUG selection in eukaryotes.
Collapse
Affiliation(s)
- Jinsheng Dong
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
A ribosomal density-mapping procedure to explore ribosome positions along translating mRNAs. Methods Mol Biol 2008; 419:231-42. [PMID: 18369987 DOI: 10.1007/978-1-59745-033-1_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The number and distribution of ribosomes on a transcript provide useful information in ascertaining the efficiency of translation. Herein we describe a direct method to determine the association of ribosomes with specific regions of an mRNA. The method, termed Ribosome Density Mapping (RDM), includes cleavage of ribosomes-associated mRNAs with RNase H and complementary oligodeoxynucleotide followed by separation of the cleavage products on a sucrose gradient. The gradient is then fractionated and the sedimentation position of each mRNA fragment is determined by northern analysis. Although developed for yeast mRNAs, RDM is likely to be applicable to various other systems.
Collapse
|
40
|
Cvijović M, Dalevi D, Bilsland E, Kemp GJL, Sunnerhagen P. Identification of putative regulatory upstream ORFs in the yeast genome using heuristics and evolutionary conservation. BMC Bioinformatics 2007; 8:295. [PMID: 17686169 PMCID: PMC1964767 DOI: 10.1186/1471-2105-8-295] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2007] [Accepted: 08/08/2007] [Indexed: 11/30/2022] Open
Abstract
Background The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs) present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis. Results We have used comparative genomics to identify novel uORFs in yeast with a high likelihood of having a translational regulatory role. We examined uORFs, previously shown to play a role in regulation of translation in Saccharomyces cerevisiae, for evolutionary conservation within seven Saccharomyces species. Inspection of the set of conserved uORFs yielded the following three characteristics useful for discrimination of functional from spurious uORFs: a length between 4 and 6 codons, a distance from the start of the main ORF between 50 and 150 nucleotides, and finally a lack of overlap with, and clear separation from, neighbouring uORFs. These derived rules are inherently associated with uORFs with properties similar to the GCN4 locus, and may not detect most uORFs of other types. uORFs with high scores based on these rules showed a much higher evolutionary conservation than randomly selected uORFs. In a genome-wide scan in S. cerevisiae, we found 34 conserved uORFs from 32 genes that we predict to be functional; subsequent analysis showed the majority of these to be located within transcripts. A total of 252 genes were found containing conserved uORFs with properties indicative of a functional role; all but 7 are novel. Functional content analysis of this set identified an overrepresentation of genes involved in transcriptional control and development. Conclusion Evolutionary conservation of uORFs in yeasts can be traced up to 100 million years of separation. The conserved uORFs have certain characteristics with respect to length, distance from each other and from the main start codon, and folding energy of the sequence. These newly found characteristics can be used to facilitate detection of other conserved uORFs.
Collapse
Affiliation(s)
- Marija Cvijović
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, PO Box 462 SE-405 30 Göteborg, Sweden
- Max-Planck Institute for Molecular Genetics, Ihnestraße 63, D-14195 Berlin, Germany
| | - Daniel Dalevi
- Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Elizabeth Bilsland
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, PO Box 462 SE-405 30 Göteborg, Sweden
- Biochemistry Department, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Graham JL Kemp
- Department of Computer Science and Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Per Sunnerhagen
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, PO Box 462 SE-405 30 Göteborg, Sweden
| |
Collapse
|
41
|
Racine T, Barry C, Roy K, Dawe SJ, Shmulevitz M, Duncan R. Leaky scanning and scanning-independent ribosome migration on the tricistronic S1 mRNA of avian reovirus. J Biol Chem 2007; 282:25613-22. [PMID: 17604272 DOI: 10.1074/jbc.m703708200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The S1 genome segments of avian and Nelson Bay reovirus encode tricistronic mRNAs containing three sequential partially overlapping open reading frames (ORFs). The translation start site of the 3'-proximal ORF encoding the sigmaC protein lies downstream of two ORFs encoding the unrelated p10 and p17 proteins and more than 600 nucleotides distal from the 5'-end of the mRNA. It is unclear how translation of this remarkable tricistronic mRNA is regulated. We now show that the p10 and p17 ORFs are coordinately expressed by leaky scanning. Translation initiation events at these 5'-proximal ORFs, however, have little to no effect on translation of the 3'-proximal sigmaC ORF. Northern blotting, insertion of upstream stop codons or optimized translation start sites, 5'-truncation analysis, and poliovirus 2A protease-mediated cleavage of eIF4G indicated sigmaC translation derives from a full-length tricistronic mRNA using a mechanism that is eIF4G-dependent but leaky scanning- and translation reinitiation-independent. Further analysis of artificial bicistronic mRNAs failed to provide any evidence that sigmaC translation derives from an internal ribosome entry site. Additional features of the S1 mRNA and the mechanism of sigmaC translation also differ from current models of ribosomal shunting. Translation of the tricistronic reovirus S1 mRNA, therefore, is dependent both on leaky scanning and on a novel scanning-independent mechanism that allows translation initiation complexes to efficiently bypass two functional upstream ORFs.
Collapse
Affiliation(s)
- Trina Racine
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Sunnerhagen P. Cytoplasmatic post-transcriptional regulation and intracellular signalling. Mol Genet Genomics 2007; 277:341-55. [PMID: 17333280 DOI: 10.1007/s00438-007-0221-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Accepted: 02/06/2007] [Indexed: 02/05/2023]
Abstract
Studies of intracellular signalling have traditionally focused on regulation at the levels of initiation of transcription on one hand, and post-translational regulation on the other. More recently, it is becoming apparent that the post-transcriptional level of gene expression is also subject to regulation by signalling pathways. The emphasis in this review is on short-term regulation of mRNAs at the levels of degradation and frequency of translation. Interplay between the mRNA translation and degradation machineries and mainly the TOR, stress-induced MAP kinase (SAPK), and DNA damage checkpoint pathways is discussed. Since a large fraction of the molecular mechanisms has been dissected using molecular genetics methods in yeast, most of the examples in this review are from budding and fission yeast. Some parallels are drawn to plant and animal cells. This review is intended for those more familiar with intracellular signalling, and who realise that post-transcriptional regulation may be an underemphasised level of signalling output.
Collapse
Affiliation(s)
- Per Sunnerhagen
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, P.O. Box 462, 405 30, Göteborg, Sweden.
| |
Collapse
|
43
|
Krummheuer J, Johnson AT, Hauber I, Kammler S, Anderson JL, Hauber J, Purcell DFJ, Schaal H. A minimal uORF within the HIV-1 vpu leader allows efficient translation initiation at the downstream env AUG. Virology 2007; 363:261-71. [PMID: 17331561 DOI: 10.1016/j.virol.2007.01.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 11/09/2006] [Accepted: 01/18/2007] [Indexed: 11/26/2022]
Abstract
The HIV-1 Vpu and Env proteins are translated from 16 alternatively spliced bicistronic mRNA isoforms. Translation of HIV-1 mRNAs generally follows the ribosome scanning mechanism. However, by using subgenomic env expression vectors, we found that translation of glycoprotein from polycistronic mRNAs was inconsistent with leaky scanning. Instead a conserved minimal upstream open reading frame (uORF) consisting only of a start and stop codon that overlaps with the vpu start site, appears to augment access to the env start codon downstream. Mutating the translational start and stop codons of this uORF resulted in up to fivefold reduction in Env expression. Removing the vpu uORF and increasing the strength of the authentic vpu initiation sequence abolished Env expression from subgenomic constructs and replication of HIV-1, whereas an identical increase in the strength of the minimal uORF initiation site did not alter Env expression.
Collapse
Affiliation(s)
- Jörg Krummheuer
- Institut für Virologie, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, Geb. 22.21, D-40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
The extracellular space is an environment hostile to unmodified polypeptides. For this reason, many eukaryotic proteins destined for exposure to this environment through secretion or display at the cell surface require maturation steps within a specialized organelle, the endoplasmic reticulum (ER). A complex homeostatic mechanism, known as the unfolded protein response (UPR), has evolved to link the load of newly synthesized proteins with the capacity of the ER to mature them. It has become apparent that dysfunction of the UPR plays an important role in some human diseases, especially those involving tissues dedicated to extracellular protein synthesis. Diabetes mellitus is an example of such a disease, since the demands for constantly varying levels of insulin synthesis make pancreatic beta-cells dependent on efficient UPR signaling. Furthermore, recent discoveries in this field indicate that the importance of the UPR in diabetes is not restricted to the beta-cell but is also involved in peripheral insulin resistance. This review addresses aspects of the UPR currently understood to be involved in human disease, including their role in diabetes mellitus, atherosclerosis, and neoplasia.
Collapse
Affiliation(s)
- Stefan J Marciniak
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
45
|
Doronina VA, Brown JD. When nonsense makes sense and vice versa: Noncanonical decoding events at stop codons in eukaryotes. Mol Biol 2006. [DOI: 10.1134/s0026893306040182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Abstract
Cells reprogram gene expression in response to environmental changes by mobilizing transcriptional activators. The activator protein Gcn4 of the yeast Saccharomyces cerevisiae is regulated by an intricate translational control mechanism, which is the primary focus of this review, and also by the modulation of its stability in response to nutrient availability. Translation of GCN4 mRNA is derepressed in amino acid-deprived cells, leading to transcriptional induction of nearly all genes encoding amino acid biosynthetic enzymes. The trans-acting proteins that control GCN4 translation have general functions in the initiation of protein synthesis, or regulate the activities of initiation factors, so that the molecular events that induce GCN4 translation also reduce the rate of general protein synthesis. This dual regulatory response enables cells to limit their consumption of amino acids while diverting resources into amino acid biosynthesis in nutrient-poor environments. Remarkably, mammalian cells use the same strategy to downregulate protein synthesis while inducing transcriptional activators of stress-response genes under various stressful conditions, including amino acid starvation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| |
Collapse
|
47
|
Kozak M. Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 2005; 361:13-37. [PMID: 16213112 DOI: 10.1016/j.gene.2005.06.037] [Citation(s) in RCA: 555] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2005] [Revised: 05/31/2005] [Accepted: 06/27/2005] [Indexed: 01/19/2023]
Abstract
The mechanism of initiation of translation differs between prokaryotes and eukaryotes, and the strategies used for regulation differ accordingly. Translation in prokaryotes is usually regulated by blocking access to the initiation site. This is accomplished via base-paired structures (within the mRNA itself, or between the mRNA and a small trans-acting RNA) or via mRNA-binding proteins. Classic examples of each mechanism are described. The polycistronic structure of mRNAs is an important aspect of translational control in prokaryotes, but polycistronic mRNAs are not usable (and usually not produced) in eukaryotes. Four structural elements in eukaryotic mRNAs are important for regulating translation: (i) the m7G cap; (ii) sequences flanking the AUG start codon; (iii) the position of the AUG codon relative to the 5' end of the mRNA; and (iv) secondary structure within the mRNA leader sequence. The scanning model provides a framework for understanding these effects. The scanning mechanism also explains how small open reading frames near the 5' end of the mRNA can down-regulate translation. This constraint is sometimes abrogated by changing the structure of the mRNA, sometimes with clinical consequences. Examples are described. Some mistaken ideas about regulation of translation that have found their way into textbooks are pointed out and corrected.
Collapse
Affiliation(s)
- Marilyn Kozak
- Department of Biochemistry, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA.
| |
Collapse
|
48
|
Fekete CA, Applefield DJ, Blakely SA, Shirokikh N, Pestova T, Lorsch JR, Hinnebusch AG. The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J 2005; 24:3588-601. [PMID: 16193068 PMCID: PMC1276705 DOI: 10.1038/sj.emboj.7600821] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 08/26/2005] [Indexed: 11/09/2022] Open
Abstract
Translation initiation factor 1A stimulates 40S-binding of the eukaryotic initiation factor 2 (eIF2)/GTP/Met-tRNA(iMet) ternary complex (TC) and promotes scanning in vitro. eIF1A contains an OB-fold present in bacterial IF1 plus N- and C-terminal extensions. Truncating the C-terminus (deltaC) or mutating OB-fold residues (66-70) of eIF1A reduced general translation in vivo but increased GCN4 translation (Gcd- phenotype) in a manner suppressed by overexpressing TC. Consistent with this, both mutations diminished 40S-bound TC, eIF5 and eIF3 in vivo, and deltaC impaired TC recruitment in vitro. The assembly defects of the OB-fold mutation can be attributed to reduced 40S-binding of eIF1A, whereas deltaC impairs eIF1A function on the ribosome. A substitution in the C-terminal helix (98-101) also reduced 43S assembly in vivo. Rather than producing a Gcd- phenotype, however, 98-101 impairs GCN4 derepression in a manner consistent with defective scanning by reinitiating ribosomes. Indeed, 98-101 allows formation of aberrant 48S complexes in vitro and increases utilization of non-AUG codons in vivo. Thus, the OB-fold is crucial for ribosome-binding and the C-terminal domain of eIF1A has eukaryotic-specific functions in TC recruitment and scanning.
Collapse
Affiliation(s)
- Christie A Fekete
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Drew J Applefield
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephen A Blakely
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Nikolay Shirokikh
- Department of Microbiology and Immunology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY, USA
| | - Tatyana Pestova
- Department of Microbiology and Immunology, State University of New York Health Science Center at Brooklyn, Brooklyn, NY, USA
| | - Jon R Lorsch
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, NIH, Building 6A/Room B1A-13, Bethesda, MD 20892, USA. Tel.: +1 301 496 4480; Fax: +1 301 496 6828; E-mail:
| |
Collapse
|
49
|
Palmer LK, Shoemaker JL, Baptiste BA, Wolfe D, Keil RL. Inhibition of translation initiation by volatile anesthetics involves nutrient-sensitive GCN-independent and -dependent processes in yeast. Mol Biol Cell 2005; 16:3727-39. [PMID: 15930127 PMCID: PMC1182311 DOI: 10.1091/mbc.e05-02-0127] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 11/11/2022] Open
Abstract
Volatile anesthetics including isoflurane affect all cells examined, but their mechanisms of action remain unknown. To investigate the cellular basis of anesthetic action, we are studying Saccharomyces cerevisiae mutants altered in their response to anesthetics. The zzz3-1 mutation renders yeast isoflurane resistant and is an allele of GCN3. Gcn3p functions in the evolutionarily conserved general amino acid control (GCN) pathway that regulates protein synthesis and gene expression in response to nutrient availability through phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). Hyperphosphorylation of eIF2alpha inhibits translation initiation during amino acid starvation. Isoflurane rapidly (in <15 min) inhibits yeast cell division and amino acid uptake. Unexpectedly, phosphorylation of eIF2alpha decreased dramatically upon initial exposure although hyperphosphorylation occurred later. Translation initiation was inhibited by isoflurane even when eIF2alpha phosphorylation decreased and this inhibition was GCN-independent. Maintenance of inhibition required GCN-dependent hyperphosphorylation of eIF2alpha. Thus, two nutrient-sensitive stages displaying unique features promote isoflurane-induced inhibition of translation initiation. The rapid phase is GCN-independent and apparently has not been recognized previously. The maintenance phase is GCN-dependent and requires inhibition of general translation imparted by enhanced eIF2alpha phosphorylation. Surprisingly, as shown here, the transcription activator Gcn4p does not affect anesthetic response.
Collapse
Affiliation(s)
- Laura K Palmer
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033-2390, USA
| | | | | | | | | |
Collapse
|
50
|
Lu PD, Harding HP, Ron D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. ACTA ACUST UNITED AC 2004; 167:27-33. [PMID: 15479734 PMCID: PMC2172506 DOI: 10.1083/jcb.200408003] [Citation(s) in RCA: 728] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stress-induced eukaryotic translation initiation factor 2 (eIF2) alpha phosphorylation paradoxically increases translation of the metazoan activating transcription factor 4 (ATF4), activating the integrated stress response (ISR), a pro-survival gene expression program. Previous studies implicated the 5' end of the ATF4 mRNA, with its two conserved upstream ORFs (uORFs), in this translational regulation. Here, we report on mutation analysis of the ATF4 mRNA which revealed that scanning ribosomes initiate translation efficiently at both uORFs and ribosomes that had translated uORF1 efficiently reinitiate translation at downstream AUGs. In unstressed cells, low levels of eIF2alpha phosphorylation favor early capacitation of such reinitiating ribosomes directing them to the inhibitory uORF2, which precludes subsequent translation of ATF4 and represses the ISR. In stressed cells high levels of eIF2alpha phosphorylation delays ribosome capacitation and favors reinitiation at ATF4 over the inhibitory uORF2. These features are common to regulated translation of GCN4 in yeast. The metazoan ISR thus resembles the yeast general control response both in its target genes and its mechanistic details.
Collapse
Affiliation(s)
- Phoebe D Lu
- Department of Cell Biology, School of Medicine, New York University, New York, NY 10016, USA
| | | | | |
Collapse
|