1
|
Shavva VS, Bogomolova AM, Nikitin AA, Dizhe EB, Oleinikova GN, Lapikov IA, Tanyanskiy DA, Perevozchikov AP, Orlov SV. FOXO1 and LXRα downregulate the apolipoprotein A-I gene expression during hydrogen peroxide-induced oxidative stress in HepG2 cells. Cell Stress Chaperones 2017; 22:123-134. [PMID: 27896567 PMCID: PMC5225066 DOI: 10.1007/s12192-016-0749-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 12/17/2022] Open
Abstract
Reactive oxygen species damage various cell components including DNA, proteins, and lipids, and these impairments could be a reason for severe human diseases including atherosclerosis. Forkhead box O1 (FOXO1), an important metabolic transcription factor, upregulates antioxidant and proapoptotic genes during oxidative stress. Apolipoprotein A-I (ApoA-I) forms high density lipoprotein (HDL) particles that are responsible for cholesterol transfer from peripheral tissues to liver for removal in bile in vertebrates. The main sources for plasma ApoA-I in mammals are liver and jejunum. Hepatic apoA-I transcription depends on a multitude of metabolic transcription factors. We demonstrate that ApoA-I synthesis and secretion are decreased during H2O2-induced oxidative stress in human hepatoma cell line HepG2. Here, we first show that FOXO1 binds to site B of apoA-I hepatic enhancer and downregulates apoA-I gene activity in HepG2 cells. Moreover, FOXO1 and LXRα transcription factors participate in H2O2-triggered downregulation of apoA-I gene together with Src, JNK, p38, and AMPK kinase cascades. Mutations of sites B or C as well as the administration of siRNAs against FOXO1 or LXRα to HepG2 cells abolished the hydrogen peroxide-mediated suppression of apoA-I gene.
Collapse
Affiliation(s)
- Vladimir S Shavva
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia.
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia.
| | | | - Artemy A Nikitin
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Biochemistry, St. Petersburg State University, St. Petersburg, Russia
| | - Ella B Dizhe
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
| | - Galina N Oleinikova
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
| | - Ivan A Lapikov
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Dmitry A Tanyanskiy
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Fundamental Medicine and Medical Technologies, St. Petersburg State University, St. Petersburg, Russia
| | - Andrej P Perevozchikov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia
| | - Sergey V Orlov
- Department of Biochemistry, Institute of Experimental Medicine, Russian Academy of Medical Sciences, Acad. Pavlov St., 12, St. Petersburg, 197376, Russia.
- Department of Embryology, St. Petersburg State University, St. Petersburg, Russia.
| |
Collapse
|
2
|
Zhang LH, Kamanna VS, Ganji SH, Xiong XM, Kashyap ML. Pioglitazone increases apolipoprotein A-I production by directly enhancing PPRE-dependent transcription in HepG2 cells. J Lipid Res 2010; 51:2211-22. [PMID: 20371549 DOI: 10.1194/jlr.m004481] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pioglitazone, a hypoglycemic agent, has been shown to increase plasma HDL cholesterol, but the mechanism is incompletely understood. We further investigated effects of pioglitazone on transcriptional regulation of apolipoprotein (apo)A-I gene and functional properties of pioglitazone-induced apoA-I-containing particles. Pioglitazone dose-dependently stimulated apoA-I promoter activities in HepG2 cells. A peroxisome proliferator-activated receptor (PPAR)-response element located in site A (-214 to -192 bp, upstream of the transcription start site) of the promoter is required for pioglitazone-induced apoA-I gene transcription. Deletion of site A (-214 to -192 bp), B (-169 to -146 bp), or C (-134 to -119 bp), which clusters a number of cis-acting elements for binding of different transcription factors, reduced the basal apoA-I promoter activities, and no additional pioglitazone-sensitive elements were found within this region. Overexpression or knock-down of liver receptor homolog-1, a newly identified nuclear factor with strong stimulatory effect on apoA-I transcription, did not alter pioglitazone-induced apoA-I transcription. Pioglitazone-induced apoA-I transcription is mainly mediated through PPARalpha but not PPARgamma in hepatocytes. Pioglitazone induced production of HDL enriched in its subfraction containing apoA-I without apoA-II, which inhibited monocyte adhesion to endothelial cells in vitro. In conclusion, pioglitazone increases apoA-I production by directly enhancing PPAR-response element-dependent transcription, resulting in generation of apoA-I-containing HDL particles with increased anti-inflammatory property.
Collapse
Affiliation(s)
- Lin-Hua Zhang
- Atherosclerosis Research Center, Veterans Affairs Healthcare System, Long Beach, CA 90822, USA
| | | | | | | | | |
Collapse
|
3
|
Takahashi H, Martin-Brown S, Washburn MP, Florens L, Conaway JW, Conaway RC. Proteomics reveals a physical and functional link between hepatocyte nuclear factor 4alpha and transcription factor IID. J Biol Chem 2009; 284:32405-12. [PMID: 19805548 DOI: 10.1074/jbc.m109.017954] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Proteomic analyses have contributed substantially to our understanding of diverse cellular processes. Improvements in the sensitivity of mass spectrometry approaches are enabling more in-depth analyses of protein-protein networks and, in some cases, are providing surprising new insights into well established, longstanding problems. Here, we describe such a proteomic analysis that exploits MudPIT mass spectrometry and has led to the discovery of a physical and functional link between the orphan nuclear receptor hepatocyte nuclear factor 4alpha (HNF4alpha) and transcription factor IID (TFIID). A systematic characterization of the HNF4alpha-TFIID link revealed that the HNF4alpha DNA-binding domain binds directly to the TATA box-binding protein (TBP) and, through this interaction, can target TBP or TFIID to promoters containing HNF4alpha-binding sites in vitro. Supporting the functional significance of this interaction, an HNF4alpha mutation that blocks binding of TBP to HNF4alpha interferes with HNF4alpha transactivation activity in cells. These findings identify an unexpected role for the HNF4alpha DNA-binding domain in mediating key regulatory interactions and provide new insights into the roles of HNF4alpha and TFIID in RNA polymerase II transcription.
Collapse
Affiliation(s)
- Hidehisa Takahashi
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | | | | | | | | | | |
Collapse
|
4
|
Srivastava RA, Srivastava N. High density lipoprotein, apolipoprotein A-I, and coronary artery disease. Mol Cell Biochem 2000; 209:131-44. [PMID: 10942211 DOI: 10.1023/a:1007111830472] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
High density lipoproteins (HDL), one of the main lipoprotein particles circulating in plasma, is involved in the reverse cholesterol transport. Several lines of evidence suggest that elevated levels of HDL is protective against coronary heart disease. The role of HDL in the removal of body cholesterol and in the regression of atherosclerosis add to the importance of understanding the molecular-cellular processes that determine plasma levels of HDL. Factors modulating plasma levels of HDL may have influence on the predisposition of an individual to premature coronary artery disease. Apolipoprotein (apo) A-I is the main apolipoprotein component of HDL and, to a large extent, sets the plasma levels of HDL. Thus, understanding the regulation of apoA-I gene expression may provide clues to raise plasma levels of HDL. This review discusses the various pathways that alter plasma levels of HDL. Since apoA-I is the main protein component of HDL and determines the plasma levels of HDL, this review also covers the regulation of apoA-I gene expression.
Collapse
Affiliation(s)
- R A Srivastava
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA.
| | | |
Collapse
|
5
|
Zaiou M, Azrolan N, Hayek T, Wang H, Wu L, Haghpassand M, Cizman B, Madaio MP, Milbrandt J, Marsh JB, Breslow JL, Fisher EA. The full induction of human apoprotein A-I gene expression by the experimental nephrotic syndrome in transgenic mice depends on cis-acting elements in the proximal 256 base-pair promoter region and the trans-acting factor early growth response factor 1. J Clin Invest 1998; 101:1699-1707. [PMID: 9541501 PMCID: PMC508752 DOI: 10.1172/jci2166] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To identify molecular factors regulating apo A-I production in vivo, we induced in transgenic mice the experimental nephrotic syndrome, which results in elevated levels of HDL cholesterol (HDL-C), plasma apo A-I, and hepatic apo A-I mRNA. Human (h) apo A-I transgenic mice with different length 5' flanking sequences (5.5 or 0.256 kb, the core promoter for hepatic-specific basal expression) were injected with nephrotoxic (NTS) or control serum. With nephrosis, there were comparable (greater than twofold) increases in both lines of HDL-C, h-apo A-I, and hepatic h-apo A-I mRNA, suggesting that cis-acting elements regulating induced apo A-I gene expression were within its core promoter. Hepatic nuclear extracts from control and nephrotic mice footprinted the core promoter similarly, implying that the same elements regulated basal and induced expression. Hepatic mRNA levels for hepatocyte nuclear factor (HNF) 4 and early growth response factor (EGR) 1, trans-acting factors that bind to the core promoter, were measured: HNF4 mRNA was not affected, but that of EGR-1 was elevated approximately fivefold in the nephrotic group. EGR-1 knockout (EGR1-KO) mice or mice expressing EGR-1 were injected with either NTS or control serum. Levels of HDL-C, apo A-I, and hepatic apo A-I mRNA were lowest in nonnephrotic EGR1-KO mice and highest in nephrotic mice expressing EGR-1. Although in EGR1-KO mice HDL-C, apo A-I, and apo A-I mRNA levels also increased after NTS injection, they were approximately half of those in the nephrotic EGR-1-expressing mice. We conclude that in this model, basal and induced apo A-I gene expression in vivo are regulated by the trans-acting factor EGR-1 and require the same cis-acting elements in the core promoter.
Collapse
Affiliation(s)
- M Zaiou
- Department of Biochemistry, Medical College of Pennsylvania - Hahnemann School of Medicine, Allegheny University of the Health Sciences, Philadelphia, Pennsylvania 19129, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Kilbourne EJ, Evans MJ, Karathanasis SK. E1A represses apolipoprotein AI enhancer activity in liver cells through a pRb- and CBP-independent pathway. Nucleic Acids Res 1998; 26:1761-8. [PMID: 9512550 PMCID: PMC147459 DOI: 10.1093/nar/26.7.1761] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The apolipoprotein AI (apoAI) promoter/enhancer contains multiple cis -acting elements on which a variety of hepatocyte-enriched and ubiquitous transcription factors function synergistically to regulate liver-specific transcription. Adenovirus E1A proteins repress tissue-specific gene expression and disrupt the differentiated state in a variety of cell types. In this study expression of E1A 12Sor 13S in hepatoblastoma HepG2 cells repressed apoAI enhancer activity 8-fold. Deletion mapping analysis showed that inhibition by E1A was mediated by the apoAI promoter site B. E1A selectively inhibited the ability of HNF3beta and HNF3alpha to transactivate reporter genes controlled by the apoAI site B and the HNF3 binding site from the transthyretin promoter. The E1A-mediated repression of HNF3 activity was not reversed by overexpression of HNF3beta nor did E1A alter nuclear HNF3beta protein levels or inhibit HNF3 binding to DNA in mobility shift assays. Overexpression of two cofactors known to interact with E1A, pRb and CBP failed to overcome inhibition of HNF3 activity. Similarly, mutations in E1A that disrupt its interaction with pRb or CBP did not compromise its ability to repress HNF3beta transcriptional activity. These data suggest that E1A inhibits HNF3 activity by inactivating a limiting cofactor(s) distinct from pRb or CBP.
Collapse
Affiliation(s)
- E J Kilbourne
- Department of Nuclear Receptors, Wyeth-Ayerst Research, 145 King of Prussia Road, Radnor, PA 19087, USA
| | | | | |
Collapse
|
7
|
von Harsdorf R, Edwards JG, Shen YT, Kudej RK, Dietz R, Leinwand LA, Nadal-Ginard B, Vatner SF. Identification of a cis-acting regulatory element conferring inducibility of the atrial natriuretic factor gene in acute pressure overload. J Clin Invest 1997; 100:1294-304. [PMID: 9276748 PMCID: PMC508307 DOI: 10.1172/jci119643] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
To identify the cis-acting regulatory element(s) which control the induction of the atrial natriuretic factor (ANF) gene in acute pressure overload, DNA constructs consisting of promoter elements linked to a reporter gene were injected into the myocardium of dogs, which underwent aortic banding or were sham-operated. Expression of a reporter gene construct harboring the ANF promoter (-3400ANF) was induced 6-12-fold after 7 d of pressure overload. An internal deletion of 556 bp (nucleotide sequence -693 to -137) completely abrogated the inducibility of the ANF reporter gene construct. An activator protein-1 (AP1)-like site (-496 to -489) and a cAMP regulatory element (CRE) (-602 to -596) are located within the deleted sequence. Site-directed mutagenesis of the AP1-like site but not the CRE completely prevented the induction of this construct to acute pressure overload. Further, the AP1-like site was able to confer inducibility of a heterologous promoter (beta-myosin heavy chain) to higher values than controls. Gel mobility shift assay (GMSA) supershift analysis was performed using a radiolabeled probe of the ANF promoter (-506/-483) that included the AP1-like site (ATGAATCA) sequence, as well as a probe converted to contain an AP1 consensus sequence (ATGACTCA). GMSA analysis demonstrated that the ANF AP1-like element could bind both a constitutively expressed factor and the AP1 proteins, and conversion to a true AP1 site increased its affinity for AP1. However, 7 d after the onset of pressure overload, the AP1 proteins were present only at low levels, and the major complex formed by the ANF AP1-like probe was not supershifted by a jun antibody. Using a large animal model of pressure overload, we have demonstrated that a unique cis-acting element was primarily responsible for the overload induction of the ANF gene.
Collapse
Affiliation(s)
- R von Harsdorf
- Franz Volhard Klinik und Max-Delbrück-Centrum, Humboldt Universität zu Berlin, Berlin, Germany 13 122
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Achatz G, Hölzl B, Speckmayer R, Hauser C, Sandhofer F, Paulweber B. Functional domains of the human orphan receptor ARP-1/COUP-TFII involved in active repression and transrepression. Mol Cell Biol 1997; 17:4914-32. [PMID: 9271371 PMCID: PMC232344 DOI: 10.1128/mcb.17.9.4914] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The orphan receptor ARP-1/COUP-TFII, a member of the chicken ovalbumin upstream promoter transcription factor (COUP-TF) subfamily of nuclear receptors, strongly represses transcriptional activity of numerous genes, including several apolipoprotein-encoding genes. Recently it has been demonstrated that the mechanism by which COUP-TFs reduce transcriptional activity involves active repression and transrepression. To map the domains of ARP-1/COUP-TFII required for repressor activity, a detailed deletion analysis of the protein was performed. Chimeric proteins in which various segments of the ARP-1/COUP-TFII carboxy terminus were fused to the GAL4 DNA binding domain were used to characterize its active repression domain. The smallest segment confering active repressor activity to a heterologous DNA binding domain was found to comprise residues 210 to 414. This domain encompasses the region of ARP-1/COUP-TFII corresponding to helices 3 to 12 in the recently published crystal structure of other members of the nuclear receptor superfamily. It includes the AF-2 AD core domain formed by helix 12 but not the hinge region, which is essential for interaction with a corepressor in the case of the thyroid hormone and retinoic acid receptor. Attachment of the nuclear localization signal from the simian virus 40 large T antigen (Flu tag) to the amino terminus of ARP-1/COUP-TFII abolished its ability to bind to DNA without affecting its repressor activity. By using a series of Flu-tagged mutants, the domains required for transrepressor activity of the protein were mapped. They include the DNA binding domain and the segment spanning residues 193 to 399. Transcriptional activity induced by liver-enriched transactivators such as hepatocyte nuclear factor 3 (HNF-3), C/EBP, or HNF-4 was repressed by ARP-1/COUP-TFII independent of the presence of its cognate binding site, while basal transcription or transcriptional activity induced by ATF or Sp1 was not perturbed by the protein. In conclusion, our results demonstrate that the domains of ARP-1/COUP-TFII required for active repression and transrepression do not coincide. Moreover, they strongly suggest that transrepression is the predominant mechanism underlying repressor activity of ARP-1/COUP-TFII. This mechanism most likely involves interaction of the protein with one or several transcriptional coactivator proteins which are employed by various liver-enriched transactivators but not by ubiquitous factors such as Sp1 or ATF.
Collapse
Affiliation(s)
- G Achatz
- First Department of Internal Medicine, General Hospital of Salzburg, Austria
| | | | | | | | | | | |
Collapse
|
9
|
Boonmark NW, Lou XJ, Yang ZJ, Schwartz K, Zhang JL, Rubin EM, Lawn RM. Modification of apolipoprotein(a) lysine binding site reduces atherosclerosis in transgenic mice. J Clin Invest 1997; 100:558-64. [PMID: 9239402 PMCID: PMC508222 DOI: 10.1172/jci119565] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lipoprotein(a) contributes to the development of atherosclerosis through the binding of its plasminogen-like apolipoprotein(a) component to fibrin and other plasminogen substrates. Apolipoprotein(a) contains a major lysine binding site in one of its kringle domains. Destruction of this site by mutagenesis greatly reduces the binding of apolipoprotein(a) to lysine and fibrin. Transgenic mice expressing this mutant form of apolipoprotein(a) as well as mice expressing wild-type apolipoprotein(a) have been created in an inbred mouse strain. The wild-type apolipoprotein(a) transgenic mice have a fivefold increase in the development of lipid lesions, as well as a large increase in the focal deposition of apolipoprotein(a) in the aorta, compared with the lysine binding site mutant strain and to nontransgenic littermates. The results demonstrate the key role of this lysine binding site in the pathogenic activity of apolipoprotein(a) in a murine model system.
Collapse
Affiliation(s)
- N W Boonmark
- Falk Cardiovascular Research Center, Stanford University School of Medicine, Stanford, California 94305-5246, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Naganawa S, Ginsberg HN, Glickman RM, Ginsburg GS. Intestinal transcription and synthesis of apolipoprotein AI is regulated by five natural polymorphisms upstream of the apolipoprotein CIII gene. J Clin Invest 1997; 99:1958-65. [PMID: 9109440 PMCID: PMC508020 DOI: 10.1172/jci119363] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To understand the factors contributing to the synthesis of human apolipoprotein AI (apoAI), relative apoAI synthesis was measured from endoscopic biopsy samples obtained from 18 healthy volunteers. The relative amount of apoAI synthesis was directly correlated with steady state intestinal apoAI mRNA levels and a 10-fold within-group variability was observed. Analysis of genomic DNA from the subjects revealed five polymorphic sites which defined two haplotypes in the intestinal enhancer region of the apoAI gene located upstream of the apolipoprotein CIII gene transcriptional start site (+ 1): (-641 C to A, -630 G to A, -625 T to deletion, -482 C to T, and -455 T to C). The population frequencies of the wild-type and mutant alleles were 0.53 and 0.44, respectively. Mean steady state apoAI mRNA levels and mean relative apoAI synthesis were 49 and 37% lower, respectively, in homozygotes for the mutant allele and 28 and 41% lower, respectively, in heterozygotes than in homozygotes for the wild-type allele (P < 0.05 for both). Site-directed mutants of apoAI gene promoter/reporter constructs containing the above mutations were transfected into Caco-2 cells and showed a 46% decrease in transcriptional activity compared with the wild type (P < 0.001); however, no significant differences were observed in HepG2 cells. Electrophoretic mobility shift assays showed that the mutated sequences from -655 to -610 bound Caco-2 cell nuclear protein(s) while the wild type did not. These results indicate that intestinal apoAI gene transcription and protein synthesis are genetically determined and are reduced in the presence of common mutations which induced binding of nuclear protein(s), possibly a transcriptional repressor.
Collapse
Affiliation(s)
- S Naganawa
- Department of Medicine, Beth Israel Hospital, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
11
|
Berthou L, Duverger N, Emmanuel F, Langouët S, Auwerx J, Guillouzo A, Fruchart JC, Rubin E, Denèfle P, Staels B, Branellec D. Opposite regulation of human versus mouse apolipoprotein A-I by fibrates in human apolipoprotein A-I transgenic mice. J Clin Invest 1996; 97:2408-16. [PMID: 8647932 PMCID: PMC507325 DOI: 10.1172/jci118687] [Citation(s) in RCA: 210] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The regulation of liver apolipoprotein (apo) A-I gene expression by fibrates was studied in human apo A-I transgenic mice containing a human genomic DNA fragment driving apo A-I expression in liver. Treatment with fenofibrate (0.5% wt/wt) for 7 d increased plasma human apo A-I levels up to 750% and HDL-cholesterol levels up to 200% with a shift to larger particles. The increase in human apo A-I plasma levels was time and dose dependent and was already evident after 3 d at the highest dose (0.5% wt/wt) of fenofibrate. In contrast, plasma mouse apo A-I concentration was decreased after fenofibrate in nontransgenic mice. The increase in plasma human apo A-I levels after fenofibrate treatment was associated with a 97% increase in hepatic human apo A-I mRNA, whereas mouse apo A-I mRNA levels decreased to 51%. In nontransgenic mice, a similar down-regulation of hepatic apo A-I mRNA levels was observed. Nuclear run-on experiments demonstrated that the increase in human apo A-I and the decrease in mouse apo A-I gene expression after fenofibrate occurred at the transcriptional level. Since part of the effects of fibrates are mediated through the nuclear receptor PPAR (peroxisome proliferator-activated receptor), the expression of the acyl CoA oxidase (ACO) gene was measured as a control of PPAR activation. Both in transgenic and nontransgenic mice, fenofibrate induced ACO mRNA levels up to sixfold. When transgenic mice were treated with gemfibrozil (0.5% wt/wt) plasma human apo A-I and HDL-cholesterol levels increased 32 and 73%, respectively, above control levels. The weaker effect of this compound on human apo A-I and HDL-cholesterol levels correlated with a less pronounced impact on ACO mRNA levels (a threefold increase) suggesting that the level of induction of human apo A-I gene is related to the PPAR activating potency of the fibrate used. Treatment of human primary hepatocytes with fenofibric acid (500 microM) provoked an 83 and 50% increase in apo A-I secretion and mRNA levels, respectively, supporting that a direct action of fibrates on liver human apo A-I production leads to the observed increase in plasma apo A4 and HDL-cholesterol.
Collapse
Affiliation(s)
- L Berthou
- Department of Biotechnology C.R.V.A. Rhône-Poulenc Rorer Gencell, Vitry-sur-Seine, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Ginsburg GS, Ozer J, Karathanasis SK. Intestinal apolipoprotein AI gene transcription is regulated by multiple distinct DNA elements and is synergistically activated by the orphan nuclear receptor, hepatocyte nuclear factor 4. J Clin Invest 1995; 96:528-38. [PMID: 7615825 PMCID: PMC185227 DOI: 10.1172/jci118065] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have used apolipoprotein genes to investigate the signal transduction mechanisms involved in the control of intestinal specific gene expression. The human apoAI, apoCIII, and apoAIV genes are tandemly organized within a 15-kb DNA segment and are expressed predominantly in the liver and intestine. Transient transfection of various human apoAI gene plasmid constructs into human hepatoma (HepG2) and colon carcinoma (Caco-2) cells showed that apoAI gene transcription is under the control of two separate and distinct cell-specific promoters. The region between nucleotides -192 and -41 is essential for expression in HepG2 cells, whereas the region from -595 to -192 is essential for expression in Caco-2 cells. A third 0.6 kb DNA fragment in the apoCIII gene promoter region, approximately 5 kb down-stream from the human apoAI gene, enhances transcription mediated by either of these two tissue-specific apoAI promoters. In Caco-2 cells, expression of the apoAI gene and activation by the distal enhancer required the presence of a nuclear hormone receptor response element (NHRRE) located in the -214 to -192 apoAI promoter region. Overexpression of the orphan receptor hepatocyte nuclear factor 4 (HNF-4), which binds to the NHRRE, dramatically stimulates apoAI gene expression in Caco-2 cells but not in HepG2 cells. Maximal stimulation of transcription by HNF-4 in Caco-2 cells required the presence of both the intestinal specific promoter, the NHRRE, and distal enhancer elements. Transactivation by HNF-4 thus appears to result from functional synergy between the NHRRE binding HNF-4 and distal DNA elements containing intestinal-specific DNA binding activities. The apoAI gene provides a model system to define the mechanism(s) governing intestinal cell specific gene regulation and the role of nuclear hormone receptors in the establishment and regulation of enterocytic gene transcription.
Collapse
Affiliation(s)
- G S Ginsburg
- Department of Cardiology, Children's Hospital, Boston, Massachusetts, USA
| | | | | |
Collapse
|
13
|
Malik S, Karathanasis S. Transcriptional activation by the orphan nuclear receptor ARP-1. Nucleic Acids Res 1995; 23:1536-43. [PMID: 7784207 PMCID: PMC306894 DOI: 10.1093/nar/23.9.1536] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
ARP-1 is a ubiquitous orphan nuclear receptor that binds to a site (site A) in the apolipoprotein AI (apoAI) liver-specific enhancer and represses its transcriptional activity in hepatoblastoma HepG2 cells. Electrophoretic mobility shift analysis of HepG2 cell nuclear extracts showed that in addition to ARP-1, site A also binds the orphan nuclear receptors Ear-2 and HNF-4. In in vitro transcription assays, Hela cell nuclear extracts which contain ARP-1 had no effect on transcription from a basal promoter linked to multiple copies of site A. However, supplementation of these extracts with excess amounts of recombinant ARP-1 resulted in significant stimulation. Supplementation of the extracts with purified polypeptides representing fusions between the ARP-1 N- or C-terminal domains and the yeast activator GAL4 DNA binding domain also stimulated transcription from a basal promoter linked to multiple GAL4 DNA binding sites. Co-immunoprecipitation assays using ARP-1-selective antibodies revealed specific physical interactions between ARP-1 and the basal transcription factor TFIIB. We conclude that ARP-1 possesses intrinsic transcription activation potential which is modulated, at least in part, by the intracellular balance of other nuclear receptors that also bind to its cognate DNA binding site.
Collapse
Affiliation(s)
- S Malik
- Department of Cardiovascular Molecular Biology, Lederle Laboratories, Pearl River, NY 10965, USA
| | | |
Collapse
|
14
|
Fuernkranz HA, Wang Y, Karathanasis SK, Mak P. Transcriptional regulation of the apoAI gene by hepatic nuclear factor 4 in yeast. Nucleic Acids Res 1994; 22:5665-71. [PMID: 7838720 PMCID: PMC310131 DOI: 10.1093/nar/22.25.5665] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF-4), a liver-enriched orphan receptor of the nuclear receptor superfamily, is required for the expression of a wide variety of liver-specific genes including apoAI. To explore the possibility that site A of the apoAI gene enhancer might also be the target for HNF-4 without the interference of endogenous mammalian cell proteins that also bind to site A, we tested the ability of HNF-4 to activate transcription from site A in yeast cells. Electrophoretic mobility shift assays (EMSA) and Scatchard plot analysis demonstrated that yeast produced HNF-4 binds to site A with an affinity two times higher than that of yeast produced RXR alpha. Mapping analysis indicated that the 5' portion of site A containing two imperfect direct repeats (TGAACCCTTGACC) and the sequence of the trinucleotide spacer (CCT) between these imperfect repeats are critical determinants for selective binding and transactivation by HNF-4. Similar observations were obtained when these mutated versions of site A were evaluated by transient cotransfection assays in CV1 cells. We conclude that the unique structural determinants of site A in conjunction with the differential binding affinity of HNF-4 for site A may play a fundamental role in apoAI gene regulation.
Collapse
Affiliation(s)
- H A Fuernkranz
- Department of Cardiovascular Molecular Biology, Lederle Laboratories, American Cyanamid Co., Pearl River, NY 10965
| | | | | | | |
Collapse
|
15
|
Liu Y, Chiu JF. Transactivation and repression of the alpha-fetoprotein gene promoter by retinoid X receptor and chicken ovalbumin upstream promoter transcription factor. Nucleic Acids Res 1994; 22:1079-86. [PMID: 7512261 PMCID: PMC307933 DOI: 10.1093/nar/22.6.1079] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Retinoic acid (RA) is widely involved in the control of cell proliferation and differentiation, as well as embryo pattern formation. Transcription of the oncodevelopmental protein, alpha-fetoprotein (AFP), is stimulated by retinoic acid (RA) in neoplastic cells. To study RA regulation of AFP gene expression, the 5'-flanking region of AFP gene was cloned and analyzed. In the present study, transfection of deletion mutants and sequence analysis revealed a retinoid X receptor response element (AFP-RXRE) located at position -139 to -127 of the AFP promoter. Synthetic AFP-RXRE was ligated into a reporter construct with the heterologous promoter and chloramphenicol acetyltransferase (CAT). AFP-RXRE conferred a marked RA responsiveness in the cotransfection with retinoid X receptor (RXR), but not with retinoic acid receptors (RARs). Consistent with these data, only RXR bound to AFP-RXRE with high affinity in the mobility shift assays. Chicken ovalbumin upstream promoter transcription factor (COUP-TF), an orphan member of the steroid/thyroid hormone superfamily, also demonstrated specific binding activity to AFP-RXRE in vitro. In cotransfection assays, COUP-TF dramatically repressed the transactivation of RXR on AFP-RXRE. The mechanism of repression by COUP-TF may involve the mutual occupancy of the AFP-RXRE binding site between RXR and COUP-TF.
Collapse
Affiliation(s)
- Y Liu
- Department of Biochemistry, University of Vermont College of Medicine, Burlington 05405
| | | |
Collapse
|
16
|
Kritis AA, Ktistaki E, Barda D, Zannis VI, Talianidis I. An indirect negative autoregulatory mechanism involved in hepatocyte nuclear factor-1 gene expression. Nucleic Acids Res 1993; 21:5882-9. [PMID: 8290348 PMCID: PMC310469 DOI: 10.1093/nar/21.25.5882] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recent studies have revealed that hepatocyte nuclear factor 4 (HNF-4) is an essential positive regulator of another liver enriched transcription factor HNF-1, defining a transcriptional hierarchy between the two factors operating in hepatocytes. To assess the possible autoregulation of the HNF-1 gene we have examined the effect of HNF-1 on its own transcription. In transient transfection assays, HNF-1 strongly down-regulated transcription driven by its own promoter in HepG2 cells. In addition HNF-1 also repressed the activity of HNF-4 dependent ApoCIII and ApoAI promoters. The same effect was observed using vHNF-1, a distinct but highly related protein to HNF-1. Both HNF-1 and vHNF-1 downregulated HNF-4 activated transcription from intact and chimeric promoter constructs carrying various HNF-4 binding sites implying that they act by impeding HNF-4 binding or activity. DNA binding and cell free transcription experiments however failed to demonstrate any direct or indirect interaction of HNF-1 and vHNF-1 with the above regulatory regions. Both factors repressed HNF-4 induced transcription of the ApoCIII and HNF-1 genes in HeLa cells, arguing against the requirement of a hepatocyte specific function. These findings define an indirect negative autoregulatory mechanism involved in HNF-1 gene expression, which in turn may affect HNF-4 dependent transcription of other liver specific genes.
Collapse
Affiliation(s)
- A A Kritis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Crete, Greece
| | | | | | | | | |
Collapse
|
17
|
Reisher SR, Hughes TE, Ordovas JM, Schaefer EJ, Feinstein SI. Increased expression of apolipoprotein genes accompanies differentiation in the intestinal cell line Caco-2. Proc Natl Acad Sci U S A 1993; 90:5757-61. [PMID: 8516325 PMCID: PMC46801 DOI: 10.1073/pnas.90.12.5757] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have analyzed determinants of the synthesis and secretion of apolipoproteins including mRNA for apolipoproteins, in the human colon carcinoma cell line Caco-2 during differentiation in continuous culture. Significant increases in both cellular and secreted apolipoprotein A-I were observed early in the differentiation process. Increases in apolipoprotein B were limited to secreted protein and started later in the differentiation process. Levels of mRNA for apolipoproteins A-I, A-IV, B, C-III, and E increased significantly between the time cells reached confluence and 1 week postconfluence. The kinetics of mRNA accumulation were influenced by culture conditions. Nuclear extracts from postconfluent Caco-2 cells contained increased amounts of protein that bound to oligonucleotides containing the control regions of the apolipoprotein A-I and B genes. A competition experiment suggested that this protein recognized the control regions of both genes. We propose to name this protein DRIFT-1 (differentiation-related intestinal factor for transcription 1).
Collapse
Affiliation(s)
- S R Reisher
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104-6068
| | | | | | | | | |
Collapse
|
18
|
Modulation of liver-specific transcription by interactions between hepatocyte nuclear factor 3 and nuclear factor 1 binding DNA in close apposition. Mol Cell Biol 1993. [PMID: 8455618 DOI: 10.1128/mcb.13.4.2401] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The liver-specific enhancer of the serum albumin gene contains an essential segment, designated eH, which binds the hepatocyte nuclear factor 3 alpha (HNF3 alpha) and ubiquitous nuclear factor 1/CCAAT transcription factor (NF1/CTF) proteins in tight apposition. We previously showed that activation of transcription by the eH site was correlated with an increase in intracellular HNF3 alpha levels during the in vitro differentiation of the hepatic cell line H2.35. We now show that transfection of an HNF3 alpha cDNA expression vector into dedifferentiated H2.35 cells is sufficient to induce transcription from the eH site. Mutational analysis of the enhancer demonstrates that NF1/CTF cooperates with HNF3 alpha to induce enhancer activity. However, when the eH site is removed from the context of the enhancer, NF1/CTF can inhibit transcriptional activation by HNF3 alpha. We conclude that the ternary complex of HNF3 alpha, NF1/CTF, and the eH site forms a novel, composite regulatory element that is sensitive to the local DNA sequence environment and suggest that the transcriptional stimulatory activity of NF1/CTF depends on its higher-order interactions with other proteins during hepatocyte differentiation.
Collapse
|
19
|
Jackson DA, Rowader KE, Stevens K, Jiang C, Milos P, Zaret KS. Modulation of liver-specific transcription by interactions between hepatocyte nuclear factor 3 and nuclear factor 1 binding DNA in close apposition. Mol Cell Biol 1993; 13:2401-10. [PMID: 8455618 PMCID: PMC359561 DOI: 10.1128/mcb.13.4.2401-2410.1993] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The liver-specific enhancer of the serum albumin gene contains an essential segment, designated eH, which binds the hepatocyte nuclear factor 3 alpha (HNF3 alpha) and ubiquitous nuclear factor 1/CCAAT transcription factor (NF1/CTF) proteins in tight apposition. We previously showed that activation of transcription by the eH site was correlated with an increase in intracellular HNF3 alpha levels during the in vitro differentiation of the hepatic cell line H2.35. We now show that transfection of an HNF3 alpha cDNA expression vector into dedifferentiated H2.35 cells is sufficient to induce transcription from the eH site. Mutational analysis of the enhancer demonstrates that NF1/CTF cooperates with HNF3 alpha to induce enhancer activity. However, when the eH site is removed from the context of the enhancer, NF1/CTF can inhibit transcriptional activation by HNF3 alpha. We conclude that the ternary complex of HNF3 alpha, NF1/CTF, and the eH site forms a novel, composite regulatory element that is sensitive to the local DNA sequence environment and suggest that the transcriptional stimulatory activity of NF1/CTF depends on its higher-order interactions with other proteins during hepatocyte differentiation.
Collapse
Affiliation(s)
- D A Jackson
- Section of Biochemistry, Brown University, Providence, Rhode Island 02912
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Apolipoprotein A1 (Apo A1) is the major protein component of high density lipoprotein (HDL) particles. HDL particles mediate the removal of cholesterol from extra-hepatic tissues via a process known as reverse cholesterol transport. Augmented production of Apo A1 will likely be beneficial to those who suffer from the consequences of hypercholesterolemia. One approach to increase expression of the protein is to identify nuclear factor(s) that enhance Apo A1 promoter activity. Therefore, we have used transient transfection to study a limited portion (-474 to -7) of the gene and showed that a cis-regulatory element, site C had a permissive effect on the ability of an adjacent site B to increase promoter activity by 30-fold. The importance of element C prompted us to identify the factor(s) that interact with this site. Results showed that HNF-4, a new member of the thyroid/steroid hormone receptor superfamily interacts with site C to enhance activity of the promoter. Based on this observation and that of the known inhibitory effects of ARP-1 on site C, we postulate a model which may account for the tissue-specific expression of the rat Apo A1 gene.
Collapse
Affiliation(s)
- J Chan
- Department of Medicine, University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
21
|
Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol 1992. [PMID: 1324415 DOI: 10.1128/mcb.12.9.4153] [Citation(s) in RCA: 217] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alignment of natural chicken ovalbumin upstream promoter transcription factor (COUP-TF) response elements shows that, in addition to the predominant direct repeat of the GGTCA motif with a 2-bp spacing, there are other functional COUP elements with variations in the GGTCA orientation and spacing. We systematically analyzed the binding of in vitro-synthesized COUP-TFs and showed that COUP-TF is capable of binding to oligonucleotides containing both direct repeats and palindromes and with different spacings of the GGTCA repeats. Subsequently, we analyzed four possible mechanisms proposed to explain how COUP-TF could bind to these spatial variations of the GGTCA repeat. We demonstrated that the functional DNA-binding form of COUP-TF is a dimer which requires two GGTCA half-sites to bind DNA. We demonstrated that the COUP-TF dimer undergoes a remarkable structural adaptation to accommodate binding to these spatial variants of the GGTCA repeats. A functional consequence of the promiscuous DNA binding of COUP-TF is its ability to down-regulate hormonal induction of target gene expression by other members of the steroid-thyroid hormone receptor superfamily such as the vitamin D3, thyroid hormone, and retinoic acid receptors. Our data indicate that COUP-TF may have an important role in hormonal regulation of gene expression by these receptors.
Collapse
|
22
|
Cooney AJ, Tsai SY, O'Malley BW, Tsai MJ. Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol 1992; 12:4153-63. [PMID: 1324415 PMCID: PMC360317 DOI: 10.1128/mcb.12.9.4153-4163.1992] [Citation(s) in RCA: 129] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Alignment of natural chicken ovalbumin upstream promoter transcription factor (COUP-TF) response elements shows that, in addition to the predominant direct repeat of the GGTCA motif with a 2-bp spacing, there are other functional COUP elements with variations in the GGTCA orientation and spacing. We systematically analyzed the binding of in vitro-synthesized COUP-TFs and showed that COUP-TF is capable of binding to oligonucleotides containing both direct repeats and palindromes and with different spacings of the GGTCA repeats. Subsequently, we analyzed four possible mechanisms proposed to explain how COUP-TF could bind to these spatial variations of the GGTCA repeat. We demonstrated that the functional DNA-binding form of COUP-TF is a dimer which requires two GGTCA half-sites to bind DNA. We demonstrated that the COUP-TF dimer undergoes a remarkable structural adaptation to accommodate binding to these spatial variants of the GGTCA repeats. A functional consequence of the promiscuous DNA binding of COUP-TF is its ability to down-regulate hormonal induction of target gene expression by other members of the steroid-thyroid hormone receptor superfamily such as the vitamin D3, thyroid hormone, and retinoic acid receptors. Our data indicate that COUP-TF may have an important role in hormonal regulation of gene expression by these receptors.
Collapse
Affiliation(s)
- A J Cooney
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030
| | | | | | | |
Collapse
|
23
|
Repression by ARP-1 sensitizes apolipoprotein AI gene responsiveness to RXR alpha and retinoic acid. Mol Cell Biol 1992. [PMID: 1321332 DOI: 10.1128/mcb.12.8.3380] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene coding for apolipoprotein AI (apoAI), a lipid binding protein involved in the transport of cholesterol and other lipids in the plasma, is expressed in mammals predominantly in the liver and the intestine. Liver-specific expression is controlled by synergistic interactions between transcription factors bound to three separate sites, sites A (-214 to -192), B (-169 to -146), and C (-134 to -119), within a powerful liver-specific enhancer located between nucleotides -222 and -110 upstream of the apoAI gene transcription start site (+1). Previous studies in our laboratory have shown that ARP-1, a member of the nuclear receptor superfamily whose ligand is unknown (orphan receptor), binds to site A and represses transcription of the apoAI gene in liver cells. In a more recent series of experiments, we found that site A is a retinoic acid (RA) response element that responds preferentially to the recently identified RA-responsive receptor RXR alpha over the previously characterized RA receptors RAR alpha and RAR beta. In this study we investigated the combined effects of ARP-1 and RXR alpha on apoAI gene expression in liver cells. Transient transfection assays showed that site A is necessary and sufficient for RXR alpha-mediated transactivation of the apoAI gene basal promoter in human hepatoma HepG2 cells in the presence of RA and that this transactivation is abolished by increasing amounts of cotransfected ARP-1. Electrophoretic mobility shift assays and subsequent Scatchard analysis of the data revealed that ARP-1 and RXR alpha bind to site A with similar affinities. These assays also revealed that ARP-1 and RXR alpha bind to site A as heterodimers with an affinity approximately 10 times greater than that of either ARP-1 or RXR alpha alone. Further transfection assays in HepG2 cells, using as a reporter a construct containing the apoAI gene basal promoter and its upstream regulatory elements (including site A) in their natural context, revealed that RXR alpha has very little effect on the levels of expression regardless of the presence or absence of RA. However, while ARP-1 alone or ARP-1 and RXR alpha together dramatically repress expression in the absence of RA, the repression by ARP-1 and RXR alpha together, but not ARP-1 alone, is almost completely alleviated in the presence of RA. These results indicate that transcriptional repression by ARP-1 sensitizes apoAI gene responsiveness to RXR alpha and RA and suggest that the magnitude of this responsiveness is regulated by the intracellular ratio of ARP-1 to RXR alpha. These observations raise the possibility that transcriptional repression is a general mechanism for switching gene transcription between alternative transcription activation pathways.
Collapse
|
24
|
Widom RL, Rhee M, Karathanasis SK. Repression by ARP-1 sensitizes apolipoprotein AI gene responsiveness to RXR alpha and retinoic acid. Mol Cell Biol 1992; 12:3380-9. [PMID: 1321332 PMCID: PMC364586 DOI: 10.1128/mcb.12.8.3380-3389.1992] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The gene coding for apolipoprotein AI (apoAI), a lipid binding protein involved in the transport of cholesterol and other lipids in the plasma, is expressed in mammals predominantly in the liver and the intestine. Liver-specific expression is controlled by synergistic interactions between transcription factors bound to three separate sites, sites A (-214 to -192), B (-169 to -146), and C (-134 to -119), within a powerful liver-specific enhancer located between nucleotides -222 and -110 upstream of the apoAI gene transcription start site (+1). Previous studies in our laboratory have shown that ARP-1, a member of the nuclear receptor superfamily whose ligand is unknown (orphan receptor), binds to site A and represses transcription of the apoAI gene in liver cells. In a more recent series of experiments, we found that site A is a retinoic acid (RA) response element that responds preferentially to the recently identified RA-responsive receptor RXR alpha over the previously characterized RA receptors RAR alpha and RAR beta. In this study we investigated the combined effects of ARP-1 and RXR alpha on apoAI gene expression in liver cells. Transient transfection assays showed that site A is necessary and sufficient for RXR alpha-mediated transactivation of the apoAI gene basal promoter in human hepatoma HepG2 cells in the presence of RA and that this transactivation is abolished by increasing amounts of cotransfected ARP-1. Electrophoretic mobility shift assays and subsequent Scatchard analysis of the data revealed that ARP-1 and RXR alpha bind to site A with similar affinities. These assays also revealed that ARP-1 and RXR alpha bind to site A as heterodimers with an affinity approximately 10 times greater than that of either ARP-1 or RXR alpha alone. Further transfection assays in HepG2 cells, using as a reporter a construct containing the apoAI gene basal promoter and its upstream regulatory elements (including site A) in their natural context, revealed that RXR alpha has very little effect on the levels of expression regardless of the presence or absence of RA. However, while ARP-1 alone or ARP-1 and RXR alpha together dramatically repress expression in the absence of RA, the repression by ARP-1 and RXR alpha together, but not ARP-1 alone, is almost completely alleviated in the presence of RA. These results indicate that transcriptional repression by ARP-1 sensitizes apoAI gene responsiveness to RXR alpha and RA and suggest that the magnitude of this responsiveness is regulated by the intracellular ratio of ARP-1 to RXR alpha. These observations raise the possibility that transcriptional repression is a general mechanism for switching gene transcription between alternative transcription activation pathways.
Collapse
Affiliation(s)
- R L Widom
- Department of Cardiology, Children's Hospital, Boston, Massachusetts
| | | | | |
Collapse
|
25
|
Antagonism between apolipoprotein AI regulatory protein 1, Ear3/COUP-TF, and hepatocyte nuclear factor 4 modulates apolipoprotein CIII gene expression in liver and intestinal cells. Mol Cell Biol 1992. [PMID: 1312668 DOI: 10.1128/mcb.12.4.1708] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apolipoprotein CIII (apoCIII), a lipid-binding protein involved in the transport of triglycerides and cholesterol in the plasma, is synthesized primarily in the liver and the intestine. A cis-acting regulatory element, C3P, located at -90 to -66 upstream from the apoCIII gene transcriptional start site (+1), is necessary for maximal expression of the apoCIII gene in human hepatoma (HepG2) and intestinal carcinoma (Caco2) cells. This report shows that three members of the steroid receptor superfamily of transcription factors, hepatocyte nuclear factor 4 (HNF-4), apolipoprotein AI regulatory protein 1 (ARP-1), and Ear3/COUP-TF, act at the C3P site. HNF-4 activates apoCIII gene expression in HepG2 and Caco2 cells, while ARP-1 and Ear3/COUP-TF repress its expression in the same cells. HNF-4 activation is abolished by increasing amounts of ARP-1 or Ear3/COUP-TF, and repression by ARP-1 or Ear3/COUP-TF is alleviated by increasing amounts of HNF-4. HNF-4 and ARP-1 bind with similar affinities to the C3P site, suggesting that their opposing transcriptional effects may be mediated by direct competition for DNA binding. HNF-4 and ARP-1 mRNAs are present within the same cells in the liver and intestine, and protein extracts from hepatic tissue, HepG2, and Caco2 cells contain significantly more HNF-4 than ARP-1 or Ear3/COUP-TF binding activities. These findings suggest that the transcription of the apoCIII gene in vivo is dependent, at least in part, upon the intracellular balance of these positive and negative regulatory factors.
Collapse
|
26
|
Mietus-Snyder M, Sladek FM, Ginsburg GS, Kuo CF, Ladias JA, Darnell JE, Karathanasis SK. Antagonism between apolipoprotein AI regulatory protein 1, Ear3/COUP-TF, and hepatocyte nuclear factor 4 modulates apolipoprotein CIII gene expression in liver and intestinal cells. Mol Cell Biol 1992; 12:1708-18. [PMID: 1312668 PMCID: PMC369614 DOI: 10.1128/mcb.12.4.1708-1718.1992] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Apolipoprotein CIII (apoCIII), a lipid-binding protein involved in the transport of triglycerides and cholesterol in the plasma, is synthesized primarily in the liver and the intestine. A cis-acting regulatory element, C3P, located at -90 to -66 upstream from the apoCIII gene transcriptional start site (+1), is necessary for maximal expression of the apoCIII gene in human hepatoma (HepG2) and intestinal carcinoma (Caco2) cells. This report shows that three members of the steroid receptor superfamily of transcription factors, hepatocyte nuclear factor 4 (HNF-4), apolipoprotein AI regulatory protein 1 (ARP-1), and Ear3/COUP-TF, act at the C3P site. HNF-4 activates apoCIII gene expression in HepG2 and Caco2 cells, while ARP-1 and Ear3/COUP-TF repress its expression in the same cells. HNF-4 activation is abolished by increasing amounts of ARP-1 or Ear3/COUP-TF, and repression by ARP-1 or Ear3/COUP-TF is alleviated by increasing amounts of HNF-4. HNF-4 and ARP-1 bind with similar affinities to the C3P site, suggesting that their opposing transcriptional effects may be mediated by direct competition for DNA binding. HNF-4 and ARP-1 mRNAs are present within the same cells in the liver and intestine, and protein extracts from hepatic tissue, HepG2, and Caco2 cells contain significantly more HNF-4 than ARP-1 or Ear3/COUP-TF binding activities. These findings suggest that the transcription of the apoCIII gene in vivo is dependent, at least in part, upon the intracellular balance of these positive and negative regulatory factors.
Collapse
Affiliation(s)
- M Mietus-Snyder
- Department of Cardiology, Children's Hospital, Boston, Massachusetts 02115
| | | | | | | | | | | | | |
Collapse
|
27
|
Costa RH, Grayson DR. Site-directed mutagenesis of hepatocyte nuclear factor (HNF) binding sites in the mouse transthyretin (TTR) promoter reveal synergistic interactions with its enhancer region. Nucleic Acids Res 1991; 19:4139-45. [PMID: 1870969 PMCID: PMC328553 DOI: 10.1093/nar/19.15.4139] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transthyretin (TTR) gene is regulated by two DNA regions which elicit hepatocyte-specific expression: a proximal promoter and distal enhancer. The TTR promoter and enhancer are composed of at least eight DNA binding sites for three different hepatocyte nuclear factors (HNF), CCAAT/enhancer binding protein (C/EBP), and AP-1/cJun. Site directed mutations within each of the HNF binding sites in the TTR promoter were introduced to evaluate their contribution to transcriptional activity in hepatoma cells. The data indicate that the strong affinity HNF-3-S binding site (-106 to -94) is absolutely required for TTR promoter activity since several mutations in this site eliminate TTR expression in the context of its enhancer. Conversion of a second weak affinity HNF3-W site (-140 to -131) in the TTR promoter to a high affinity site resulted in higher levels of expression. TTR mutations that disrupted several weak affinity sites (HNF1, HNF3-W, and HNF4) only slightly diminished expression levels in the presence of the TTR enhancer. In contrast, when we deleted the TTR enhancer from these HNF mutant constructs, TTR expression decreased to undetectable levels. This result suggests cooperation between the factors binding to the TTR promoter and enhancer regions. These results also demonstrate that the HNF3-S site alone is not sufficient to activate TTR transcription, but rather requires the participation of three cell-specific factors to elicit minimal promoter activity. The complexity of this promoter design and the requirement for a minimal number of cell-specific factors to achieve transcription allows us to propose a model which may explain the maintenance of tissue-specific expression of TTR.
Collapse
Affiliation(s)
- R H Costa
- Department of Biochemistry (M/C 536), University of Illinois, College of Medicine, Chicago 60612
| | | |
Collapse
|
28
|
A retinoic acid-responsive element in the apolipoprotein AI gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol 1991. [PMID: 1646397 DOI: 10.1128/mcb.11.7.3814] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gene coding for apolipoprotein AI, a plasma protein involved in the transport of cholesterol and other lipids in the plasma, is expressed predominantly in liver and intestine. Previous work in our laboratory has shown that hepatocyte-specific expression is determined by synergistic interactions between transcription factors bound to three separate sites, sites A (-214 to -192), B (-169 to -146), and C (-134 to -119), within a powerful liver-specific enhancer located in the region -222 to -110 nucleotides upstream of the apolipoprotein AI gene transcription start site (+1). In this study, it was found that site A is a highly selective retinoic acid-responsive element (RARE) that responds preferentially to the recently identified retinoic acid receptor RXR alpha over the previously characterized retinoic acid receptors RAR alpha and RAR beta. Control experiments indicated that a RARE in the regulatory region of the laminin B1 gene responds preferentially to RAR alpha and RAR beta over RXR alpha, while a previously described palindromic thyroid hormone-responsive element responds similarly to all three of these receptors. Gel retardation experiments showed that the activity of these RAREs is concordant with receptor binding. These results indicate that different RAREs may play a fundamental role in defining distinctive retinoic acid cellular response pathways and suggest that retinoic acid response pathways mediated by RXR alpha play an important role in cholesterol and retinoid transport and metabolism.
Collapse
|
29
|
Rottman JN, Widom RL, Nadal-Ginard B, Mahdavi V, Karathanasis SK. A retinoic acid-responsive element in the apolipoprotein AI gene distinguishes between two different retinoic acid response pathways. Mol Cell Biol 1991; 11:3814-20. [PMID: 1646397 PMCID: PMC361152 DOI: 10.1128/mcb.11.7.3814-3820.1991] [Citation(s) in RCA: 63] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The gene coding for apolipoprotein AI, a plasma protein involved in the transport of cholesterol and other lipids in the plasma, is expressed predominantly in liver and intestine. Previous work in our laboratory has shown that hepatocyte-specific expression is determined by synergistic interactions between transcription factors bound to three separate sites, sites A (-214 to -192), B (-169 to -146), and C (-134 to -119), within a powerful liver-specific enhancer located in the region -222 to -110 nucleotides upstream of the apolipoprotein AI gene transcription start site (+1). In this study, it was found that site A is a highly selective retinoic acid-responsive element (RARE) that responds preferentially to the recently identified retinoic acid receptor RXR alpha over the previously characterized retinoic acid receptors RAR alpha and RAR beta. Control experiments indicated that a RARE in the regulatory region of the laminin B1 gene responds preferentially to RAR alpha and RAR beta over RXR alpha, while a previously described palindromic thyroid hormone-responsive element responds similarly to all three of these receptors. Gel retardation experiments showed that the activity of these RAREs is concordant with receptor binding. These results indicate that different RAREs may play a fundamental role in defining distinctive retinoic acid cellular response pathways and suggest that retinoic acid response pathways mediated by RXR alpha play an important role in cholesterol and retinoid transport and metabolism.
Collapse
Affiliation(s)
- J N Rottman
- Department of Cardiology, Children's Hospital, Boston, Massachusetts
| | | | | | | | | |
Collapse
|