1
|
Roarty K, Echeverria GV. Laboratory Models for Investigating Breast Cancer Therapy Resistance and Metastasis. Front Oncol 2021; 11:645698. [PMID: 33777805 PMCID: PMC7988094 DOI: 10.3389/fonc.2021.645698] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 01/16/2023] Open
Abstract
While numerous therapies are highly efficacious in early-stage breast cancers and in particular subsets of breast cancers, therapeutic resistance and metastasis unfortunately arise in many patients. In many cases, tumors that are resistant to standard of care therapies, as well as tumors that have metastasized, are treatable but incurable with existing clinical strategies. Both therapy resistance and metastasis are multi-step processes during which tumor cells must overcome diverse environmental and selective hurdles. Mechanisms by which tumor cells achieve this are numerous and include acquisition of invasive and migratory capabilities, cell-intrinsic genetic and/or epigenetic adaptations, clonal selection, immune evasion, interactions with stromal cells, entering a state of dormancy or senescence, and maintaining self-renewal capacity. To overcome therapy resistance and metastasis in breast cancer, the ability to effectively model each of these mechanisms in the laboratory is essential. Herein we review historic and the current state-of-the-art laboratory model systems and experimental approaches used to investigate breast cancer metastasis and resistance to standard of care therapeutics. While each model system has inherent limitations, they have provided invaluable insights, many of which have translated into regimens undergoing clinical evaluation. We will discuss the limitations and advantages of a variety of model systems that have been used to investigate breast cancer metastasis and therapy resistance and outline potential strategies to improve experimental modeling to further our knowledge of these processes, which will be crucial for the continued development of effective breast cancer treatments.
Collapse
Affiliation(s)
- Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States
| | - Gloria V Echeverria
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, United States.,Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, United States.,Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
GPNMB augments Wnt-1 mediated breast tumor initiation and growth by enhancing PI3K/AKT/mTOR pathway signaling and β-catenin activity. Oncogene 2019; 38:5294-5307. [PMID: 30914799 DOI: 10.1038/s41388-019-0793-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 03/10/2019] [Accepted: 03/11/2019] [Indexed: 01/08/2023]
Abstract
Glycoprotein Nmb (GPNMB) is overexpressed in triple-negative and basal-like breast cancers and its expression is predictive of poor prognosis within this aggressive breast cancer subtype. GPNMB promotes breast cancer growth, invasion, and metastasis; however, its role in mammary tumor initiation remains unknown. To address this question, we overexpressed GPNMB in the mammary epithelium to generate MMTV/GPNMB transgenic mice and crossed these animals to the MMTV/Wnt-1 mouse model, which is known to recapitulate features of human basal breast cancers. We show that GPNMB alone does not display oncogenic properties; however, its expression dramatically accelerates tumor onset in MMTV/Wnt-1 mice. MMTV/Wnt-1 × MMTV/GPNMB bigenic mice also exhibit a significant increase in the growth rate of established primary tumors, which is attributable to increased proliferation and decreased apoptosis. To elucidate molecular mechanisms underpinning the tumor-promoting effects of GPNMB in this context, we interrogated activated pathways in tumors derived from the MMTV/Wnt-1 and MMTV/Wnt-1 × MMTV/GPNMB mice using RPPA analysis. These data revealed that MMTV/Wnt-1 × MMTV/GPNMB bigenic tumors exhibit a pro-growth signature characterized by elevated PI3K/AKT/mTOR signaling and increased β-catenin activity. Furthermore, we extended these observations to an independent Wnt-1 expressing model of aggressive breast cancer, and confirmed that GPNMB enhances canonical Wnt pathway activation, as evidenced by increased β-catenin transcriptional activity, in breast cancer cells and tumors co-expressing Wnt-1 and GPNMB. GPNMB-dependent engagement of β-catenin occurred, in part, through AKT activation. Taken together, these data ascribe a novel, pro-growth role for GPNMB in Wnt-1 expressing basal breast cancers.
Collapse
|
3
|
Swan R, Kim SJ, Campbell JP, Paul Chan RV, Sonmez K, Taylor KD, Li X, Chen YDI, Rotter JI, Simmons C, Chiang MF. The genetics of retinopathy of prematurity: a model for neovascular retinal disease. Ophthalmol Retina 2018; 2:949-962. [PMID: 30250936 PMCID: PMC6150458 DOI: 10.1016/j.oret.2018.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TOPIC Retinopathy of prematurity (ROP) is a proliferative retinal vascular disease in premature infants, and is a major cause of childhood blindness worldwide. In addition to known clinical risk factors such as low birth weight and gestational age, there is a growing body of evidence supporting a genetic basis for ROP. CLINICAL RELEVANCE While comorbidities and environmental factors have been identified as contributing to ROP outcomes in premature infants, most notably gestational age and oxygen, some infants progress to severe disease despite absence of these clinical risk factors. The contribution of genetic factors may explain these differences and allow better detection and treatment of infants at risk for severe ROP. METHODS To comprehensively review genetic factors that potentially contribute to the development and severity of ROP, we conducted a literature search focusing on the genetic basis for ROP. Terms related to other heritable retinal vascular diseases like "familial exudative vitreoretinopathy", as well as to genes implicated in animal models of ROP, were also used to capture research in diseases with similar pathogenesis to ROP in humans with known genetic components. RESULTS Contributions across several genetic domains are described including vascular endothelial growth factor, the Wnt signaling pathway, insulin-like growth factor 1, inflammatory mediators, and brain-derived neurotrophic factor. CONCLUSIONS Most candidate gene studies of ROP have limitations such as inability to replicate results, conflicting results from various studies, small sample size, and differences in clinical characterization. Additional difficulty arises in separating the contribution of genetic factors like Wnt signaling to ROP and prematurity. Although studies have implicated involvement of multiple signaling pathways in ROP, the genetics of ROP have not been clearly elucidated. Next-generation sequencing and genome-wide association studies have potential to expand future understanding of underlying genetic risk factors and pathophysiology of ROP.
Collapse
Affiliation(s)
- Ryan Swan
- Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR
| | - Sang Jin Kim
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - J. Peter Campbell
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR
| | - R. V. Paul Chan
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL
- Center for Global Health, College of Medicine, University of Illinois at Chicago, Chicago, IL
| | - Kemal Sonmez
- Center for Spoken Language Understanding, Oregon Health & Science University, Portland, OR
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA
| | - Charles Simmons
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Michael F. Chiang
- Department of Medical Informatics & Clinical Epidemiology, Oregon Health & Science University, Portland, OR
- Department of Ophthalmology, Casey Eye Institute, Oregon Health & Science University, Portland, OR
| | | |
Collapse
|
4
|
Dudley JP, Golovkina TV, Ross SR. Lessons Learned from Mouse Mammary Tumor Virus in Animal Models. ILAR J 2017; 57:12-23. [PMID: 27034391 DOI: 10.1093/ilar/ilv044] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious, cancer-inducing agent in the 1930s, has been used as an animal model for the study of retroviral infection and transmission, antiviral immune responses, and breast cancer and lymphoma biology. The main target cells for MMTV infection in vivo are cells of the immune system and mammary epithelial cells. Although the host mounts an immune response to the virus, MMTV has evolved multiple means of evading this response. MMTV causes mammary tumors when the provirus integrates into the mammary epithelial and lymphoid cell genome during viral replication and thereby activates cellular oncogene expression. Thus, tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer.
Collapse
Affiliation(s)
- Jaquelin P Dudley
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| | - Tatyana V Golovkina
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| | - Susan R Ross
- Jaquelin P. Dudley, PhD, is a professor in the Department of Molecular Biosciences, Center for Infectious Disease and Institute for Cellular and Molecular Biology at the University of Texas at Austin. Tatyana V. Golovkina, PhD, is a professor in the Department of Microbiology at the University of Chicago in Chicago, Illinois. Susan R. Ross, PhD, is a professor in the Department of Microbiology in the Perelman School of Medicine of the University of Pennsylvania in Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Lamb R, Bonuccelli G, Ozsvári B, Peiris-Pagès M, Fiorillo M, Smith DL, Bevilacqua G, Mazzanti CM, McDonnell LA, Naccarato AG, Chiu M, Wynne L, Martinez-Outschoorn UE, Sotgia F, Lisanti MP. Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Understanding WNT/FGF-driven anabolic signaling. Oncotarget 2016; 6:30453-71. [PMID: 26421711 PMCID: PMC4741544 DOI: 10.18632/oncotarget.5852] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 08/22/2015] [Indexed: 12/19/2022] Open
Abstract
Here, we developed an isogenic cell model of "stemness" to facilitate protein biomarker discovery in breast cancer. For this purpose, we used knowledge gained previously from the study of the mouse mammary tumor virus (MMTV). MMTV initiates mammary tumorigenesis in mice by promoter insertion adjacent to two main integration sites, namely Int-1 (Wnt1) and Int-2 (Fgf3), which ultimately activates Wnt/β-catenin signaling, driving the propagation of mammary cancer stem cells (CSCs). Thus, to develop a humanized model of MMTV signaling, we over-expressed WNT1 and FGF3 in MCF7 cells, an ER(+) human breast cancer cell line. We then validated that MCF7 cells over-expressing both WNT1 and FGF3 show a 3.5-fold increase in mammosphere formation, and that conditioned media from these cells is also sufficient to promote stem cell activity in untransfected parental MCF7 and T47D cells, as WNT1 and FGF3 are secreted factors. Proteomic analysis of this model system revealed the induction of i) EMT markers, ii) mitochondrial proteins, iii) glycolytic enzymes and iv) protein synthesis machinery, consistent with an anabolic CSC phenotype. MitoTracker staining validated the expected WNT1/FGF3-induced increase in mitochondrial mass and activity, which presumably reflects increased mitochondrial biogenesis. Importantly, many of the proteins that were up-regulated by WNT/FGF-signaling in MCF7 cells, were also transcriptionally over-expressed in human breast cancer cells in vivo, based on the bioinformatic analysis of public gene expression datasets of laser-captured patient samples. As such, this isogenic cell model should accelerate the discovery of new biomarkers to predict clinical outcome in breast cancer, facilitating the development of personalized medicine.Finally, we used mitochondrial mass as a surrogate marker for increased mitochondrial biogenesis in untransfected MCF7 cells. As predicted, metabolic fractionation of parental MCF7 cells, via MitoTracker staining, indicated that high mitochondrial mass is a new metabolic biomarker for the enrichment of anabolic CSCs, as functionally assessed by mammosphere-forming activity. This observation has broad implications for understanding the role of mitochondrial biogenesis in the propagation of stem-like cancer cells. Technically, this general metabolic approach could be applied to any cancer type, to identify and target the mitochondrial-rich CSC population.The implications of our work for understanding the role of mitochondrial metabolism in viral oncogenesis driven by random promoter insertions are also discussed, in the context of MMTV and ALV infections.
Collapse
Affiliation(s)
- Rebecca Lamb
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gloria Bonuccelli
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Béla Ozsvári
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Maria Peiris-Pagès
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Marco Fiorillo
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Department of Pharmacy, Health and Nutritional Sciences, The University of Calabria, Cosenza, Italy
| | - Duncan L Smith
- The Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| | - Generoso Bevilacqua
- FPS - The Pisa Science Foundation, Pisa, Italy.,Department of Pathology, Pisa University Hospital, Pisa, Italy
| | | | | | | | - Maybo Chiu
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Luke Wynne
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | | | - Federica Sotgia
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Michael P Lisanti
- The Breast Cancer Now Research Unit, Institute of Cancer Sciences, University of Manchester, Manchester, UK.,The Manchester Centre for Cellular Metabolism (MCCM), Institute of Cancer Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Paschall AV, Liu K. An Orthotopic Mouse Model of Spontaneous Breast Cancer Metastasis. J Vis Exp 2016. [PMID: 27584043 DOI: 10.3791/54040] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Metastasis is the primary cause of mortality of breast cancer patients. The mechanism underlying cancer cell metastasis, including breast cancer metastasis, is largely unknown and is a focus in cancer research. Various breast cancer spontaneous metastasis mouse models have been established. Here, we report a simplified procedure to establish orthotopic transplanted breast cancer primary tumor and resultant spontaneous metastasis that mimic human breast cancer metastasis. Combined with the bioluminescence live tumor imaging, this mouse model allows tumor growth and progression kinetics to be monitored and quantified. In this model, a low dose (1 x 10(4) cells) of 4T1-Luc breast cancer cells was injected into BALB/c mouse mammary fat pad using a tuberculin syringe. Mice were injected with luciferin and imaged at various time points using a bioluminescent imaging system. When the primary tumors grew to the size limit as in the IACUC-approved protocol (approximately 30 days), mice were anesthetized under constant flow of 2% isoflurane and oxygen. The tumor area was sterilized with 70% ethanol. The mouse skin around the tumor was excised to expose the tumor which was removed with a pair of sterile scissors. Removal of the primary tumor extends the survival of the 4T-1 tumor-bearing mice for one month. The mice were then repeatedly imaged for metastatic tumor spreading to distant organs. Therapeutic agents can be administered to suppress tumor metastasis at this point. This model is simple and yet sensitive in quantifying breast cancer cell growth in the primary site and progression kinetics to distant organs, and thus is an excellent model for studying breast cancer growth and progression, and for testing anti-metastasis therapeutic and immunotherapeutic agents in vivo.
Collapse
Affiliation(s)
- Amy V Paschall
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University; Georgia Cancer Center, Augusta University; Charlie Norwood VA Medical Center
| | - Kebin Liu
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University; Georgia Cancer Center, Augusta University; Charlie Norwood VA Medical Center;
| |
Collapse
|
7
|
Menezes ME, Das SK, Emdad L, Windle JJ, Wang XY, Sarkar D, Fisher PB. Genetically engineered mice as experimental tools to dissect the critical events in breast cancer. Adv Cancer Res 2014; 121:331-382. [PMID: 24889535 PMCID: PMC4349377 DOI: 10.1016/b978-0-12-800249-0.00008-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Elucidating the mechanism of pathogenesis of breast cancer has greatly benefited from breakthrough advances in both genetically engineered mouse (GEM) models and xenograft transplantation technologies. The vast array of breast cancer mouse models currently available is testimony to the complexity of mammary tumorigenesis and attempts by investigators to accurately portray the heterogeneity and intricacies of this disease. Distinct molecular changes that drive various aspects of tumorigenesis, such as alterations in tumor cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and drug resistance have been evaluated using the currently available GEM breast cancer models. GEM breast cancer models are also being exploited to evaluate and validate the efficacy of novel therapeutics, vaccines, and imaging modalities for potential use in the clinic. This review provides a synopsis of the various GEM models that are expanding our knowledge of the nuances of breast cancer development and progression and can be instrumental in the development of novel prevention and therapeutic approaches for this disease.
Collapse
Affiliation(s)
- Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Jolene J Windle
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Xiang-Yang Wang
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| |
Collapse
|
8
|
Klijn C, Koudijs MJ, Kool J, ten Hoeve J, Boer M, de Moes J, Akhtar W, van Miltenburg M, Vendel-Zwaagstra A, Reinders MJT, Adams DJ, van Lohuizen M, Hilkens J, Wessels LFA, Jonkers J. Analysis of tumor heterogeneity and cancer gene networks using deep sequencing of MMTV-induced mouse mammary tumors. PLoS One 2013; 8:e62113. [PMID: 23690930 PMCID: PMC3653918 DOI: 10.1371/journal.pone.0062113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 02/25/2013] [Indexed: 11/19/2022] Open
Abstract
Cancer develops through a multistep process in which normal cells progress to malignant tumors via the evolution of their genomes as a result of the acquisition of mutations in cancer driver genes. The number, identity and mode of action of cancer driver genes, and how they contribute to tumor evolution is largely unknown. This study deployed the Mouse Mammary Tumor Virus (MMTV) as an insertional mutagen to find both the driver genes and the networks in which they function. Using deep insertion site sequencing we identified around 31000 retroviral integration sites in 604 MMTV-induced mammary tumors from mice with mammary gland-specific deletion of Trp53, Pten heterozygous knockout mice, or wildtype strains. We identified 18 known common integration sites (CISs) and 12 previously unknown CISs marking new candidate cancer genes. Members of the Wnt, Fgf, Fgfr, Rspo and Pdgfr gene families were commonly mutated in a mutually exclusive fashion. The sequence data we generated yielded also information on the clonality of insertions in individual tumors, allowing us to develop a data-driven model of MMTV-induced tumor development. Insertional mutations near Wnt and Fgf genes mark the earliest "initiating" events in MMTV induced tumorigenesis, whereas Fgfr genes are targeted later during tumor progression. Our data shows that insertional mutagenesis can be used to discover the mutational networks, the timing of mutations, and the genes that initiate and drive tumor evolution.
Collapse
Affiliation(s)
- Christiaan Klijn
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Marco J. Koudijs
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jaap Kool
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jelle ten Hoeve
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mandy Boer
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joost de Moes
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Waseem Akhtar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Martine van Miltenburg
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | - David J. Adams
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Maarten van Lohuizen
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - John Hilkens
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lodewyk F. A. Wessels
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Callahan R, Mudunuri U, Bargo S, Raafat A, McCurdy D, Boulanger C, Lowther W, Stephens R, Luke BT, Stewart C, Wu X, Munroe D, Smith GH. Genes affected by mouse mammary tumor virus (MMTV) proviral insertions in mouse mammary tumors are deregulated or mutated in primary human mammary tumors. Oncotarget 2012; 3:1320-34. [PMID: 23131872 PMCID: PMC3717796 DOI: 10.18632/oncotarget.682] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 10/17/2012] [Indexed: 11/25/2022] Open
Abstract
The accumulation of mutations is a contributing factor in the initiation of premalignant mammary lesions and their progression to malignancy and metastasis. We have used a mouse model in which the carcinogen is the mouse mammary tumor virus (MMTV) which induces clonal premalignant mammary lesions and malignant mammary tumors by insertional mutagenesis. Identification of the genes and signaling pathways affected in MMTV-induced mouse mammary lesions provides a rationale for determining whether genetic alteration of the human orthologues of these genes/pathways may contribute to human breast carcinogenesis. A high-throughput platform for inverse PCR to identify MMTV-host junction fragments and their nucleotide sequences in a large panel of MMTV-induced lesions was developed. Validation of the genes affected by MMTV-insertion was carried out by microarray analysis. Common integration site (CIS) means that the gene was altered by an MMTV proviral insertion in at least two independent lesions arising in different hosts. Three of the new genes identified as CIS for MMTV were assayed for their capability to confer on HC11 mouse mammary epithelial cells the ability for invasion, anchorage independent growth and tumor development in nude mice. Analysis of MMTV induced mammary premalignant hyperplastic outgrowth (HOG) lines and mammary tumors led to the identification of CIS restricted to 35 loci. Within these loci members of the Wnt, Fgf and Rspo gene families plus two linked genes (Npm3 and Ddn) were frequently activated in tumors induced by MMTV. A second group of 15 CIS occur at a low frequency (2-5 observations) in mammary HOGs or tumors. In this latter group the expression of either Phf19 or Sdc2 was shown to increase HC11 cells invasion capability. Foxl1 expression conferred on HC11 cells the capability for anchorage-independent colony formation in soft agar and tumor development in nude mice. The published transcriptome and nucleotide sequence analysis of gene expression in primary human breast tumors was interrogated. Twenty of the human orthologues of MMTV CIS associated genes are deregulated and/or mutated in human breast tumors.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Cell Line, Tumor
- Disease Models, Animal
- Female
- Gene Expression Regulation, Neoplastic
- Gene Expression Regulation, Viral
- Humans
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Mutagenesis, Insertional
- Mutation
- Proviruses/genetics
- Transfection
- Tumor Virus Infections/genetics
- Tumor Virus Infections/virology
- Virus Integration/genetics
Collapse
Affiliation(s)
- Robert Callahan
- Cell and Cancer Biology Branch, National Cancer Institute; Bethesda, MD, USA
| | - Uma Mudunuri
- Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | - Sharon Bargo
- Cell and Cancer Biology Branch, National Cancer Institute; Bethesda, MD, USA
| | - Ahmed Raafat
- Cell and Cancer Biology Branch, National Cancer Institute; Bethesda, MD, USA
| | - David McCurdy
- Cell and Cancer Biology Branch, National Cancer Institute; Bethesda, MD, USA
| | - Corinne Boulanger
- Cell and Cancer Biology Branch, National Cancer Institute; Bethesda, MD, USA
| | - William Lowther
- Cell and Cancer Biology Branch, National Cancer Institute; Bethesda, MD, USA
| | - Robert Stephens
- Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | - Brian T. Luke
- Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | - Claudia Stewart
- Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | - Xiaolin Wu
- Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | - David Munroe
- Advanced Technology Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
- Laboratory of Molecular Technology, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD, USA
| | - Gilbert H. Smith
- Cell and Cancer Biology Branch, National Cancer Institute; Bethesda, MD, USA
| |
Collapse
|
10
|
Hsu RJ, Ho JY, Cha TL, Yu DS, Wu CL, Huang WP, Chu P, Chen YH, Chen JT, Yu CP. WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/β-catenin pathway. PLoS One 2012; 7:e47649. [PMID: 23094073 PMCID: PMC3477117 DOI: 10.1371/journal.pone.0047649] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/14/2012] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) is a malignancy with poor prognosis. WNT/β-catenin signaling dysregulation, especially β-catenin overactivation and WNT antagonist silencing, is associated with RCC carcinogenesis and progression. However, the role of WNT ligands in RCC has not yet been determined. We screened 19 WNT ligands from normal kidney and RCC cell lines and tissues and found that WNT10A was significantly increased in RCC cell lines and tissues as compared to that in normal controls. The clinical significance of increase in WNT10A was evaluated by performing an immunohistochemical association study in a 19-year follow-up cohort comprising 284 RCC and 267 benign renal disease (BRD) patients. The results of this study showed that WNT10A was dramatically upregulated in RCC tissues as compared to that in BRD tissues. This result suggests that WNT10A, nuclear β-catenin, and nuclear cyclin D1 act as independent risk factors for RCC carcinogenesis and progression, with accumulative risk effects. Molecular validation of cell line models with gain- or loss-of-function designs showed that forced WNT10A expression induced RCC cell proliferation and aggressiveness, including higher chemoresistance, cell migration, invasiveness, and cell transformation, due to the activation of β-catenin-dependent signaling. Conversely, WNT10A siRNA knockdown decreased cell proliferation and aggressiveness of RCC cells. In conclusion, we showed that WNT10A acts as an autocrine oncogene both in RCC carcinogenesis and progression by activating WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Biobank Management Center of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jar-Yi Ho
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Lung Cha
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Divisions of Urology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Dah-Shyong Yu
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Divisions of Urology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Lin Wu
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ping Huang
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Hsin Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ping Yu
- Biobank Management Center of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
11
|
Economopoulou P, Kaklamani VG, Siziopikou K. The role of cancer stem cells in breast cancer initiation and progression: potential cancer stem cell-directed therapies. Oncologist 2012; 17:1394-401. [PMID: 22941971 DOI: 10.1634/theoncologist.2012-0163] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent studies have identified a small population of highly tumorigenic cells with stem cell properties in human breast and other solid tumors that are considered to be the source of tumor initiation and maintenance; these cells are referred to as cancer stem cells (CSCs). Preclinical data suggest that current breast cancer treatment strategies lead to CSC enrichment, contributing to chemotherapy and radiotherapy resistance, although a strong correlation with clinical parameters and prognosis is yet to be established. Importantly, overcoming treatment failure by effective targeting of CSCs may be an appealing approach, potentially leading to improved clinical outcomes for patients with breast cancer. Several preclinical studies provide promising results that support this hypothesis. The purpose of this review is to summarize the role of CSCs in breast cancer recurrence and resistance and to discuss current attempts of CSC targeting.
Collapse
|
12
|
Eckhardt BL, Francis PA, Parker BS, Anderson RL. Strategies for the discovery and development of therapies for metastatic breast cancer. Nat Rev Drug Discov 2012; 11:479-97. [PMID: 22653217 DOI: 10.1038/nrd2372] [Citation(s) in RCA: 266] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nearly all deaths caused by solid cancers occur as a result of metastasis--the formation of secondary tumours in distant organs such as the lungs, liver, brain and bone. A major obstruction to the development of drugs with anti-metastatic efficacy is our fragmented understanding of how tumours 'evolve' and metastasize, at both the biological and genetic levels. Furthermore, although there is significant overlap in the metastatic process among different types of cancer, there are also marked differences in the propensity to metastasize, the extent of metastasis, the sites to which the tumour metastasizes, the kinetics of the process and the mechanisms involved. Here, we consider the case of breast cancer, which has some marked distinguishing features compared with other types of cancer. Considerable progress has been made in the development of preclinical models and in the identification of relevant signalling pathways and genetic regulators of metastatic breast cancer, and we discuss how these might facilitate the development of novel targeted anti-metastatic drugs.
Collapse
Affiliation(s)
- Bedrich L Eckhardt
- Department of Breast Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
13
|
Klauzinska M, Baljinnyam B, Raafat A, Rodriguez-Canales J, Strizzi L, Greer YE, Rubin JS, Callahan R. Rspo2/Int7 regulates invasiveness and tumorigenic properties of mammary epithelial cells. J Cell Physiol 2012; 227:1960-71. [PMID: 21732367 DOI: 10.1002/jcp.22924] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rspo2 was identified as a novel common integration site (CIS) for the mouse mammary tumor virus (MMTV) in viral induced mouse mammary tumors. Here we show that Rspo2 modulates Wnt signaling in mouse mammary epithelial cells. Co-expression of both genes resulted in an intermediate growth phenotype on plastic and had minor effects on the growth-promoting properties of Wnt1 in soft agar. However, individual Rspo2 and Wnt1 HC11 transfectants as well as the double transfectant were tumorigenic in athymic nude mice, with tumors from each line having distinctive histological characteristics. Rspo2 and Rspo2/Wnt1 tumors contained many spindle cells, consistent with an epithelial-mesenchymal transformation (EMT) phenotype. When Rspo2 and Rspo2/Wnt1 tumor cells were transferred into naïve mice, they exhibited greater metastatic activity than cells derived from Wnt1 tumors. For comparison, C57MG/Wnt1/Rspo2 co-transfectants exhibited invasive properties in three-dimensional (3D) Matrigel cultures that were not seen with cells transfected only with Wnt1 or Rspo2. Use of Dickkopf-1, a specific antagonist of the Wnt/β-catenin pathway, or short hairpin RNA targeting β-catenin expression demonstrated that the invasive activity was not mediated by β-catenin. Our results indicate that Rspo2 and Wnt1 have mutually distinct effects on mammary epithelial cell growth and these effects are context-dependent. While Rspo2 and Wnt1 act synergistically in the β-catenin pathway, other mechanisms are responsible for the invasive properties of stable double transfectants observed in 3D Matrigel cultures.
Collapse
Affiliation(s)
- Malgorzata Klauzinska
- Oncogenetics Section, Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Mohibi S, Mirza S, Band H, Band V. Mouse models of estrogen receptor-positive breast cancer. J Carcinog 2011; 10:35. [PMID: 22279420 PMCID: PMC3263010 DOI: 10.4103/1477-3163.91116] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 10/20/2011] [Indexed: 12/22/2022] Open
Abstract
Breast cancer is the most frequent malignancy and second leading cause of cancer-related deaths among women. Despite advances in genetic and biochemical analyses, the incidence of breast cancer and its associated mortality remain very high. About 60 – 70% of breast cancers are Estrogen Receptor alpha (ER-α) positive and are dependent on estrogen for growth. Selective estrogen receptor modulators (SERMs) have therefore provided an effective targeted therapy to treat ER-α positive breast cancer patients. Unfortunately, development of resistance to endocrine therapy is frequent and leads to cancer recurrence. Our understanding of molecular mechanisms involved in the development of ER-α positive tumors and their resistance to ER antagonists is currently limited due to lack of experimental models of ER-α positive breast cancer. In most mouse models of breast cancer, the tumors that form are typically ER-negative and independent of estrogen for their growth. However, in recent years more attention has been given to develop mouse models that develop different subtypes of breast cancers, including ER-positive tumors. In this review, we discuss the currently available mouse models that develop ER-α positive mammary tumors and their potential use to elucidate the molecular mechanisms of ER-α positive breast cancer development and endocrine resistance.
Collapse
Affiliation(s)
- Shakur Mohibi
- Department of Genetics, Cell Biology, and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska
| | | | | | | |
Collapse
|
15
|
Koudijs MJ, Klijn C, van der Weyden L, Kool J, ten Hoeve J, Sie D, Prasetyanti PR, Schut E, Kas S, Whipp T, Cuppen E, Wessels L, Adams DJ, Jonkers J. High-throughput semiquantitative analysis of insertional mutations in heterogeneous tumors. Genome Res 2011; 21:2181-9. [PMID: 21852388 DOI: 10.1101/gr.112763.110] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Retroviral and transposon-based insertional mutagenesis (IM) screens are widely used for cancer gene discovery in mice. Exploiting the full potential of IM screens requires methods for high-throughput sequencing and mapping of transposon and retroviral insertion sites. Current protocols are based on ligation-mediated PCR amplification of junction fragments from restriction endonuclease-digested genomic DNA, resulting in amplification biases due to uneven genomic distribution of restriction enzyme recognition sites. Consequently, sequence coverage cannot be used to assess the clonality of individual insertions. We have developed a novel method, called shear-splink, for the semiquantitative high-throughput analysis of insertional mutations. Shear-splink employs random fragmentation of genomic DNA, which reduces unwanted amplification biases. Additionally, shear-splink enables us to assess clonality of individual insertions by determining the number of unique ligation points (LPs) between the adapter and genomic DNA. This parameter serves as a semiquantitative measure of the relative clonality of individual insertions within heterogeneous tumors. Mixing experiments with clonal cell lines derived from mouse mammary tumor virus (MMTV)-induced tumors showed that shear-splink enables the semiquantitative assessment of the clonality of MMTV insertions. Further, shear-splink analysis of 16 MMTV- and 127 Sleeping Beauty (SB)-induced tumors showed enrichment for cancer-relevant insertions by exclusion of irrelevant background insertions marked by single LPs, thereby facilitating the discovery of candidate cancer genes. To fully exploit the use of the shear-splink method, we set up the Insertional Mutagenesis Database (iMDB), offering a publicly available web-based application to analyze both retroviral- and transposon-based insertional mutagenesis data.
Collapse
Affiliation(s)
- Marco J Koudijs
- Division of Molecular Biology and Cancer Systems Biology Center, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cardiff RD, Kenney N. A compendium of the mouse mammary tumor biologist: from the initial observations in the house mouse to the development of genetically engineered mice. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a003111. [PMID: 20961975 DOI: 10.1101/cshperspect.a003111] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
For over a century, mouse mammary tumor biology and the associated mouse mammary tumor virus (MMTV) have served as the foundation for experimental cancer research, in general, and, in particular, experimental breast cancer research. Spontaneous mouse mammary tumors were the basis for studies of the natural history of neoplasia, oncogenic viruses, host responses, endocrinology and neoplastic progression. However, lacking formal proof of a human mammary tumor virus, the preeminence of the mouse model faded in the 1980s. Since the late 1980s, genetically engineered mice (GEM) have proven extremely useful for studying breast cancer and have become the animal model for human breast cancer. Hundreds of mouse models of human breast cancer have been developed since the first demonstration in 1984. The GEM have attracted a new generation of molecular and cellular biologists eager to apply their skill sets to these surrogates of the human disease. Newcomers often enter the field without an appreciation of the origins of mouse mammary tumor biology and the basis for many of the prevailing concepts. Our purpose in writing this compendium is to extend an "olive branch" while simultaneously deepen the knowledge of the novice mouse mammary tumor biologist as they journey into a field rich in pathology and genetics spanning several centuries.
Collapse
Affiliation(s)
- Robert D Cardiff
- Center for Comparative Medicine, University of California, Davis, 95616, USA.
| | | |
Collapse
|
17
|
Ross SR. Mouse mammary tumor virus molecular biology and oncogenesis. Viruses 2010; 2:2000-2012. [PMID: 21274409 PMCID: PMC3026287 DOI: 10.3390/v2092000] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 08/25/2010] [Accepted: 09/15/2010] [Indexed: 01/15/2023] Open
Abstract
Mouse mammary tumor virus (MMTV), which was discovered as a milk-transmitted, infectious cancer-inducing agent in the 1930s, has been used since that time as an animal model for the study of human breast cancer. Like other complex retroviruses, MMTV encodes a number of accessory proteins that both facilitate infection and affect host immune response. In vivo, the virus predominantly infects lymphocytes and mammary epithelial cells. High level infection of mammary epithelial cells ensures efficient passage of virus to the next generation. It also results in mammary tumor induction, since the MMTV provirus integrates into the mammary epithelial cell genome during viral replication and activates cellular oncogene expression. Thus, mammary tumor induction is a by-product of the infection cycle. A number of important oncogenes have been discovered by carrying out MMTV integration site analysis, some of which may play a role in human breast cancer.
Collapse
Affiliation(s)
- Susan R Ross
- Department of Microbiology and Abramson Cancer Center, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Pond AC, Herschkowitz JI, Schwertfeger KL, Welm B, Zhang Y, York B, Cardiff RD, Hilsenbeck S, Perou CM, Creighton CJ, Lloyd RE, Rosen JM. Fibroblast growth factor receptor signaling dramatically accelerates tumorigenesis and enhances oncoprotein translation in the mouse mammary tumor virus-Wnt-1 mouse model of breast cancer. Cancer Res 2010; 70:4868-79. [PMID: 20501844 DOI: 10.1158/0008-5472.can-09-4404] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor (FGF) cooperates with the Wnt/beta-catenin pathway to promote mammary tumorigenesis. To investigate the mechanisms involved in FGF/Wnt cooperation, we genetically engineered a model of inducible FGF receptor (iFGFR) signaling in the context of the well-established mouse mammary tumor virus-Wnt-1 transgenic mouse. In the bigenic mice, iFGFR1 activation dramatically enhanced mammary tumorigenesis. Expression microarray analysis did not show transcriptional enhancement of Wnt/beta-catenin target genes but instead showed a translational gene signature that also correlated with elevated FGFR1 and FGFR2 in human breast cancer data sets. Additionally, iFGFR1 activation enhanced recruitment of RNA to polysomes, resulting in a marked increase in protein expression of several different Wnt/beta-catenin target genes. FGF pathway activation stimulated extracellular signal-regulated kinase and the phosphorylation of key translation regulators both in vivo in the mouse model and in vitro in a human breast cancer cell line. Our results suggest that cooperation of the FGF and Wnt pathways in mammary tumorigenesis is based on the activation of protein translational pathways that result in, but are not limited to, increased expression of Wnt/beta-catenin target genes (at the level of protein translation). Further, they reveal protein translation initiation factors as potential therapeutic targets for human breast cancers with alterations in FGF signaling.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Disease Models, Animal
- Fluorescent Antibody Technique
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins/genetics
- Oncogene Proteins/metabolism
- Phosphorylation
- Polyribosomes/metabolism
- Protein Biosynthesis
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptor, Fibroblast Growth Factor, Type 1/physiology
- Receptor, Fibroblast Growth Factor, Type 2/physiology
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- Wnt1 Protein/metabolism
- beta Catenin/genetics
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Adam C Pond
- Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kakarala M, Brenner DE, Korkaya H, Cheng C, Tazi K, Ginestier C, Liu S, Dontu G, Wicha MS. Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 2009; 122:777-85. [PMID: 19898931 DOI: 10.1007/s10549-009-0612-x] [Citation(s) in RCA: 325] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 10/20/2009] [Indexed: 12/27/2022]
Abstract
The cancer stem cell hypothesis asserts that malignancies arise in tissue stem and/or progenitor cells through the dysregulation or acquisition of self-renewal. In order to determine whether the dietary polyphenols, curcumin, and piperine are able to modulate the self-renewal of normal and malignant breast stem cells, we examined the effects of these compounds on mammosphere formation, expression of the breast stem cell marker aldehyde dehydrogenase (ALDH), and Wnt signaling. Mammosphere formation assays were performed after curcumin, piperine, and control treatment in unsorted normal breast epithelial cells and normal stem and early progenitor cells, selected by ALDH positivity. Wnt signaling was examined using a Topflash assay. Both curcumin and piperine inhibited mammosphere formation, serial passaging, and percent of ALDH+ cells by 50% at 5 microM and completely at 10 microM concentration in normal and malignant breast cells. There was no effect on cellular differentiation. Wnt signaling was inhibited by both curcumin and piperine by 50% at 5 microM and completely at 10 microM. Curcumin and piperine separately, and in combination, inhibit breast stem cell self-renewal but do not cause toxicity to differentiated cells. These compounds could be potential cancer preventive agents. Mammosphere formation assays may be a quantifiable biomarker to assess cancer preventive agent efficacy and Wnt signaling assessment can be a mechanistic biomarker for use in human clinical trials.
Collapse
Affiliation(s)
- Madhuri Kakarala
- Division of Hematology/Oncology, Department of Internal Medicine and Comprehensive Cancer Center, University of Michigan, 2150 Cancer Center, 1500 E. Medical Center Dr., Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Yang ZQ, Liu G, Bollig-Fischer A, Haddad R, Tarca AL, Ethier SP. Methylation-associated silencing of SFRP1 with an 8p11-12 amplification inhibits canonical and non-canonical WNT pathways in breast cancers. Int J Cancer 2009; 125:1613-21. [PMID: 19569235 DOI: 10.1002/ijc.24518] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Recently, we analysed the 8p11-12 genomic region for copy number and gene expression changes in a panel of human breast cancer cell lines and primary specimens. We found that SFRP1 (Secreted frizzled related protein 1) is frequently under expressed even in breast tumours with copy number increases in this genomic region. SFRP1 encodes a WNT signalling antagonist, and plays a role in the development of multiple solid tumour types. In this study, we analysed methylation-associated silencing of the SFRP1 gene in breast cancer cells with the 8p11-12 amplicon, and investigated the tumour suppressor properties of SFRP1 in breast cancer cells. SFRP1 expression was markedly reduced in both the breast cancer cell lines and primary tumour specimens relative to normal primary human mammary epithelial cells even when SFRP1 is amplified. Suppression of SFRP1 expression in breast cancer cells with an SFRP1 gene amplification is associated with SFRP1 promoter methylation. Furthermore, restoration of SFRP1 expression suppressed the growth of breast cancer cells in monolayer, and inhibited anchorage independent growth. We also examined the relationship between the silencing of SFRP1 gene and WNT signalling in breast cancer. Ectopic SFRP1 expression in breast cancer cells suppressed both canonical and non-canonical WNT signalling pathways, and SFRP1 expression was negatively associated with the expression of a subset of WNT responsive genes including RET and MSX2. Thus, down-regulation of SFRP1 can be triggered by epigenetic and/or genetic events and may contribute to the tumourigenesis of human breast cancer through both canonical and non-canonical WNT signalling pathways.
Collapse
Affiliation(s)
- Zeng-Quan Yang
- Department of Pathology, Breast Cancer Program, Karmanos Cancer Institute, Detroit, MI 48201, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Callahan R, Smith GH. Common integration sites for MMTV in viral induced mouse mammary tumors. J Mammary Gland Biol Neoplasia 2008; 13:309-21. [PMID: 18709449 PMCID: PMC3104473 DOI: 10.1007/s10911-008-9092-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Accepted: 07/04/2008] [Indexed: 10/21/2022] Open
Abstract
The paradigm of mammary cancer induction by the mouse mammary tumor virus (MMTV) is used to illustrate the body of evidence that supports the hypothesis that mammary epithelial stem/progenitor cells represent targets for oncogenic transformation. It is argued that this is not a special case applicable only to MMTV-induced mammary cancer, because MMTV acts as an environmental mutagen producing random interruptions in the somatic DNA of infected cells by insertion of proviral DNA copies. In addition to disrupting the host genome, the proviral DNA also influences gene expression through its associated enhancer sequences over significant inter-genomic distances. Genes commonly affected by MMTV insertion in multiple individual tumors include, the Wnt, FGF, RSpo gene families as well as eIF3e and Notch4. All of these gene families are known to play essential roles in stem cell maintenance and behavior in a variety of organs. The MMTV-induced mutations accumulate in cells that are long-lived and possess the properties of stem cells, namely, self-renewal and the capacity to produce divergent epithelial progeny through asymmetric division. The evidence shows that epithelial cells with these properties are present in normal mammary glands, may be infected with MMTV, become transformed to produce epithelial hyperplasia through MMTV-induced mutagenesis and progress to frank mammary malignancy. Retroviral marking via MMTV proviral insertion demonstrates that this process progresses from a single mammary epithelial cell that possesses all of the features ascribed to tissue-specific stem cells.
Collapse
Affiliation(s)
- Robert Callahan
- Mammary Gland Biology and Tumorigenesis Laboratory, National Cancer Institute, Building 37/Room 1118A, MSC4254, Bethesda, MD 20892, USA
| | - Gilbert H. Smith
- National Cancer Institute, Building 37/Room 1112A, MSC 4254, Bethesda, MD 20892, USA
| |
Collapse
|
22
|
Abstract
Metastatic disease is the major cause of death in breast cancer patients. Patients presenting with metastases cannot be cured, and as a consequence, treatment is palliative and focuses on prolonging survival and maintaining quality of life. Numerous mouse models have been generated in which human breast cancer development and metastasis have been studied, ranging from spontaneous and carcinogen-induced models to transplantation models and genetically engineered mouse models. Here, we summarize past progress and highlight present developments in modeling breast cancer invasion and metastasis in genetically modified mice, and the impact it may have on the development of innovative anticancer therapies.
Collapse
Affiliation(s)
- Jos Jonkers
- Division of Molecular Biology, Netherlands Cancer Institute, Plesmanlaan 121, 1066CX, Amsterdam, The Netherlands.
| | | |
Collapse
|
23
|
Vernon AE, Bakewell SJ, Chodosh LA. Deciphering the molecular basis of breast cancer metastasis with mouse models. Rev Endocr Metab Disord 2007; 8:199-213. [PMID: 17657606 DOI: 10.1007/s11154-007-9041-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Breast cancer begins as a localized disease, but has the potential to spread to distant sites within the body. This process--known as metastasis--is the leading cause of death from breast cancer. Whether the ability of cancer cells to metastasize is an intrinsic or acquired feature is currently a topic of considerable debate. Nevertheless, the key cellular events required for metastasis are generally accepted. These include invasion of the surrounding stromal tissue, intravasation, evasion of programmed cell death, arrest within the vasculature at a distant site, extravasation, and establishment and growth within a new microenvironment. The development of mouse models that faithfully mimic critical aspects of human neoplasia has been instrumental in framing our current understanding of multistage carcinogenesis. This review examines the advantages and limitations of existing murine models for mammary carcinogenesis for probing the molecular mechanisms that contribute to metastasis, as well as non-invasive tumor imaging approaches to facilitate these investigations.
Collapse
Affiliation(s)
- Ann E Vernon
- Department of Cancer Biology, and The Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 612 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | | | |
Collapse
|
24
|
Almholt K, Green KA, Juncker-Jensen A, Nielsen BS, Lund LR, Rømer J. Extracellular proteolysis in transgenic mouse models of breast cancer. J Mammary Gland Biol Neoplasia 2007; 12:83-97. [PMID: 17286208 PMCID: PMC1820839 DOI: 10.1007/s10911-007-9040-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Growth and invasion of breast cancer require extracellular proteolysis in order to physically restructure the tissue microenvironment of the mammary gland. This pathological tissue remodeling process depends on a collaboration of epithelial and stromal cells. In fact, the majority of extracellular proteases are provided by stromal cells rather than cancer cells. This distinct expression pattern is seen in human breast cancers and also in transgenic mouse models of breast cancer. The similar expression patterns suggest that transgenic mouse models are ideally suited to study the role of extracellular proteases in cancer progression. Here we give a status report on protease intervention studies in transgenic models. These studies demonstrate that proteases are involved in all stages of breast cancer progression from carcinogenesis to metastasis. Transgenic models are now beginning to provide vital mechanistic insight that will allow us to combat breast cancer invasion and metastasis with new protease-targeted drugs.
Collapse
Affiliation(s)
- Kasper Almholt
- Finsen Laboratory, Rigshospitalet 3735, Copenhagen BioCenter, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
25
|
Abstract
Metastatic spread of cancer cells is the main cause of death of breast cancer patients, and elucidation of the molecular mechanisms underlying this process is a major focus in cancer research. The identification of appropriate therapeutic targets and proof-of-concept experimentation involves an increasing number of experimental mouse models, including spontaneous and chemically induced carcinogenesis, tumor transplantation, and transgenic and/or knockout mice. Here we give a progress report on how mouse models have contributed to our understanding of the molecular processes underlying breast cancer metastasis and on how such experimentation can open new avenues to the development of innovative cancer therapy.
Collapse
Affiliation(s)
- Anna Fantozzi
- Institute of Biochemistry and Genetics, Department of Clinical-Biological Sciences (DKBW), Center of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | - Gerhard Christofori
- Institute of Biochemistry and Genetics, Department of Clinical-Biological Sciences (DKBW), Center of Biomedicine, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| |
Collapse
|
26
|
Lowther W, Wiley K, Smith GH, Callahan R. A new common integration site, Int7, for the mouse mammary tumor virus in mouse mammary tumors identifies a gene whose product has furin-like and thrombospondin-like sequences. J Virol 2005; 79:10093-6. [PMID: 16014973 PMCID: PMC1181551 DOI: 10.1128/jvi.79.15.10093-10096.2005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel common integration site for the mouse mammary tumor virus (MMTV) was identified (designated Int7) in five independently arising mouse mammary tumors. The insertion sites all cluster within a 1-kb region that is 2 to 3 kb 5' of the transcription initiation site of a gene, 2610028F08RIK, whose gene product contains furin-like and thrombospondin-like sequences. Expression of Int7 is normally very low or silent during various stages of mammary gland development, but MMTV integration at this site results in the activation of high steady-state levels of expression of the gene. These five tumors were also found to have two or three additional viral insertions, which in each case occurred flanking a member of either the Wnt and/or FGF gene family. Reverse transcriptase PCR results demonstrated that each of the viral insertions led to elevated expression of the presumed target flanking genes.
Collapse
Affiliation(s)
- William Lowther
- Mammary Biology and Tumorigenesis Laboratory, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
27
|
Evolution of somatic mutations in mammary tumors in transgenic mice is influenced by the inherited genotype. BMC Med 2004; 2:24. [PMID: 15198801 PMCID: PMC446228 DOI: 10.1186/1741-7015-2-24] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2004] [Accepted: 06/15/2004] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND MMTV-Wnt1 transgenic mice develop mammary hyperplasia early in development, followed by the appearance of solitary mammary tumors with a high proportion of cells expressing early lineage markers and many myoepithelial cells. The occurrence of tumors is accelerated in experiments that activate FGF proto-oncogenes or remove the tumor suppressor genes Pten or P53, implying that secondary oncogenic events are required for progression from mammary hyperplasia to carcinoma. It is not known, however, which oncogenic pathways contribute to Wnt1-induced tumorigenesis - further experimental manipulation of these mice is needed. Secondary events also appear to be required for mammary tumorigenesis in MMTV-Neu transgenic mice because the transgene in the tumors usually contains an acquired mutation that activates the Neu protein-tyrosine kinase. METHODS cDNA or DNA from the mammary glands and mammary tumors from MMTV-Wnt1, MMTV-Wnt1/p53-/-, MMTV-Neu transgenic mice, and newly generated MMTV-Wnt1/MMTV-Neu bitransgenic mice, was sequenced to seek activating mutations in H-Ras, K-Ras, and N-Ras genes, or in the MMTV-Neu transgene. In addition, tumors from bitransgenic animals were examined to determine the cellular phenotype. RESULTS We found activating mutations at codons 12, 13, and 61 of H-Ras in just over half of the mammary tumors in MMTV-Wnt1 transgenic mice, and we confirmed the high frequency of activating mutations of Neu in tumors in MMTV-Neu transgenic mice. Tumors appeared earlier in bitransgenic MMTV-Wnt1/MMTV-Neu mice, but no Ras or MMTV-Neu mutations were found in these tumors, which were phenotypically similar to those arising in MMTV-Wnt1 mice. In addition, no Ras mutations were found in the mammary tumors that arise in MMTV-Wnt1 transgenic mice lacking an intact P53 gene. CONCLUSIONS Tumorigenic properties of cells undergoing functionally significant secondary mutations in H-Ras or the MMTV-Neu transgene allow selection of those cells in MMTV-Wnt1 and MMTV-Neu transgenic mice, respectively. Alternative sources of oncogenic potential, such as a second transgenic oncogene or deficiency of a tumor suppressor gene, can obviate the selective power of those secondary mutations. These observations are consistent with the notion that somatic evolution of mouse mammary tumors is influenced by the specific nature of the inherited cancer-promoting genotype.
Collapse
|
28
|
Gorska AE, Jensen RA, Shyr Y, Aakre ME, Bhowmick NA, Moses HL. Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-beta receptor exhibit impaired mammary development and enhanced mammary tumor formation. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1539-49. [PMID: 14507660 PMCID: PMC1868288 DOI: 10.1016/s0002-9440(10)63510-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously shown that expression of a dominant-negative type II transforming growth factor-beta receptor (DNIIR) in mammary epithelium under control of the MMTV promoter/enhancer causes alveolar hyperplasia and differentiation in virgin mice. Here we show that MMTV-DNIIR female mice have accelerated mammary gland differentiation during early pregnancy with impaired development during late pregnancy and lactation followed by delayed postlactational involution. Mammary tumors, mostly carcinoma in situ, developed spontaneously in the MMTV-DNIIR mice with a long median latency (27.5 months). Crossbreeding to MMTV-transforming growth factor (TGF)-alpha mice to obtain mice expressing both transgenes resulted in mammary tumor formation with a much shorter latency more similar to those expressing only the MMTV-TGF-alpha transgene (<10 months median latency). The major difference in mammary tumors arising in MMTV-TGF-alpha compared to bigenic MMTV-DNIIR/MMTV-TGF-alpha was the marked suppression of tumor invasion by DNIIR transgene expression. Invading carcinoma cells in both MMTV-DNIIR and bigenic animals showed loss of DNIIR transgene expression as determined by in situ hybridization. The data indicate that signaling from endogenous TGF-betas not only plays an important role in normal mammary gland physiology but also can also suppress the early stage of tumor formation and contribute to tumor invasion once carcinomas have developed.
Collapse
MESH Headings
- Animals
- Carcinoma/genetics
- Carcinoma/pathology
- Female
- Gene Expression
- Genes, Dominant
- Genes, Viral/genetics
- Lactation
- Mammary Glands, Animal/growth & development
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Animal/genetics
- Mammary Neoplasms, Animal/pathology
- Mammary Tumor Virus, Mouse/genetics
- Mice
- Mice, Transgenic
- Mutation
- Neoplasm Invasiveness
- Pregnancy
- Promoter Regions, Genetic
- Receptors, Transforming Growth Factor beta/genetics
- Transforming Growth Factor alpha/genetics
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta2
Collapse
Affiliation(s)
- Agnieszka E Gorska
- Vanderbilt-Ingram Cancer Center and the Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
29
|
Chatterjee G, Rosner A, Han Y, Zelazny ET, Li B, Cardiff RD, Perkins AS. Acceleration of mouse mammary tumor virus-induced murine mammary tumorigenesis by a p53 172H transgene: influence of FVB background on tumor latency and identification of novel sites of proviral insertion. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:2241-53. [PMID: 12466138 PMCID: PMC1850916 DOI: 10.1016/s0002-9440(10)64500-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We previously showed that a mammary-specific dominant-negative p53 transgene (WAP-p53(172H)) could accelerate ErbB2-induced mammary tumorigenesis in mice, but was not tumorigenic on its own. To identify other genes that cooperate with WAP-p53(172H) in tumorigenesis, we performed mouse mammary tumor virus (MMTV) proviral mutagenesis. We derived F1, N2, and N4/N5 mice from p53(172H) transgenic FVB mice backcrossed onto MMTV+ C3H/He mice. Results show the latency of MMTV tumorigenesis is correlated with FVB contribution. F1 tumors had the shortest latency (217 days), had a higher rate of metastasis, and were less differentiated than the N2 and N4/N5 tumors. The latency was 269 days in N2 mice, and lengthened to 346 days in N4/N5 mice. p53(172H) significantly accelerated MMTV tumorigenesis only in N2 mice, indicating cooperativity between p53(172H) and MMTV in this cohort. To identify genes that may be causally involved in MMTV-induced mammary tumorigenesis, we identified 60 sites of proviral insertion in the N2 tumors. Among the insertions in p53(172H) transgenic tumors were 10 genes not previously found as sites of MMTV insertion including genes involved in signaling (Pdgfra, Pde1b, Cnk1), cell adhesion (Cd44), angiogenesis (Galgt1), and transcriptional regulation (Olig1, Olig2, and Uncx4.1). These may represent cellular functions that are likely not deregulated by mutation in p53.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic
- DNA, Neoplasm/analysis
- Female
- Gene Expression Regulation, Neoplastic
- Genes, p53
- Humans
- Mammary Glands, Animal/pathology
- Mammary Glands, Animal/virology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/virology
- Mammary Tumor Virus, Mouse/genetics
- Mammary Tumor Virus, Mouse/metabolism
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Mutagenesis
- Survival Rate
- Transgenes
- Tumor Suppressor Protein p53/genetics
- Virus Integration
Collapse
Affiliation(s)
- Gouri Chatterjee
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8023. USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Kavanaugh CJ, Desai KV, Calvo A, Brown PH, Couldrey C, Lubet R, Green JE. Pre-clinical applications of transgenic mouse mammary cancer models. Transgenic Res 2002; 11:617-33. [PMID: 12509137 DOI: 10.1023/a:1021159705363] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Breast cancer is a leading cause of cancer morbidity and mortality. Given that the majority of human breast cancers appear to be due to non-genetic factors, identifying agents and mechanisms of prevention is key to lowering the incidence of cancer. Genetically engineered mouse models of mammary cancer have been important in elucidating molecular pathways and signaling events associated with the initiation, promotion, and the progression of cancer. Since several transgenic mammary models of human breast cancer progress through well-defined cancer stages, they are useful pre-clinical systems to test the efficacy of chemopreventive and chemotherapeutic agents. This review outlines several oncogenic pathways through which mammary cancer can be induced in transgenic models and describes several types of preventive and therapeutic agents that have been tested in transgenic models of mammary cancer. The effectiveness of farnesyl inhibitors, aromatase inhibitors, differentiating agents, polyamine inhibitors, anti-angiogenic inhibitors, and immunotherapeutic compounds including vaccines have been evaluated in reducing mammary cancer and tumor progression in transgenic models.
Collapse
Affiliation(s)
- C J Kavanaugh
- Laboratory of Cellular Regulation and Carcinogenesis, National Cancer Institute, Building 41, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Rosner A, Miyoshi K, Landesman-Bollag E, Xu X, Seldin DC, Moser AR, MacLeod CL, Shyamala G, Gillgrass AE, Cardiff RD. Pathway pathology: histological differences between ErbB/Ras and Wnt pathway transgenic mammary tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:1087-97. [PMID: 12213737 PMCID: PMC1867237 DOI: 10.1016/s0002-9440(10)64269-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
To study phenotype-genotype correlations, ErbB/Ras pathway tumors (transgenic for ErbB2, c-Neu, mutants of c-Neu, polyomavirus middle T antigene (PyV-mT), Ras, and bi-transgenic for ErbB2/Neu with ErbB3 and with progesterone receptor) from four different institutions were histopathologically compared with Wnt pathway tumors [transgenes Wnt1, Wnt10b, dominant-negative glycogen synthase kinase 3-beta, beta-Catenin, and spontaneous mutants of adenomatous polyposis coli gene (Apc)]. ErbB/Ras pathway tumors tend to form solid nodules consisting of poorly differentiated cells with abundant cytoplasm. ErbB/Ras pathway tumors also have scanty stroma and lack myoepithelial or squamous differentiation. In contrast, Wnt pathway tumors exhibit myoepithelial, acinar, or glandular differentiation, and, frequently, combinations of these. Squamous metaplasia is frequent and may include transdifferentiation to epidermal and pilar structures. Most Wnt pathway tumors form caricatures of elongated, branched ductules, and have well-developed stroma, inflammatory infiltrates, and pushing margins. Tumors transgenic for interacting genes such as protein kinase CK2alpha (casein kinase IIalpha), and the fibroblast growth factors (Fgf) Int2/Fgf3 or keratinocyte growth factor (Kgf/Fgf7) also have the Wnt pathway phenotype. Because the tumors from the ErbB/Ras and the Wnt pathway are so distinct and can be readily identified using routine hematoxylin and eosin sections, we suggest that pathway pathology is applicable in both basic and clinical cancer research.
Collapse
Affiliation(s)
- Andrea Rosner
- Center for Comparative Medicine, University of California, Davis 95616, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Miyoshi K, Rosner A, Nozawa M, Byrd C, Morgan F, Landesman-Bollag E, Xu X, Seldin DC, Schmidt EV, Taketo MM, Robinson GW, Cardiff RD, Hennighausen L. Activation of different Wnt/beta-catenin signaling components in mammary epithelium induces transdifferentiation and the formation of pilar tumors. Oncogene 2002; 21:5548-56. [PMID: 12165853 DOI: 10.1038/sj.onc.1205686] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2002] [Revised: 05/13/2002] [Accepted: 05/20/2002] [Indexed: 11/08/2022]
Abstract
The Wnt/beta-catenin signaling pathway controls cell fate and neoplastic transformation. Expression of an endogenous stabilized beta-catenin (DeltaE3 beta-catenin) in mammary epithelium leads to the transdifferentiation into epidermis- and pilar-like structures. Signaling molecules in the canonical Wnt pathway upstream from beta-catenin induce glandular tumors but it is not clear whether they also cause squamous transdifferentiation. To address this question we have now investigated mammary epithelium from transgenic mice that express activating molecules of the Wnt pathway: Wnt10b, Int2/Fgf3, CK2alpha, DeltaE3 beta-catenin, Cyclin D1, and dominant negative (dn) GSK3beta. Cytokeratin 5 (CK5), which is expressed in both mammary myoepithelium and epidermis, and the epidermis-specific CK1 and CK6 were used as differentiation markers. Extensive squamous metaplasias and widespread expression of CK1 and CK6 were observed in DeltaE3 beta-catenin transgenic mammary tissue. Wnt10b and Int2 transgenes also induced squamous metaplasias, but expression of CK1 and CK6 was sporadic. While CK5 expression in Wnt10b transgenic tissue was still confined to the lining cell layer, its expression in Int2 transgenic tissue was completely disorganized. In contrast, cytokeratin expression in CK2alpha, dnGSK3beta and Cyclin D1 transgenic mammary tissues was similar to that in DeltaE3 beta-catenin tissue. In support of transdifferentiation, expression of hard keratins specific for hair and nails was observed in pilar tumors. These results demonstrate that the activation of Wnt signaling components in mammary epithelium induces not only glandular tumors but also squamous differentiation, possibly by activating LEF-1, which is expressed in normal mammary epithelium.
Collapse
Affiliation(s)
- Keiko Miyoshi
- Laboratory of Genetics and Physiology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Li Y, Podsypanina K, Liu X, Crane A, Tan LK, Parsons R, Varmus HE. Deficiency of Pten accelerates mammary oncogenesis in MMTV-Wnt-1 transgenic mice. BMC Mol Biol 2001; 2:2. [PMID: 11178110 PMCID: PMC29091 DOI: 10.1186/1471-2199-2-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2000] [Accepted: 01/23/2001] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Germline mutations in the tumor suppressor PTEN predispose human beings to breast cancer, and genetic and epigenetic alterations of PTEN are also detected in sporadic human breast cancer. Germline Pten mutations in mice lead to the development of a variety of tumors, but mammary carcinomas are infrequently found, especially in mice under the age of six months. RESULTS To better understand the role of PTEN in breast tumor development, we have crossed Pten heterozygous mice to MMTV-Wnt-1 transgenic mice that routinely develop ductal carcinomas in the mammary gland. Female Wnt-1 transgenics heterozygous for Pten developed mammary tumors earlier than Wnt-1 transgenics that were wild type for Pten. In most tumors arising in Pten heterozygotes, the Pten wild-type allele was lost, suggesting that cells lacking Pten function have a growth advantage over cells retaining a wild type allele. Tumors with LOH contained high levels of activated AKT/PKB, a downstream target of the PTEN/PI3K pathway. CONCLUSIONS An animal model has been developed in which the absence of Pten collaborates with Wnt-1 to induce ductal carcinoma in the mammary gland. This animal model may be useful for testing therapies specific for tumors deregulated in the PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Yi Li
- Program in Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, USA
- National Cancer Institute, National Institutes of Health, Bethesda, Mayland, USA
| | - Katrina Podsypanina
- Program in Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, USA
- Department of Pathology & Medicine, Institute of Cancer Genetics, Columbia University, New York, USA
| | - Xiufan Liu
- School of Veterinary Medicine, Yangzhou University, China
- National Cancer Institute, National Institutes of Health, Bethesda, Mayland, USA
| | - Allison Crane
- Department of Pathology & Medicine, Institute of Cancer Genetics, Columbia University, New York, USA
| | - Lee K Tan
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, USA
| | - Ramon Parsons
- Department of Pathology & Medicine, Institute of Cancer Genetics, Columbia University, New York, USA
| | - Harold E Varmus
- Program in Cell Biology, Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, USA
- National Cancer Institute, National Institutes of Health, Bethesda, Mayland, USA
| |
Collapse
|
34
|
Cardiff RD, Moghanaki D, Jensen RA. Genetically engineered mouse models of mammary intraepithelial neoplasia. J Mammary Gland Biol Neoplasia 2000; 5:421-37. [PMID: 14973386 DOI: 10.1023/a:1009534129331] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Foci of atypical mammary epithelium have been associated with breast cancer in many species including mouse and man. The advent of targeted genomics has led to the creation of numerous genetically engineered mice (GEM) which display focal atypical lesions associated with mammary cancer. Some early lesions in GEM have a remarkable morphological similarity to pre-cancers in humans. While the malignant potential of atypical foci have been thoroughly documented in the non-GEM by tissue transplantation, a review of the literature reveals that precursor lesions in GEM remain incompletely described and only partially documented. Their validation as appropriate models of human breast preneoplasia awaits classical transplantation studies. Here, we review the literature characterizing early lesions of GEM models of mammary cancer, discuss the principles of the Focality, Atypia, and Association and present an introduction of mammary transplantation for model Validation.
Collapse
Affiliation(s)
- R D Cardiff
- Department of Pathology and Center for Comparative Medicine, University of California, Davis 95616, USA.
| | | | | |
Collapse
|
35
|
Abstract
Preneoplastic lesions in murine mammary tumorigenesis have been extensively investigated over the past 50 years. The two general types of lesion that have malignant potential are the alveolar hyperplasias represented by the classical hyperplastic alveolar nodule and the ductal hyperplasias. The former type of lesion is induced by viral, chemical and hormonal agents; the latter by chemical agents and specific genetic alterations. Individual animal models have been utilized to elucidate the basic biological properties of the lesions and some of the basic molecular alterations. The biological phenotype of the two types of lesions include immortalization and epithelial hyperplasia. The ductal hyperplasias are distinguished from the alveolar hyperplasias by their pattern of epithelial hyperplasia and their extent of aneuploidy. The molecular alterations underlying epithelial hyperplasia are numerous and dependent on the particular animal model. An important issue for future studies is how faithfully any of these models mimic human premalignant progression. A minimal set of criteria is proposed that includes morphological progression, hormone dependence and genetic instability. It is likely that hyperplasias from a specific mouse model will represent a subset of the lesions found in human disease. Analogous hyperplasias from several defined genetic models, adequately characterized at the biological and molecular levels, would provide appropriate models for testing chemopreventive agents.
Collapse
Affiliation(s)
- D Medina
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
36
|
Dickson C, Spencer-Dene B, Dillon C, Fantl V. Tyrosine kinase signalling in breast cancer: fibroblast growth factors and their receptors. Breast Cancer Res 2000; 2:191-6. [PMID: 11250709 PMCID: PMC138774 DOI: 10.1186/bcr53] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/1999] [Accepted: 02/21/2000] [Indexed: 02/06/2023] Open
Abstract
The fibroblast growth factors [Fgfs (murine), FGFs (human)] constitute a large family of ligands that signal through a class of cell-surface tyrosine kinase receptors. Fgf signalling has been associated in vitro with cellular differentiation as well as mitogenic and motogenic responses. In vivo, Fgfs are critical for animal development, and some have potent angiogenic properties. Several Fgfs have been identified as oncogenes in murine mammary cancer, where their deregulation is associated with proviral insertions of the mouse mammary tumour virus (MMTV). Thus, in some mammary tumours of MMTV-infected mouse strains, integration of viral genomic DNA into the somatic DNA of mammary epithelial cells was found to have caused the inappropriate expression of members of this family of growth factors. Although examination of human breast cancers has shown an altered expression of FGFs or of their receptors in some tumours, their role in the causation of breast disease is unclear and remains controversial.
Collapse
Affiliation(s)
- C Dickson
- Imperial Cancer Research Fund, London, UK.
| | | | | | | |
Collapse
|
37
|
Holland EC, Hively WP, DePinho RA, Varmus HE. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Genes Dev 1998; 12:3675-85. [PMID: 9851974 PMCID: PMC317252 DOI: 10.1101/gad.12.23.3675] [Citation(s) in RCA: 404] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The epidermal growth factor receptor (EGFR) gene is amplified or mutated in 30%-50% of human gliobastoma multiforme (GBM). These mutations are associated usually with deletions of the INK4a-ARF locus, which encodes two gene products (p16(INK4a) and p19(ARF)) involved in cell-cycle arrest and apoptosis. We have investigated the role of EGFR mutation in gliomagenesis, using avian retroviral vectors to transfer a mutant EGFR gene to glial precursors and astrocytes in transgenic mice expressing tv-a, a gene encoding the retrovirus receptor. TVA, under control of brain cell type-specific promoters. We demonstrate that expression of a constitutively active, mutant form of EGFR in cells in the glial lineage can induce lesions with many similarities to human gliomas. These lesions occur more frequently with gene transfer to mice expressing tv-a from the progenitor-specific nestin promoter than to mice expressing tv-a from the astrocyte-specific glial fibrillary acidic protein (GFAP) promoter, suggesting that tumors arise more efficiently from immature cells in the glial lineage. Furthermore, EGFR-induced gliomagenesis appears to require additional mutations in genes encoding proteins involved in cell-cycle arrest pathways. We have produced these combinations by simultaneously infecting tv-a transgenic mice with vectors carrying cdk4 and EGFR or by infecting tv-a transgenic mice bearing a disrupted INK4a-ARF locus with the EGFR-carrying vector alone. Moreover, EGFR-induced gliomagenesis does not occur in conjunction with p53 deficiency, unless the mice are also infected with a vector carrying cdk4. The gliomagenic combinations of genetic lesions required in mice are similar to those found in human gliomas.
Collapse
Affiliation(s)
- E C Holland
- Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
38
|
Holland EC, Varmus HE. Basic fibroblast growth factor induces cell migration and proliferation after glia-specific gene transfer in mice. Proc Natl Acad Sci U S A 1998; 95:1218-23. [PMID: 9448312 PMCID: PMC18724 DOI: 10.1073/pnas.95.3.1218] [Citation(s) in RCA: 227] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Basic fibroblast growth factor (bFGF) is overexpressed in most high-grade human gliomas, implying that it is involved in the pathogenesis of these tumors. To assess the biological effect of inappropriate production of bFGF in normal astrocytes, we developed a system for glia-specific gene transfer in transgenic mice. A transgene encoding the receptor for subgroup A avian leukosis virus and controlled by the astrocyte-specific glial fibrillary acidic protein promoter permits efficient glia-specific transfer of genes carried by subgroup A avian leukosis virus vectors. With this system, we have demonstrated that bFGF induces proliferation and migration of glial cells in vivo, without the induction of tumors.
Collapse
Affiliation(s)
- E C Holland
- Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
39
|
Takayama T, Shiozaki H, Doki Y, Oka H, Inoue M, Yamamoto M, Tamura S, Shibamoto S, Ito F, Monden M. Aberrant expression and phosphorylation of beta-catenin in human colorectal cancer. Br J Cancer 1998; 77:605-13. [PMID: 9484818 PMCID: PMC2149924 DOI: 10.1038/bjc.1998.97] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cytoplasmic domain of cadherins is known to associate with the intracellular proteins, catenins, which link cadherins to the actin-based cytoskeleton. In this study, we immunohistochemically investigated the expression of beta-catenin as well as E-cadherin and alpha-catenin in 86 human colorectal cancers, and we analysed their coexpression pattern and relationship to clinicopathological factors. In cancerous tissues, the frequency of reduced expression of beta-catenin (28 of 86, 33%) was similar to that of E-cadherin (19 of 86, 22%), but less than that of alpha-catenin (47 of 86, 55%). All three molecules were expressed strongly, as was the normal epithelium, in 36 cases (42%), whereas the rest (50 cases, 58%) showed reduction in one of the molecules. The reduction of beta-catenin expression was significantly correlated with dedifferentiation, Duke's stage, lymph node metastasis and liver metastasis. Next, we examined tyrosine phosphorylation in the protein complex immunoprecipitated with E-cadherin, as E-cadherin function is down-regulated by receptor-type tyrosine kinase in vitro. It was of interest that up-regulation of tyrosine phosphorylation of beta-catenin was more frequently observed in cancerous tissues than in the matching normal mucosa. These results suggest that beta-catenin may have important regulatory roles within an E-cadherin-mediated adhesion system in human colorectal cancers.
Collapse
Affiliation(s)
- T Takayama
- Department of Surgery II, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Bui TD, Zhang L, Rees MC, Bicknell R, Harris AL. Expression and hormone regulation of Wnt2, 3, 4, 5a, 7a, 7b and 10b in normal human endometrium and endometrial carcinoma. Br J Cancer 1997; 75:1131-6. [PMID: 9099960 PMCID: PMC2222778 DOI: 10.1038/bjc.1997.195] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Wnt genes are transforming to mouse breast epithelium and are hormonally regulated in vivo. To assess their role in another endocrine-responsive human cancer, the expression of seven Wnt genes (Wnt 2, 3, 4, 5a, 7a, 7b and 10b) in normal human endometrium and endometrial cells, and endometrial carcinoma tissues and cell lines was investigated by ribonuclease protection analysis. Wnt2, 3, 4 and 5a mRNAs but not Wnt7a, 7b or 10b mRNAs were expressed in primary culture of normal endometrial epithelial (NEE) and stromal (NES) cells. In contrast, in four endometrial carcinoma cell lines (RL95-2, HEC-1-A, AN3 CA and Ishikawa), Wnt2 and Wnt3 mRNAs were absent. Wnt4 was expressed in only one out of four cell lines (RL95-2), and Wnt5a was much lower. Wnt7a and Wnt7b mRNAs were expressed in three out of four cell lines (RL95-2, HEC-1-A and Ishikawa). Wnt10b mRNA was expressed in RL95-2 and AN3 CA. In fresh tissues, all Wnt genes apart from Wnt10b were expressed in normal endometrium and endometrial carcinoma. Similar to the cell lines, the level of Wnt4 mRNA expression was significantly higher in the normal endometrium than endometrial carcinoma. Wnt2, 3 and 5a mRNAs were also lower in endometrial carcinoma compared with normal endometrium. There was no difference in the level of Wnt2, 3, 4 and 5a mRNA expression between proliferative phase and secretory phase of the menstrual cycle, or between either menstrual phase and the first trimester of pregnancy. In vitro, progesterone and/or 17beta-oestradiol had no effect on Wnt2, 3, 4, 5a and 7b mRNA expression in NES and all endometrial carcinoma cell lines. The data indicate that all Wnt genes were expressed in vitro, six out of seven Wnt genes (Wnt 2, 3, 4, 5a, 7a and 7b) were expressed endogenously in the human endometrium, their mRNA expression was hormonally independent and Wnt4 gene down-regulation as well as down-regulation of Wnt 2, 3 and 5a may be associated with endometrial carcinoma.
Collapse
Affiliation(s)
- T D Bui
- Molecular Oncology Laboratory, University of Oxford, John Radcliffe Hospital, Headington, UK
| | | | | | | | | |
Collapse
|
41
|
Broccoli D, Godley LA, Donehower LA, Varmus HE, de Lange T. Telomerase activation in mouse mammary tumors: lack of detectable telomere shortening and evidence for regulation of telomerase RNA with cell proliferation. Mol Cell Biol 1996; 16:3765-72. [PMID: 8668193 PMCID: PMC231372 DOI: 10.1128/mcb.16.7.3765] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Activation of telomerase in human cancers is thought to be necessary to overcome the progressive loss of telomeric DNA that accompanies proliferation of normal somatic cells. According to this model, telomerase provides a growth advantage to cells in which extensive terminal sequence loss threatens viability. To test these ideas, we have examined telomere dynamics and telomerase activation during mammary tumorigenesis in mice carrying a mouse mammary tumor virus long terminal repeat-driven Wnt-1 transgene. We also analyzed Wnt-1-induced mammary tumors in mice lacking p53 function. Normal mammary glands, hyperplastic mammary glands, and mammary carcinomas all had the long telomeres (20 to 50 kb) typical of Mus musculus and did not show telomere shortening during tumor development. Nevertheless, telomerase activity and the RNA component of the enzyme were consistently upregulated in Wnt-1-induced mammary tumors compared with normal and hyperplastic tissues. The upregulation of telomerase activity and RNA also occurred during tumorigenesis in p53-deficient mice. The expression of telomerase RNA correlated strongly with histone H4 mRNA in all normal tissues and tumors, indicating that the RNA component of telomerase is regulated with cell proliferation. Telomerase activity in the tumors was elevated to a greater extent than telomerase RNA, implying that the enzymatic activity of telomerase is regulated at additional levels. Our data suggest that the mechanism of telomerase activation in mouse mammary tumors is not linked to global loss of telomere function but involves multiple regulatory events including upregulation of telomerase RNA in proliferating cells.
Collapse
MESH Headings
- Animals
- Base Sequence
- Enzyme Activation
- Female
- Gene Expression Regulation, Neoplastic
- Histones/biosynthesis
- Humans
- Hyperplasia
- Mammary Glands, Animal/metabolism
- Mammary Glands, Animal/pathology
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/pathology
- Mammary Tumor Virus, Mouse
- Mice
- Mice, Transgenic
- Mitogens/genetics
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- Polymerase Chain Reaction
- Proto-Oncogene Proteins/biosynthesis
- Proto-Oncogene Proteins/genetics
- RNA Polymerase III/metabolism
- RNA, Messenger/biosynthesis
- Repetitive Sequences, Nucleic Acid
- Telomerase/biosynthesis
- Telomerase/metabolism
- Transcription, Genetic
- Wnt Proteins
- Wnt1 Protein
- Zebrafish Proteins
Collapse
Affiliation(s)
- D Broccoli
- Laboratory for Cell Biology and Genetics, The Rockfeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
42
|
Amundadottir LT, Merlino G, Dickson RB. Transgenic mouse models of breast cancer. Breast Cancer Res Treat 1996; 39:119-35. [PMID: 8738611 DOI: 10.1007/bf01806083] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Although valuable initial information can be gathered about transformation from in vitro studies, human cancer occurs in the context of a complex interaction with its environment and must ultimately be studied in living animals. Transgenic animal models have been used to study breast transformation for a number of years and have yielded valuable information on the subject. In this paper, we will summarize results from our laboratories, and others, regarding the use of transgenic mice to study breast tumorigenesis. We will also suggest future directions for the use of transgenic models to understand, and hopefully, one day to cure the disease.
Collapse
Affiliation(s)
- L T Amundadottir
- Vincent T. Lombardi Cancer Research Center, Georgetown University, Washington DC 20007, USA
| | | | | |
Collapse
|
43
|
Abstract
The development of hyperplasias, dysplasias, and mammary tumors has been studied extensively in transgenic mice. It is now becoming clear that transgenes activate and participate in oncogenic pathways that govern the events surrounding neoplastic progression in transgenic mice. The oncogenic pathways control mammary growth, development, and neoplastic progression. Some of the key features of transgenic biology can be expressed in the following rules: (1) Mammary development is related to the type and amount of transgene expressed; (2) dysplasias and tumors develop from secondary mutations; (3) the transgenes determine tumor phenotype; (4) transgenes may activate dominant oncogenic pathways; and (5) the oncogenic pathway determines prognosis. The study of the comparative pathology of mammary tumorigenesis in many strains of transgenic mice provides examples of these principles.
Collapse
Affiliation(s)
- R D Cardiff
- Department of Pathology, School of Medicine, University of California at Davis 95616, USA.
| |
Collapse
|
44
|
MacArthur CA, Shankar DB, Shackleford GM. Fgf-8, activated by proviral insertion, cooperates with the Wnt-1 transgene in murine mammary tumorigenesis. J Virol 1995; 69:2501-7. [PMID: 7884899 PMCID: PMC188926 DOI: 10.1128/jvi.69.4.2501-2507.1995] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have used mouse mammary tumor virus (MMTV) infection of Wnt-1 transgenic mice to accelerate mammary tumorigenesis and to molecularly tag insertionally activated proto-oncogenes that cooperate oncogenically with Wnt-1 (G. M. Shackleford, C. A. MacArthur, H. C. Kwan, and H. E. Varmus, Proc. Natl. Acad. Sci. USA 90:740-744, 1993). Here we report the identification and characterization of a 31-kb genomic locus that contains clonal MMTV integrations in 8 of 80 mammary tumors from MMTV-infected Wnt-1 transgenic mice. Two genes were identified within this locus, one of which was transcriptionally activated by MMTV insertions. This activated gene is identical to androgen-induced growth factor (AIGF/Fgf-8) (A. Tanaka, K. Miyamoto, N. Minamino, M. Takeda, B. Sato, H. Matsuo, and K. Matsumoto, Proc. Natl. Acad. Sci. USA 89:8928-8932, 1992), the eighth member of the fibroblast growth factor (FGF) family. Transcriptional activation of Fgf-8 was found in all tumors with MMTV insertions in this locus. Fgf-8 mRNA was absent in normal mammary glands and was detected only in adult testis and ovary and in midgestational embryos. The sequences of Fgf-8 genomic and cDNA clones revealed five coding exons, in contrast to the three coding exons found in other FGF genes. cDNAs encoding three isoforms of the FGF-8 protein were isolated. The three corresponding mRNAs resulted from the alternative use of two 5' splice sites and two 3' splice sites for the second and third exons, respectively. These results implicate Fgf-8 as the third FGF gene found to cooperate with Wnt-1 in MMTV-induced murine mammary tumorigenesis, suggesting that FGFs and Wnts are strong collaborators in this process.
Collapse
Affiliation(s)
- C A MacArthur
- Department of Pediatrics, University of Southern California School of Medicine, Los Angeles
| | | | | |
Collapse
|
45
|
Lee FS, Lane TF, Kuo A, Shackleford GM, Leder P. Insertional mutagenesis identifies a member of the Wnt gene family as a candidate oncogene in the mammary epithelium of int-2/Fgf-3 transgenic mice. Proc Natl Acad Sci U S A 1995; 92:2268-72. [PMID: 7892260 PMCID: PMC42465 DOI: 10.1073/pnas.92.6.2268] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Transgenic mice harboring the int-2/Fgf-3 protooncogene under transcriptional control of the mouse mammary tumor virus (MMTV) promoter/enhancer exhibit a dramatic, benign hyperplasia of the mammary gland. In one int-2 transgenic line (TG.NX), this growth disturbance is evoked by pregnancy and regresses after parturition. Regression of hyperplastic mammary epithelium is less complete after successive pregnancies, and, within 10 months, most TG.NX mice stochastically develop mammary carcinomas that are transplantable in virgin, syngeneic mice. To identify genes that cooperate with int-2 in cell transformation, we infected TG.NX transgenic mice with MMTV. In a cohort of 14 animals, most mammary tumors represented clonal or oligoclonal outgrowths harboring one to five proviral MMTV integrants. Eight of 35 (23%) MMTV+ tumors exhibited proviral insertion at the Wnt-1 locus. No provirus was detected at the int-2, int-3, or Wnt-3 loci. By Southern analysis, two tumors had proviral insertions at the same genomic location, which was mapped to chromosome 15. Cloning of this int locus identified an additional member of the Wnt gene family. The predicted 389-amino acid protein is most closely related to zebrafish Wnt-10a (58% amino acid identity over 362 residues) and, based on homology analysis, was designated Wnt-10b. This newly discovered Wnt family member was expressed in the embryo and mammary gland of virgin but not pregnant mice and represents a candidate collaborating oncogene of int-2/Fgf-3 in the mammary epithelium.
Collapse
Affiliation(s)
- F S Lee
- Department of Genetics, Harvard Medical School, Boston, MA 02115
| | | | | | | | | |
Collapse
|
46
|
Rajan L, Dudley JP. An MMTV integration site on the centromere proximal region of mouse chromosome 11. Mamm Genome 1994; 5:740-1. [PMID: 7873889 DOI: 10.1007/bf00426086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- L Rajan
- Department of Microbiology, University of Texas at Austin 78712
| | | |
Collapse
|
47
|
Shackleford GM, MacArthur CA, Kwan HC, Varmus HE. Mouse mammary tumor virus infection accelerates mammary carcinogenesis in Wnt-1 transgenic mice by insertional activation of int-2/Fgf-3 and hst/Fgf-4. Proc Natl Acad Sci U S A 1993; 90:740-4. [PMID: 8380647 PMCID: PMC45741 DOI: 10.1073/pnas.90.2.740] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transgenic mice carrying the Wnt-1 protooncogene modified for expression in mammary epithelial cells exhibit hyperplastic mammary glands and stochastically develop mammary carcinomas, suggesting that additional events are necessary for tumorigenesis. To induce such events and to identify the genes involved, we have infected Wnt-1 transgenic mice with mouse mammary tumor virus (MMTV), intending to insertionally activate, and thereby molecularly tag, cooperating protooncogenes. Infection of breeding female Wnt-1 transgenics decreased the average age at which tumors appeared from approximately 4 months to approximately 2.5 months and increased the average number of primary tumors per mouse from 1-2 to > 5. A smaller effect was observed in virgin females, and infection of transgenic males showed no significant effect on tumor latency. More than half of the tumors from the infected breeding group contained one or more newly acquired MMTV proviruses in a pattern suggesting that most cells in tumors arose from a single infected cell. Analyses of provirus-containing tumors for induced or altered expression of int-2/Fgf-3, hst/Fgf-4, int-3, and Wnt-3 showed activation of int-2 in 39% of tumors, hst in 3%, and both int-2 and hst in 3%. DNA analyses with probes for protooncogenes and MMTV confirmed that the activations resulted from proviral insertions. There was no evidence for proviral insertions at the int-3, Wnt-3, or Wnt-1 loci. These findings provide further evidence that fibroblast growth factors Int-2 and Hst can cooperate with Wnt-1, another secreted factor, in mammary tumorigenesis, and they illustrate the capacity of this system to identify cooperating oncogenes.
Collapse
Affiliation(s)
- G M Shackleford
- Division of Hematology-Oncology, Childrens Hospital Los Angeles, CA
| | | | | | | |
Collapse
|