1
|
Ho KH, Kuo TC, Lee YT, Chen PH, Shih CM, Cheng CH, Liu AJ, Lee CC, Chen KC. Xanthohumol regulates miR-4749-5p-inhibited RFC2 signaling in enhancing temozolomide cytotoxicity to glioblastoma. Life Sci 2020; 254:117807. [PMID: 32422304 DOI: 10.1016/j.lfs.2020.117807] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/01/2023]
Abstract
AIMS Xanthohumol (XN), a natural prenylated flavonoid isolated from Humulus lupulus L. (hops), possess the therapeutic effects in glioblastoma multiforme (GBM), which is a grade IV aggressive glioma in adults. However, low bioavailability and extractive yield limit the clinical applications of XN. To comprehensively investigate XN-mediated gene networks in inducing cell death is helpful for drug development and cancer research. Therefore, we aim to identify the detailed molecular mechanisms of XN's effects on exhibiting cytotoxicity for GBM therapy. METHODS AND KEY FINDINGS XN significantly induced GBM cell death and enhanced temozolomide (TMZ) cytotoxicity, a first-line therapeutic drug of GBM. XN-mediated transcriptome profiles and canonical pathways were identified. DNA repair signaling, a well-established mechanism against TMZ cytotoxicity, was significantly correlated with XN-downregulated genes. Replication factor C subunit 2 (RFC2), a DNA repair-related gene, was obviously downregulated in XN-treated cells. Higher RFC2 levels which occupied poor patient survival were also observed in high grade GBM patients and tumors. Inhibition of RFC2 reduced cell viability, induced cell apoptosis, and enhanced both XN and TMZ cytotoxicity. By intersecting array data, bioinformatic prediction, and in vitro experiments, microRNA (miR)-4749-5p, a XN-upregulated microRNA, was identified to target to RFC2 3'UTR and inhibited RFC2 expression. A negative correlation existed between miR-4749-5p and RFC2 in GBM patients. Overexpression of miR-4749-5p significantly promoted XN- and TMZ-mediated cytotoxicity, and reduced RFC2 levels. SIGNIFICANCE Consequently, we suggest that miR-4749-5p targeting RFC2 signaling participates in XN-enhanced TMZ cytotoxicity of GBM. Our findings provide new potential therapeutic directions for future GBM therapy.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Tai-Chih Kuo
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Yi-Ting Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Peng-Hsu Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Chwen-Ming Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Chia-Hsiung Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Chin-Cheng Lee
- Department of Pathology and Laboratory Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan.
| | - Ku-Chung Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taiwan; Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taiwan.
| |
Collapse
|
2
|
Chojnacki M, Melendy T. The human papillomavirus DNA helicase E1 binds, stimulates, and confers processivity to cellular DNA polymerase epsilon. Nucleic Acids Res 2019; 46:229-241. [PMID: 29155954 PMCID: PMC5758917 DOI: 10.1093/nar/gkx1103] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/24/2017] [Indexed: 12/31/2022] Open
Abstract
The papillomavirus (PV) helicase protein E1 recruits components of the cellular DNA replication machinery to the PV replication fork, such as Replication Protein A (RPA), DNA polymerase α-primase (pol α) and topoisomerase I (topo I). Here we show that E1 binds to DNA polymerase ϵ (pol ϵ) and dramatically stimulates the DNA synthesis activity of pol ϵ. This stimulation of pol ϵ by E1 is highly specific and occurs even in the absence of the known pol ϵ cofactors Replication Factor C (RFC), Proliferating Cell Nuclear Antigen (PCNA) and RPA. This stimulation is due to an increase in the processivity of pol ϵ and occurs independently of pol ϵ’s replication cofactors. This increase in processivity is dependent on the ability of the E1 helicase to hydrolyze ATP, suggesting it is dependent on E1’s helicase action. In addition, RPA, thought to be vital for processive DNA synthesis by both pol ϵ and pol δ, was found to be dispensable for processive synthesis by pol ϵ in the presence of E1. Overall, E1 appears to be conferring processivity to pol ϵ by directly tethering pol ϵ to the DNA parental strand and towing ϵ behind the E1 helicase as the replication fork progresses; and thereby apparently obviating the need for RPA for leading strand synthesis. Thus far only pol α and pol δ have been implicated in the DNA replication of mammalian viruses; this is the first reported example of a virus recruiting pol ϵ. Furthermore, this demonstrates a unique capacity of a viral helicase having evolved to stimulate a cellular replicative DNA polymerase.
Collapse
Affiliation(s)
- Michaelle Chojnacki
- Departments of Microbiology & Immunology and Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Thomas Melendy
- Departments of Microbiology & Immunology and Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
3
|
Li Y, Gan S, Ren L, Yuan L, Liu J, Wang W, Wang X, Zhang Y, Jiang J, Zhang F, Qi X. Multifaceted regulation and functions of replication factor C family in human cancers. Am J Cancer Res 2018; 8:1343-1355. [PMID: 30210909 PMCID: PMC6129478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023] Open
Abstract
Replication factor C (RFC) family is a complex comprised of the RFC1, RFC2, RFC3, RFC4, and RFC5 subunits, which acts as a primer recognition factor for DNA polymerase. It is reported that RFC, biologically active in various malignant tumors, may play an important role in the proliferation, progression, invasion, and metastasis of cancer cells. It could act as an oncogene or tumor suppressor gene based on the cellular and histological characteristics of the tumor. In this review, we summarized the updated researches on the structure, physiological function, and expression pattern of RFC in a variety of tumors, the underlying mechanisms on carcinogenesis, and the potentials of RFC family members in the diagnosis and prognosis prediction.
Collapse
Affiliation(s)
- Yanling Li
- Breast Disease Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Sijie Gan
- Breast Disease Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Lin Ren
- Breast Disease Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Long Yuan
- Breast Disease Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Junlan Liu
- Breast Disease Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Wei Wang
- Breast Disease Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Xiaoyu Wang
- Breast Disease Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Yi Zhang
- Breast Disease Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Jun Jiang
- Breast Disease Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Fan Zhang
- Breast Disease Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| | - Xiaowei Qi
- Breast Disease Center, Southwest Hospital, Third Military Medical University Chongqing 400038, China
| |
Collapse
|
4
|
Identification of Exo1-Msh2 interaction motifs in DNA mismatch repair and new Msh2-binding partners. Nat Struct Mol Biol 2018; 25:650-659. [PMID: 30061603 DOI: 10.1038/s41594-018-0092-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 06/14/2018] [Indexed: 02/07/2023]
Abstract
Eukaryotic DNA mismatch repair (MMR) involves both exonuclease 1 (Exo1)-dependent and Exo1-independent pathways. We found that the unstructured C-terminal domain of Saccharomyces cerevisiae Exo1 contains two MutS homolog 2 (Msh2)-interacting peptide (SHIP) boxes downstream from the MutL homolog 1 (Mlh1)-interacting peptide (MIP) box. These three sites were redundant in Exo1-dependent MMR in vivo and could be replaced by a fusion protein between an N-terminal fragment of Exo1 and Msh6. The SHIP-Msh2 interactions were eliminated by the msh2M470I mutation, and wild-type but not mutant SHIP peptides eliminated Exo1-dependent MMR in vitro. We identified two S. cerevisiae SHIP-box-containing proteins and three candidate human SHIP-box-containing proteins. One of these, Fun30, had a small role in Exo1-dependent MMR in vivo. The Remodeling of the Structure of Chromatin (Rsc) complex also functioned in both Exo1-dependent and Exo1-independent MMR in vivo. Our results identified two modes of Exo1 recruitment and a peptide module that mediates interactions between Msh2 and other proteins, and they support a model in which Exo1 functions in MMR by being tethered to the Msh2-Msh6 complex.
Collapse
|
5
|
Chen Y, Qian J, You L, Zhang X, Jiao J, Liu Y, Zhao J. Subunit Interaction Differences Between the Replication Factor C Complexes in Arabidopsis and Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:779. [PMID: 29971074 PMCID: PMC6018503 DOI: 10.3389/fpls.2018.00779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 06/01/2023]
Abstract
Replication factor C (RFC) is a multisubunit complex that opens the sliding clamp and loads it onto the DNA chain in an ATP-dependent manner and is thus critical for high-speed DNA synthesis. In yeast (Saccharomyces cerevisiae) and humans, biochemical studies and structural analysis revealed interaction patterns between the subunits and architectures of the clamp loaders. Mutations of ScRFC1/2/3/4/5 lead to loss of cell viability and defective replication. However, the functions of RFC subunits in higher plants are unclear, except for AtRFC1/3/4, and the interaction and arrangement of the subunits have not been studied. Here, we identified rfc2-1/+, rfc3-2/+, and rfc5-1/+ mutants in Arabidopsis, and found that embryos and endosperm arrested at the 2/4-celled embryo proper stage and 6-8 nuclei stages, respectively. Subcellular localization analysis revealed that AtRFC1 and OsRFC1/4/5 proteins were localized in the nucleus, while AtRFC2/3/4/5 and OsRFC2/3 proteins were present both in the nucleus and cytoplasm. By using yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) techniques, we demonstrated the interactions of Arabidopsis and rice (Oryza sativa) RFC subunits, and proposed arrangements of the five subunits within the RFC complex, which were AtRFC5-AtRFC4-AtRFC3/2-AtRFC2/3-AtRFC1 and OsRFC5-OsRFC2-OsRFC3-OsRFC4-OsRFC1, respectively. In addition, AtRFC1 could interact with AtRFC2/3/4/5 in the presence of other subunits, while OsRFC1 directly interacted with the other four subunits. To further characterize the regions required for complex formation, truncated RFC proteins of the subunits were created. The results showed that C-termini of the RFC subunits are required for complex formation. Our studies indicate that the localization and interactions of RFCs in Arabidopsis and rice are distinctly discrepant.
Collapse
|
6
|
Chojnacki M, Melendy T. The HPV E2 Transcriptional Transactivation Protein Stimulates Cellular DNA Polymerase Epsilon. Viruses 2018; 10:v10060321. [PMID: 29895728 PMCID: PMC6024689 DOI: 10.3390/v10060321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 01/28/2023] Open
Abstract
The papillomavirus (PV) protein E2 is one of only two proteins required for viral DNA replication. E2 is the viral transcriptional regulator/activation protein as well as the initiator of viral DNA replication. E2 is known to interact with various cellular DNA replication proteins, including the PV E1 protein, the cellular ssDNA binding complex (RPA), and topoisomerase I. Recently, we observed that cellular DNA polymerase ε (pol ε) interacts with the PV helicase protein, E1. E1 stimulates its activity with a very high degree of specificity, implicating pol ε in PV DNA replication. In this paper, we evaluated whether E2 also shows a functional interaction with pol ε. We found that E2 stimulates the DNA synthesis activity of pol ε, independently of pol ε’ s processivity factors, RFC, PCNA, and RPA, or E1. This appears to be specific for pol ε, as cellular DNA polymerase δ is unaffected by E1. However, unlike other known stimulatory factors of pol ε, E2 does not affect the processivity of pol ε. The domains of E2 were analyzed individually and in combination for their ability to stimulate pol ε. Both the transactivation and hinge domains were found to be important for this stimulation, while the E2 DNA-binding domain was dispensable. These findings support a role for E2 beyond E1 recruitment in viral DNA replication, demonstrate a novel functional interaction in PV DNA replication, and further implicate cellular pol ε in PV DNA replication.
Collapse
Affiliation(s)
- Michaelle Chojnacki
- Departments of Microbiology & Immunology and Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| | - Thomas Melendy
- Departments of Microbiology & Immunology and Biochemistry, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA.
| |
Collapse
|
7
|
Liao YH, Ren JT, Zhang W, Zhang ZZ, Lin Y, Su FX, Jia WH, Tang LY, Ren ZF. Polymorphisms in homologous recombination repair genes and the risk and survival of breast cancer. J Gene Med 2017; 19. [PMID: 28940489 DOI: 10.1002/jgm.2988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/23/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Immunoglobulin (Ig)A antibody of Epstein-Barr virus (EBV) was found to associate with breast cancer (BC), whereas IgA positivity was related to a series of genetic markers in the genes of homologous recombination repair system (HRRs). We assessed the associations of the polymorphisms in HRR genes with the risk and survival of BC. METHODS A case-control study was conducted with 1551 bc cases and 1605 age-matched healthy controls between October 2008 and March 2012 in the Guangzhou Breast Cancer Study (GZBCS), China, and the case population were followed up until 31 January 2016. Five single nucleotide polymorphisms of candidate genes in HRR system were genotyped. Odds ratios (ORs) and hazards ratios (HRs) were calculated using multivariate logistic regression and Cox proportional hazards regression to estimate the risk and prognostic effect, respectively. RESULTS RFC1 rs6829064 (AA) was associated with an increased BC risk [OR = 1.35; 95% confidence interval (CI) = 1.06-1.73] compared to the wild genotype (GG). NRM rs1075496 (GT/TT versus GG) was associated with a worse progression-free survival (PFS) and the HR was 1.34 (95% CI = 1.01-1.78), particularly among advanced patients. LIG3 rs1052536 (CT/TT versus CC) was associated with a better PFS and the HR was 0.70 (95% CI = 0.53-0.93). However, RAD54L rs1710286 and RPA1 rs11078676 were not observed to be associated with either the risk or survival of BC. CONCLUSIONS The findings of the present study suggest that the polymorphisms in HRR genes were associated with BC risk (RFC1 rs6829064) and prognosis (NRM rs1075496 and LIG3 rs1052536), whereas RAD54L rs1710286 and RPA1 rs11078676 had null associations with BC.
Collapse
Affiliation(s)
- Yu-Huang Liao
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jun-Ting Ren
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Wei Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Zheng-Zheng Zhang
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Feng-Xi Su
- The Second Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei-Hua Jia
- The Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Lu-Ying Tang
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ze-Fang Ren
- The School of Public Health, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Kim Y, de la Torre A, Leal AA, Finkelstein IJ. Efficient modification of λ-DNA substrates for single-molecule studies. Sci Rep 2017; 7:2071. [PMID: 28522818 PMCID: PMC5437064 DOI: 10.1038/s41598-017-01984-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/05/2017] [Indexed: 01/15/2023] Open
Abstract
Single-molecule studies of protein-nucleic acid interactions frequently require site-specific modification of long DNA substrates. The bacteriophage λ is a convenient source of high quality long (48.5 kb) DNA. However, introducing specific sequences, tertiary structures, and chemical modifications into λ-DNA remains technically challenging. Most current approaches rely on multi-step ligations with low yields and incomplete products. Here, we describe a molecular toolkit for rapid preparation of modified λ-DNA. A set of PCR cassettes facilitates the introduction of recombinant DNA sequences into the λ-phage genome with 90-100% yield. Extrahelical structures and chemical modifications can be inserted at user-defined sites via an improved nicking enzyme-based strategy. As a proof-of-principle, we explore the interactions of S. cerevisiae Proliferating Cell Nuclear Antigen (yPCNA) with modified DNA sequences and structures incorporated within λ-DNA. Our results demonstrate that S. cerevisiae Replication Factor C (yRFC) can load yPCNA onto 5'-ssDNA flaps, (CAG)13 triplet repeats, and homoduplex DNA. However, yPCNA remains trapped on the (CAG)13 structure, confirming a proposed mechanism for triplet repeat expansion. We anticipate that this molecular toolbox will be broadly useful for other studies that require site-specific modification of long DNA substrates.
Collapse
Affiliation(s)
- Yoori Kim
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Armando de la Torre
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Andrew A Leal
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, Texas, 78712, USA.
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas, 78712, USA.
| |
Collapse
|
9
|
Halmai M, Frittmann O, Szabo Z, Daraba A, Gali VK, Balint E, Unk I. Mutations at the Subunit Interface of Yeast Proliferating Cell Nuclear Antigen Reveal a Versatile Regulatory Domain. PLoS One 2016; 11:e0161307. [PMID: 27537501 PMCID: PMC4990258 DOI: 10.1371/journal.pone.0161307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 08/03/2016] [Indexed: 11/19/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) plays a key role in many cellular processes and due to that it interacts with a plethora of proteins. The main interacting surfaces of Saccharomyces cerevisiae PCNA have been mapped to the interdomain connecting loop and to the carboxy-terminal domain. Here we report that the subunit interface of yeast PCNA also has regulatory roles in the function of several DNA damage response pathways. Using site-directed mutagenesis we engineered mutations at both sides of the interface and investigated the effect of these alleles on DNA damage response. Genetic experiments with strains bearing the mutant alleles revealed that mutagenic translesion synthesis, nucleotide excision repair, and homologous recombination are all regulated through residues at the subunit interface. Moreover, genetic characterization of one of our mutants identifies a new sub-branch of nucleotide excision repair. Based on these results we conclude that residues at the subunit boundary of PCNA are not only important for the formation of the trimer structure of PCNA, but they constitute a regulatory protein domain that mediates different DNA damage response pathways, as well.
Collapse
Affiliation(s)
- Miklos Halmai
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Orsolya Frittmann
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Zoltan Szabo
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Andreea Daraba
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Vamsi K. Gali
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Eva Balint
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Ildiko Unk
- The Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
- * E-mail:
| |
Collapse
|
10
|
Exell JC, Thompson MJ, Finger LD, Shaw SJ, Debreczeni J, Ward TA, McWhirter C, Siöberg CLB, Martinez Molina D, Abbott WM, Jones CD, Nissink JWM, Durant ST, Grasby JA. Cellularly active N-hydroxyurea FEN1 inhibitors block substrate entry to the active site. Nat Chem Biol 2016; 12:815-21. [PMID: 27526030 PMCID: PMC5348030 DOI: 10.1038/nchembio.2148] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 05/19/2016] [Indexed: 02/07/2023]
Abstract
The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the crystal structure of inhibitor-bound hFEN1, which shows a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein-substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the necessary unpairing of substrate DNA. Other compounds were more competitive with substrate. Cellular thermal shift data showed that both inhibitor types engaged with hFEN1 in cells, and activation of the DNA damage response was evident upon treatment with inhibitors. However, cellular EC50 values were significantly higher than in vitro inhibition constants, and the implications of this for exploitation of hFEN1 as a drug target are discussed.
Collapse
Affiliation(s)
- Jack C Exell
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK
| | - Mark J Thompson
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK
| | - L David Finger
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK
| | - Steven J Shaw
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK
| | - Judit Debreczeni
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Thomas A Ward
- Bioscience, Oncology Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Cheshire, UK
| | - Claire McWhirter
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | | | | | - W Mark Abbott
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Clifford D Jones
- Chemistry, Oncology Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, UK
| | - J Willem M Nissink
- Chemistry, Oncology Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Stephen T Durant
- Bioscience, Oncology Innovative Medicines and Early Development Biotech Unit, Cambridge, UK
| | - Jane A Grasby
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK.,Bioscience, Oncology Innovative Medicines and Early Development Biotech Unit, Cambridge, UK
| |
Collapse
|
11
|
Overexpression of RFC3 is correlated with ovarian tumor development and poor prognosis. Tumour Biol 2014; 35:10259-66. [PMID: 25030735 DOI: 10.1007/s13277-014-2216-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/09/2014] [Indexed: 01/15/2023] Open
Abstract
Replication factor C3 (RFC3) is an oncogene that can potentially predict prognosis in a variety of human cancers. RFC3 expression in ovarian carcinoma has not yet been determined. In this study, we evaluated the messenger RNA (mRNA) and protein expression levels of RFC3 in normal ovarian and ovarian carcinoma tissues using reverse transcription-polymerase chain reaction (RT-PCR), immunohistochemistry, and Western blots (WB). Results showed that higher RFC3 mRNA and protein levels were detected in ovarian carcinoma tissues by RT-PCR and WB. High RFC3 expression was defined as positive staining in >70 % of each tumor cell. High RFC3 expression was detected in 28.1, 17.6, 11.1, and 5.0 % of invasive carcinomas, borderline tumors, cystadenomas, and in normal ovary cells, respectively. Overexpression of RFC3 was associated with later pN status (p = 0.001), pM status (p = 0.001), and advanced International Federation of Gynecology and Obstetrics (FIGO) stage (p = 0.012) in ovarian carcinomas. Univariate survival analyses showed that RFC3 overexpression was also associated with shortened patient survival (mean 7.7 months in tumors with RFC3 overexpression vs 92.9 months in tumors with normal RFC3 levels; p < 0.001). In multivariate analyses, RFC3 protein levels were a significant prognostic factor for ovarian carcinoma (p < 0.001). In conclusion, our findings suggest that RFC3 protein is an important and independent biomarker with prognostic implications for patients with ovarian carcinoma.
Collapse
|
12
|
Smith CE, Mendillo ML, Bowen N, Hombauer H, Campbell CS, Desai A, Putnam CD, Kolodner RD. Dominant mutations in S. cerevisiae PMS1 identify the Mlh1-Pms1 endonuclease active site and an exonuclease 1-independent mismatch repair pathway. PLoS Genet 2013; 9:e1003869. [PMID: 24204293 PMCID: PMC3814310 DOI: 10.1371/journal.pgen.1003869] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 08/25/2013] [Indexed: 12/28/2022] Open
Abstract
Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. To better understand the function of Mlh1-Pms1 in MMR, we used Saccharomyces cerevisiae to identify six pms1 mutations (pms1-G683E, pms1-C817R, pms1-C848S, pms1-H850R, pms1-H703A and pms1-E707A) that were weakly dominant in wild-type cells, which surprisingly caused a strong MMR defect when present on low copy plasmids in an exo1Δ mutant. Molecular modeling showed these mutations caused amino acid substitutions in the metal coordination pocket of the Pms1 endonuclease active site and biochemical studies showed that they inactivated the endonuclease activity. This model of Mlh1-Pms1 suggested that the Mlh1-FERC motif contributes to the endonuclease active site. Consistent with this, the mlh1-E767stp mutation caused both MMR and endonuclease defects similar to those caused by the dominant pms1 mutations whereas mutations affecting the predicted metal coordinating residue Mlh1-C769 had no effect. These studies establish that the Mlh1-Pms1 endonuclease is required for MMR in a previously uncharacterized Exo1-independent MMR pathway. Lynch syndrome (hereditary nonpolypsis colorectal cancer or HNPCC) is a common cancer predisposition syndrome. Predisposition to cancer in this syndrome results from increased accumulation of mutations due to defective mismatch repair (MMR) caused by a mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2/scPMS1. In addition to these genes, various DNA replication factors and the excision factor EXO1 function in the repair of damaged DNA by the MMR pathway. Although EXO1 is considered to be the major repair nuclease functioning in mismatch repair, the relatively low mutation rates caused by an exo1 deletion suggest otherwise. Here we used genetics, microscopy and protein biochemistry to analyze the model organism Saccharomyces cerevisiae to further characterize a poorly understood mismatch repair pathway that functions in the absence of EXO1 that is highly dependent on the Mlh1-Pms1 complex. Surprisingly, we found that the highly conserved metal binding site that is critical for the endonuclease activity of the Mlh1-Pms1 heterodimer is required for MMR in the absence of Exo1 to a much greater extent than in the presence of Exo1. Thus, this work establishes that there are at least two different polynucleotide excision pathways that function in MMR.
Collapse
Affiliation(s)
- Catherine E Smith
- Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sneeden JL, Grossi SM, Tappin I, Hurwitz J, Heyer WD. Reconstitution of recombination-associated DNA synthesis with human proteins. Nucleic Acids Res 2013; 41:4913-25. [PMID: 23535143 PMCID: PMC3643601 DOI: 10.1093/nar/gkt192] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The repair of DNA breaks by homologous recombination is a high-fidelity process, necessary for the maintenance of genome integrity. Thus, DNA synthesis associated with recombinational repair must be largely error-free. In this report, we show that human DNA polymerase delta (δ) is capable of robust DNA synthesis at RAD51-mediated recombination intermediates dependent on the processivity clamp PCNA. Translesion synthesis polymerase eta (η) also extends these substrates, albeit far less processively. The single-stranded DNA binding protein RPA facilitates recombination-mediated DNA synthesis by increasing the efficiency of primer utilization, preventing polymerase stalling at specific sequence contexts, and overcoming polymerase stalling caused by topological constraint allowing the transition to a migrating D-loop. Our results support a model whereby the high-fidelity replicative DNA polymerase δ performs recombination-associated DNA synthesis, with translesion synthesis polymerases providing a supportive role as in normal replication.
Collapse
Affiliation(s)
- Jessica L Sneeden
- Department of Microbiology & Molecular Genetics, University of California, Davis, Davis, CA 95616-8665, USA
| | | | | | | | | |
Collapse
|
14
|
Parnas O, Zipin-Roitman A, Pfander B, Liefshitz B, Mazor Y, Ben-Aroya S, Jentsch S, Kupiec M. Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA. EMBO J 2010; 29:2611-22. [PMID: 20571511 DOI: 10.1038/emboj.2010.128] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Accepted: 05/26/2010] [Indexed: 12/17/2022] Open
Abstract
Replication-factor C (RFC) is a protein complex that loads the processivity clamp PCNA onto DNA. Elg1 is a conserved protein with homology to the largest subunit of RFC, but its function remained enigmatic. Here, we show that yeast Elg1 interacts physically and genetically with PCNA, in a manner that depends on PCNA modification, and exhibits preferential affinity for SUMOylated PCNA. This interaction is mediated by three small ubiquitin-like modifier (SUMO)-interacting motifs and a PCNA-interacting protein box close to the N-terminus of Elg1. These motifs are important for the ability of Elg1 to maintain genomic stability. SUMOylated PCNA is known to recruit the helicase Srs2, and in the absence of Elg1, Srs2 and SUMOylated PCNA accumulate on chromatin. Strains carrying mutations in both ELG1 and SRS2 exhibit a synthetic fitness defect that depends on PCNA modification. Our results underscore the importance of Elg1, Srs2 and SUMOylated PCNA in the maintenance of genomic stability.
Collapse
Affiliation(s)
- Oren Parnas
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Xia S, Xiao L, Gannon P, Li X. RFC3 regulates cell proliferation and pathogen resistance in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2010; 5:168-70. [PMID: 20023430 PMCID: PMC2884126 DOI: 10.4161/psb.5.2.10526] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 05/25/2023]
Abstract
Replication factor C subunit 3 (RFC3) is one of the small subunits of the RFC complex originally purified from the HeLa cells that is essential for the in vitro replication of Simian virus 40 (SV40). Although RFC has been reported to be involved in DNA replication, DNA repair and check-point control of cell cycle progression in yeast, little is known about the precise function of each subunit of the RFC in plants. We recently reported the identification of rfc3-1, which carries a point mutation leading to plants with enhanced expression of Pathogenesis-Related (PR) genes and resistance against the virulent oomycete Hyaloperonospora arabidopsidis (H.a.) Noco2. The mutant is hypersensitive to SA and has enhanced pathogen resistance independent of Nonexpressor of PR genes 1 (NPR1). The rfc3-1 mutation caused a substitution from a nonpolar aliphatic amino acid (Gly-84) to a negatively charged amino acid (Asp) in functional domain III, which is one of eight conserved domains in the RFC. This may interfere with the interaction between RFC3 and other subunits, compromising the function of the protein complex, and leading to cell proliferation defects in the leaves and roots of Arabidopsis. Furthermore, enhanced expression of PR genes and induction of systemic acquired resistance in rfc3-1 may be caused by a partial loss of RFC function through its involvement in replication-coupled chromatin assembling.
Collapse
Affiliation(s)
- Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University, Changsha, China.
| | | | | | | |
Collapse
|
16
|
Ludwig C, Wear MA, Walkinshaw MD. Streamlined, automated protocols for the production of milligram quantities of untagged recombinant human cyclophilin-A (hCypA) and untagged human proliferating cell nuclear antigen (hPCNA) using AKTAxpress. Protein Expr Purif 2009; 71:54-61. [PMID: 19995609 PMCID: PMC2837147 DOI: 10.1016/j.pep.2009.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 11/20/2009] [Accepted: 12/03/2009] [Indexed: 12/16/2022]
Abstract
We developed streamlined, automated purification protocols for the production of milligram quantities of untagged recombinant human cyclophilin-A (hCypA) and untagged human proliferating cell nuclear antigen (hPCNA) from Escherichia coli, using the AKTAxpress chromatography system. The automated 2-step (cation exchange and size exclusion) purification protocol for untagged hCypA results in final purity and yields of 93% and approximately 5 mg L(-1) of original cell culture, respectively, in under 12h, including all primary sample processing and column equilibration steps. The novel automated 4-step (anion exchange, desalt, heparin-affinity and size exclusion, in linear sequence) purification protocol for untagged hPCNA results in final purity and yields of 87% and approximately 4 mg L(-1) of original cell culture, respectively, in under 24h, including all primary sample processing and column equilibration steps. This saves in excess of four full working days when compared to the traditional protocol, producing protein with similar final yield, purity and activity. Furthermore, it limits a time-dependent protein aggregation, a problem with the traditional protocol that results in a loss of final yield. Both automated protocols were developed to use generic commercially available pre-packed columns and automatically prepared minimal buffers, designed to eliminate user and system variations, maximize run reproducibility, standardize yield and purity between batches, increase throughput and reduce user input to a minimum. Both protocols represent robust generic methods for the automated production of untagged hCypA and hPCNA.
Collapse
Affiliation(s)
- Cornelia Ludwig
- The Edinburgh Protein Production Facility, Centre for Translational and Chemical Biology, University of Edinburgh, Michael Swann Building, Edinburgh EH9 3JR, UK
| | | | | |
Collapse
|
17
|
Abstract
This chapter summarizes isolation procedures of four recombinant human proteins crucial for DNA replication: (a) the replicative DNA polymerase (pol) delta, (b) proliferating cell nuclear antigen (PCNA), (c) replication protein A (RP-A), and (d) replication factor C (RF-C). Pol delta is a four-subunit enzyme essential for replication of the lagging strand and possibly of the leading strand. PCNA is a central player important for coordination of the complex network of proteins interacting at the replication fork. RP-A is single-strand DNA-binding protein involved in DNA replication, DNA repair, DNA recombination, and checkpoint control. RF-C as a clamp loader is required for loading of PCNA onto double-stranded DNA and therefore enables PCNA-dependent elongation by pol delta and pol epsilon. To reconstitute the intact pol delta and RF-C, a baculovirus expression system is used, where insect cells are infected with baculoviruses, each coding for one of the four or five subunits of pol delta or RF-C, respectively. We also present two easy methods to isolate the homotrimeric human PCNA and the heterotrimeric human RP-A from an Escherichia coli expression system.
Collapse
|
18
|
McCulloch SD, Kokoska RJ, Garg P, Burgers PM, Kunkel TA. The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta. Nucleic Acids Res 2009; 37:2830-40. [PMID: 19282446 PMCID: PMC2685079 DOI: 10.1093/nar/gkp103] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
A DNA lesion created by oxidative stress is 7,8-dihydro-8-oxo-guanine (8-oxoG). Because 8-oxoG can mispair with adenine during DNA synthesis, it is of interest to understand the efficiency and fidelity of 8-oxoG bypass by DNA polymerases. We quantify bypass parameters for two DNA polymerases implicated in 8-oxoG bypass, Pols δ and η. Yeast Pol δ and yeast Pol η both bypass 8-oxoG and misincorporate adenine during bypass. However, yeast Pol η is 10-fold more efficient than Pol δ, and following bypass Pol η switches to less processive synthesis, similar to that observed during bypass of a cis-syn thymine-thymine dimer. Moreover, yeast Pol η is at least 10-fold more accurate than yeast Pol δ during 8-oxoG bypass. These differences are maintained in the presence of the accessory proteins RFC, PCNA and RPA and are consistent with the established role of Pol η in suppressing ogg1-dependent mutagenesis in yeast. Surprisingly different results are obtained with human and mouse Pol η. Both mammalian enzymes bypass 8-oxoG efficiently, but they do so less processively, without a switch point and with much lower fidelity than yeast Pol η. The fact that yeast and mammalian Pol η have intrinsically different catalytic properties has potential biological implications.
Collapse
Affiliation(s)
- Scott D McCulloch
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences Research, NC 27709, USA
| | | | | | | | | |
Collapse
|
19
|
The N- and C-termini of Elg1 contribute to the maintenance of genome stability. DNA Repair (Amst) 2008; 7:1221-32. [PMID: 18482875 DOI: 10.1016/j.dnarep.2008.04.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/31/2008] [Accepted: 04/02/2008] [Indexed: 11/24/2022]
Abstract
ELG1 (enhanced level of genome instability) encodes a Replication Factor C (RFC) homolog that is important for the maintenance of genome stability. Elg1 interacts with Rfc2-5, forming the third alternative RFC complex identified to date. We found that Elg1 plays a role in the suppression of spontaneous DNA damage in addition to its previously identified roles in the resistance to DNA damage. Using mutational analysis we examined the function of conserved and unique regions of Elg1 in these roles. We found that the Walker A motif in the conserved RFC region is dispensable for Elg1 function in vivo. The RFC region is important for association with chromatin although residues predicted to mediate interactions with DNA are dispensable for Elg1 function. The unique C-terminus of Elg1 mediates oligomerization with Rfc2-5, nuclear import, and chromatin association, and is critical for the function of Elg1. Finally, we demonstrated that the N-terminus of Elg1 contributes to the maintenance of genome stability, and that one function of this N-terminus is to promote the nuclear localization of Elg1. Together, these studies delineate the regions of Elg1 important for its function in damage resistance and in the suppression of spontaneous DNA damage.
Collapse
|
20
|
Masih PJ, Kunnev D, Melendy T. Mismatch Repair proteins are recruited to replicating DNA through interaction with Proliferating Cell Nuclear Antigen (PCNA). Nucleic Acids Res 2007; 36:67-75. [PMID: 17984070 PMCID: PMC2248749 DOI: 10.1093/nar/gkm943] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Mismatch Repair (MMR) is closely linked to DNA replication; however, other than the role of the replicative sliding clamp (PCNA) in various MMR functions, the linkage between DNA replication and MMR has been difficult to investigate. Here we use an in vitro DNA replication system based on simian virus 40, to investigate MMR recruitment to replicating DNA. Both DNA replication and MMR proteins are recruited to replicating DNA in an origin-dependent fashion. Primer synthesis is required for recruitment of both PCNA and MMR proteins, but not for recruitment of the single-stranded DNA-binding protein (RPA). Blocking PCNA recruitment to replicating DNA with a p21-based polypeptide blocks PCNA and MMR, but not RPA recruitment. Once PCNA and subsequent proteins required for replication are loaded onto DNA, addition of p21 leaves PCNA on the replicating DNA, but actively displaces MMR proteins. These findings indicate that the MMR machinery is recruited to replicating DNA through its interaction with PCNA, and suggests that this occurs via binding of the MMR proteins to the multi-protein interaction sites on PCNA. These studies demonstrate the utility of this system for further investigation of the role of DNA replication in MMR.
Collapse
Affiliation(s)
- Prerna Jasmine Masih
- Department of Cellular and Molecular Biology, Roswell Park Cancer Institute, Buffalo, NY 14214, USA
| | | | | |
Collapse
|
21
|
Stillman B, Bell SP, Dutta A, Marahrens Y. DNA replication and the cell cycle. CIBA FOUNDATION SYMPOSIUM 2007; 170:147-56; discussion 156-60. [PMID: 1336449 DOI: 10.1002/9780470514320.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The replication of DNA in the eukaryotic cell cycle is one of the most highly regulated events in cell growth and division. Biochemical studies on the replication of the genome of the small DNA virus simian virus 40 (SV40) have resulted in the identification of a number of DNA replication proteins from human cells. One of these, Replication Protein A (RPA), was phosphorylated in a cell cycle-dependent manner, beginning at the onset of DNA replication. RPA was phosphorylated in vitro by the cell cycle-regulated cdc2 protein kinase. This kinase also stimulated the unwinding of the SV40 origin of DNA replication during initiation of DNA replication in vitro, suggesting a mechanism by which cdc2 kinase may regulate DNA replication. Functional homologues of the DNA replication factors have been identified in extracts from the yeast Saccharomyces cerevisiae, enabling a genetic characterization of the role of these proteins in the replication of cellular DNA. A cellular origin binding protein had not been characterized. To identify proteins that function like T antigen at cellular origins of DNA replication, we examined the structure of a yeast origin of DNA replication in detail. This origin consists of four separate functional elements, one of which is essential. A multiprotein complex that binds to the essential element has been identified and purified. This protein complex binds to all known cellular origins from S. cerevisiae and may function as an origin recognition complex.
Collapse
Affiliation(s)
- B Stillman
- Cold Spring Harbor Laboratory, New York 11724
| | | | | | | |
Collapse
|
22
|
Vijayakumar S, Chapados BR, Schmidt KH, Kolodner RD, Tainer JA, Tomkinson AE. The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase. Nucleic Acids Res 2007; 35:1624-37. [PMID: 17308348 PMCID: PMC1865074 DOI: 10.1093/nar/gkm006] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is compelling evidence that proliferating cell nuclear antigen (PCNA), a DNA sliding clamp, co-ordinates the processing and joining of Okazaki fragments during eukaryotic DNA replication. However, a detailed mechanistic understanding of functional PCNA:ligase I interactions has been incomplete. Here we present the co-crystal structure of yeast PCNA with a peptide encompassing the conserved PCNA interaction motif of Cdc9, yeast DNA ligase I. The Cdc9 peptide contacts both the inter-domain connector loop (IDCL) and residues near the C-terminus of PCNA. Complementary mutational and biochemical results demonstrate that these two interaction interfaces are required for complex formation both in the absence of DNA and when PCNA is topologically linked to DNA. Similar to the functionally homologous human proteins, yeast RFC interacts with and inhibits Cdc9 DNA ligase whereas the addition of PCNA alleviates inhibition by RFC. Here we show that the ability of PCNA to overcome RFC-mediated inhibition of Cdc9 is dependent upon both the IDCL and the C-terminal interaction interfaces of PCNA. Together these results demonstrate the functional significance of the β-zipper structure formed between the C-terminal domain of PCNA and Cdc9 and reveal differences in the interactions of FEN-1 and Cdc9 with the two PCNA interfaces that may contribute to the co-ordinated, sequential action of these enzymes.
Collapse
Affiliation(s)
- Sangeetha Vijayakumar
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
| | - Brian R. Chapados
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
| | - Kristina H. Schmidt
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
| | - Richard D. Kolodner
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
| | - John A. Tainer
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
- *To whom correspondence should be addressed. +1 858 784 8119+1 585 784 2289 Correspondence may also be addressed to Alan Tomkinson. +1 410 706 2365 +1 410 706 3000
| | - Alan E. Tomkinson
- Radiation Oncology Research Laboratory, Department of Radiation Oncology and The Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201-1509, USA, Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA and Ludwig Institute for Cancer Research, Cancer Center, and Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA 92093-0660, USA
| |
Collapse
|
23
|
Abstract
The reaction responsible for replication error correction by mismatch repair proceeds via several steps: mismatch recognition, mismatch-provoked excision, repair DNA synthesis, and ligation. Key steps in this process are the recognition and subsequent exonucleolytic removal of the mispair. A minimal system comprised of human MutSalpha (MSH2*MSH6), MutLalpha (MLH1*PMS2), exonuclease I (EXOI), replication protein A (RPA), proliferating cell nuclear antigen (PCNA), and replication factor C (RFC) is sufficient to support mismatch-provoked excision in vitro. This chapter describes methods for analysis of the reconstituted excision reaction.
Collapse
Affiliation(s)
- Jochen Genschel
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | | |
Collapse
|
24
|
Naryzhny SN, Desouza LV, Siu KWM, Lee H. Characterization of the human proliferating cell nuclear antigen physico-chemical properties: aspects of double trimer stability. Biochem Cell Biol 2006; 84:669-76. [PMID: 17167529 DOI: 10.1139/o06-037] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Its toroidal structure allows the proliferating cell nuclear antigen (PCNA) to wrap around and move along the DNA fiber, thereby dramatically increasing the processivity of DNA polymerization. PCNA is also involved in the regulation of a wide spectrum of other biological functions, including epigenetic inheritance. We have recently reported that mammalian PCNA forms a double trimer complex, which may be critically important in coordinating DNA replication and other cellular functions. To gain a better understanding of the stability of PCNA complexes, we characterized the physico-chemical properties of the PCNA structure by in vivo and in vitro approaches. The data obtained by gel filtration and nondenaturing gel electrophoresis of native PCNA molecules confirm our previous observations, obtained using formaldehyde crosslinking, in which PCNA exists in the cell as a double trimer. We have also found that optimal pH (pH 6.5–7.5) is critical for the stability of the PCNA structure. The presence or absence of ATP, dithiothreitol, and Mg2+ does not affect the stability of the PCNA trimer or double trimer. However, 0.02% SDS can effectively inhibit PCNA double trimer, but not single trimer, formation. Interestingly, glycerol and ammonium sulfate significantly destabilize both PCNA trimer and double trimer structures.
Collapse
Affiliation(s)
- Stanislav N Naryzhny
- Department of Research, Northeastern Ontario Regional Cancer Program at the Sudbury Regional Hospital, 41 Ramsey Lake Road, Sudbury, ON P3E 5J1, Canada
| | | | | | | |
Collapse
|
25
|
Abstract
Sliding clamps and clamp loaders are processivity factors required for efficient DNA replication. Sliding clamps are ring-shaped complexes that tether DNA polymerases to DNA to increase the processivity of synthesis. Clamp loaders assemble these ring-shaped clamps onto DNA in an ATP-dependent reaction. The overall process of clamp loading is dynamic in that protein-protein and protein-DNA interactions must actively change in a coordinated fashion to complete the mechanical clamp-loading reaction cycle. The clamp loader must initially have a high affinity for both the clamp and DNA to bring these macromolecules together, but then must release the clamp on DNA for synthesis to begin. Evidence is presented for a mechanism in which the clamp-loading reaction comprises a series of binding reactions to ATP, the clamp, DNA, and ADP, each of which promotes some change in the conformation of the clamp loader that alters interactions with the next component of the pathway. These changes in interactions must be rapid enough to allow the clamp loader to keep pace with replication fork movement. This review focuses on the measurement of dynamic and transient interactions required to assemble the Escherichia coli sliding clamp on DNA.
Collapse
Affiliation(s)
- Linda B Bloom
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA.
| |
Collapse
|
26
|
Choi JY, Stover JS, Angel KC, Chowdhury G, Rizzo CJ, Guengerich FP. Biochemical basis of genotoxicity of heterocyclic arylamine food mutagens: Human DNA polymerase eta selectively produces a two-base deletion in copying the N2-guanyl adduct of 2-amino-3-methylimidazo[4,5-f]quinoline but not the C8 adduct at the NarI G3 site. J Biol Chem 2006; 281:25297-306. [PMID: 16835218 DOI: 10.1074/jbc.m605699200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heterocyclic arylamines are highly mutagenic and cause tumors in animal models. The mutagenicity is attributed to the C8- and N2-G adducts, the latter of which accumulates due to slower repair. The C8- and N 2-G adducts derived from 2-amino-3-methylimidazo[4,5-f]quinoline (IQ) were placed at the G1 and G3 sites of the NarI sequence, in which the G3 site is an established hot spot for frameshift mutation with the model arylamine derivative 2-acetylaminofluorene but G1 is not. Human DNA polymerase (pol) eta extended primers beyond template G-IQ adducts better than did pol kappa and much better than pol iota or delta. In 1-base incorporation studies, pol eta inserted C and A, pol iota inserted T, and pol kappa inserted G. Steady-state kinetic parameters were measured for these dNTPs opposite the C8- and N 2-IQ adducts at both sites, being most favorable for pol eta. Mass spectrometry of pol eta extension products revealed a single major product in each of four cases; with the G1 and G3 C8-IQ adducts, incorporation was largely error-free. With the G3 N 2-IQ adduct, a -2 deletion occurred at the site of the adduct. With the G1 N 2-IQ adduct, the product was error-free at the site opposite the base and then stalled. Thus, the pol eta products yielded frame-shifts with the N 2 but not the C8 IQ adducts. We show a role for pol eta and the complexity of different chemical adducts of IQ, DNA position, and DNA polymerases.
Collapse
Affiliation(s)
- Jeong-Yun Choi
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-0146, USA
| | | | | | | | | | | |
Collapse
|
27
|
Choi JY, Angel KC, Guengerich FP. Translesion synthesis across bulky N2-alkyl guanine DNA adducts by human DNA polymerase kappa. J Biol Chem 2006; 281:21062-21072. [PMID: 16751196 DOI: 10.1074/jbc.m602246200] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerase (pol) kappa is one of the so-called translesion polymerases involved in replication past DNA lesions. Bypass events have been studied with a number of chemical modifications with human pol kappa, and the conclusion has been presented, based on limited quantitative data, that the enzyme is ineffective at incorporating opposite DNA damage but proficient at extending beyond bases paired with the damage. Purified recombinant full-length human pol kappa was studied with a series of eight N(2)-guanyl adducts (in oligonucleotides) ranging in size from methyl- to -CH(2)(6-benzo[a]pyrenyl) (BP). Steady-state kinetic parameters (catalytic specificity, k(cat)/K(m)) were similar for insertion of dCTP opposite the lesions and for extension beyond the N(2)-adduct G:C pairs. Mispairing of dGTP and dTTP was similar and occurred with k(cat)/K(m) values approximately 10(-3) less than for dCTP with all adducts; a similar differential was found for extension beyond a paired adduct. Pre-steady-state kinetic analysis showed moderately rapid burst kinetics for dCTP incorporations, even opposite the bulky methyl(9-anthracenyl)- and BPG adducts (k(p) 5.9-10.3 s(-1)). The rapid bursts were abolished opposite BPG when alpha-thio-dCTP was used instead of dCTP, implying rate-limiting phosphodiester bond formation. Comparisons are made with similar studies done with human pols eta and iota; pol kappa is the most resistant to N(2)-bulk and the most quantitatively efficient of these in catalyzing dCTP incorporation opposite bulky guanine N(2)-adducts, particularly the largest (N(2)-BPG).
Collapse
Affiliation(s)
- Jeong-Yun Choi
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146; Department of Pharmacology, College of Medicine, Ewha Womans University, 911-1 Mok-6-Dong, Yangcheon-Gu, Seoul 158-710, Republic of Korea
| | - Karen C Angel
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.
| |
Collapse
|
28
|
Ko R, Bennett SE. Physical and functional interaction of human nuclear uracil-DNA glycosylase with proliferating cell nuclear antigen. DNA Repair (Amst) 2005; 4:1421-31. [PMID: 16216562 PMCID: PMC3040124 DOI: 10.1016/j.dnarep.2005.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uracil residues arise in DNA by the misincorporation of dUMP in place of dTMP during DNA replication or by the deamination of cytosine in DNA. Uracil-DNA glycosylase initiates DNA base excision repair of uracil residues by catalyzing the hydrolysis of the N-glycosylic bond linking the uracil base to deoxyribose. In human cells, the nuclear form of uracil-DNA glycosylase (UNG2) contains a conserved PCNA-binding motif located at the N-terminus that has been implicated experimentally in binding PCNA. Here we use purified preparations of UNG2 and PCNA to demonstrate that UNG2 physically associates with PCNA. UNG2 co-eluted with PCNA during size exclusion chromatography and bound to a PCNA affinity column. Association of UNG2 with PCNA was abolished by the addition of 100 mM NaCl, and significantly decreased in the presence of 10 mM MgCl(2). The functional significance of the UNG2.PCNA association was demonstrated by UNG2 activity assays. Addition of PCNA (30-810 pmol) to standard uracil-DNA glycosylase reactions containing linear [uracil-(3)H]DNA stimulated UNG2 catalytic activity up to 2.6-fold. UNG2 activity was also stimulated by 7.5 mM MgCl(2). The stimulatory effect of PCNA was increased by the addition of MgCl(2); however, the dependence on PCNA concentration was the same, indicating that the effects of MgCl(2) and PCNA on UNG2 activity occurred by independent mechanisms. Loading of PCNA onto the DNA substrate was required for stimulation, as the activity of UNG2 on circular DNA substrates was not affected by the addition of PCNA. Addition of replication factor C and ATP to reactions containing 90 pmol of PCNA resulted in two-fold stimulation of UNG2 activity on circular DNA.
Collapse
Affiliation(s)
- Rinkei Ko
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331-7301, USA
| | - Samuel E. Bennett
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331-7301, USA
- The Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331-7301, USA
| |
Collapse
|
29
|
Davierwala AP, Haynes J, Li Z, Brost RL, Robinson MD, Yu L, Mnaimneh S, Ding H, Zhu H, Chen Y, Cheng X, Brown GW, Boone C, Andrews BJ, Hughes TR. The synthetic genetic interaction spectrum of essential genes. Nat Genet 2005; 37:1147-52. [PMID: 16155567 DOI: 10.1038/ng1640] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 07/27/2005] [Indexed: 11/08/2022]
Abstract
The nature of synthetic genetic interactions involving essential genes (those required for viability) has not been previously examined in a broad and unbiased manner. We crossed yeast strains carrying promoter-replacement alleles for more than half of all essential yeast genes to a panel of 30 different mutants with defects in diverse cellular processes. The resulting genetic network is biased toward interactions between functionally related genes, enabling identification of a previously uncharacterized essential gene (PGA1) required for specific functions of the endoplasmic reticulum. But there are also many interactions between genes with dissimilar functions, suggesting that individual essential genes are required for buffering many cellular processes. The most notable feature of the essential synthetic genetic network is that it has an interaction density five times that of nonessential synthetic genetic networks, indicating that most yeast genetic interactions involve at least one essential gene.
Collapse
Affiliation(s)
- Armaity P Davierwala
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario, M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kusumoto R, Masutani C, Shimmyo S, Iwai S, Hanaoka F. DNA binding properties of human DNA polymerase eta: implications for fidelity and polymerase switching of translesion synthesis. Genes Cells 2005; 9:1139-50. [PMID: 15569147 DOI: 10.1111/j.1365-2443.2004.00797.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human XPV (xeroderma pigmentosum variant) gene is responsible for the cancer-prone xeroderma pigmentosum syndrome and encodes DNA polymerase eta (pol eta), which catalyses efficient translesion synthesis past cis-syn cyclobutane thymine dimers (TT dimers) and other lesions. The fidelity of DNA synthesis by pol eta on undamaged templates is extremely low, suggesting that pol eta activity must be restricted to damaged sites on DNA. Little is known, however, about how the activity of pol eta is targeted and restricted to damaged DNA. Here we show that pol eta binds template/primer DNAs regardless of the presence of TT dimers. Rather, enhanced binding to template/primer DNAs containing TT dimers is only observed when the 3'-end of the primer is an adenosine residue situated opposite the lesion. When two nucleotides have been incorporated into the primer beyond the TT dimer position, the pol eta-template/primer DNA complex is destabilized, allowing DNA synthesis by DNA polymerases alpha or delta to resume. Our study provides mechanistic explanations for polymerase switching at TT dimer sites.
Collapse
Affiliation(s)
- Rika Kusumoto
- Graduate School of Frontier Biosciences, Osaka University, and CREST, Japan Science and Technology Corporation, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|
31
|
Naryzhny SN, Zhao H, Lee H. Proliferating Cell Nuclear Antigen (PCNA) May Function as a Double Homotrimer Complex in the Mammalian Cell. J Biol Chem 2005; 280:13888-94. [PMID: 15805117 DOI: 10.1074/jbc.m500304200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The diverse function of proliferating cell nuclear antigen (PCNA) may be regulated by interactions with different protein partners. Interestingly, the binding sites for all known PCNA-associating proteins are on the outer surface or the C termini ("front") sides of the PCNA trimer. Using cell extracts and purified human PCNA protein, we show here that two PCNA homotrimers form a back-to-back doublet. Mutation analysis suggests that the Arg-5 and Lys-110 residues on the PCNA back side are the contact points of the two homotrimers in the doublet. Furthermore, short synthetic peptides encompassing either Arg-5 or Lys-110 inhibit double trimer formation. We also found that a PCNA double trimer, but not a homotrimer alone, can simultaneously accommodate chromatin assembly factor-1 and polymerase delta. Together, our data supports a model that chromatin remodeling by chromatin assembly factor-1 (and, possibly, many other cellular activities) are tightly coupled with DNA replication (and repair) through a PCNA double trimer complex.
Collapse
Affiliation(s)
- Stanislav N Naryzhny
- Department of Research, Northeastern Ontario Regional Cancer Centre, Sudbury, Ontario P3E 5J1, Canada
| | | | | |
Collapse
|
32
|
Levin DS, Vijayakumar S, Liu X, Bermudez VP, Hurwitz J, Tomkinson AE. A Conserved Interaction between the Replicative Clamp Loader and DNA Ligase in Eukaryotes. J Biol Chem 2004; 279:55196-201. [PMID: 15502161 DOI: 10.1074/jbc.m409250200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The recruitment of DNA ligase I to replication foci and the efficient joining of Okazaki fragments is dependent on the interaction between DNA ligase I and proliferating cell nuclear antigen (PCNA). Although the PCNA sliding clamp tethers DNA ligase I to nicked duplex DNA circles, the interaction does not enhance DNA joining. This suggests that other factors may be involved in the joining of Okazaki fragments. In this study, we describe an association between replication factor C (RFC), the clamp loader, and DNA ligase I in human cell extracts. Subsequently, we demonstrate that there is a direct physical interaction between these proteins that involves both the N- and C-terminal domains of DNA ligase I, the N terminus of the large RFC subunit p140, and the p36 and p38 subunits of RFC. Although RFC inhibited DNA joining by DNA ligase I, the addition of PCNA alleviated inhibition by RFC. Notably, the effect of PCNA on ligation was dependent on the PCNA-binding site of DNA ligase I. Together, these results provide a molecular explanation for the key in vivo role of the DNA ligase I/PCNA interaction and suggest that the joining of Okazaki fragments is coordinated by pairwise interactions among RFC, PCNA, and DNA ligase I.
Collapse
Affiliation(s)
- David S Levin
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center, San Antonio, TX 78245, USA
| | | | | | | | | | | |
Collapse
|
33
|
Birkus G, Rejman D, Otmar M, Votruba I, Rosenberg I, Holy A. The substrate activity of (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]adenine diphosphate toward DNA polymerases alpha, delta and epsilon. Antivir Chem Chemother 2004; 15:23-33. [PMID: 15074712 DOI: 10.1177/095632020401500103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, we examined the substrate potency of (S)-9-[3-hydroxy-(2-phosphonomethoxy)propyl]- adenine diphosphate (HPMPApp) toward DNA polymerases alpha, delta and epsilon. The efficiency of HPMPApp incorporation decreased in the order pol epsilon >pol delta =pol alpha and was from 5.4- to 23-fold lower than that of dATP. Depending on which template-primer was used, the HPMPAppKm value was 3.3- and 8.3- (pol alpha), 3- and 0.82- (pol delta) or 2-fold (pol epsilon) higher than dATPKm. The ability of HPMPA to accumulate in DNA decreased in the order pol epsilon >pol alpha >pol delta. The difference between the elongation rate of DNA with and without one HPMPA molecule at 3' termini was about 1.1-2.3 fold. The 3'-5'-exonuclease activity of pol delta and epsilon can excise HPMPA from DNA. These observations indicate that interaction of HPMPApp with pol alpha, delta and epsilon may contribute to its cellular toxicity and explain its antiviral activity against polyomavirus.
Collapse
Affiliation(s)
- Gabriel Birkus
- Institute of Organic Chemistry & Biochemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
34
|
Dzantiev L, Constantin N, Genschel J, Iyer RR, Burgers PM, Modrich P. A Defined Human System That Supports Bidirectional Mismatch-Provoked Excision. Mol Cell 2004; 15:31-41. [PMID: 15225546 DOI: 10.1016/j.molcel.2004.06.016] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/14/2004] [Accepted: 05/19/2004] [Indexed: 11/23/2022]
Abstract
Mismatch-provoked excision directed by a strand break located 3' or 5' to the mispair has been reconstituted using purified human proteins. While MutSalpha, EXOI, and RPA are sufficient to support hydrolysis directed by a 5' strand break, 3' directed excision also requires MutLalpha, PCNA, and RFC. EXOI interacts with PCNA. RFC and PCNA suppress EXOI-mediated 5' to 3' hydrolysis when the nick that directs excision is located 3' to the mispair and activate 3' to 5' excision, which is dependent on loaded PCNA and apparently mediated by a cryptic EXOI 3' to 5' hydrolytic function. By contrast, RFC and PCNA have only a limited effect on 5' to 3' excision directed by a 5' strand break.
Collapse
Affiliation(s)
- Leonid Dzantiev
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
35
|
Srivastava VK, Busbee DL. Replicative enzymes, DNA polymerase alpha (pol alpha), and in vitro ageing. Exp Gerontol 2004; 38:1285-97. [PMID: 14698808 DOI: 10.1016/j.exger.2003.09.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Normal cells in culture are used to investigate the underlying mechanisms of DNA synthesis because they retain regulatory characteristics of the in vivo replication machinery. During the last few years new studies have identified a number of genetic changes that occur during in vitro ageing, providing insight into the progressive decline in biological function that occurs during ageing. Maintaining genomic integrity in eukaryotic organisms requires precisely coordinated replication of the genome during mitosis, which is the most fundamental aspect of living cells. To achieve this coordinated replication, eukaryotic cells employ an ordered series of steps to form several key protein assemblies at origins of replication. Major progress has recently been made in identifying the enzymes, and other proteins, of DNA replication that are recruited to origin sites and the order in which they are recruited during the process of replication. More than 20 proteins, including DNA polymerases, have been identified as essential components that must be preassembled at replication origins for the initiation of DNA synthesis. Of the polymerases, DNA polymerase alpha-primase (pol alpha) is of particular importance since its function is fundamental to understanding the initiation mechanism of eukaryotic DNA replication. DNA must be replicated with high fidelity to ensure the accurate transfer of genetic information to progeny cells, and decreases in DNA pol alpha activity and fidelity, which are coordinated with cell cycle progression, have been shown to be important facets of a probable intrinsic cause of genetic alterations during in vitro ageing. This has led to the proposal that pol alpha activity and function is one of the crucial determinants in ageing. In this review we summarize the current state of knowledge of DNA pol alpha function in the regulation of DNA replication and focus in particular on its interactive tasks with other proteins during in vitro ageing.
Collapse
Affiliation(s)
- Vinod K Srivastava
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458, USA.
| | | |
Collapse
|
36
|
Riva F, Savio M, Cazzalini O, Stivala LA, Scovassi IA, Cox LS, Ducommun B, Prosperi E. Distinct pools of proliferating cell nuclear antigen associated to DNA replication sites interact with the p125 subunit of DNA polymerase δ or DNA ligase I. Exp Cell Res 2004; 293:357-67. [PMID: 14729473 DOI: 10.1016/j.yexcr.2003.10.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proliferating cell nuclear antigen (PCNA) plays an essential role in DNA replication, repair, and cell cycle control. PCNA is a homotrimeric ring that, when encircling DNA, is not easily extractable. Consequently, the dynamics of protein-protein interactions established by PCNA at DNA replication sites is not well understood. We have used DNase I to release DNA-bound PCNA together with replication proteins including the p125-catalytic subunit of DNA polymerase delta (p125-pol delta), DNA ligase I, cyclin A, and cyclin-dependent kinase 2 (CDK2). Interaction with these proteins was investigated by immunoprecipitation with antibodies binding near the interdomain connector loop or to the C-terminal domain of PCNA, respectively, or with antibodies to p125-pol delta or DNA ligase I. PCNA interaction with p125-pol delta or DNA ligase I was detected only by the latter antibodies, and found to be mutually exclusive. In contrast, antibodies to PCNA co-immunoprecipitated only CDK2. A GST-p21(waf1/cip1) C-terminal peptide displaced p125-pol delta and DNA ligase I, but not CDK2, from PCNA. These results suggest that PCNA trimers bound to DNA during the S phase are organized as distinct pools able to bind selectively different partners. Among them, p125-pol delta and DNA ligase I interact with PCNA in a mutually exclusive manner.
Collapse
Affiliation(s)
- Federica Riva
- Istituto di Genetica Molecolare del CNR, Dipartimento di Biologia Animale, sezione Istochimica e Citometria, Università di Pavia, Piazza Botta 10, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Frouin I, Maga G, Denegri M, Riva F, Savio M, Spadari S, Prosperi E, Scovassi AI. Human proliferating cell nuclear antigen, poly(ADP-ribose) polymerase-1, and p21waf1/cip1. A dynamic exchange of partners. J Biol Chem 2003; 278:39265-8. [PMID: 12930846 DOI: 10.1074/jbc.c300098200] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We addressed the analysis of the physical and functional association of proliferating cell nuclear antigen (PCNA), a protein involved in many DNA transactions, with poly(ADP-ribose) polymerase (PARP-1), an enzyme that plays a crucial role in DNA repair and interacts with many DNA replication/repair factors. We demonstrated that PARP-1 and PCNA co-immunoprecipitated both from the soluble and the DNA-bound fraction isolated from S-phase-synchronized HeLa cells. Immunoprecipitation experiments with purified proteins further confirmed a physical association between PARP-1 and PCNA. To investigate the effect of this association on PARP-1 activity, an assay based on the incorporation of radioactive NAD was performed. Conversely, the effect of PARP-1 on PCNA-dependent DNA synthesis was assessed by a DNA polymerase delta assay. A marked inhibition of both reactions was found. Unexpectedly, PARP-1 activity also decreased in the presence of p21waf1/cip1. By pull-down experiments, we provided the first evidence for an association between PARP-1 and p21, which involves the C-terminal part of p21 protein. This association was further demonstrated to occur also in vivo in MNNG (N-methyl-N'-nitro-N-nitrosoguanidine)-treated human fibroblasts. These observations suggest that PARP-1 and p21 could cooperate in regulating the functions of PCNA during DNA replication/repair.
Collapse
Affiliation(s)
- Isabelle Frouin
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Furukawa T, Ishibashi T, Kimura S, Tanaka H, Hashimoto J, Sakaguchi K. Characterization of all the subunits of replication factor C from a higher plant, rice (Oryza sativa L.), and their relation to development. PLANT MOLECULAR BIOLOGY 2003; 53:15-25. [PMID: 14756303 DOI: 10.1023/b:plan.0000009258.04711.62] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Replication factor C (RFC), which is composed of five subunits, is an important factor involved in DNA replication and repair mechanisms. Following previous studies on the RFC3 homologue from rice (Oryza sativa L. cv. Nipponbare) (OsRFC3), we succeeded in isolating and characterizing one large and three small subunits of RFC homologues from the same rice species and termed them OsRFC1, OsRFC2, OsRFC4 and OsRFC5. The plant was found to have all RFC subunits known in yeasts, human and other eukaryotes. The open reading frames of OsRFCs encoded a predicted product of 1021 amino acid residues with a molecular mass of 110.8 kDa for OsRFC1, 339 amino acid residues with a molecular mass of 37.4 kDa for OsRFC2, 335 amino acid residues with a molecular mass of 36.8 kDa for OsRFC4, and 354 amino acid residues with a molecular mass of 40.5 kDa for OsRFC5. All the OsRFC subunits have highly conserved amino acid motifs among RFC proteins, RFC box, and an unrooted phylogenetic tree shows each OsRFC subunit belongs to each RFC subunit group. These subunits showed differences in their expression patterns among tissues. The transcripts of OsRFCs were expressed strongly in the proliferating tissue, the shoot apical meristem (SAM), and very weakly in the mature leaves which have no proliferating tissues. However, in young leaves and flag leaves, tissue-specific expression of OsRFC3 and OsRFC4 was shown. On the other hand, cell cycle arrest by cell cycle inhibitors resulted in significant differences in OsRFC expression patterns. These results suggest the functional differences of each OsRFC subunit in tissues and the plant cell cycle. The roles of these molecules in plant DNA replication and DNA repair are discussed.
Collapse
MESH Headings
- Animals
- Aphidicolin/pharmacology
- Arabidopsis/genetics
- Cell Cycle/drug effects
- Cell Cycle/genetics
- Chromosome Mapping
- Chromosomes, Plant/genetics
- Cloning, Molecular
- Colchicine/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA-Binding Proteins/genetics
- Drosophila/genetics
- Exons
- Gene Expression Regulation, Developmental/drug effects
- Gene Expression Regulation, Plant/genetics
- Genes, Plant/genetics
- Hydroxyurea/pharmacology
- In Situ Hybridization
- Introns
- Molecular Sequence Data
- Oryza/genetics
- Oryza/growth & development
- Phylogeny
- Protein Subunits/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Replication Protein C
- Sequence Analysis, DNA
- Sucrose/pharmacology
Collapse
Affiliation(s)
- Tomoyuki Furukawa
- National Institute of Agrobiological Sciences, 2-1-2 Tsukuba-shi, Ibaraki-ken 305-8602, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Lau PJ, Kolodner RD. Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA. J Biol Chem 2003; 278:14-7. [PMID: 12435741 DOI: 10.1074/jbc.c200627200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is thought to play a role in DNA mismatch repair at the DNA synthesis step as well as in an earlier step. Studies showing that PCNA interacts with mispair-binding protein complexes, MSH2.MSH3 and MSH2.MSH6, and that PCNA enhances MSH2.MSH6 mispair binding specificity suggest PCNA may be involved in mispair recognition. Here we show that PCNA and MSH2.MSH6 form a stable ternary complex with a homoduplex (G/C) DNA, but MSH2.MSH6 binding to a heteroduplex (G/T) DNA disrupts MSH2.MSH6 binding to PCNA. We also found that the addition of ATP or adenosine 5'-O-(thiotriphosphate) restores MSH2.MSH6 binding to PCNA, presumably by disrupting MSH2.MSH6 binding to the heteroduplex (G/T) DNA. These results support a model in which MSH2.MSH6 binds to PCNA loaded on newly replicated DNA and is transferred from PCNA to mispaired bases in DNA.
Collapse
Affiliation(s)
- Patrick J Lau
- Ludwig Institute for Cancer Research, Cancer Center and Department of Medicine, University of California San Diego School of Medicine, La Jolla, California 92093-0660, USA
| | | |
Collapse
|
40
|
Davey MJ, Jeruzalmi D, Kuriyan J, O'Donnell M. Motors and switches: AAA+ machines within the replisome. Nat Rev Mol Cell Biol 2002; 3:826-35. [PMID: 12415300 DOI: 10.1038/nrm949] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Clamp loaders are required to load the ring-shaped clamps that tether replicative DNA polymerases onto DNA. Recently solved crystal structures, along with a series of biochemical studies, have provided a detailed understanding of the clamp loading reaction. In particular, studies of the Escherichia coli clamp loader--an AAA+ machine--have provided insights into the architecture of clamp loaders from eukaryotes, bacteriophage T4 and archaea. Other AAA+ proteins are also involved in the initiation of DNA replication, and studies of the E. coli clamp loader indicate mechanisms by which these proteins might function.
Collapse
Affiliation(s)
- Megan J Davey
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | |
Collapse
|
41
|
Luque A, Sanz-Burgos AP, Ramirez-Parra E, Castellano MM, Gutierrez C. Interaction of geminivirus Rep protein with replication factor C and its potential role during geminivirus DNA replication. Virology 2002; 302:83-94. [PMID: 12429518 DOI: 10.1006/viro.2002.1599] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Geminivirus DNA replication during the rolling-circle stage depends on the use of a DNA primer, a strategy poorly understood as compared with other eukaryotic viral systems that rely on RNA or protein as primers. Here we have used wheat dwarf virus (WDV) with the aim of elucidating the events leading to recruitment of cell factors at the replication origin. We have identified a novel interaction of WDV Rep, the replication initiation protein, with the large subunit of the wheat replication factor C complex (TmRFC-1). In other systems, the heteropentameric RFC clamp loader complex stimulates loading of DNA polymerase delta to the primer-template. Expression of TmRFC-1 is subjected to cell-cycle regulation, with a peak in early S-phase. We show that WDV Rep stimulates binding of recombinant TmRFC-1 to a model substrate containing a 3'-OH terminus and a WDV Rep-binding site. This was confirmed using cellular fractions enriched for wheat RFC complex, supporting the idea that, in addition to generating a 3'-OH terminus during initiation of DNA replication, WDV Rep could participate in the recruitment of RFC to the newly formed primer. We propose that this pathway may represent an initial event to facilitate the assembly of other replication factors, e.g., PCNA and/or DNA polymerase delta, a model that could also apply to other eukaryotic replicons, such as nanoviruses, circoviruses, and parvoviruses with a similar DNA replication strategy.
Collapse
Affiliation(s)
- Alejandro Luque
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Consejo Superior de Investigaciones Cientificas and Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
42
|
Kedar PS, Kim SJ, Robertson A, Hou E, Prasad R, Horton JK, Wilson SH. Direct interaction between mammalian DNA polymerase beta and proliferating cell nuclear antigen. J Biol Chem 2002; 277:31115-23. [PMID: 12063248 DOI: 10.1074/jbc.m201497200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proliferating cell nuclear antigen (PCNA) plays an essential role in nucleic acid metabolism as a component of the DNA replication and DNA repair machinery. As such, PCNA interacts with many proteins that have a sequence motif termed the PCNA interacting motif (PIM) and also with proteins lacking a PIM. Three regions in human and rat DNA polymerases beta (beta-pol) that resemble the consensus PIM were identified, and we show here that beta-polymerase and PCNA can form a complex both in vitro and in vivo. Immunoprecipitation experiments, yeast two-hybrid analysis, and overlay binding assays were used to examine the interaction between the two proteins. Competition experiments with synthetic PIM-containing peptides suggested the importance of a PIM in the interaction, and studies of a beta-polymerase PIM mutant, H222A/F223A, demonstrated that this alteration blocked the interaction with PCNA. The results indicate that at least one of the PIM-like sequences in beta-polymerase appears to be a functional PIM and was required in the interaction between beta-polymerase and PCNA.
Collapse
Affiliation(s)
- Padmini S Kedar
- Laboratory of Structural Biology, NIEHS/National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Srivastava VK, Busbee DL. Replicative enzymes and ageing: importance of DNA polymerase alpha function to the events of cellular ageing. Ageing Res Rev 2002; 1:443-63. [PMID: 12067597 DOI: 10.1016/s1568-1637(02)00011-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A hallmark of cellular ageing is the failure of senescing cells to initiate DNA synthesis and transition from G1 into S phase of the cell cycle. This transition is normally dependent on or concomitant with expression of a set of genes specifying cellular proteins, some of which directly participate in DNA replication. Deregulation of this gene expression may play a pivotal role in the ageing process. The number of known enzymes and co-factors required to maintain integrity of the genome during eukaryotic DNA replication has increased significantly in the past few years, and includes proteins essential for DNA replication and repair, as well as for cell cycle regulation. In eukaryotic cells, ranging from yeast to man, a replicative enzyme essential for initiation of transcription is DNA polymerase alpha (pol alpha), the activity of which is coordinately regulated with the initiation of DNA synthesis. DNA pol alpha, by means of its primase subunit, has the unique ability to initiate de novo DNA synthesis, and as a consequence, is required for the initiation of continuous (leading-strand) DNA synthesis at an origin of replication, as well as for initiation of discontinuous (lagging-strand) DNA synthesis. The dual role of the pol alpha-primase complex makes it a potential interactant with the regulatory mechanisms controlling entry into S phase. The purpose of this review is to address the regulation and/or modulation of DNA pol alpha during ageing that may play a key role in the cascade of events which ultimately leads to the failure of old cells to enter or complete S phase of the cell cycle.
Collapse
Affiliation(s)
- Vinod K Srivastava
- Department of Anatomy and Public Health, College of Veterinary Medicine, Center for Rural Public Health, Texas A&M University, College Station, TX 77843, USA.
| | | |
Collapse
|
44
|
Gomes XV, Burgers PM. ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J Biol Chem 2001; 276:34768-75. [PMID: 11432853 DOI: 10.1074/jbc.m011631200] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic replication factor C is the heteropentameric complex that loads the replication clamp proliferating cell nuclear antigen (PCNA) onto primed DNA. In this study we used a derivative, designated RFC, with a N-terminal truncation of the Rfc1 subunit removing a DNA-binding domain not required for clamp loading. Interactions of yeast RFC with PCNA and DNA were studied by surface plasmon resonance. Binding of RFC to PCNA was stimulated by either adenosine (3-thiotriphosphate) (ATPgammaS) or ATP. RFC bound only to primer-template DNA coated with the single-stranded DNA-binding protein RPA if ATPgammaS was also present. Binding occurred without dissociation of RPA. ATP did not stimulate binding of RFC to DNA, suggesting that hydrolysis of ATP dissociated DNA-bound RFC. However, when RFC and PCNA together were flowed across the DNA chip in the presence of ATP, a signal was observed suggesting loading of PCNA by RFC. With ATPgammaS present instead of ATP, long-lived response signals were observed indicative of loading complexes arrested on the DNA. A primer with a 3' single-stranded extension also allowed loading of PCNA; yet turnover of the reaction intermediates was dramatically slowed down. Filter binding experiments and analysis of proteins bound to DNA-magnetic beads confirmed the conclusions drawn from the surface plasmon resonance studies.
Collapse
Affiliation(s)
- X V Gomes
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
45
|
Ola A, Waga S, Ellison V, Stillman B, McGurk M, Leigh IM, Waseem NH, Waseem A. Human-Saccharomyces cerevisiae proliferating cell nuclear antigen hybrids: oligomeric structure and functional characterization using in vitro DNA replication. J Biol Chem 2001; 276:10168-77. [PMID: 11094057 DOI: 10.1074/jbc.m008929200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proliferating cell nuclear antigen (PCNA) is a highly conserved protein required for the assembly of the DNA polymerase delta (pol delta) holoenzyme. Because PCNAs from Saccharomyces cerevisiae and human do not complement each other using in vitro or in vivo assays, hybrids of the two proteins would help identify region(s) involved in the assembly of the pol delta holoenzyme. Two mutants of human PCNA, HU1 (D21E) and HU3 (D120E), and six hybrids of human and S. cerevisiae PCNA, HC1, HC5, CH2, CH3, CH4, and CH5, were prepared by swapping corresponding regions between the two proteins. In solution, all PCNA assembled into trimers, albeit to different extents. These PCNA variants were tested for stimulation of pol delta and in vitro replication of M13 and SV40 DNA as well as to stimulate the ATPase activity of replication factor C (RF-C). Our data suggest that in addition to the interdomain connecting loop and C terminus, an additional site in the N terminus is required for pol delta interaction. PCNA mutants and hybrids that stimulated pol delta and RF-C were deficient in M13 and SV40 DNA replication assays, indicating that PCNA-induced pol delta stimulation and RF-C-mediated loading are not sufficient for coordinated DNA synthesis at a replication fork.
Collapse
Affiliation(s)
- A Ola
- Head and Neck Cancer Research Program, Guys, King's, and St. Thomas' Dental Institute, Guy's Campus, King's College London, London SE1 9RT, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Qiu J, Li X, Frank G, Shen B. Cell cycle-dependent and DNA damage-inducible nuclear localization of FEN-1 nuclease is consistent with its dual functions in DNA replication and repair. J Biol Chem 2001; 276:4901-8. [PMID: 11053418 DOI: 10.1074/jbc.m007825200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Flap endonuclease-1 (FEN-1), a 43-kDa protein, is a structure-specific and multifunctional nuclease. It plays important roles in RNA primer removal of Okazaki fragments during DNA replication, DNA base excision repair, and maintenance of genome stability. Three functional motifs of the enzyme were proposed to be responsible for its nuclease activities, interaction with proliferating cell nuclear antigen, and nuclear localization. In this study, we demonstrate in HeLa cells that a signal located at the C terminus (the nuclear localization signal (NLS) motif) facilitates nuclear localization of the enzyme during S phase of the cell cycle and in response to DNA damage. Truncation of the NLS motif prevents migration of the protein from the cytoplasm to the nucleus, while having no effect on the nuclease activities and its proliferating cell nuclear antigen interaction capability. Site-directed mutagenesis further revealed that a mutation of the KRK cluster to three alanine residues completely blocked the localization of FEN-1 into the nucleus, whereas mutagenesis of the KKK cluster led to a partial defect of nuclear localization in HeLa cells without observable phenotype in yeast. Therefore, the KRKXXXXXXXXKKK motif may be a bipartite NLS driving the protein into nuclei. Yeast RAD27Delta cells transformed with human mutant M(krk) survived poorly upon methyl methanesulfonate treatment or when they were incubated at an elevated temperature.
Collapse
Affiliation(s)
- J Qiu
- Department of Cell and Tumor Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
47
|
Einolf HJ, Guengerich FP. Fidelity of nucleotide insertion at 8-oxo-7,8-dihydroguanine by mammalian DNA polymerase delta. Steady-state and pre-steady-state kinetic analysis. J Biol Chem 2001; 276:3764-71. [PMID: 11110788 DOI: 10.1074/jbc.m006696200] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleotide insertion opposite 8-oxo-7,8-dihydroguanine (8-oxoG) by fetal calf thymus DNA polymerase delta (pol delta) was examined by steady-state and pre-steady-state rapid quench kinetic analyses. In steady-state reactions with the accessory protein proliferating cell nuclear antigen (PCNA), pol delta preferred to incorporate dCTP opposite 8-oxoG with an efficiency of incorporation an order of magnitude lower than incorporation into unmodified DNA (mainly due to an increased K(m)). Pre-steady-state kinetic analysis of incorporation opposite 8-oxoG showed biphasic kinetics for incorporation of either dCTP or dATP, with rates similar to dCTP incorporation opposite G, large phosphorothioate effects (>100), and oligonucleotide dissociation apparently rate-limiting in the steady-state. Although pol delta preferred to incorporate dCTP (14% misincorporation of dATP) the extension past the A:8-oxoG mispair predominated. The presence of PCNA was found to be a more essential factor for nucleotide incorporation opposite 8-oxoG adducts than unmodified DNA, increased pre-steady-state rates of nucleotide incorporation by >2 orders of magnitude, and was essential for nucleotide extension beyond 8-oxoG. pol delta replication fidelity at 8-oxoG depends upon contributions from K(m), K(d)(dNTP), and rates of phosphodiester bond formation, and PCNA is an important accessory protein for incorporation and extension at 8-oxoG adducts.
Collapse
Affiliation(s)
- H J Einolf
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | | |
Collapse
|
48
|
Azam N, Vairapandi M, Zhang W, Hoffman B, Liebermann DA. Interaction of CR6 (GADD45gamma ) with proliferating cell nuclear antigen impedes negative growth control. J Biol Chem 2001; 276:2766-74. [PMID: 11022036 DOI: 10.1074/jbc.m005626200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GADD45, MyD118, and CR6 (also termed GADD45alpha, beta, and gamma) comprise a family of genes that encode for related proteins playing important roles in negative growth control, including growth suppression. Data accumulated suggest that MyD118/GADD45/CR6 serve similar but not identical functions along different apoptotic and growth suppressive pathways. It is also apparent that individual members of the MyD118/GADD45/CR6 family are differentially induced by a variety of genetic and environmental stress agents. The MyD118, CR6, and GADD45 proteins were shown to predominantly localize within the cell nucleus. Recently, we have shown that both MyD118 and GADD45 interact with proliferating cell nuclear antigen (PCNA), a protein that plays a central role in DNA replication, DNA repair, and cell cycle progression, as well as with the universal cyclin-dependent kinase inhibitor p21. In this work we show that also CR6 interacts with PCNA and p21. Moreover, it is shown that CR6 interacts with PCNA via a domain that also mediates interaction of both GADD45 and MyD118 with PCNA. Importantly, evidence has been obtained that interaction of CR6 with PCNA impedes the function of this protein in negative growth control, similar to observations reported for MyD118 and GADD45.
Collapse
Affiliation(s)
- N Azam
- Fels Institute for Cancer Research and Molecular Biology and the Department of Biochemistry, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
49
|
Birkuš G, Votruba I, Otmar M, Holý A. Interactions of 1-[(S)-3-Hydroxy-2-(phosphonomethoxy)propyl]cytosine (Cidofovir) Diphosphate with DNA Polymerases α, δ and ε*. ACTA ACUST UNITED AC 2001. [DOI: 10.1135/cccc20011698] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The inhibitory and/or substrate activity of 1-[(S)-3-hydroxy-2-(phosphonomethoxy)propyl]cytosine [(S)-HPMPC, cidofovir, Vistide™] diphosphate towards eukaryotic DNA polymerases α, δ and ε* was examined. Cidofovir diphosphate is a weak competitive inhibitor of the above enzymes, approximately 3 to 7 times weaker than its adenine analogue (S)-HPMPApp. The enzymes also catalyze incorporation of (S)-HPMPC into DNA; after insertion of one (S)-HPMPC residue into DNA, another dNMP residue may incorporate. DNA polymerase δ and ε* can successively accommodate in the growing chain two (S)-HPMPC residues at the maximum, whereas pol α up to three residues.
Collapse
|
50
|
Clark AB, Valle F, Drotschmann K, Gary RK, Kunkel TA. Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes. J Biol Chem 2000; 275:36498-501. [PMID: 11005803 DOI: 10.1074/jbc.c000513200] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA mismatch repair requires the concerted action of several proteins, including proliferating cell nuclear antigen (PCNA) and heterodimers of MSH2 complexed with either MSH3 or MSH6. Here we report that MSH3 and MSH6, but not MSH2, contain N-terminal sequence motifs characteristic of proteins that bind to PCNA. MSH3 and MSH6 peptides containing these motifs bound PCNA, as did the intact Msh2-Msh6 complex. This binding was strongly reduced when alanine was substituted for conserved residues in the motif. Yeast strains containing alanine substitutions in the PCNA binding motif of Msh6 or Msh3 had elevated mutation rates, indicating that these interactions are important for genome stability. When human MSH3 or MSH6 peptides containing the PCNA binding motif were added to a human cell extract, mismatch repair activity was inhibited at a step preceding DNA resynthesis. Thus, MSH3 and MSH6 interactions with PCNA may facilitate early steps in DNA mismatch repair and may also be important for other roles of these eukaryotic MutS homologs.
Collapse
Affiliation(s)
- A B Clark
- Laboratory of Molecular Genetics and Laboratory of Structural Biology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|