1
|
Abstract
MPS1 protein kinases are found widely, but not ubiquitously, in eukaryotes. This family of potentially dual-specific protein kinases is among several that regulate a number of steps of mitosis. The most widely conserved MPS1 kinase functions involve activities at the kinetochore in both the chromosome attachment and the spindle checkpoint. MPS1 kinases also function at centrosomes. Beyond mitosis, MPS1 kinases have been implicated in development, cytokinesis, and several different signaling pathways. Family members are identified by virtue of a conserved C-terminal kinase domain, though the N-terminal domain is quite divergent. The kinase domain of the human enzyme has been crystallized, revealing an unusual ATP-binding pocket. The activity, level, and subcellular localization of Mps1 family members are tightly regulated during cell-cycle progression. The mitotic functions of Mps1 kinases and their overexpression in some tumors have prompted the identification of Mps1 inhibitors and their active development as anticancer drugs.
Collapse
Affiliation(s)
- Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
2
|
Wang W, Yang Y, Gao Y, Xu Q, Wang F, Zhu S, Old W, Resing K, Ahn N, Lei M, Liu X. Structural and mechanistic insights into Mps1 kinase activation. J Cell Mol Med 2009; 13:1679-1694. [PMID: 19120698 PMCID: PMC2829362 DOI: 10.1111/j.1582-4934.2008.00605.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 10/29/2008] [Indexed: 01/26/2023] Open
Abstract
Mps1 is one of the several essential kinases whose activation is required for robust mitotic spindle checkpoint signalling. The activity of Mps1 is tightly regulated and increases dramatically during mitosis or in response to spindle damage. To understand the molecular mechanism underlying Mps1 regulation, we determined the crystal structure of the kinase domain of Mps1. The 2.7-A-resolution crystal structure shows that the Mps1 kinase domain adopts a unique inactive conformation. Intramolecular interactions between the key Glu residue in the C helix of the N-terminal lobe and the backbone amides in the catalytic loop lock the kinase in the inactive conformation. Autophosphorylation appears to be a priming event for kinase activation. We identified Mps1 autophosphorylation sites in the activation and the P+1 loops. Whereas activation loop autophosphorylation enhances kinase activity, autophosphorylation at the P+1 loop (T686) is associated with the active kinase. Mutation of T686 autophosphorylation site impairs both autophosphorylation and transphosphorylation. Furthermore, we demonstrated that phosphorylation of T676 may be a priming event for phosphorylation at T686. Finally, we identified two critical lysine residues in the loop between helices EF and F that are essential for substrate recruitment and maintaining high levels of kinase activity. Our studies reveal critical biochemical mechanisms for Mps1 kinase regulation.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Yuting Yang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Yuefeng Gao
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Quanbin Xu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Feng Wang
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Songcheng Zhu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - William Old
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Katheryn Resing
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| | - Natalie Ahn
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
- Howard Hughes Medical Institute, University of Colorado, Boulder, CO, USA
| | - Ming Lei
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO, USA
| |
Collapse
|
3
|
Yeh YH, Huang YF, Lin TY, Shieh SY. The cell cycle checkpoint kinase CHK2 mediates DNA damage-induced stabilization of TTK/hMps1. Oncogene 2009; 28:1366-78. [PMID: 19151762 DOI: 10.1038/onc.2008.477] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cell cycle progression is monitored constantly to ensure faithful passage of genetic codes and genome stability. We have demonstrated previously that, upon DNA damage, TTK/hMps1 activates the checkpoint kinase CHK2 by phosphorylating CHK2 at Thr68. However, it remains to be determined whether and how TTK/hMps1 responds to DNA damage. In this report, we present evidence that TTK/hMps1 can be induced by DNA damage in normal human fibroblasts. Interestingly, the induction depends on CHK2 because CHK2-targeting small interfering RNA or a CHK2 inhibitor abolishes the increase. Such induction is mediated through phosphorylation of TTK/hMps1 at Thr288 by CHK2 and requires the CHK2 SQ/TQ cluster domain/forkhead-associated domain. In cells, TTK/hMps1 phosphorylation at Thr288 is induced by DNA damage and forms nuclear foci, which colocalize partially with gamma-H2AX. Reexpression of TTK/hMps1 T288A mutant in TTK/hMps1-knockdown cells causes a defect in G(2)/M arrest, suggesting that phosphorylation at this site participates in the proper checkpoint execution. Our study uncovered a regulatory loop between TTK/hMps1 and CHK2 whereby DNA damage-activated CHK2 may facilitate the stabilization of TTK/hMps1, therefore maintaining the checkpoint control.
Collapse
Affiliation(s)
- Y-H Yeh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | | | | | | |
Collapse
|
4
|
Singla B, Khurana JP, Khurana P. Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. PLANT CELL REPORTS 2008; 27:833-43. [PMID: 18210118 DOI: 10.1007/s00299-008-0505-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 12/08/2007] [Accepted: 01/06/2008] [Indexed: 05/09/2023]
Abstract
We report here the isolation and characterization of three SOMATIC EMBRYOGENESIS RECEPTOR KINASE (TaSERK) genes from wheat. TaSERKs belong to a small family of receptor-like kinase genes, share a conserved structure and extensive sequence homology with previously reported plant SERK genes. TaSERK genes are in general auxin inducible and expressed during embryogenesis in cell cultures. We show here that somatic embryogenesis in Triticum aestivum is associated with high SERK expression which could be enhanced with auxin application and is calcium dependent. TaSERK transcripts could also be enhanced by epibrassinolide and abscisic acid. TaSERK1 and TaSERK2 may have a role in somatic embryogenesis, whereas TaSERK3 appears to be a brassinosteroid-associated kinase (BAK) lacking an SPP motif but shares a characteristic C-terminal domain with other SERK proteins. Also, the transcripts of all the three TaSERK genes could be induced in zygotic and somatic tissues. Although our analysis suggests them to be involved in somatic embryogenesis, they may have a broader role in acquiring embryogenic competence in wheat.
Collapse
Affiliation(s)
- Bhumica Singla
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India
| | | | | |
Collapse
|
5
|
Mattison CP, Old WM, Steiner E, Huneycutt BJ, Resing KA, Ahn NG, Winey M. Mps1 Activation Loop Autophosphorylation Enhances Kinase Activity. J Biol Chem 2007; 282:30553-61. [PMID: 17728254 DOI: 10.1074/jbc.m707063200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mps1 protein kinase is required for proper assembly of the mitotic spindle, checkpoint signaling, and several other aspects of cell growth and differentiation. Mps1 regulation is mediated by cell cycle-dependent changes in transcription and protein level. There is also a strong correlation between hyperphosphorylated mitotic forms of Mps1 and increased kinase activity. We investigated the role that autophosphorylation plays in regulating human Mps1 (hMps1) protein kinase activity. Here we report that hyperphosphorylated hMps1 forms are not the only active forms of the kinase. However, autophosphorylation of hMps1 within the activation loop is required for full activity in vitro. Mass spectrometry analysis of de novo synthesized enzyme in Escherichia coli identified autophosphorylation sites at residues Thr(675), Thr(676), and Thr(686), but phosphatase-treated and reactivated enzyme was only phosphorylated on Thr(676). Mutation of Thr(676) in hMps1 or the corresponding Thr(591) residue within yeast Mps1 reduces kinase activity in vitro. We find that overexpression of an hMps1-T676A mutation inhibits centrosome duplication in RPE1 cells. Likewise, yeast cells harboring mps1-T591A as the sole MPS1 allele are not viable. Our data strongly support the conclusion that site-specific Mps1 autophosphorylation within the activation loop is required for full activity in vitro and function in vivo.
Collapse
Affiliation(s)
- Christopher P Mattison
- Molecular Cellular, and Developmental Biology, University of Colorado, Colorado 80309, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Kahnert A, Seiler P, Stein M, Bandermann S, Hahnke K, Mollenkopf H, Kaufmann SHE. Alternative activation deprives macrophages of a coordinated defense program toMycobacterium tuberculosis. Eur J Immunol 2006; 36:631-47. [PMID: 16479545 DOI: 10.1002/eji.200535496] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A potent Th1 immune response is critical to the control of tuberculosis. The impact of an additive Th2 response on the course of disease has so far been insufficiently characterized, despite increased morbidity after co-infection with Mycobacterium tuberculosis and Th2-eliciting helminths and possible involvement of Th2 polarization in reactivation of latent tuberculosis. Here, we describe the gene expression profile of murine bone marrow-derived macrophages alternatively activated by IL-4 in response to infection with M. tuberculosis. Comparison of transcriptional profiles of infected IL-4- and IFN-gamma-activated macrophages revealed delayed and partially diminished responses to intracellular bacteria in alternatively activated macrophages, characterized by reduced exposure to nitrosative stress and increased iron availability, respectively. Alternative activation of host macrophages correlated with elevated expression of the M. tuberculosis iron storage protein bacterioferritin as well as reduced expression of the mycobactin synthesis genes mbtI and mbtJ. The extracellular matrix-remodeling enzyme matrix metalloproteinase (MMP)-12 was induced in alternatively activated macrophages in vitro, and MMP-12-expressing macrophages were abundant at late, but not early, stages of tuberculosis in murine lungs. Our findings emphasize that alternative activation deprives macrophages of control mechanisms that limit mycobacterial growth in vivo, thus supporting intracellular persistence of M. tuberculosis.
Collapse
Affiliation(s)
- Antje Kahnert
- Max-Planck Institute for Infection Biology, Department of Immunology, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Wei JH, Chou YF, Ou YH, Yeh YH, Tyan SW, Sun TP, Shen CY, Shieh SY. TTK/hMps1 participates in the regulation of DNA damage checkpoint response by phosphorylating CHK2 on threonine 68. J Biol Chem 2004; 280:7748-57. [PMID: 15618221 DOI: 10.1074/jbc.m410152200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CHK2/hCds1 plays important roles in the DNA damage-induced cell cycle checkpoint by phosphorylating several important targets, such as Cdc25 and p53. To obtain a better understanding of the CHK2 signaling pathway, we have carried out a yeast two-hybrid screen to search for potential CHK2-interacting proteins. Here, we report the identification of the mitotic checkpoint kinase, TTK/hMps1, as a novel CHK2-interacting protein. TTK/hMps1 directly phosphorylates CHK2 on Thr-68 in vitro. Expression of a TTK kinase-dead mutant, TTK(D647A), interferes with the G(2)/M arrest induced by either ionizing radiation or UV light. Interestingly, induction of CHK2 Thr-68 phosphorylation and of several downstream events, such as cyclin B1 accumulation and Cdc2 Tyr-15 phosphorylation, is also affected. Furthermore, ablation of TTK expression using small interfering RNA results not only in reduced CHK2 Thr-68 phosphorylation, but also in impaired growth arrest. Our results are consistent with a model in which TTK functions upstream from CHK2 in response to DNA damage and suggest possible cross-talk between the spindle assembly checkpoint and the DNA damage checkpoint.
Collapse
Affiliation(s)
- Jen-Hsuan Wei
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Dou Z, Ding X, Zereshki A, Zhang Y, Zhang J, Wang F, Sun J, Huang H, Yao X. TTK kinase is essential for the centrosomal localization of TACC2. FEBS Lett 2004; 572:51-6. [PMID: 15304323 DOI: 10.1016/j.febslet.2004.06.092] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Accepted: 06/28/2004] [Indexed: 10/26/2022]
Abstract
Chromosome segregation in mitosis is orchestrated by dynamic interaction between spindle microtubule and the kinetochore. Our recent ultrastructural studies demonstrated a dynamic distribution of TTK, from the kinetochore to the centrosome, as cell enters into anaphase. Here, we show that a centrosomal protein TACC2 is phosphorylated in mitosis by TTK signaling pathway. TACC2 was pulled down by wild type TTK but not kinase death mutant, suggesting the potential phosphorylation-mediated interaction between these two proteins. Our immunofluorescence studies revealed that both TTK and TACC2 are located to the centrosome. Interestingly, expression of kinase death mutant of TTK eliminated the centrosomal localization of TACC2 but not other centrosomal proteins such as gamma-tubulin and NuMA, a phenotype seen in TTK-depleted cells. In these centrosomal TACC2-liberated cells, chromosomes were lagging and mis-aligned. In addition, the distance between two centrosomes was markedly reduced, suggesting that centrosomal TACC2 is required for mitotic spindle maintenance. The inter-relationship between TTK and TACC2 established here provides new avenue to study centrosome and spindle dynamics underlying cell divisional control.
Collapse
Affiliation(s)
- Zhen Dou
- Hefei National Laboratory for Physical Sciences at Micro-scale, Hefei 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Ou Y, Rattner JB. The Centrosome in Higher Organisms: Structure, Composition, and Duplication. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 238:119-82. [PMID: 15364198 DOI: 10.1016/s0074-7696(04)38003-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The centrosome found in higher organisms is an organelle with a complex and dynamic architecture and composition. This organelle not only functions as a microtubule-organizing center, but also is integrated with or impacts a number of cellular processes. Defects associated with this organelle have been linked to a variety of human diseases including several forms of cancer. Here we review the emerging picture of how the structure, composition, duplication, and function of the centrosome found in higher organisms are interrelated.
Collapse
Affiliation(s)
- Young Ou
- Department of Cell Biology and Anatomy, University of Calgary 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | | |
Collapse
|
10
|
Liu ST, Chan GKT, Hittle JC, Fujii G, Lees E, Yen TJ. Human MPS1 kinase is required for mitotic arrest induced by the loss of CENP-E from kinetochores. Mol Biol Cell 2003; 14:1638-51. [PMID: 12686615 PMCID: PMC153128 DOI: 10.1091/mbc.02-05-0074] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have determined that the previously identified dual-specificity protein kinase TTK is the human orthologue of the yeast MPS1 kinase. Yeast MPS1 (monopolar spindle) is required for spindle pole duplication and the spindle checkpoint. Consistent with the recently identified vertebrate MPS1 homologues, we found that hMPS1 is localized to centrosomes and kinetochores. In addition, hMPS1 is part of a growing list of kinetochore proteins that are localized to nuclear pores. hMPS1 is required by cells to arrest in mitosis in response to spindle defects and kinetochore defects resulting from the loss of the kinesin-like protein, CENP-E. The pattern of kinetochore localization of hMPS1 in CENP-E defective cells suggests that their interaction with the kinetochore is sensitive to microtubule occupancy rather than kinetochore tension. hMPS1 is required for MAD1, MAD2 but not hBUB1, hBUBR1 and hROD to bind to kinetochores. We localized the kinetochore targeting domain in hMPS1 and found that it can abrogate the mitotic checkpoint in a dominant negative manner. Last, hMPS1 was found to associate with the anaphase promoting complex, thus raising the possibility that its checkpoint functions extend beyond the kinetochore.
Collapse
Affiliation(s)
- Song-Tao Liu
- Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | | | | | |
Collapse
|
11
|
Akashi K, He X, Chen J, Iwasaki H, Niu C, Steenhard B, Zhang J, Haug J, Li L. Transcriptional accessibility for genes of multiple tissues and hematopoietic lineages is hierarchically controlled during early hematopoiesis. Blood 2003; 101:383-9. [PMID: 12393558 DOI: 10.1182/blood-2002-06-1780] [Citation(s) in RCA: 277] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Hematopoietic stem cells (HSCs) maintain hematopoiesis by giving rise to all types of blood cells. Recent reports suggest that HSCs also possess the potential to generate nonhematopoietic tissues. To evaluate the underlying mechanisms in the commitment of HSCs into multitissue and multihematopoietic lineages, we performed oligonucleotide array analyses targeting for prospectively purified HSCs, multipotent progenitors (MPPs), common lymphoid progenitors (CLPs), and common myeloid progenitors (CMPs). Here we show that HSCs coexpress multiple nonhematopoietic genes as well as hematopoietic genes; MPPs coexpress myeloid and lymphoid genes; CMPs coexpress myeloerythroid, but not lymphoid genes, whereas CLPs coexpress T-, B-, and natural killer-lymphoid, but not myeloid, genes. Thus, the stepwise decrease in transcriptional accessibility for multilineage-affiliated genes may represent progressive restriction of developmental potentials in early hematopoiesis. These data support the hypothesis that stem cells possess a wide-open chromatin structure to maintain their multipotentiality, which is progressively quenched as they go down a particular pathway of differentiation.
Collapse
Affiliation(s)
- Koichi Akashi
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Mark Winey
- MCD Biology, 347 UCB, University of Colorado - Boulder, Boulder, Colorado, CO 80309-0347, USA.
| | | |
Collapse
|
13
|
Chang JH, Tai YS, Bernal AJ, Lavelle DT, Staskawicz BJ, Michelmore RW. Functional analyses of the Pto resistance gene family in tomato and the identification of a minor resistance determinant in a susceptible haplotype. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:281-291. [PMID: 11952131 DOI: 10.1094/mpmi.2002.15.3.281] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Pto is a member of a multigene family and encodes a serine/threonine kinase that mediates gene-for-gene resistance to strains of Pseudomonas syringae pv. tomato expressing avrPto. The inferred amino acid sequence of the Pto homologs from both resistant (LpimPth2 to LpimPth4) and susceptible (LescFen, LescPth2 to LescPth5) haplotypes suggested that most could encode functional serine/threonine kinases. In addition, the activation segments of the homologs are similar in sequence to that of Pto, and some have residues previously identified as required for binding of AvrPto by Pto in the yeast two-hybrid system. The Pto homologs were therefore characterized for transcription, for the ability of their products to interact with AvrPto in the yeast two-hybrid system, for their autophosphorylation activity, and for their potential to elicit cell death in the presence of and absence of a ligand, as well as their dependence on Prf. LpimPth5, LpimPth4, and LescPth4 were not transcribed at levels detectable by reverse transcription-polymerase chain reaction. The interaction with AvrPto was unique to Pto in the yeast two-hybrid system. LescPth2 autophosphorylated in vitro as a fusion protein. LpimPth2, LpimPth3, LpimPth4, LescPth3, and LescPth4 did not autophosphorylate in vitro. Transient expression of wild-type Fen and wild-type LpimPth3, as well as LescFen, LescPth3, and LescPth5 with perturbations in their P+1 loop caused cell death in Nicotiana benthamiana. LpimPth3 and LescPth3 with amino acid substitutions in the P+1 loop also elicited cell death in tomato; this was dependent on the presence of wild-type Prf. Consequently, some homologs could potentially encode functional resistance proteins. LescPth5 induced cell death specifically in response to expression of AvrPto in tobacco in a Prf-dependent manner; this is consistent with a homolog from a 'susceptible' haplotype encoding a minor recognition determinant.
Collapse
Affiliation(s)
- Jeff H Chang
- NSF Center for Engineering Plants for Resistance Against Pathogens, University of California, Davis, 95616 USA
| | | | | | | | | | | |
Collapse
|
14
|
Shah K, Vervoort J, de Vries SC. Role of threonines in the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 activation loop in phosphorylation. J Biol Chem 2001; 276:41263-9. [PMID: 11509554 DOI: 10.1074/jbc.m102381200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Arabidopsis thaliana somatic embryogenesis receptor kinase 1 (AtSERK1) gene encodes a receptor-like protein kinase that is transiently expressed during embryogenesis. To determine the intrinsic biochemical properties of the AtSERK1 protein, we have expressed the intracellular catalytic domain as a glutathione S-transferase fusion protein in Escherichia coli. The AtSERK1-glutathione S-transferase fusion protein mainly autophosphorylates on threonine residues (K(m) for ATP, 4 x 10(-6) m), and the reaction is Mg(2+) dependent and inhibited by Mn(2+). A K330E substitution in the kinase domain of AtSERK1 abolishes all kinase activity. The active AtSERK1(kin) can phosphorylate inactive AtSERK1(K330E) protein, suggesting an intermolecular mechanism of autophosphorylation. The AtSERK1 kinase protein was modeled using the insulin receptor kinase as a template. On the basis of this model, threonine residues in the AtSERK1 activation loop of catalytic subdomain VIII are potential targets for phosphorylation. AtSERK1 phosphorylation on myelin basic protein and casein showed tyrosine, serine, and threonine as targets, demonstrating that AtSERK1 is a dual specificity kinase. Replacing Thr-468 with either alanine or glutamic acid not only obliterated the ability of the AtSERK1 protein to be phosphorylated but also inhibited phosphorylation on myelin basic protein and casein, suggesting that Thr-468 is essential for AtSERK-mediated signaling.
Collapse
Affiliation(s)
- K Shah
- Laboratory of Molecular Biology, Wageningen University and Research Center, 6703 HA Wageningen, The Netherlands.
| | | | | |
Collapse
|
15
|
Shah K, Schmidt ED, Vlak JM, de Vries SC. Expression of the Daucus carota somatic embryogenesis receptor kinase (DcSERK) protein in insect cells. Biochimie 2001; 83:415-21. [PMID: 11368849 DOI: 10.1016/s0300-9084(01)01257-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Daucus carota somatic embryogenesis receptor kinase (DcSERK) gene serves as marker to monitor the transition from somatic into embryogenic plant cells. To determine the intrinsic biochemical properties of the DcSERK protein, a predicted transmembrane receptor, the kinase domain was expressed as a 40-kDa his-tag fusion protein in the baculovirus insect cell system. The kinase domain fusion protein was able to autophosphorylate in vitro. Phosphoamino acid analysis of the autophosphorylated DcSERK protein revealed that it was autophosphorylated on serine and threonine residues. This is the first evidence of the biochemical characterization of a transmembrane receptor kinase from embryogenic plant cell cultures.
Collapse
Affiliation(s)
- K Shah
- Laboratory of Molecular Biology, Wageningen University and Research Center, Dreijnlaan 3, 6703 HAWageningen, The Netherlands.
| | | | | | | |
Collapse
|
16
|
Abrieu A, Magnaghi-Jaulin L, Kahana JA, Peter M, Castro A, Vigneron S, Lorca T, Cleveland DW, Labbé JC. Mps1 is a kinetochore-associated kinase essential for the vertebrate mitotic checkpoint. Cell 2001; 106:83-93. [PMID: 11461704 DOI: 10.1016/s0092-8674(01)00410-x] [Citation(s) in RCA: 255] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitotic checkpoint acts to inhibit entry into anaphase until all chromosomes have successfully attached to spindle microtubules. Unattached kinetochores are believed to release an activated form of Mad2 that inhibits APC/C-dependent ubiquitination and subsequent proteolysis of components needed for anaphase onset. Using Xenopus egg extracts, a vertebrate homolog of yeast Mps1p is shown here to be a kinetochore-associated kinase, whose activity is necessary to establish and maintain the checkpoint. Since high levels of Mad2 overcome checkpoint loss in Mps1-depleted extracts, Mps1 acts upstream of Mad2-mediated inhibition of APC/C. Mps1 is essential for the checkpoint because it is required for recruitment and retention of active CENP-E at kinetochores, which in turn is necessary for kinetochore association of Mad1 and Mad2.
Collapse
Affiliation(s)
- A Abrieu
- Ludwig Institute for Cancer Research, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The yeast Mps1p protein kinase acts in centrosome duplication and the spindle assembly checkpoint. We demonstrate here that a mouse Mps1p ortholog (esk, which we designate mMps1p) regulates centrosome duplication. Endogenous mMps1p and overexpressed GFP-mMps1p localize to centrosomes and kinetochores in mouse cells. Overexpression of GFP-mMps1p causes reduplication of centrosomes during S phase arrest. In contrast, a kinase-deficient mutant blocks centrosome duplication altogether. Control of centrosome duplication by mMps1p requires a known regulator of the process, Cdk2. Inhibition of Cdk2 prevents centrosome reduplication and destabilizes mMps1p, causing its subsequent loss from centrosomes, suggesting that Cdk2 promotes mMps1p's centrosome duplication function by regulating its stability during S phase. Thus, mMps1p, an in vitro Cdk2 substrate, regulates centrosome duplication jointly with Cdk2.
Collapse
Affiliation(s)
- H A Fisk
- MCD Biology, UCB 347, University of Colorado, Boulder, Boulder, CO 80309, USA
| | | |
Collapse
|
18
|
Covic L, Silva NF, Lew RR. Functional characterization of ARAKIN (ATMEKK1): a possible mediator in an osmotic stress response pathway in higher plants. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:242-54. [PMID: 10556579 DOI: 10.1016/s0167-4889(99)00096-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The Arabidopsis thaliana ARAKIN (ATMEKK1) gene shows strong homology to members of the (MAP) mitogen-activated protein kinase family, and was previously shown to functionally complement a mating defect in Saccharomyces cerevisiae at the level of the MEKK kinase ste11. The yeast STE11 is an integral component of two MAP kinase cascades: the mating pheromone pathway and the HOG (high osmolarity glycerol response) pathway. The HOG signal transduction pathway is activated by osmotic stress and causes increased glycerol synthesis. Here, we first demonstrate that ATMEKK1 encodes a protein with kinase activity, examine its properties in yeast MAP kinase cascades, then examine its expression under stress in A. thaliana. Yeast cells expressing the A. thaliana ATMEKK1 survive and grow under high salt (NaCl) stress, conditions that kill wild-type cells. Enhanced glycerol production, observed in non-stressed cells expressing ATMEKK1 is the probable cause of yeast survival. Downstream components of the HOG response pathway, HOG1 and PBS2, are required for ATMEKK1-mediated yeast survival. Because ATMEKK1 functionally complements the sho1/ssk2/ssk22 triple mutant, it appears to function at the level of the MEKK kinase step of the HOG response pathway. In A. thaliana, ATMEKK1 expression is rapidly (within 5 min) induced by osmotic (NaCl) stress. This is the same time frame for osmoticum-induced effects on the electrical properties of A. thaliana cells, both an immediate response and adaptation. Therefore, we propose that the A. thaliana ATMEKK1 may be a part of the signal transduction pathway involved in osmotic stress.
Collapse
Affiliation(s)
- L Covic
- Department of Biology, York University, 4700 Keele Street, Toronto, Ont., Canada
| | | | | |
Collapse
|
19
|
Toshima J, Tanaka T, Mizuno K. Dual specificity protein kinase activity of testis-specific protein kinase 1 and its regulation by autophosphorylation of serine-215 within the activation loop. J Biol Chem 1999; 274:12171-6. [PMID: 10207045 DOI: 10.1074/jbc.274.17.12171] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TESK1 (testis-specific protein kinase 1) is a protein kinase with a structure composed of an N-terminal protein kinase domain and a C-terminal proline-rich domain. Whereas the 3.6-kilobase TESK1 mRNA is expressed predominantly in the testis, a faint 2.5-kilobase TESK1 mRNA is expressed ubiquitously. The kinase domain of TESK1 contains in the catalytic loop in subdomain VIB an unusual DLTSKN sequence, which is not related to the consensus sequence of either serine/threonine kinases or tyrosine kinases. In this study, we show that TESK1 has kinase activity with dual specificity on both serine/threonine and tyrosine residues. In an in vitro kinase reaction, the kinase domain of TESK1 underwent autophosphorylation on serine and tyrosine residues and catalyzed phosphorylation of histone H3 and myelin basic protein on serine, threonine, and tyrosine residues. Site-directed mutagenesis analyses revealed that Ser-215 within the "activation loop" of the kinase domain is the site of serine autophosphorylation of TESK1. Replacement of Ser-215 by alanine almost completely abolished serine autophosphorylation and histone H3 kinase activities. In contrast, replacement of Ser-215 by glutamic acid abolished serine autophosphorylation activity but retained histone H3 kinase activity. These results suggest that autophosphorylation of Ser-215 is an important step to positively regulate the kinase activity of TESK1.
Collapse
Affiliation(s)
- J Toshima
- Department of Biology, Faculty of Science, Kyushu University, Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | |
Collapse
|
20
|
Becker W, Joost HG. Structural and functional characteristics of Dyrk, a novel subfamily of protein kinases with dual specificity. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1999; 62:1-17. [PMID: 9932450 DOI: 10.1016/s0079-6603(08)60503-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dyrk-related kinases represent a novel subfamily of protein kinases with unique structural and enzymatic features. Its members have been identified in distantly related organisms. The yeast kinase, Yak1, has been characterized as a negative regulator of growth. Mnb from Drosophila is encoded by the minibrain gene, whose mutation results in specific defects in neurogenesis. Its mammalian homolog, Dyrk1A, is activated by tyrosine phosphorylation in the activation loop between subdomains VII and VIII of the catalytic domain. The human gene for Dyrk1A is located in the "Down syndrome critical region" of chromosome 21 and is therefore a candidate gene for mental retardation in Down syndrome. More recently, six additional mammalian Dyrk-related kinases have been identified (Dyrk1B, Dyrk1C, Dyrk2, Dyrk3, Dyrk4A, and Dyrk4B). All members of the Dyrk family contain in the activation loop the tyrosines that are essential for the full activity of Dyrk1A. Outside their catalytic domains, Dyrk kinases exhibit little sequence similarity except for a small segment immediately preceding the catalytic domain (DH-box, Dyrk homology box). An unusual enzymatic property of Dyrk-related kinases is their ability to catalyze tyrosine-directed autophosphorylation as well as phosphorylation of serine/threonine residues in exogenous substrates. The exact cellular function of the Dyrk kinases is yet unknown. However, it appears reasonable to assume that they are involved in the regulation of cellular growth and/or development.
Collapse
Affiliation(s)
- W Becker
- Institut für Pharmakologie und Toxikologie, Aachen, Germany
| | | |
Collapse
|
21
|
He X, Jones MH, Winey M, Sazer S. Mph1, a member of the Mps1-like family of dual specificity protein kinases, is required for the spindle checkpoint in S. pombe. J Cell Sci 1998; 111 ( Pt 12):1635-47. [PMID: 9601094 DOI: 10.1242/jcs.111.12.1635] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The spindle assembly checkpoint pathway is not essential for normal mitosis but ensures accurate nuclear division by blocking the metaphase to anaphase transition in response to a defective spindle. Here, we report the isolation of a new spindle checkpoint gene, mph1 (Mps1p-like pombe homolog), in the fission yeast Schizosaccharomyces pombe, that is required for checkpoint activation in response to spindle defects. mph1 functions upstream of mad2, a previously characterized component of the spindle checkpoint. Overexpression of mph1, like overexpression of mad2, mimics activation of the checkpoint and imposes a metaphase arrest. mph1 protein shares sequence similarity with Mps1p, a dual specificity kinase that functions in the spindle checkpoint of the budding yeast Saccharomyces cerevisiae. Complementation analysis demonstrates that mph1 and Mps1p are functionally related. They differ in that Mps1p, but not mph1, has an additional essential role in spindle pole body duplication. We propose that mph1 is the MPS1 equivalent in the spindle checkpoint pathway but not in the SPB duplication pathway. Overexpression of mad2 does not require mph1 to impose a metaphase arrest, which indicates a mechanism of spindle checkpoint activation other than mph1/Mps1p kinase-dependent phosphorylation. In the same screen which led to the isolation of mad2 and mph1, we also isolated dph1, a cDNA that encodes a protein 46% identical to an S. cerevisiae SPB duplication protein, Dsk2p. Our initial characterization indicates that S.p. dph1 and S.c. DSK2 are functionally similar. Together these results suggest that the budding and fission yeasts share common elements for SPB duplication, despite differences in SPB structure and the timing of SPB duplication relative to mitotic entry.
Collapse
Affiliation(s)
- X He
- Verna and Marrs McLean Department of Biochemistry, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
22
|
Paulson RF, Bernstein A. A genetic linkage map of the mouse chromosome 9 region encompassing the Friend virus susceptibility gene 2. Mamm Genome 1998; 9:381-4. [PMID: 9545496 DOI: 10.1007/s003359900774] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R F Paulson
- Program in Molecular Biology and Cancer, The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Room 983, Toronto, Ontario M5G 1X5, Canada
| | | |
Collapse
|
23
|
Schutz AR, Winey M. New alleles of the yeast MPS1 gene reveal multiple requirements in spindle pole body duplication. Mol Biol Cell 1998; 9:759-74. [PMID: 9529376 PMCID: PMC25304 DOI: 10.1091/mbc.9.4.759] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/1997] [Accepted: 01/28/1998] [Indexed: 02/07/2023] Open
Abstract
In Saccharomyces cerevisiae, the Mps1p protein kinase is critical for both spindle pole body (SPB) duplication and the mitotic spindle assembly checkpoint. The mps1-1 mutation causes failure early in SPB duplication, and because the spindle assembly checkpoint is also compromised, mps1-1 cells proceed with a monopolar mitosis and rapidly lose viability. Here we report the genetic and molecular characterization of mps1-1 and five new temperature-sensitive alleles of MPS1. Each of the six alleles contains a single point mutation in the region of the gene encoding the protein kinase domain. The mutations affect several residues conserved among protein kinases, most notably the invariant glutamate in subdomain III. In vivo and in vitro kinase activity of the six epitope-tagged mutant proteins varies widely. Only two display appreciable in vitro activity, and interestingly, this activity is not thermolabile under the assay conditions used. While five of the six alleles cause SPB duplication to fail early, yielding cells with a single SPB, mps1-737 cells proceed into SPB duplication and assemble a second SPB that is structurally defective. This phenotype, together with the observation of intragenic complementation between this unique allele and two others, suggests that Mps1p is required for multiple events in SPB duplication.
Collapse
Affiliation(s)
- A R Schutz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | |
Collapse
|
24
|
Sorger PK, Dobles M, Tournebize R, Hyman AA. Coupling cell division and cell death to microtubule dynamics. Curr Opin Cell Biol 1997; 9:807-14. [PMID: 9425345 DOI: 10.1016/s0955-0674(97)80081-6] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mitotic spindle is a self-organizing structure that is constructed primarily from microtubules. Among the most important spindle microtubules are those that bind to kinetochores and form the fibers along which chromosomes move. Chemotherapeutics such as taxol and the vinca alkaloids perturb kinetochore-microtubule attachment and disrupt chromosome segregation. This activates a checkpoint pathway that delays cell cycle progression and induces programmed cell death. Recent work has identified at least four mammalian spindle assembly checkpoint proteins.
Collapse
Affiliation(s)
- P K Sorger
- Department of Biology, Massachusetts Institute of Technology, Cambridge 02138-4307, USA
| | | | | | | |
Collapse
|
25
|
Schutz AR, Giddings TH, Steiner E, Winey M. The yeast CDC37 gene interacts with MPS1 and is required for proper execution of spindle pole body duplication. J Cell Biol 1997; 136:969-82. [PMID: 9060463 PMCID: PMC2132477 DOI: 10.1083/jcb.136.5.969] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/1996] [Revised: 01/13/1997] [Indexed: 02/03/2023] Open
Abstract
The MPS1 gene from Saccharomyces cerevisiae encodes an essential protein kinase required for spindle pole body (SPB) duplication and for the mitotic spindle assembly checkpoint. Cells with the mps1-1 mutation fail early in SPB duplication and proceed through monopolar mitosis with lethal consequences. We identified CDC37 as a multicopy suppressor of mps1-1 temperature-sensitive growth. Suppression is allele specific, and synthetic lethal interactions occur between mps1 and cdc37 alleles. We examined the cdc37-1 phenotype for defects related to the SPB cycle. The cdc37-1 temperature-sensitive allele causes unbudded, G1 arrest at Start (Reed, S.I. 1980. Genetics. 95: 561-577). Reciprocal shifts demonstrate that cdc37-1 arrest is interdependent with alpha-factor arrest but is not a normal Start arrest. Although the cells are responsive to alpha-factor at the arrest, SPB duplication is uncoupled from other aspects of G1 progression and proceeds past the satellite-bearing SPB stage normally seen at Start. Electron microscopy reveals side-by-side SPBs at cdc37-1 arrest. The outer plaque of one SPB is missing or reduced, while the other is normal. Using the mps2-1 mutation to distinguish between the SPBs, we find that the outer plaque defect is specific to the new SPB. This phenotype may arise in part from reduced Mps1p function: although Mps1p protein levels are unaffected by the cdc37-1 mutation, kinase activity is markedly reduced. These data demonstrate a requirement for CDC37 in SPB duplication and suggest a role for this gene in G1 control. CDC37 may provide a chaperone function that promotes the activity of protein kinases.
Collapse
Affiliation(s)
- A R Schutz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado-Boulder, 80309-0347, USA
| | | | | | | |
Collapse
|
26
|
Pinna LA, Ruzzene M. How do protein kinases recognize their substrates? BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1314:191-225. [PMID: 8982275 DOI: 10.1016/s0167-4889(96)00083-3] [Citation(s) in RCA: 345] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- L A Pinna
- Dipartimento di Chimica Biologica, Università di Padova, Italy.
| | | |
Collapse
|
27
|
Gao G, Widmer J, Stapleton D, Teh T, Cox T, Kemp BE, Witters LA. Catalytic subunits of the porcine and rat 5'-AMP-activated protein kinase are members of the SNF1 protein kinase family. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1266:73-82. [PMID: 7718624 DOI: 10.1016/0167-4889(94)00222-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 5'-AMP-activated protein kinase (AMPK) regulates the fatty acid and sterol synthesizing pathways via phosphorylation of acetyl-CoA carboxylase and HMG-CoA reductase, respectively. Highly purified kinase from porcine liver contains three apparent subunits of molecular mass 63 kDa, 40 kDa and 38 kDa. Peptide sequencing of the 63 kDa protein (AMPK63cat) revealed that this polypeptide is the catalytic subunit of the kinase. Porcine peptide sequences were used to clone by RT-PCR partial length cDNAs for the catalytic domains of the porcine AMPK63cat, and its rat homolog, which were virtually identical in deduced amino acid sequence. Screening of a rat liver cDNA library with these partial length cDNAs and with degenerate oligonucleotides yielded several unique clones, some of which had a 142 bp deletion in the catalytic domain of the kinase. A consensus full-length sequence with a 1.7 kb open reading frame has been constructed from overlapping library and PCR-derived clones. A large mRNA for rat AMPK63cat (8.5 kb) is expressed in nearly all rat tissues, with highest levels detectable in heart and skeletal muscle. Using PCR, the presence of two mRNA species with or without the 142 bp deletion in the catalytic domain was noted in all rat tissues examined. Comparison of the deduced protein sequence of AMPK63cat reveals highly conserved homologies in both the catalytic and non-catalytic domains to several members of the SNF1 kinase family, including kinases from Arabidopsis, barley, rye, and S. cerevesiae, as well as to other mammalian kinases and to a C. elegans kinase. The high evolutionary conservation of both kinase structure and function (metabolite sensing) coupled with their pattern of tissue/organism expression suggest that the mammalian members of this kinase family likely play wider roles than the regulation of cellular lipid metabolism.
Collapse
Affiliation(s)
- G Gao
- Endocrine-Metabolism Division, Dartmouth Medical School, Hanover, New Hampshire 03755-3833, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhao Y, Feng XH, Watson JC, Bottino PJ, Kung SD. Molecular cloning and biochemical characterization of a receptor-like serine/threonine kinase from rice. PLANT MOLECULAR BIOLOGY 1994; 26:791-803. [PMID: 7999995 DOI: 10.1007/bf00028849] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A receptor-like protein kinase, OsPK10, has been cloned from rice (Oryza sativa). The 2.8 kb cDNA contains an open reading frame capable of encoding a peptide sequence of 824 amino acids. The topological features of the predicted OsPK10 protein include an N-terminal signal peptide, a cysteine-rich extracellular ligand-binding domain, a membrane-spanning segment, and a cytoplasmic domain possessing all the hallmarks of catalytic domains of eukaryotic protein kinases. The cytoplasmic domain was selectively expressed in Escherichia coli and assayed for kinase activity. The results show the protein is capable of autophosphorylation using either ATP or GTP as the phosphate donor. Phosphoamino acid analysis reveals phosphorylation of threonines, consistent with the substrate specificity indicated by sequence motifs in the catalytic core. A single amino acid substitution of Glu for Lys-528 completely abolishes autophosphorylation activity. DNA gel blot analyses suggest that the haploid rice genome contains a single copy of the OsPK10 gene. OsPK10 transcripts appear to be more abundant in shoots than in roots of rice seedlings.
Collapse
Affiliation(s)
- Y Zhao
- Department of Botany, University of Maryland, College Park 20742-5815
| | | | | | | | | |
Collapse
|
29
|
Poch O, Schwob E, de Fraipont F, Camasses A, Bordonné R, Martin RP. RPK1, an essential yeast protein kinase involved in the regulation of the onset of mitosis, shows homology to mammalian dual-specificity kinases. MOLECULAR & GENERAL GENETICS : MGG 1994; 243:641-53. [PMID: 8028580 DOI: 10.1007/bf00279573] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We report here the sequence of RPK1 (for Regulatory cell Proliferation Kinase), a new Saccharomyces cerevisiae gene coding for a protein with sequence similarities to serine/threonine protein kinases. The protein sequence of 764 amino acids includes an amino-terminal domain (residues 1-410), which may be involved in regulation of the kinase domain (residues 411-764). The catalytic domain of Rpk1 is not closely related to other known yeast protein kinases but exhibits strong homology to a newly discovered group of mammalian kinases (PYT, TTK, esk) with serine/threonine/tyrosine kinase activity. Null alleles of RPK1 are lethal and thus this gene belongs to the small group of yeast protein kinase genes that are essential for cell growth. In addition, eliminating the expression of RPK1 gives rise to the accumulation of non-viable cells with less than a 1 N DNA content suggesting that cells proceed into mitosis without completion of DNA synthesis. Therefore, the Rpk1 kinase may function in a checkpoint control which couples DNA replication to mitosis. The level of the RPK1 transcript is extremely low and constant throughout the mitotic cycle. However it is regulated during cellular differentiation, being decreased in alpha-factor-treated a cells and increased late in meiosis in a/alpha diploids. Taken together, our results suggest that Rpk1 is involved in a pathway that coordinates cell proliferation and differentiation.
Collapse
Affiliation(s)
- O Poch
- Institut de Biologie Moléculaire et Cellulaire du C.N.R.S., Strasbourg, France
| | | | | | | | | | | |
Collapse
|
30
|
Mu JH, Lee HS, Kao TH. Characterization of a pollen-expressed receptor-like kinase gene of Petunia inflata and the activity of its encoded kinase. THE PLANT CELL 1994; 6:709-21. [PMID: 8038606 PMCID: PMC160470 DOI: 10.1105/tpc.6.5.709] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
From a pollen tube cDNA library of Petunia inflata, we isolated clones encoding a protein with structural features and biochemical properties characteristic of receptor-like kinases. It was designated PRK1 for pollen receptor-like kinase 1. The cytoplasmic domain of PRK1 is highly similar to the kinase domains of other plant receptor-like kinases and contains nearly all of the conserved amino acids for serine/threonine kinases. The extracellular domain of PRK1 contains leucine-rich repeats as found in some other plant receptor-like kinases, but overall its sequence in this region does not share significant similarity. Characterization of a gene encoding PRK1 revealed the presence of two introns. During pollen development, PRK1 mRNA was first detected in anthers containing mostly binucleate microspores; it reached the highest level of mature pollen and remained at a high level in in vitro-germinated pollen tubes. The recombinant cytoplasmic domain of PRK1 autophosphorylated on serine and tyrosine, suggesting that PRK1 may be a dual-specificity kinase. Monospecific immune serum to the recombinant extracellular domain of PRK1 detected a 69-kD protein in microsomal membranes of pollen and pollen tubes. The characteristics of PRK1 suggest that it may play a role in signal transduction events during pollen development and/or pollination.
Collapse
Affiliation(s)
- J H Mu
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park 16802
| | | | | |
Collapse
|
31
|
Douville E, Duncan P, Abraham N, Bell JC. Dual specificity kinases--a new family of signal transducers. Cancer Metastasis Rev 1994; 13:1-7. [PMID: 8143341 DOI: 10.1007/bf00690414] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Phosphorylation/dephosphorylation reactions are one of the dynamic mechanisms through which cells modulate protein activity in response to environmental stimuli. The eukaryotic molecules which are responsible for the phosphorylation of serine, threonine and tyrosine residues appear to have co-ordinately evolved from simple prokaryotic enzymes which primarily respond to nutritional cues. In multicellular eukaryotes the complexity of data transfer greatly exceeds that of simple bacteria. The eukaryotic cell needs to exchange information with neighbouring and distant sister cells. Positional, nutritional and hormonal data are transmitted from the extracellular milieu across the plasma membrane and into the cytoplasm. In certain cases the signal must pass into the nucleus or other subcellular organelles where it is decoded and the proper cellular response initiated. All of these events have been shown to have a protein kinase component and it seems likely that in mammalian cells over 1,000 different kinase molecules have evolved to form the requisite signal transducing networks. In this review we describe a previously unappreciated family of protein kinases, the dual specificity or DSK kinases, which play important roles in the regulation of normal cellular growth and differentiation.
Collapse
Affiliation(s)
- E Douville
- Department of Medicine, University of Ottawa, Ontario, Canada
| | | | | | | |
Collapse
|
32
|
Robinson A. Molecules, cancer and sticking together. CMAJ 1993; 148:167-70. [PMID: 8380551 PMCID: PMC1490385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
33
|
Goring DR, Rothstein SJ. The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase. THE PLANT CELL 1992; 4:1273-1281. [PMID: 1332796 PMCID: PMC160214 DOI: 10.1105/tpc.4.10.1273] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
An S-receptor kinase (SRK) cDNA, SRK-910, from the active S-locus in a self-incompatible Brassica napus W1 line has been isolated and characterized. The SRK-910 gene is predominantly expressed in pistils and segregates with the W1 self-incompatibility phenotype in an F2 population derived from a cross between the self-incompatible W1 line and a self-compatible Westar line. Analysis of the predicted amino acid sequence demonstrated that the extracellular receptor domain is highly homologous to S-locus glycoproteins, whereas the cytoplasmic kinase domain contains conserved amino acids present in serine/threonine kinases. An SRK-910 kinase protein fusion was produced in Escherichia coli and found to contain kinase activity. Phosphoamino acid analysis confirmed that only serine and threonine residues were phosphorylated. Thus, the SRK-910 gene encodes a functional serine/threonine receptor kinase.
Collapse
Affiliation(s)
- D R Goring
- Department of Molecular Biology and Genetics, University of Guelph, Ontario, Canada
| | | |
Collapse
|