1
|
Wang E, Tu W, Do DC, Xiao X, Bhatti SB, Yang L, Sun X, Xu D, Yang P, Huang SK, Gao P, Liu Z. Benzo(a)pyrene Enhanced Dermatophagoides Group 1 (Der f 1)-Induced TGFβ1 Signaling Activation Through the Aryl Hydrocarbon Receptor-RhoA Axis in Asthma. Front Immunol 2021; 12:643260. [PMID: 33936062 PMCID: PMC8081905 DOI: 10.3389/fimmu.2021.643260] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/24/2021] [Indexed: 12/18/2022] Open
Abstract
We have previously demonstrated that benzo(a)pyrene (BaP) co-exposure with dermatophagoides group 1 allergen (Der f 1) can potentiate Der f 1-induced airway inflammation. The underlying mechanism, however, remains undetermined. Here we investigated the molecular mechanisms underlying the potentiation of BaP exposure on Der f 1-induced airway inflammation in asthma. We found that BaP co-exposure potentiated Der f 1-induced TGFβ1 secretion and signaling activation in human bronchial epithelial cells (HBECs) and the airways of asthma mouse model. Moreover, BaP exposure alone or co-exposure with Der f 1-induced aryl hydrocarbon receptor (AhR) activity was determined by using an AhR-dioxin-responsive element reporter plasmid. The BaP and Der f 1 co-exposure-induced TGFβ1 expression and signaling activation were attenuated by either AhR antagonist CH223191 or AhR knockdown in HBECs. Furthermore, AhR knockdown led to the reduction of BaP and Der f 1 co-exposure-induced active RhoA. Inhibition of RhoA signaling with fasudil, a RhoA/ROCK inhibitor, suppressed BaP and Der f 1 co-exposure-induced TGFβ1 expression and signaling activation. This was further confirmed in HBECs expressing constitutively active RhoA (RhoA-L63) or dominant-negative RhoA (RhoA-N19). Luciferase reporter assays showed prominently increased promoter activities for the AhR binding sites in the promoter region of RhoA. Inhibition of RhoA suppressed BaP and Der f 1 co-exposure-induced airway hyper-responsiveness, Th2-associated airway inflammation, and TGFβ1 signaling activation in asthma. Our studies reveal a previously unidentified functional axis of AhR-RhoA in regulating TGFβ1 expression and signaling activation, representing a potential therapeutic target for allergic asthma.
Collapse
Affiliation(s)
- Eryi Wang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Wei Tu
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Danh C. Do
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xiaojun Xiao
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Shehar B. Bhatti
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Liteng Yang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xizhuo Sun
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Damo Xu
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Pingchang Yang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| | - Shau-Ku Huang
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli, Taiwan
| | - Peisong Gao
- Johns Hopkins Asthma and Allergy Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Zhigang Liu
- Department of Respiratory and Allergy, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
- The State Key Laboratory of Respiratory Disease for Allergy, Shenzhen Key Laboratory of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
2
|
Yuan W, Fulgar CC, Sun X, Vogel CFA, Wu CW, Zhang Q, Bein KJ, Young DE, Li W, Wei H, Pinkerton KE. In vivo and in vitro inflammatory responses to fine particulate matter (PM 2.5) from China and California. Toxicol Lett 2020; 328:52-60. [PMID: 32320776 PMCID: PMC7641014 DOI: 10.1016/j.toxlet.2020.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/13/2020] [Accepted: 04/10/2020] [Indexed: 12/28/2022]
Abstract
Ambient PM2.5 was collected during the winter season from Taiyuan, Shanxi, China; Jinan, Shandong, China; and Sacramento, California, USA, and used to create PMSX, PMSD, and PMCA extracts, respectively. Time-lag experiments were performed to explore the in vivo and in vitro toxicity of the PM extracts. In vivo inflammatory lung responses were assessed in BALB/c mice using a single oropharyngeal aspiration (OPA) of PM extract or vehicle (CTRL) on Day 0. Necropsies were performed on Days 1, 2, and 4 post-OPA, and pulmonary effects were determined using bronchoalveolar lavage (BAL) and histopathology. On Day 1, BAL neutrophils were significantly elevated in all PM- versus CTRL-exposed mice, with PMCA producing the strongest response. However, histopathological scoring showed greater alveolar and perivascular effects in PMSX-exposed mice compared to all three other groups. By Day 4, BAL neutrophilia and tissue inflammation were resolved, similar across all groups. In vitro effects were examined in human HepG2 hepatocytes, and U937 cells following 6, 24, or 48 h of exposure to PM extract or DMSO (control). Luciferase reporter and quantitative polymerase chain reaction assays were used to determine in vitro effects on aryl hydrocarbon receptor (AhR) activation and gene transcription, respectively. Though all three PM extracts activated AhR, PMSX produced the greatest increases in AhR activation, and mRNA levels of cyclooxygenase-2, cytochrome P450, interleukin (IL)-8, and interleukin (IL)-1β. These effects were assumed to result from a greater abundance of polycyclic aromatic hydrocarbons (PAHs) in PMSX compared to PMSD and PMCA.
Collapse
Affiliation(s)
- Wanjun Yuan
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, China; Center for Health and the Environment, University of California, Davis, USA
| | - Ciara C Fulgar
- Center for Health and the Environment, University of California, Davis, USA
| | - Xiaolin Sun
- Center for Health and the Environment, University of California, Davis, USA; Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Christoph F A Vogel
- Center for Health and the Environment, University of California, Davis, USA; Department of Environmental Toxicology, University of California, Davis, USA
| | - Ching-Wen Wu
- Center for Health and the Environment, University of California, Davis, USA
| | - Qi Zhang
- Department of Environmental Toxicology, University of California, Davis, USA
| | - Keith J Bein
- Center for Health and the Environment, University of California, Davis, USA
| | - Dominique E Young
- Department of Environmental Toxicology, University of California, Davis, USA
| | - Wei Li
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China.
| | - Haiying Wei
- College of Environmental and Resource Sciences, Shanxi University, Taiyuan, China.
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California, Davis, USA.
| |
Collapse
|
3
|
McBerry C, Gonzalez RMS, Shryock N, Dias A, Aliberti J. SOCS2-induced proteasome-dependent TRAF6 degradation: a common anti-inflammatory pathway for control of innate immune responses. PLoS One 2012; 7:e38384. [PMID: 22693634 PMCID: PMC3367914 DOI: 10.1371/journal.pone.0038384] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 05/04/2012] [Indexed: 12/14/2022] Open
Abstract
Pattern recognition receptors and receptors for pro-inflammatory cytokines provide critical signals to drive the development of protective immunity to infection. Therefore, counter-regulatory pathways are required to ensure that overwhelming inflammation harm host tissues. Previously, we showed that lipoxins modulate immune response during infection, restraining inflammation during infectious diseases in an Aryl hydrocarbon receptor (AhR)/suppressors of cytokine signaling (SOCS)2-dependent-manner. Recently, Indoleamine-pyrrole 2,3- dioxygenase (IDO)-derived tryptophan metabolites, including L-kynurenine, were also shown to be involved in several counter-regulatory mechanisms. Herein, we addressed whether the intracellular molecular events induced by lipoxins mediating control of innate immune signaling are part of a common regulatory pathway also shared by L-kynurenine exposure. We demonstrate that Tumor necrosis factor receptor-associated factor (TRAF)6 – member of a family of adapter molecules that couple the TNF receptor and interleukin-1 receptor/Toll-like receptor families to intracellular signaling events essential for the development of immune responses – is targeted by both lipoxins and L-kynurenine via an AhR/SOCS2-dependent pathway. Furthermore, we show that LXA4- and L-kynurenine-induced AhR activation, its subsequent nuclear translocation, leading SOCS2 expression and TRAF6 Lys47-linked poly-ubiquitination and proteosome-mediated degradation of the adapter proteins. The in vitro consequences of such molecular interactions included inhibition of TLR- and cytokine receptor-driven signal transduction and cytokine production. Subsequently, in vivo proteosome inhibition led to unresponsiveness to lipoxins, as well as to uncontrolled pro-inflammatory reactions and elevated mortality during toxoplasmosis. In summary, our results establish proteasome degradation of TRAF6 as a key molecular target for the anti-inflammatory pathway triggered by lipoxins and L-kynurenine, critical counter-regulatory mediators in the innate and adaptive immune systems.
Collapse
Affiliation(s)
- Cortez McBerry
- Divisions of Molecular Immunology and Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Rosa Maria Salazar Gonzalez
- Divisions of Molecular Immunology and Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Nathaniel Shryock
- Divisions of Molecular Immunology and Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Alexandra Dias
- Divisions of Molecular Immunology and Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Julio Aliberti
- Divisions of Molecular Immunology and Pulmonary Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
4
|
Bunger MK, Glover E, Moran SM, Walisser JA, Lahvis GP, Hsu EL, Bradfield CA. Abnormal liver development and resistance to 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity in mice carrying a mutation in the DNA-binding domain of the aryl hydrocarbon receptor. Toxicol Sci 2008; 106:83-92. [PMID: 18660548 PMCID: PMC2563146 DOI: 10.1093/toxsci/kfn149] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) is known for its role in the adaptive and toxic responses to a large number of environmental contaminants, as well as its role in hepatovascular development. The classical AHR pathway involves ligand binding, nuclear translocation, heterodimerization with the AHR nuclear translocator (ARNT), and binding of the heterodimer to dioxin response elements (DREs), thereby modulating the transcription of an array of genes. The AHR has also been implicated in signaling events independent of nuclear localization and DNA binding, and it has been suggested that such pathways may play important roles in the toxicity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Here, we report the generation of a mouse model that expresses an AHR protein capable of ligand binding, interactions with chaperone proteins, functional heterodimerization with ARNT, and nuclear translocation, but is unable to bind DREs. Using this model, we provide evidence that DNA binding is required AHR-mediated liver development, as Ahrdbd/dbd mice exhibit a patent ductus venosus, similar to what is seen in Ahr−/− mice. Furthermore, Ahrdbd/dbd mice are resistant to TCDD-induced toxicity for all endpoints tested. These data suggest that DNA binding is necessary for AHR-mediated developmental and toxic signaling.
Collapse
Affiliation(s)
- Maureen K Bunger
- McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Wisconsin 53706, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Loaiza-Pérez AI, Kenney S, Boswell J, Hollingshead M, Alley MC, Hose C, Ciolino HP, Yeh GC, Trepel JB, Vistica DT, Sausville EA. Aryl hydrocarbon receptor activation of an antitumor aminoflavone: Basis of selective toxicity for MCF-7 breast tumor cells. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.715.3.6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Aminoflavone (4H-1-benzopyran-4-one, 5-amino-2-(4-amino-3-fluorophenyl)-6,8-difluoro-7-methyl; NSC 686288) demonstrates differential antiproliferative activity in the National Cancer Institute's anticancer drug screen. We demonstrate here that MCF-7 human breast cancer cells are sensitive to aminoflavone both in vitro and when grown in vivo as xenografts in athymic mice. As previous work has indicated that aminoflavone requires metabolic activation by cytochrome P450 1A1 (CYP1A1), we investigated the effect of aminoflavone on CYP1A1 expression and on the aryl hydrocarbon receptor (AhR), a transcriptional regulator of CYP1A1. In aminoflavone-sensitive but not aminoflavone-resistant cells, the drug caused a 100-fold induction of CYP1A1 mRNA and a corresponding increase in ethoxyresorufin-O-deethylase activity. An AhR-deficient variant of the MCF-7 breast carcinoma, AHR100, with diminished CYP1A1 inducibility, exhibits cellular resistance to aminoflavone and is refractory to CYP1A1 mRNA induction by the drug. The increase in CYP1A1 mRNA in the aminoflavone-sensitive MCF-7 breast tumor cell results from transcriptional activation of xenobiotic-responsive element (XRE)–controlled transcription. Aminoflavone treatment causes a translocation of the AhR from the cytoplasm to the nucleus with subsequent formation of AhR-XRE protein DNA complexes. In contrast to the aminoflavone-sensitive MCF-7 cells, the resistant cell lines (MDA-MB-435, PC-3, and AHR100) demonstrated constitutive nuclear localization of AhR. Additionally, aminoflavone failed to induce ethoxyresorufin-O-deethylase activity, CYP1A1 transcription, AhR-XRE complex formation, and apoptosis in aminoflavone-resistant cells. These results suggest that the cytotoxicity of aminoflavone in a sensitive breast tumor cell line is the result of the engagement of AhR-mediated signal transduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Henry P. Ciolino
- 5Cellular Defense and Carcinogenesis Section, Basic Research Laboratory, Division of Basic Science, National Cancer Institute, Frederick, Maryland
| | - Grace C. Yeh
- 5Cellular Defense and Carcinogenesis Section, Basic Research Laboratory, Division of Basic Science, National Cancer Institute, Frederick, Maryland
| | - Jane B. Trepel
- 2Medicine Branch, National Cancer Institute, NIH, Bethesda, Maryland, and
| | | | - Edward A. Sausville
- 1Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and
| |
Collapse
|
6
|
Kazlauskas A, Sundström S, Poellinger L, Pongratz I. The hsp90 chaperone complex regulates intracellular localization of the dioxin receptor. Mol Cell Biol 2001; 21:2594-607. [PMID: 11259606 PMCID: PMC86890 DOI: 10.1128/mcb.21.7.2594-2607.2001] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The molecular chaperone complex hsp90-p23 interacts with the dioxin receptor, a ligand-dependent basic helix-loop-helix (bHLH)/Per-Arnt-Sim domain transcription factor. Whereas biochemical and genetic evidence indicates that hsp90 is important for maintenance of a high-affinity ligand binding conformation of the dioxin receptor, the role of hsp90-associated proteins in regulation of the dioxin receptor function remains unclear. Here we demonstrate that the integrity of the hsp90 complex characterized by the presence of the hsp90-associated cochaperone p23 and additional cochaperone proteins is important for regulation of the intracellular localization of the dioxin receptor by two mechanisms. First, in the absence of ligand, the dioxin receptor-hsp90 complex was associated with the immunophilin-like protein XAP2 to mediate cytoplasmic retention of the dioxin receptor. Second, upon exposure to ligand, the p23-associated hsp90 complex mediated interaction of the dioxin receptor with the nuclear import receptor protein pendulin and subsequent nuclear translocation of the receptor. Interestingly, these two modes of regulation target two distinct functional domains of the dioxin receptor. Whereas the nuclear localization signal-containing and hsp90-interacting bHLH domain of the receptor regulates ligand-dependent nuclear import, the interaction of the p23-hsp90-XAP2 complex with the ligand binding domain of the dioxin receptor was essential to mediate cytoplasmic retention of the ligand-free receptor form. In conclusion, these data suggest a novel role of the hsp90 molecular chaperone complex in regulation of the intracellular localization of the dioxin receptor.
Collapse
Affiliation(s)
- A Kazlauskas
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
7
|
Lees MJ, Whitelaw ML. Multiple roles of ligand in transforming the dioxin receptor to an active basic helix-loop-helix/PAS transcription factor complex with the nuclear protein Arnt. Mol Cell Biol 1999; 19:5811-22. [PMID: 10409767 PMCID: PMC84430 DOI: 10.1128/mcb.19.8.5811] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dioxin receptor is a ligand-activated transcription factor belonging to an emerging class of basic helix-loop-helix/PAS proteins which show interaction with the molecular chaperone hsp90 in their latent states and require heterodimerization with a general cofactor, Arnt, to form active DNA binding complexes. Upon binding of polycyclic aromatic hydrocarbons typified by dioxin, the dioxin receptor translocates from the cytoplasm to the nucleus to allow interaction with Arnt. Here we have bypassed the nuclear translocation step by creating a cell line which expresses a constitutively nuclear dioxin receptor, which we find remains in a latent form, demonstrating that ligand has functional roles beyond initiating nuclear import of the receptor. Treatment of the nuclear receptor with dioxin induces dimerization with Arnt to form an active transcription factor complex, while in stark contrast, treatment with the hsp90 ligand geldanamycin results in rapid degradation of the receptor. Inhibition of degradation by a proteasome inhibitor allowed geldanamycin to transform the nuclear dioxin receptor to a heterodimer with Arnt (DR-Arnt). Our results indicate that unchaperoned dioxin receptor is extremely labile and is consistent with a concerted nuclear mechanism for receptor activation whereby hsp90 is released from the ligand-bound dioxin receptor concomitant with Arnt dimerization. Strikingly, artificial transformation of the receptor by geldanamycin provided a DR-Arnt complex capable of binding DNA but incapable of stimulating transcription. Limited proteolysis of DR-Arnt heterodimers indicated different conformations for dioxin versus geldanamycin-transformed receptors. Our studies of intracellular dioxin receptor transformation indicate that ligand plays multiple mechanistic roles during receptor activation, being important for nuclear translocation, transformation to an Arnt heterodimer, and maintenance of a structural integrity key for transcriptional activation.
Collapse
Affiliation(s)
- M J Lees
- Department of Biochemistry, University of Adelaide, Adelaide 5005, South Australia, Australia
| | | |
Collapse
|
8
|
Abstract
PAS domains are newly recognized signaling domains that are widely distributed in proteins from members of the Archaea and Bacteria and from fungi, plants, insects, and vertebrates. They function as input modules in proteins that sense oxygen, redox potential, light, and some other stimuli. Specificity in sensing arises, in part, from different cofactors that may be associated with the PAS fold. Transduction of redox signals may be a common mechanistic theme in many different PAS domains. PAS proteins are always located intracellularly but may monitor the external as well as the internal environment. One way in which prokaryotic PAS proteins sense the environment is by detecting changes in the electron transport system. This serves as an early warning system for any reduction in cellular energy levels. Human PAS proteins include hypoxia-inducible factors and voltage-sensitive ion channels; other PAS proteins are integral components of circadian clocks. Although PAS domains were only recently identified, the signaling functions with which they are associated have long been recognized as fundamental properties of living cells.
Collapse
Affiliation(s)
- B L Taylor
- Department of Microbiology and Molecular Genetics, School of Medicine, Loma Linda University, Loma Linda, California 92350, USA.
| | | |
Collapse
|
9
|
Powell-Coffman JA, Bradfield CA, Wood WB. Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner the aryl hydrocarbon receptor nuclear translocator. Proc Natl Acad Sci U S A 1998; 95:2844-9. [PMID: 9501178 PMCID: PMC19657 DOI: 10.1073/pnas.95.6.2844] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/1997] [Indexed: 02/06/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor, until now described only in vertebrates, that mediates many of the carcinogenic and teratogenic effects of certain environmental pollutants. Here, we describe orthologs of AHR and its dimerization partner AHR nuclear translocator (ARNT) in the nematode Caenorhabditis elegans, encoded by the genes ahr-1 and aha-1, respectively. The corresponding proteins, AHR-1 and AHA-1, share biochemical properties with their mammalian cognates. Specifically, AHR-1 forms a tight association with HSP90, and AHR-1 and AHA-1 interact to bind DNA fragments containing the mammalian xenobiotic response element with sequence specificity. Yeast expression studies indicate that C. elegans AHR-1, like vertebrate AHR, requires some form of post-translational activation. Moreover, this requirement depends on the presence of the domains predicted to mediate binding of HSP90 and ligand. Preliminary experiments suggest that if AHR-1 is ligand-activated, its spectrum of ligands is different from that of the mammalian receptor: C. elegans AHR-1 is not photoaffinity labeled by a dioxin analog, and it is not activated by beta-naphthoflavone in the yeast system. The discovery of these genes in a simple, genetically tractable invertebrate should allow elucidation of AHR-1 function and identification of its endogenous regulators.
Collapse
Affiliation(s)
- J A Powell-Coffman
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| | | | | |
Collapse
|
10
|
Kallio PJ, Pongratz I, Gradin K, McGuire J, Poellinger L. Activation of hypoxia-inducible factor 1alpha: posttranscriptional regulation and conformational change by recruitment of the Arnt transcription factor. Proc Natl Acad Sci U S A 1997; 94:5667-72. [PMID: 9159130 PMCID: PMC20836 DOI: 10.1073/pnas.94.11.5667] [Citation(s) in RCA: 303] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In response to hypoxia the hypoxia-inducible factor-1 (HIF-1) mediates transcriptional activation of a network of genes encoding erythropoietin, vascular endothelial growth factor, and several glycolytic enzymes. HIF-1 consists of a heterodimer of two basic helix-loop-helix PAS (Per/Arnt/Sim) proteins, HIF-1alpha and Arnt. HIF-1alpha and Arnt mRNAs are constitutively expressed and were not altered upon exposure of HeLa or HepG2 cells to hypoxia, suggesting that the activity of the HIF-1alpha-Arnt complex may be regulated by some as yet unknown posttranscriptional mechanism. In support of this model, we demonstrate here that Arnt protein levels were not increased under conditions that induce an hypoxic response in HeLa and HepG2 cells. However, under identical conditions, HIF-1alpha protein levels were rapidly and dramatically up-regulated, as assessed by immunoblot analysis. In addition, HIF-1alpha acquired a new conformational state upon dimerization with Arnt, rendering HIF-1alpha more resistant to proteolytic digestion in vitro. Dimerization as such was not sufficient to elicit the conformational change in HIF-1alpha, since truncated forms of Arnt that are capable of dimerizing with HIF-1alpha did not induce this effect. Moreover, the high affinity DNA binding form of the HIF-1alpha-Arnt complex was only generated by forms of Arnt capable of eliciting the allosteric change in conformation. In conclusion, the combination of enhanced protein levels and allosteric change by dimerization defines a novel mechanism for modulation of transcription factor activity.
Collapse
Affiliation(s)
- P J Kallio
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
11
|
Gradin K, McGuire J, Wenger RH, Kvietikova I, fhitelaw ML, Toftgård R, Tora L, Gassmann M, Poellinger L. Functional interference between hypoxia and dioxin signal transduction pathways: competition for recruitment of the Arnt transcription factor. Mol Cell Biol 1996; 16:5221-31. [PMID: 8816435 PMCID: PMC231522 DOI: 10.1128/mcb.16.10.5221] [Citation(s) in RCA: 343] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Hypoxia-inducible factor 1 alpha (HIF-1 alpha) and the intracellular dioxin receptor mediate hypoxia and dioxin signalling, respectively. Both proteins are conditionally regulated basic helix-loop-helix (bHLH) transcription factors that, in addition to the bHLH motif, share a Per-Arnt-Sim (PAS) region of homology and form heterodimeric complexes with the common bHLH/PAS partner factor Arnt. Here we demonstrate that HIF-1 alpha required Arnt for DNA binding in vitro and functional activity in vivo. Both the bHLH and PAS motifs of Arnt were critical for dimerization with HIF-1 alpha. Strikingly, HIF-1 alpha exhibited very high affinity for Arnt in coimmunoprecipitation assays in vitro, resulting in competition with the ligand-activated dioxin receptor for recruitment of Arnt. Consistent with these observations, activation of HIF-1 alpha function in vivo or overexpression of HIF-1 alpha inhibited ligand-dependent induction of DNA binding activity by the dioxin receptor and dioxin receptor function on minimal reporter gene constructs. However, HIF-1 alpha- and dioxin receptor-mediated signalling pathways were not mutually exclusive, since activation of dioxin receptor function did not impair HIF-1 alpha-dependent induction of target gene expression. Both HIF-1 alpha and Arnt mRNAs were expressed constitutively in a large number of human tissues and cell lines, and these steady-state expression levels were not affected by exposure to hypoxia. Thus, HIF-1 alpha may be conditionally regulated by a mechanism that is distinct from induced expression levels, the prevalent model of activation of HIF-1 alpha function. Interestingly, we observed that HIF-1 alpha was associated with the molecular chaperone hsp90. Given the critical role of hsp90 for ligand binding activity and activation of the dioxin receptor, it is therefore possible that HIF-1 alpha is regulated by a similar mechanism, possibly by binding an as yet unknown class of ligands.
Collapse
Affiliation(s)
- K Gradin
- Department of Medical Nutrition, Karolinksa Institute, Huddinge, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Antonsson C, Whitelaw ML, McGuire J, Gustafsson JA, Poellinger L. Distinct roles of the molecular chaperone hsp90 in modulating dioxin receptor function via the basic helix-loop-helix and PAS domains. Mol Cell Biol 1995; 15:756-65. [PMID: 7823943 PMCID: PMC231944 DOI: 10.1128/mcb.15.2.756] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The intracellular dioxin receptor mediates signal transduction by dioxin and functions as a ligand-activated transcription factor. It contains a basic helix-loop-helix (bHLH) motif contiguous with a Per-Arnt-Sim (PAS) homology region. In extracts from nonstimulated cells the receptor is recovered in an inducible cytoplasmic form associated with the 90-kDa heat shock protein (hsp90), a molecular chaperone. We have reconstituted ligand-dependent activation of the receptor to a DNA-binding form by using the dioxin receptor and its bHLH-PAS partner factor Arnt expressed by in vitro translation in reticulocyte lysate. Deletion of the PAS domain of the receptor resulted in constitutive dimerization with Arnt. In contrast, this receptor mutant showed low levels of xenobiotic response element-binding activity, indicating that the PAS domain may be important for DNA-binding affinity and/or specificity of the receptor. It was not possible to reconstitute dioxin receptor function with proteins expressed in wheat germ lysate. In line with these observations, reticulocyte lysate but not wheat germ lysate promoted the association of de novo synthesized dioxin receptor with hsp90. At least two distinct domains of the receptor mediated interaction with hsp90: the ligand-binding domain located within the PAS region and, surprisingly, the bHLH domain. Whereas ligand-binding activity correlated with association with hsp90, bHLH-hsp90 interaction appeared to be important for DNA-binding activity but not for dimerization of the receptor. Several distinct roles for hsp90 in modulating dioxin receptor function are therefore likely: correct folding of the ligand-binding domain, interference with Arnt heterodimerization, and folding of a DNA-binding conformation of the bHLH domain. Thus, the dioxin receptor system provides a complex and interesting model of the regulation of transcription factors by hsp90.
Collapse
Affiliation(s)
- C Antonsson
- Department of Medical Nutrition, Karolinska Institute, Huddinge University Hospital, Novum, Sweden
| | | | | | | | | |
Collapse
|
13
|
Identification of transactivation and repression functions of the dioxin receptor and its basic helix-loop-helix/PAS partner factor Arnt: inducible versus constitutive modes of regulation. Mol Cell Biol 1994. [PMID: 7969169 DOI: 10.1128/mcb.14.12.8343] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene regulation by dioxins is mediated via the dioxin receptor, a ligand-dependent basic helix-loop-helix (bHLH)/PAS transcription factor. The latent dioxin receptor responds to dioxin signalling by forming an activated heterodimeric complex with a specific bHLH partner, Arnt, an essential process for target DNA recognition. We have analyzed the transactivating potential within this heterodimeric complex by dissecting it into individual subunits, replacing the dimerization and DNA-binding bHLH motifs with heterologous zinc finger DNA-binding domains. The uncoupled Arnt chimera, maintaining 84% of Arnt residues, forms a potent and constitutive transcription factor. Chimeric proteins show that the dioxin receptor also harbors a strong transactivation domain in the C terminus, although this activity was silenced by inclusion of 82 amino acids from the central ligand-binding portion of the dioxin receptor. This central repression region conferred binding of the molecular chaperone hsp90 upon otherwise constitutive chimeras in vitro, indicating that hsp90 has the ability to mediate a cis-repressive function on distant transactivation domains. Importantly, when the ligand-binding domain of the dioxin receptor remained intact, the ability of this hsp90-binding activity to confer repression became conditional rather than irreversible. Our data are consistent with a model in which crucial activities of the dioxin receptor, such as dimerization with Arnt and transactivation, are conditionally repressed by the central ligand- and-hsp90-binding region of the receptor. In contrast, the Arnt protein appears to be free from any repressive activity. Moreover, within the context of the dioxin response element (xenobiotic response element), the C terminus of Arnt conferred a potent, dominating transactivation function onto the native bHLH heterodimeric complex. Finally, the relative transactivation potencies of the individual dioxin receptor and Arnt chimeras varied with cell type and promoter architecture, indicating that the mechanisms for transcriptional activation may differ between these two subunits and that in the native complex the transactivation pathway may be dependent upon cell-specific and promoter contexts.
Collapse
|
14
|
Whitelaw ML, Gustafsson JA, Poellinger L. Identification of transactivation and repression functions of the dioxin receptor and its basic helix-loop-helix/PAS partner factor Arnt: inducible versus constitutive modes of regulation. Mol Cell Biol 1994; 14:8343-55. [PMID: 7969169 PMCID: PMC359373 DOI: 10.1128/mcb.14.12.8343-8355.1994] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Gene regulation by dioxins is mediated via the dioxin receptor, a ligand-dependent basic helix-loop-helix (bHLH)/PAS transcription factor. The latent dioxin receptor responds to dioxin signalling by forming an activated heterodimeric complex with a specific bHLH partner, Arnt, an essential process for target DNA recognition. We have analyzed the transactivating potential within this heterodimeric complex by dissecting it into individual subunits, replacing the dimerization and DNA-binding bHLH motifs with heterologous zinc finger DNA-binding domains. The uncoupled Arnt chimera, maintaining 84% of Arnt residues, forms a potent and constitutive transcription factor. Chimeric proteins show that the dioxin receptor also harbors a strong transactivation domain in the C terminus, although this activity was silenced by inclusion of 82 amino acids from the central ligand-binding portion of the dioxin receptor. This central repression region conferred binding of the molecular chaperone hsp90 upon otherwise constitutive chimeras in vitro, indicating that hsp90 has the ability to mediate a cis-repressive function on distant transactivation domains. Importantly, when the ligand-binding domain of the dioxin receptor remained intact, the ability of this hsp90-binding activity to confer repression became conditional rather than irreversible. Our data are consistent with a model in which crucial activities of the dioxin receptor, such as dimerization with Arnt and transactivation, are conditionally repressed by the central ligand- and-hsp90-binding region of the receptor. In contrast, the Arnt protein appears to be free from any repressive activity. Moreover, within the context of the dioxin response element (xenobiotic response element), the C terminus of Arnt conferred a potent, dominating transactivation function onto the native bHLH heterodimeric complex. Finally, the relative transactivation potencies of the individual dioxin receptor and Arnt chimeras varied with cell type and promoter architecture, indicating that the mechanisms for transcriptional activation may differ between these two subunits and that in the native complex the transactivation pathway may be dependent upon cell-specific and promoter contexts.
Collapse
Affiliation(s)
- M L Whitelaw
- Center for Biotechnology, Karolinska Institutet, Huddinge University Hospital, Sweden
| | | | | |
Collapse
|
15
|
Down-regulation of nuclear aryl hydrocarbon receptor DNA-binding and transactivation functions: requirement for a labile or inducible factor. Mol Cell Biol 1994. [PMID: 8065302 DOI: 10.1128/mcb.14.9.5653] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aryl hydrocarbons (AHs) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo[a]pyrene activate the sequence-specific DNA-binding activity of the AH receptor. In the rat hepatocyte-derived cell line LCS7, DNA-binding activity peaked after 30 min and was then down-regulated, reaching negligible levels by 2 h. Down-regulation could be blocked, and DNA-binding activity maintained at maximum for many hours by inhibiting protein or RNA synthesis, implying that down-regulation is a mediated process requiring a labile or inducible protein. CYP1A1 transcription and in vivo DNA-protein interactions at xenobiotic response elements were down-regulated in parallel with DNA-binding activity in nuclear extracts, and these changes could also be blocked by inhibitors of protein synthesis. The correlation between AH receptor DNA-binding activity, intensity of in vivo footprints at xenobiotic response elements, and CYP1A1 transcription rate implies that down-regulation of AH receptor DNA-binding activity is important in regulating CYP1A1 transcription and that receptor is required continuously to maintain transcription. This correlation extends to the murine hepatoma cell line Hepa-1c1c7, in which slower kinetics of activation and down-regulation of CYP1A1 transcription paralleled slower activation and down-regulation of AH receptor DNA-binding activity. The difference in kinetics between cell lines also implies that AH receptor DNA-binding activity is modulated by a mechanism that may be influenced by cell-specific regulatory pathways. The above observations in conjunction with mixing experiments and comparisons of cytoplasmic and nuclear extracts indicate that down-regulation of AH receptor DNA-binding activity is probably due either to degradation or to conversion of the receptor to form that is inactive in both DNA binding and transactivation.
Collapse
|
16
|
Reick M, Robertson RW, Pasco DS, Fagan JB. Down-regulation of nuclear aryl hydrocarbon receptor DNA-binding and transactivation functions: requirement for a labile or inducible factor. Mol Cell Biol 1994; 14:5653-60. [PMID: 8065302 PMCID: PMC359090 DOI: 10.1128/mcb.14.9.5653-5660.1994] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aryl hydrocarbons (AHs) such as 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo[a]pyrene activate the sequence-specific DNA-binding activity of the AH receptor. In the rat hepatocyte-derived cell line LCS7, DNA-binding activity peaked after 30 min and was then down-regulated, reaching negligible levels by 2 h. Down-regulation could be blocked, and DNA-binding activity maintained at maximum for many hours by inhibiting protein or RNA synthesis, implying that down-regulation is a mediated process requiring a labile or inducible protein. CYP1A1 transcription and in vivo DNA-protein interactions at xenobiotic response elements were down-regulated in parallel with DNA-binding activity in nuclear extracts, and these changes could also be blocked by inhibitors of protein synthesis. The correlation between AH receptor DNA-binding activity, intensity of in vivo footprints at xenobiotic response elements, and CYP1A1 transcription rate implies that down-regulation of AH receptor DNA-binding activity is important in regulating CYP1A1 transcription and that receptor is required continuously to maintain transcription. This correlation extends to the murine hepatoma cell line Hepa-1c1c7, in which slower kinetics of activation and down-regulation of CYP1A1 transcription paralleled slower activation and down-regulation of AH receptor DNA-binding activity. The difference in kinetics between cell lines also implies that AH receptor DNA-binding activity is modulated by a mechanism that may be influenced by cell-specific regulatory pathways. The above observations in conjunction with mixing experiments and comparisons of cytoplasmic and nuclear extracts indicate that down-regulation of AH receptor DNA-binding activity is probably due either to degradation or to conversion of the receptor to form that is inactive in both DNA binding and transactivation.
Collapse
Affiliation(s)
- M Reick
- Molecular Biology Laboratory, Maharishi International University, Fairfield, Iowa 52557-1078, USA
| | | | | | | |
Collapse
|
17
|
Kikuchi H, Usuda M, Sagami I, Ikawa S, Watanabe M. Aberrant CYP1A1 induction: discrepancy of CYP1A1 mRNA and aryl hydrocarbon hydroxylase activity in mutant cells of mouse hepatoma line, Hepa-1. Jpn J Cancer Res 1994; 85:710-7. [PMID: 8071113 PMCID: PMC5919553 DOI: 10.1111/j.1349-7006.1994.tb02419.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have isolated new benzo[a]pyrene-resistant clones, cl-21 and cl-32, of the mouse hepatoma line, Hepa-1. CYP1A1-dependent aryl hydrocarbon hydroxylase activity is not inducible by 2,3,7,8-tetrachlorodibenzo-p-dioxin or 3-methylcholanthrene in these two cell lines. However, mRNA of CYP1A1 is inducible in cl-21 and cl-32 cells, as in the wild-type cells, in spite of an undetectable level of cytosolic Ah receptor. The cl-21 cDNA of Cyp1a-1 was found to have a single mutation leading to an amino acid substitution from Leu (118) to Arg (118). However, the CYP1A1 protein band was not detected on Western immunoblots. The cDNA of cl-32 was found to have a single mutation leading to an amino acid change from Arg (359) to Trp (359). The presence of the mature protein in cl-32 was confirmed by Western blot analysis. Somatic cell hybridization experiments demonstrated that the phenotype of cl-21 and cl-32 is recessive and that these clones belong to the same complementation group. These data suggest that there may be a non-Ah receptor-mediated mechanism of CYP1A1 induction.
Collapse
Affiliation(s)
- H Kikuchi
- Department of Molecular Genetics, Tohoku University, Sendai
| | | | | | | | | |
Collapse
|
18
|
A cellular factor stimulates ligand-dependent release of hsp90 from the basic helix-loop-helix dioxin receptor. Mol Cell Biol 1994. [PMID: 8139547 DOI: 10.1128/mcb.14.4.2438] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In response to dioxin, the nuclear basic helix-loop-helix (bHLH) dioxin receptor forms a complex with the bHLH partner factor Arnt that regulates target gene transcription by binding to dioxin-responsive sequence motifs. Previously, we have demonstrated that the latent form of dioxin receptor present in extracts from untreated cells is stably associated with molecular chaperone protein hsp90, and Arnt is not a component of this complex. Here, we used a coimmunoprecipitation assay to demonstrate that the in vitro-translated dioxin receptor, but not Arnt, is stably associated with hsp90. Although it showed ligand-binding activity, the in vitro-translated dioxin receptor failed to dissociate from hsp90 upon exposure to ligand. Addition of a specific fraction from wild-type hepatoma cells, however, to the in vitro-expressed receptor promoted dioxin-dependent release of hsp90. This stimulatory effect was mediated via the bHLH dimerization and DNA-binding motif of the receptor. Moreover, ligand-dependent release of hsp90 from the receptor was not promoted by fractionated cytosolic extracts from mutant hepatoma cells which are deficient in the function of bHLH dioxin receptor partner factor Arnt. Thus, our results provide a novel model for regulation of bHLH factor activity and suggest that derepression of the dioxin receptor by ligand-induced release of hsp90 may require bHLH-mediated concomitant recruitment of an additional cellular factor, possibly the structurally related bHLH dimerization partner factor Arnt. In support of this model, addition of in vitro-expressed wild-type Arnt, but not a mutated form of Arnt lacking the bHLH motif, promoted release of hsp90 from the dioxin receptor in the presence of dioxin.
Collapse
|
19
|
McGuire J, Whitelaw ML, Pongratz I, Gustafsson JA, Poellinger L. A cellular factor stimulates ligand-dependent release of hsp90 from the basic helix-loop-helix dioxin receptor. Mol Cell Biol 1994; 14:2438-46. [PMID: 8139547 PMCID: PMC358611 DOI: 10.1128/mcb.14.4.2438-2446.1994] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In response to dioxin, the nuclear basic helix-loop-helix (bHLH) dioxin receptor forms a complex with the bHLH partner factor Arnt that regulates target gene transcription by binding to dioxin-responsive sequence motifs. Previously, we have demonstrated that the latent form of dioxin receptor present in extracts from untreated cells is stably associated with molecular chaperone protein hsp90, and Arnt is not a component of this complex. Here, we used a coimmunoprecipitation assay to demonstrate that the in vitro-translated dioxin receptor, but not Arnt, is stably associated with hsp90. Although it showed ligand-binding activity, the in vitro-translated dioxin receptor failed to dissociate from hsp90 upon exposure to ligand. Addition of a specific fraction from wild-type hepatoma cells, however, to the in vitro-expressed receptor promoted dioxin-dependent release of hsp90. This stimulatory effect was mediated via the bHLH dimerization and DNA-binding motif of the receptor. Moreover, ligand-dependent release of hsp90 from the receptor was not promoted by fractionated cytosolic extracts from mutant hepatoma cells which are deficient in the function of bHLH dioxin receptor partner factor Arnt. Thus, our results provide a novel model for regulation of bHLH factor activity and suggest that derepression of the dioxin receptor by ligand-induced release of hsp90 may require bHLH-mediated concomitant recruitment of an additional cellular factor, possibly the structurally related bHLH dimerization partner factor Arnt. In support of this model, addition of in vitro-expressed wild-type Arnt, but not a mutated form of Arnt lacking the bHLH motif, promoted release of hsp90 from the dioxin receptor in the presence of dioxin.
Collapse
Affiliation(s)
- J McGuire
- Department of Medical Nutrition, Karolinska Institutet, Huddinge University Hospital, Novum, Sweden
| | | | | | | | | |
Collapse
|
20
|
Dioxin receptor and C/EBP regulate the function of the glutathione S-transferase Ya gene xenobiotic response element. Mol Cell Biol 1993. [PMID: 8391636 DOI: 10.1128/mcb.13.7.4365] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rat glutathione S-transferase Ya gene xenobiotic response element (XRE) has both constitutive and xenobiotic-inducible activity. We present evidence that the XRE is regulated by both the constitutive C/EBP transcription factor and the xenobiotic-activated dioxin receptor. A ligand-activated XRE-binding protein was shown to be dioxin receptor by specific antibody immunodepletion and binding of highly purified receptor. Identification of C/EBP alpha as the constitutive binding protein was demonstrated by competition with a C/EBP binding site, protein-DNA cross-linking to determine the molecular weight of the constitutive protein(s), specific antibody immunodepletion, and binding of purified bacterially expressed C/EBP alpha. Mutational analysis of the XRE revealed that the constitutive factor (C/EBP alpha) shares a nearly identical overlapping binding site with the dioxin receptor. In functional testing of the putative C/EBP-XRE interaction, cotransfected C/EBP alpha activated an XRE test promoter in the non-xenobiotic-responsive HeLa cell line. Unexpectedly, cotransfected C/EBP alpha had no effect on basal activity but significantly increased the xenobiotic response of the XRE test promoter in the xenobiotic-responsive, C/EBP-positive HepG2 cell line. Furthermore, inhibition of C/EBP-binding protein(s) in HepG2 cells by transfection of C/EBP oligonucleotides suppressed the xenobiotic response. These results suggest that C/EBP alpha and dioxin receptor recognize the same DNA sequence element and that transcriptional regulation can occur by cooperative interactions between these two transcription factors.
Collapse
|
21
|
Pimental RA, Liang B, Yee GK, Wilhelmsson A, Poellinger L, Paulson KE. Dioxin receptor and C/EBP regulate the function of the glutathione S-transferase Ya gene xenobiotic response element. Mol Cell Biol 1993; 13:4365-73. [PMID: 8391636 PMCID: PMC359997 DOI: 10.1128/mcb.13.7.4365-4373.1993] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The rat glutathione S-transferase Ya gene xenobiotic response element (XRE) has both constitutive and xenobiotic-inducible activity. We present evidence that the XRE is regulated by both the constitutive C/EBP transcription factor and the xenobiotic-activated dioxin receptor. A ligand-activated XRE-binding protein was shown to be dioxin receptor by specific antibody immunodepletion and binding of highly purified receptor. Identification of C/EBP alpha as the constitutive binding protein was demonstrated by competition with a C/EBP binding site, protein-DNA cross-linking to determine the molecular weight of the constitutive protein(s), specific antibody immunodepletion, and binding of purified bacterially expressed C/EBP alpha. Mutational analysis of the XRE revealed that the constitutive factor (C/EBP alpha) shares a nearly identical overlapping binding site with the dioxin receptor. In functional testing of the putative C/EBP-XRE interaction, cotransfected C/EBP alpha activated an XRE test promoter in the non-xenobiotic-responsive HeLa cell line. Unexpectedly, cotransfected C/EBP alpha had no effect on basal activity but significantly increased the xenobiotic response of the XRE test promoter in the xenobiotic-responsive, C/EBP-positive HepG2 cell line. Furthermore, inhibition of C/EBP-binding protein(s) in HepG2 cells by transfection of C/EBP oligonucleotides suppressed the xenobiotic response. These results suggest that C/EBP alpha and dioxin receptor recognize the same DNA sequence element and that transcriptional regulation can occur by cooperative interactions between these two transcription factors.
Collapse
Affiliation(s)
- R A Pimental
- USDA Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
22
|
Ligand-dependent recruitment of the Arnt coregulator determines DNA recognition by the dioxin receptor. Mol Cell Biol 1993. [PMID: 8384309 DOI: 10.1128/mcb.13.4.2504] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intracellular basic region/helix-loop-helix (bHLH) dioxin receptor mediates signal transduction by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) and functions as a ligand-activated DNA binding protein directly interacting with target genes by binding to dioxin response elements. Here we show that the partially purified, ligand-bound receptor alone could not bind target DNA. In contrast, DNA binding by the receptor could be induced by addition of a cytosolic auxiliary activity which functionally and biochemically corresponded to the bHLH factor Arnt. While Arnt exhibited no detectable affinity for the dioxin response element in the absence of the dioxin receptor, it strongly promoted the DNA binding function of the ligand-activated but not the ligand-free receptor forms. Arnt also functionally reconstituted in vitro the DNA binding activity of a mutant, nuclear translocation-deficient dioxin receptor phenotype in cytosolic extracts from a dioxin-resistant hepatoma cell line. Importantly, coimmunoprecipitation experiments showed that Arnt physically interacted in solution with the ligand-activated dioxin receptor but failed to heterodimerize with the ligand-free, hsp90-associated receptor form. Mutational analysis suggested that the functional interaction between these two factors occurred via the bHLH motif of Arnt. These data suggest that dioxin receptor activity is governed by a complex pattern of combinatorial regulation involving repression by hsp90 and then by ligand-dependent recruitment of the positive coregulator Arnt. The dioxin receptor system also provides the first example of signal-controlled dimerization of bHLH factors.
Collapse
|
23
|
Whitelaw M, Pongratz I, Wilhelmsson A, Gustafsson JA, Poellinger L. Ligand-dependent recruitment of the Arnt coregulator determines DNA recognition by the dioxin receptor. Mol Cell Biol 1993; 13:2504-14. [PMID: 8384309 PMCID: PMC359572 DOI: 10.1128/mcb.13.4.2504-2514.1993] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The intracellular basic region/helix-loop-helix (bHLH) dioxin receptor mediates signal transduction by dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin) and functions as a ligand-activated DNA binding protein directly interacting with target genes by binding to dioxin response elements. Here we show that the partially purified, ligand-bound receptor alone could not bind target DNA. In contrast, DNA binding by the receptor could be induced by addition of a cytosolic auxiliary activity which functionally and biochemically corresponded to the bHLH factor Arnt. While Arnt exhibited no detectable affinity for the dioxin response element in the absence of the dioxin receptor, it strongly promoted the DNA binding function of the ligand-activated but not the ligand-free receptor forms. Arnt also functionally reconstituted in vitro the DNA binding activity of a mutant, nuclear translocation-deficient dioxin receptor phenotype in cytosolic extracts from a dioxin-resistant hepatoma cell line. Importantly, coimmunoprecipitation experiments showed that Arnt physically interacted in solution with the ligand-activated dioxin receptor but failed to heterodimerize with the ligand-free, hsp90-associated receptor form. Mutational analysis suggested that the functional interaction between these two factors occurred via the bHLH motif of Arnt. These data suggest that dioxin receptor activity is governed by a complex pattern of combinatorial regulation involving repression by hsp90 and then by ligand-dependent recruitment of the positive coregulator Arnt. The dioxin receptor system also provides the first example of signal-controlled dimerization of bHLH factors.
Collapse
Affiliation(s)
- M Whitelaw
- Department of Medical Nutrition, Karolinska Institutet, Huddinge University Hospital, Sweden
| | | | | | | | | |
Collapse
|