1
|
Rigney S, York JR, LaBonne C. Krüppel-like Factors Play Essential Roles in Regulating Pluripotency and the Formation of Neural Crest Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632647. [PMID: 39868152 PMCID: PMC11761489 DOI: 10.1101/2025.01.13.632647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The evolutionary transition from simple chordate body plans to complex vertebrate body plans was driven by the acquisition of the neural crest, a stem cell population that retains broad, multi-germ layer developmental potential long after most embryonic cells have become lineage restricted. We have previously shown that neural crest cells share significant gene regulatory architecture with pluripotent blastula stem cells. Here we examine the roles that Krüppel-like Family (Klf) transcription factors play in these stem cell populations. Although Klf4 has established roles in regulating pluripotency in mammalian stem cells cultures, we find that in Xenopus it is klf2 that is highly expressed in pluripotent blastula stem cells. klf2 expression is down-regulated as cells transition to a neural crest state while a related klf factor, klf17, is significantly up regulated in response to neural crest induction. We used gain and loss of function studies to compare the activities of these closely related factors and found that they have both shared and distinct activities. Inhibition of either klf2 or klf17 activity led to significantly expanded expression of pluripotency, neural plate border and neural crest factors in neurula stage embryos, leading us to hypothesize that klf factors regulate the exit from pluripotency and proper establishment of the boundary of the neural crest domain. To gain further insights into the role of klf factors in the evolution of the neural crest, we examined their expression in the jawless vertebrate, Petromyzon marinus ( sea lamprey). We find that lamprey have a klf2/4 and a klf17 gene, but that only klf17 is expressed in blastula and neural crest stem cells. Moreover, ectopic expression of lamprey klf17 in Xenopus embryos phenocopies Xenopus klf17 activity. These data suggest that klf17, rather than klf4, may have been the ancestral klf factor that functioned in these GRNs in stem vertebrates.
Collapse
|
2
|
Dorosh O, Bodak K, Tsymbalyuk-Voloshyn I, Makukh H, Kreminska O, Hrytsiuk I, Battisti L, Erlacher M, Wlodarski M, McGlacken-Byrne SM, Achermann JC, Niemeyer CM, Yoshimi A. Comment on: Congenital dyserythropoietic anemia type IV with KLF1 E325K mutation: A new case with dysmorphic male genitalia. Report of a second case. Pediatr Blood Cancer 2024; 71:e31294. [PMID: 39192712 DOI: 10.1002/pbc.31294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Affiliation(s)
- Olha Dorosh
- Department of Hematology and Intensive Chemotherapy, Communal Noncommercial Enterprise of Lviv Regional Council Western Ukrainian Specialized Pediatric Medical Centre, Lviv, Ukraine
- Department of Pediatrics and Neonatology, Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Khrystyna Bodak
- Department of Hematology and Intensive Chemotherapy, Communal Noncommercial Enterprise of Lviv Regional Council Western Ukrainian Specialized Pediatric Medical Centre, Lviv, Ukraine
| | - Iryna Tsymbalyuk-Voloshyn
- Department of Hematology and Intensive Chemotherapy, Communal Noncommercial Enterprise of Lviv Regional Council Western Ukrainian Specialized Pediatric Medical Centre, Lviv, Ukraine
| | - Halyna Makukh
- Lviv Regional Clinical Perinatal Centre, Regional Centre of newborn screening, KNP, Lviv, Ukraine
- Scientific Department, Scientific Medical Genetic Center "LeoGENE,", Lviv, Ukraine
| | - Olena Kreminska
- Department of Pediatrics, Communal Noncommercial Enterprise of Lviv Regional Council Western Ukrainian Specialized Pediatric Medical Centre, Lviv, Ukraine
| | - Ihor Hrytsiuk
- Laboratory of Oncohematology, CSD LAB Medical Laboratory, Kyiv, Ukraine
| | - Laura Battisti
- Division of Pediatric Hematology Oncology, Pediatric Central Hospital of Bolzano, Bolzano, Italy
| | - Miriam Erlacher
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Marcin Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Sinead M McGlacken-Byrne
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - John C Achermann
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Charlotte M Niemeyer
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayami Yoshimi
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Huang S, Reed C, Ilsley M, Magor G, Tallack M, Landsberg M, Mitchell H, Gillinder K, Perkins A. Mutations in linker-2 of KLF1 impair expression of membrane transporters and cytoskeletal proteins causing hemolysis. Nat Commun 2024; 15:7019. [PMID: 39147774 PMCID: PMC11327367 DOI: 10.1038/s41467-024-50579-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/09/2024] [Indexed: 08/17/2024] Open
Abstract
The SP/KLF family of transcription factors harbour three C-terminal C2H2 zinc fingers interspersed by two linkers which confers DNA-binding to a 9-10 bp motif. Mutations in KLF1, the founding member of the family, are common. Missense mutations in linker two result in a mild phenotype. However, when co-inherited with loss-of-function mutations, they result in severe non-spherocytic hemolytic anemia. We generate a mouse model of this disease by crossing Klf1+/- mice with Klf1H350R/+ mice that harbour a missense mutation in linker-2. Klf1H350R/- mice exhibit severe hemolysis without thalassemia. RNA-seq demonstrate loss of expression of genes encoding transmembrane and cytoskeletal proteins, but not globins. ChIP-seq show no change in DNA-binding specificity, but a global reduction in affinity, which is confirmed using recombinant proteins and in vitro binding assays. This study provides new insights into how linker mutations in zinc finger transcription factors result in different phenotypes to those caused by loss-of-function mutations.
Collapse
Affiliation(s)
- Stephen Huang
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Casie Reed
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Melissa Ilsley
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia
| | - Graham Magor
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Michael Tallack
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
| | - Michael Landsberg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Helen Mitchell
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Kevin Gillinder
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia
| | - Andrew Perkins
- Mater Research Institute - UQ, The University of Queensland, St Lucia, Australia.
- School of Biomedical Sciences, The University of Queensland, St Lucia, Australia.
- Australian Centre for Blood Diseases, Monash University, Clayton, Australia.
- Department of Haematology, The Alfred Hospital, Melbourne, Australia.
- Biodiscovery Institute, Monash University, Clayton, Australia.
| |
Collapse
|
4
|
Wang H, Han J, Dmitrii G, Ning K, Zhang X. KLF transcription factors in bone diseases. J Cell Mol Med 2024; 28:e18278. [PMID: 38546623 PMCID: PMC10977429 DOI: 10.1111/jcmm.18278] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/06/2024] [Accepted: 03/15/2024] [Indexed: 04/11/2025] Open
Abstract
Krüppel-like factors (KLFs) are crucial in the development of bone disease. They are a family of zinc finger transcription factors that are unusual in containing three highly conserved zinc finger structural domains interacting with DNA. It has been discovered that it engages in various cell functions, including proliferation, apoptosis, autophagy, stemness, invasion and migration, and is crucial for the development of human tissues. In recent years, the role of KLFs in bone physiology and pathology has received adequate attention. In addition to regulating the normal growth and development of the musculoskeletal system, KLFs participate in the pathological process of the bones and joints and are intimately linked to several skeletal illnesses, such as osteoarthritis (OA), rheumatoid arthritis (RA), osteoporosis (OP) and osteosarcoma (OS). Consequently, targeting KLFs has emerged as a promising therapeutic approach for an array of bone disorders. In this review, we summarize the current literature on the importance of KLFs in the emergence and regulation of bone illnesses, with a particular emphasis on the pertinent mechanisms by which KLFs regulate skeletal diseases. We also discuss the need for KLFs-based medication-targeted treatment. These endeavours offer new perspectives on the use of KLFs in bone disorders and provide prognostic biomarkers, therapeutic targets and possible drug candidates for bone diseases.
Collapse
Affiliation(s)
- Haixia Wang
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| | - Juanjuan Han
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
- Department of Sport RehabilitationShanghai University of SportShanghaiChina
| | - Gorbachev Dmitrii
- Head of General Hygiene DepartmentSamara State Medical UniversitySamaraRussia
| | - Ke Ning
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| | - Xin‐an Zhang
- College of Exercise and HealthShenyang Sport UniversityShenyangLiaoningChina
| |
Collapse
|
5
|
Fujii K, Yamakawa K, Takeda Y, Okuda N, Takasu A, Ono F. Understanding the pathophysiology of acute critical illness: translational lessons from zebrafish models. Intensive Care Med Exp 2024; 12:8. [PMID: 38291192 PMCID: PMC10828313 DOI: 10.1186/s40635-024-00595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024] Open
Abstract
The models used to investigate the pathophysiological mechanisms of acute critical illness are not limited to mammalian species. The zebrafish (Danio rerio) is a popular model organism for studying diseases due to its transparency and rapid development. The genes and signaling pathways involved in acute critical illness appear highly conserved among zebrafish and humans. Forward genetics such as random mutagenesis by a chemical mutagen or reverse genetics methods represented by CRISPR/Cas9 allowed researchers to reveal multiple novel aspects of pathological processes in areas including infection, immunity, and regeneration. As a model of sepsis, transgenic zebrafish allowed the visualization of lipopolysaccharide (LPS)-induced vascular leakage in vivo and the demonstration of changes in the expression of cellular junction proteins. Other transgenic zebrafish visualizing the extravascular migration of neutrophils and macrophages have demonstrated a decrease in neutrophil numbers and an increased expression of an inflammatory gene, which replicates a phenomenon observed in humans in clinically encountered sepsis. The regenerative potential and the visibility of zebrafish organs also enabled clarification of important mechanisms in wound healing, angiogenesis, and neurogenesis. After spinal cord injury (SCI), a marker gene expressed in glial bridging was discovered. Furthermore, localized epithelial-to-mesenchymal transition (EMT) and molecular mechanisms leading to spinal cord repair were revealed. These translational studies using zebrafish show the potential of the model system for the treatment of acute critical illnesses such as sepsis, organ failure, and trauma.
Collapse
Affiliation(s)
- Kensuke Fujii
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Kazuma Yamakawa
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan.
| | - Yuriko Takeda
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Natsuko Okuda
- Department of Physiology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Akira Takasu
- Department of Emergency and Critical Care Medicine, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical and Pharmaceutical University, 2-7 Daigakumachi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
6
|
Bieker JJ, Philipsen S. Erythroid Krüppel-Like Factor (KLF1): A Surprisingly Versatile Regulator of Erythroid Differentiation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:217-242. [PMID: 39017846 PMCID: PMC12121306 DOI: 10.1007/978-3-031-62731-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Erythroid Krüppel-like factor (KLF1), first discovered in 1992, is an erythroid-restricted transcription factor (TF) that is essential for terminal differentiation of erythroid progenitors. At face value, KLF1 is a rather inconspicuous member of the 26-strong SP/KLF TF family. However, 30 years of research have revealed that KLF1 is a jack of all trades in the molecular control of erythropoiesis. Initially described as a one-trick pony required for high-level transcription of the adult HBB gene, we now know that it orchestrates the entire erythroid differentiation program. It does so not only as an activator but also as a repressor. In addition, KLF1 was the first TF shown to be directly involved in enhancer/promoter loop formation. KLF1 variants underlie a wide range of erythroid phenotypes in the human population, varying from very mild conditions such as hereditary persistence of fetal hemoglobin and the In(Lu) blood type in the case of haploinsufficiency, to much more serious non-spherocytic hemolytic anemias in the case of compound heterozygosity, to dominant congenital dyserythropoietic anemia type IV invariably caused by a de novo variant in a highly conserved amino acid in the KLF1 DNA-binding domain. In this chapter, we present an overview of the past and present of KLF1 research and discuss the significance of human KLF1 variants.
Collapse
Affiliation(s)
- James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sjaak Philipsen
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
7
|
Byun H, Singh GB, Xu WK, Das P, Reyes A, Battenhouse A, Wylie DC, Lozano MM, Dudley JP. Apobec-Mediated Retroviral Hypermutation In Vivo is Dependent on Mouse Strain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565355. [PMID: 37961113 PMCID: PMC10635078 DOI: 10.1101/2023.11.02.565355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Replication of the complex retrovirus mouse mammary tumor virus (MMTV) is antagonized by murine Apobec3 (mA3), a member of the Apobec family of cytidine deaminases. We have shown that MMTV-encoded Rem protein inhibits proviral mutagenesis by the Apobec enzyme, activation-induced cytidine deaminase (AID) during viral replication in BALB/c mice. To further study the role of Rem in vivo , we have infected C57BL/6 (B6) mice with a superantigen-independent lymphomagenic strain of MMTV (TBLV-WT) or a mutant strain (TBLV-SD) that is defective in Rem and its cleavage product Rem-CT. Unlike MMTV, TBLV induced T-cell tumors in µMT mice, indicating that mature B cells, which express the highest AID levels, are not required for TBLV replication. Compared to BALB/c, B6 mice were more susceptible to TBLV infection and tumorigenesis. The lack of Rem expression accelerated B6 tumorigenesis at limiting doses compared to TBLV-WT in either wild-type B6 or AID-deficient mice. However, unlike proviruses from BALB/c mice, high-throughput sequencing indicated that proviral G-to-A or C-to-T changes did not significantly differ in the presence and absence of Rem expression. Ex vivo stimulation showed higher levels of mA3 relative to AID in B6 compared to BALB/c splenocytes, but effects of agonists differed in the two strains. RNA-Seq revealed increased transcripts related to growth factor and cytokine signaling in TBLV-SD-induced tumors relative to those from TBLV-WT, consistent with a third Rem function. Thus, Rem-mediated effects on tumorigenesis in B6 mice are independent of Apobec-mediated proviral hypermutation.
Collapse
|
8
|
Taghehchian N, Maharati A, Akhlaghipour I, Zangouei AS, Moghbeli M. PRC2 mediated KLF2 down regulation: a therapeutic and diagnostic axis during tumor progression. Cancer Cell Int 2023; 23:233. [PMID: 37807067 PMCID: PMC10561470 DOI: 10.1186/s12935-023-03086-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023] Open
Abstract
Surgery and chemo-radiotherapy are used as the common first-line treatment options in many cancers. However, tumor relapse is observed in many cancer patients following such first-line treatments. Therefore, targeted therapy according to the molecular cancer biology can be very important in reducing tumor recurrence. In this regard, a wide range of monoclonal antibodies against the growth factors and their receptors can offer more targeted treatment in cancer patients. However, due to the importance of growth factors in the normal biology of body cells, side effects can also be observed following the application of growth factor inhibitors. Therefore, more specific factors should be introduced as therapeutic targets with less side effects. Krüppel-like factors 2 (KLF2) belongs to the KLF family of transcription factors that are involved in the regulation of many cellular processes. KLF2 deregulations have been also reported during the progression of many tumors. In the present review we discussed the molecular mechanisms of KLF2 during tumor growth and invasion. It has been shown that the KLF2 as a tumor suppressor is mainly inhibited by the non-coding RNAs (ncRNAs) through the polycomb repressive complex 2 (PRC2) recruitment. This review is an effective step towards introducing the KLF2 as a suitable diagnostic and therapeutic target in cancer patients.
Collapse
Affiliation(s)
- Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhosein Maharati
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iman Akhlaghipour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Piao X, Jiang N, Liu S, Duan J, Dai H, Hou N, Chen Q. Schistosoma japonicum EKLF/KLF1 is a potential immune target to tackle schistosomiasis. Parasit Vectors 2023; 16:334. [PMID: 37742024 PMCID: PMC10517563 DOI: 10.1186/s13071-023-05947-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/26/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Interruption of parasite reproduction by targeting migrating schistosomula is a promising strategy for managing schistosomiasis. Hepatic schistosomula proteins previously identified based on second-generation schistosome DNA sequencing were found to hold excellent potential for schistosomiasis japonica diagnosis and as vaccine candidates. However, there are still many unknown schistosomula proteins that warrant further investigations. Herein, a novel schistosomula protein, the Schistosoma japonicum erythroid Krüppel-like factor (SjEKLF/KLF1), was explored. METHODS Sequence alignment was carried out to detect the amino acid sequence characteristics of SjEKLF. The expression profile of SjEKLF was determined by western blot and immunofluorescence analysis. Enzyme-linked immunosorbent assay was used to determine the antigenicity of SjEKLF in hosts. Mice immunised with recombinant SjEKLF were challenged to test the potential value of the protein as an immunoprotective target. RESULTS SjEKLF is defined as EKLF/KLF1 for its C-terminal DNA-binding domain. SjEKLF is mainly expressed in hepatic schistosomula and male adults and located within the intestinal intima of the parasites. Notably, high levels of SjEKLF-specific antibodies were detected in host sera and SjEKLF exhibited outstanding sensitivity and specificity for schistosomiasis japonica immunodiagnosis but failed to distinguish between ongoing infection and previous exposure. In addition, SjEKLF immunisation reduced the infection in vivo, resulting in decreased worm and egg counts, and alleviated body weight loss and hepatomegaly in infected mice. CONCLUSIONS Overall, these findings demonstrate that SjEKLF is critical for the infection of S. japonicum and may be a potential target to help control S. japonicum infection and transmission.
Collapse
Affiliation(s)
- Xianyu Piao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China
| | - Shuai Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiamei Duan
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hang Dai
- Institute of Biological Products, National Institutes for Food and Drug Control, Beijing, China
| | - Nan Hou
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Qijun Chen
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China.
- The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, Shenyang, China.
| |
Collapse
|
10
|
Gnanapragasam MN, Planutis A, Glassberg JA, Bieker JJ. Identification of a genomic DNA sequence that quantitatively modulates KLF1 transcription factor expression in differentiating human hematopoietic cells. Sci Rep 2023; 13:7589. [PMID: 37165057 PMCID: PMC10172341 DOI: 10.1038/s41598-023-34805-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 05/08/2023] [Indexed: 05/12/2023] Open
Abstract
The onset of erythropoiesis is under strict developmental control, with direct and indirect inputs influencing its derivation from the hematopoietic stem cell. A major regulator of this transition is KLF1/EKLF, a zinc finger transcription factor that plays a global role in all aspects of erythropoiesis. Here, we have identified a short, conserved enhancer element in KLF1 intron 1 that is important for establishing optimal levels of KLF1 in mouse and human cells. Chromatin accessibility of this site exhibits cell-type specificity and is under developmental control during the differentiation of human CD34+ cells towards the erythroid lineage. This site binds GATA1, SMAD1, TAL1, and ETV6. In vivo editing of this region in cell lines and primary cells reduces KLF1 expression quantitatively. However, we find that, similar to observations seen in pedigrees of families with KLF1 mutations, downstream effects are variable, suggesting that the global architecture of the site is buffered towards keeping the KLF1 genetic region in an active state. We propose that modification of intron 1 in both alleles is not equivalent to complete loss of function of one allele.
Collapse
Affiliation(s)
- M N Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, USA
| | - A Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA
| | - J A Glassberg
- Department of Emergency Medicine, Hematology and Medical Oncology, Mount Sinai School of Medicine, New York, NY, USA
| | - J J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1020, New York, NY, 10029, USA.
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, USA.
- Tisch Cancer Institute, Mount Sinai School of Medicine, New York, USA.
- Mindich Child Health and Development Institute, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
11
|
He Z, He J, Xie K. KLF4 transcription factor in tumorigenesis. Cell Death Discov 2023; 9:118. [PMID: 37031197 PMCID: PMC10082813 DOI: 10.1038/s41420-023-01416-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 04/10/2023] Open
Abstract
Krüppel-like transcriptional factor is important in maintaining cellular functions. Deletion of Krüppel-like transcriptional factor usually causes abnormal embryonic development and even embryonic death. KLF4 is a prominent member of this family, and embryonic deletion of KLF4 leads to alterations in skin permeability and postnatal death. In addition to its important role in embryo development, it also plays a critical role in inflammation and malignancy. It has been investigated that KLF4 has a regulatory role in a variety of cancers, including lung, breast, prostate, colorectal, pancreatic, hepatocellular, ovarian, esophageal, bladder and brain cancer. However, the role of KLF4 in tumorigenesis is complex, which may link to its unique structure with both transcriptional activation and transcriptional repression domains, and to the regulation of its upstream and downstream signaling molecules. In this review, we will summarize the structural and functional aspects of KLF4, with a focus on KLF4 as a clinical biomarker and therapeutic target in different types of tumors.
Collapse
Affiliation(s)
- Zhihong He
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China
| | - Jie He
- The Second Affiliated Hospital and Guangzhou First People's Hospital, South China University of Technology School of Medicine, Guangdong, China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, China.
- The South China University of Technology Comprehensive Cancer Center, Guangdong, China.
| |
Collapse
|
12
|
Shyu Y, Liao P, Huang T, Yang C, Lu M, Huang S, Lin X, Liou C, Kao Y, Lu C, Peng H, Chen J, Cherng W, Yang N, Chen Y, Pan H, Jiang S, Hsu C, Lin G, Yuan S, Hsu PW, Wu K, Lee T, Shen CJ. Genetic Disruption of KLF1 K74 SUMOylation in Hematopoietic System Promotes Healthy Longevity in Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201409. [PMID: 35822667 PMCID: PMC9443461 DOI: 10.1002/advs.202201409] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/10/2022] [Indexed: 05/22/2023]
Abstract
The quest for rejuvenation and prolonged lifespan through transfusion of young blood has been studied for decades with the hope of unlocking the mystery of the key substance(s) that exists in the circulating blood of juvenile organisms. However, a pivotal mediator has yet been identified. Here, atypical findings are presented that are observed in a knockin mouse model carrying a lysine to arginine substitution at residue 74 of Krüppel-like factor 1 (KLF1/EKLF), the SUMOylation-deficient Klf1K74R/K74R mouse, that displayed significant improvement in geriatric disorders and lifespan extension. Klf1K74R/K74R mice exhibit a marked delay in age-related physical performance decline and disease progression as evidenced by physiological and pathological examinations. Furthermore, the KLF1(K74R) knockin affects a subset of lymphoid lineage cells; the abundance of tumor infiltrating effector CD8+ T cells and NKT cells is increased resulting in antitumor immune enhancement in response to tumor cell administration. Significantly, infusion of hematopoietic stem cells (HSCs) from Klf1K74R/K74R mice extends the lifespan of the wild-type mice. The Klf1K74R/K74R mice appear to be an ideal animal model system for further understanding of the molecular/cellular basis of aging and development of new strategies for antiaging and prevention/treatment of age-related diseases thus extending the healthspan as well as lifespan.
Collapse
Affiliation(s)
- Yu‐Chiau Shyu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of NursingChang Gung University of Science and TechnologyTaoyuan333Taiwan
| | - Po‐Cheng Liao
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Ting‐Shou Huang
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of General SurgeryChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- School of Traditional Chinese MedicineCollege of MedicineChang Gung UniversityTaoyuan333Taiwan
| | - Chun‐Ju Yang
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Mu‐Jie Lu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Shih‐Ming Huang
- Department of Radiation OncologyChung‐Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Xin‐Yu Lin
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Cai‐Cin Liou
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Yu‐Hsiang Kao
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Chi‐Huan Lu
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Hui‐Ling Peng
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Jim‐Ray Chen
- Department of PathologyChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Wen‐Jin Cherng
- Department of CardiologyChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
| | - Ning‐I Yang
- Department of CardiologyChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Yung‐Chang Chen
- Department of NephrologyChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Department of MedicineSchool of MedicineChang Gung UniversityTaoyuan333Taiwan
| | - Heng‐Chih Pan
- Community Medicine Research CenterChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
| | - Si‐Tse Jiang
- Department of General SurgeryChang Gung Memorial HospitalKeelung branchKeelung204Taiwan
- Department of Research and DevelopmentNational Laboratory Animal CenterTainan741Taiwan
| | - Chih‐Chin Hsu
- Department of MedicineSchool of MedicineChang Gung UniversityTaoyuan333Taiwan
- Department of Physical Medicine and RehabilitationChang Gung Memorial Hospital Keelung branchKeelung204Taiwan
| | - Gigin Lin
- Department of Medical Imaging and InterventionChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Clinical Metabolomics Core LabChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
- Department of Medical Imaging and Radiological SciencesChang Gung UniversityTaoyuan333Taiwan
| | - Shin‐Sheng Yuan
- Institute of Statistical ScienceAcademia SinicaTaipei115Taiwan
| | - Paul Wei‐Che Hsu
- Institute of Molecular and Genomic MedicineNational Health Research InstituteZhunan350Taiwan
| | - Kou‐Juey Wu
- Cancer Genome Research CenterChang Gung Memorial HospitalLinkou branchTaoyuan333Taiwan
| | - Tung‐Liang Lee
- Pro‐Clintech Co. Ltd.Keelung204Taiwan
- Institute of Molecular BiologyAcademia SinicaTaipei115Taiwan
| | - Che‐Kun James Shen
- Institute of Molecular BiologyAcademia SinicaTaipei115Taiwan
- Ph.D. Program in Medical NeuroscienceTaipei Medical UniversityTaipei110Taiwan
| |
Collapse
|
13
|
Starlard-Davenport A, Gu Q, Pace BS. Targeting Genetic Modifiers of HBG Gene Expression in Sickle Cell Disease: The miRNA Option. Mol Diagn Ther 2022; 26:497-509. [PMID: 35553407 PMCID: PMC9098152 DOI: 10.1007/s40291-022-00589-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 12/14/2022]
Abstract
Sickle cell disease (SCD) is one of the most common inherited hemoglobinopathy disorders that affects millions of people worldwide. Reactivation of HBG (HBG1, HBG2) gene expression and induction of fetal hemoglobin (HbF) is an important therapeutic strategy for ameliorating the clinical symptoms and severity of SCD. Hydroxyurea is the only US FDA-approved drug with proven efficacy to induce HbF in SCD patients, yet serious complications have been associated with its use. Over the last three decades, numerous additional pharmacological agents that reactivate HBG transcription in vitro have been investigated, but few have proceeded to FDA approval, with the exception of arginine butyrate and decitabine; however, neither drug met the requirements for routine clinical use due to difficulties with oral delivery and inability to achieve therapeutic levels. Thus, novel approaches that produce sufficient efficacy, specificity, and sustainable HbF induction with low adverse effects are desirable. More recently, microRNAs (miRNAs) have gained attention for their diagnostic and therapeutic potential to treat various diseases ranging from cancer to Alzheimer’s disease via targeting oncogenes and their gene products. Thus, it is plausible that miRNAs that target HBG regulatory genes may be useful for inducing HbF as a treatment for SCD. Our laboratory and others have documented the association of miRNAs with HBG activation or suppression via silencing transcriptional repressors and activators, respectively, of HBG expression. Herein, we review progress made in understanding molecular mechanisms of miRNA-mediated HBG regulation and discuss the extent to which molecular targets of HBG might be suitable prospects for development of SCD clinical therapy. Lastly, we discuss challenges with the application of miRNA delivery in vivo and provide potential strategies for overcoming barriers in the future.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- College of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Qingqing Gu
- College of Medicine, Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.,Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| |
Collapse
|
14
|
Expression and Prognosis Value of the KLF Family Members in Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:6571272. [PMID: 35345512 PMCID: PMC8957442 DOI: 10.1155/2022/6571272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/03/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
Krüppel-like factors (KLFs) are some kind of transcriptional regulator that regulates a broad range of cellular functions and has been linked to the development of certain malignancies. KLF expression patterns and prognostic values in colorectal cancer (CRC) have, however, been investigated rarely. To investigate the differential expression, predictive value, and gene mutations of KLFs in CRC patients, we used various online analytic tools, including ONCOMINE, TCGA, cBioPortal, and the TIMER database. KLF2-6, KLF8-10, KLF12-15, and KLF17 mRNA expression levels were dramatically downregulated in CRC tissues, but KLF1, KLF7, and KLF16 mRNA expression levels were significantly elevated in CRC tissues. According to the findings of Cox regression analysis, upregulation of KLF3, KLF5, and KLF6 and downregulation of KLF15 were linked with a better prognosis in CRC. For functional enrichment, our findings revealed that KLF members are involved in a variety of cancer-related biological processes. In colon cancer and rectal cancer, KLFs were also shown to be associated with a variety of immune cells. The findings of this research reveal that KLF family members' mRNA expression levels are possible prognostic indicators for patients with CRC.
Collapse
|
15
|
Cherukunnath A, Davargaon RS, Ashraf R, Kamdar U, Srivastava AK, Tripathi PP, Chatterjee N, Kumar S. KLF8 is activated by TGF-β1 via Smad2 and contributes to ovarian cancer progression. J Cell Biochem 2022; 123:921-934. [PMID: 35293014 DOI: 10.1002/jcb.30235] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/12/2022] [Accepted: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Krüppel-like factor 8 (KLF8) is a transcription factor expressed abnormally in various cancer types and promotes oncogenic transformation. However, the role of KLF8 in ovarian cancer (OC) progression remains unclear. This study reports that transforming growth factor-β1 (TGF-β1)/Smad2/KLF8 axis regulates epithelial-mesenchymal transition (EMT) and contributes to OC progression. We analyzed the KLF8 expression in OC cells and tissues, wherein a significant overexpression of KLF8 was observed. Increased KLF8 expressions were correlated with higher cell proliferation, EMT, migration, and invasion and conferred poor clinical outcomes in OC patients. Overexpressed KLF8 increases F-actin polymerization and induces cytoskeleton remodeling of OC cells. Furthermore, a dissection of the molecular mechanism defined that TGF-β1 triggers KLF8 through the Smad2 pathway and regulates EMT. Pharmacological and genetic inhibition of Smad2 followed by TGF-β1 treatment failed to activate KLF8 expression and induction of EMT. Using promoter-luciferase reporter assays, we defined that upon TGF-β1 activation, phosphorylated Smad2 binds and promotes the KLF8 promoter activity, and knockdown of Smad2 inhibits KLF8 promoter activation. Together, these results demonstrate that TGF-β1 activates KLF8 expression by the Smad2 pathway, and KLF8 contributes to OC progression and may serve as a potential therapeutic strategy for treating OC patients.
Collapse
Affiliation(s)
- Aparna Cherukunnath
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Ravichandra S Davargaon
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Urja Kamdar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| | - Amit K Srivastava
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Prem P Tripathi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, West Bengal, India
| | - Nabanita Chatterjee
- Department of Receptor Biology and Tumor metastasis, Chittaranjan National Cancer Institute, Kolkata, West Bengal, India
| | - Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, Andhra Pradesh, India
| |
Collapse
|
16
|
Sun Y, Habara A, Le CQ, Nguyen N, Chen R, Murphy GJ, Chui DHK, Steinberg MH, Cui S. Pharmacologic induction of PGC-1α stimulates fetal haemoglobin gene expression. Br J Haematol 2022; 197:97-109. [PMID: 35118652 DOI: 10.1111/bjh.18042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022]
Abstract
Sickle cell disease (SCD) is a genetic disorder that affects millions around the world. Enhancement of fetal γ-globin levels and fetal haemoglobin (HbF) production in SCD patients leads to diminished severity of many clinical features of the disease. We recently identified the transcriptional co-activator PGC-1α as a new protein involved in the regulation of the globin genes. Here, we report that upregulation of PGC-1α by infection with a lentivirus expressing PGC-1α or by the small-molecule PGC-1α agonist ZLN005 in human primary erythroid progenitor CD34+ cells induces both fetal γ-globin mRNA and protein expression as well as the percentage of HbF-positive cell (F cells) without significantly affecting cell proliferation and differentiation. We further found that the combination of ZLN005 and hydroxyurea (hydroxycarbamide) exhibited an additive effect on the expression of γ-globin and the generation of F cells from cultured CD34+ cells. In addition, ZLN005 induced robust expression of the murine embryonic βh1-globin gene and to a lesser extent, human γ-globin gene expression in sickle mice. These findings suggest that activation of PGC-1α by ZLN005 might provide a new path for modulating HbF levels with potential therapeutic benefit in β-hemoglobinopathies.
Collapse
Affiliation(s)
- Yanan Sun
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Alawi Habara
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA.,Department of Clinical Biochemistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Cuong Quang Le
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Nicole Nguyen
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA
| | - Raymon Chen
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, Massachusetts, USA
| | - George J Murphy
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA.,Center for Regenerative Medicine, Boston University, Boston Medical Center, Boston, Massachusetts, USA
| | - David H K Chui
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Martin H Steinberg
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| | - Shuaiying Cui
- Department of Medicine, Section of Hematology-Medical Oncology, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Epigenomic analysis of KLF1 haploinsufficiency in primary human erythroblasts. Sci Rep 2022; 12:336. [PMID: 35013432 PMCID: PMC8748495 DOI: 10.1038/s41598-021-04126-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Haploinsufficiency for the erythroid-specific transcription factor KLF1 is associated with hereditary persistence of fetal hemoglobin (HPFH). Increased HbF ameliorates the symptoms of β-hemoglobinopathies and downregulation of KLF1 activity has been proposed as a potential therapeutic strategy. However, the feasibility of this approach has been challenged by the observation that KLF1 haploinsufficient individuals with the same KLF1 variant, within the same family, display a wide range of HbF levels. This phenotypic variability is not readily explained by co-inheritance of known HbF-modulating variants in the HBB, HBS1L-MYB and/or BCL11A loci. We studied cultured erythroid progenitors obtained from Maltese individuals in which KLF1 p.K288X carriers display HbF levels ranging between 1.3 and 12.3% of total Hb. Using a combination of gene expression analysis, chromatin accessibility assays and promoter activity tests we find that variation in expression of the wildtype KLF1 allele may explain a significant part of the variability in HbF levels observed in KLF1 haploinsufficiency. Our results have general bearing on the variable penetrance of haploinsufficiency phenotypes and on conflicting interpretations of pathogenicity of variants in other transcriptional regulators such as EP300, GATA2 and RUNX1.
Collapse
|
18
|
A Positive Regulatory Feedback Loop between EKLF/KLF1 and TAL1/SCL Sustaining the Erythropoiesis. Int J Mol Sci 2021; 22:ijms22158024. [PMID: 34360789 PMCID: PMC8347936 DOI: 10.3390/ijms22158024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 11/25/2022] Open
Abstract
The erythroid Krüppel-like factor EKLF/KLF1 is a hematopoietic transcription factor binding to the CACCC DNA motif and participating in the regulation of erythroid differentiation. With combined use of microarray-based gene expression profiling and the promoter-based ChIP-chip assay of E14.5 fetal liver cells from wild type (WT) and EKLF-knockout (Eklf−/−) mouse embryos, we identified the pathways and direct target genes activated or repressed by EKLF. This genome-wide study together with the molecular/cellular analysis of the mouse erythroleukemic cells (MEL) indicate that among the downstream direct target genes of EKLF is Tal1/Scl. Tal1/Scl encodes another DNA-binding hematopoietic transcription factor TAL1/SCL, known to be an Eklf activator and essential for definitive erythroid differentiation. Further identification of the authentic Tal gene promoter in combination with the in vivo genomic footprinting approach and DNA reporter assay demonstrate that EKLF activates the Tal gene through binding to a specific CACCC motif located in its promoter. These data establish the existence of a previously unknow positive regulatory feedback loop between two DNA-binding hematopoietic transcription factors, which sustains mammalian erythropoiesis.
Collapse
|
19
|
Starlard-Davenport A, Fitzgerald A, Pace BS. Exploring epigenetic and microRNA approaches for γ-globin gene regulation. Exp Biol Med (Maywood) 2021; 246:2347-2357. [PMID: 34292080 DOI: 10.1177/15353702211028195] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Therapeutic interventions aimed at inducing fetal hemoglobin and reducing the concentration of sickle hemoglobin is an effective approach to ameliorating acute and chronic complications of sickle cell disease, exemplified by the long-term use of hydroxyurea. However, there remains an unmet need for the development of additional safe and effective drugs for single agent or combination therapy for individuals with β-hemoglobinopathies. Regulation of the γ-globin to β-globin switch is achieved by chromatin remodeling at the HBB locus on chromosome 11 and interactions of major DNA binding proteins, such as KLF1 and BCL11A in the proximal promoters of the globin genes. Experimental evidence also supports a role of epigenetic modifications including DNA methylation, histone acetylation/methylation, and microRNA expression in γ-globin gene silencing during development. In this review, we will critically evaluate the role of epigenetic mechanisms in γ-globin gene regulation and discuss data generated in tissue culture, pre-clinical animal models, and clinical trials to support drug development to date. The question remains whether modulation of epigenetic pathways will produce sufficient efficacy and specificity for fetal hemoglobin induction and to what extent targeting these pathways form the basis of prospects for clinical therapy.
Collapse
Affiliation(s)
- Athena Starlard-Davenport
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ashley Fitzgerald
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Betty S Pace
- Department of Pediatrics, Division of Hematology/Oncology, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
20
|
Tangsricharoen T, Natesirinilkul R, Phusua A, Fanhchaksai K, Ittiwut C, Chetruengchai W, Juntharaniyom M, Charoenkwan P, Viprakasit V, Phokaew C, Shotelersuk V. Severe neonatal haemolytic anaemia caused by compound heterozygous KLF1 mutations: report of four families and literature review. Br J Haematol 2021; 194:626-634. [PMID: 34227100 DOI: 10.1111/bjh.17616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/06/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023]
Abstract
Mutations in the KLF1 gene, which encodes a transcription factor playing a role in erythropoiesis, have recently been demonstrated to be a rare cause of hereditary haemolytic anaemia. We described the genotypic and phenotypic spectra of four unrelated families with compound heterozygous class 2/class 3 KLF1 mutations. All patients had p.G176RfsX179 on one allele and either p.A298P, p.R301H or p.G335R on the other allele. All presented on the first day of life with severe haemolytic anaemia with abnormal red blood cell morphology, markedly increased nucleated red blood cells and hyperbilirubinaemia. Three patients later became transfusion-dependent. All parents with heterozygous KLF1 mutation without co-inherited thalassaemia had normal to borderline mean corpuscular volume (MCV) and normal to slightly elevated Hb F. Fifteen previously reported cases of biallelic KLF1 mutations were identified from a literature review. All except one presented with severe haemolytic anaemia in the neonatal period. Our finding substantiates that compound heterozygous KLF1 mutations are associated with severe neonatal haemolytic anaemia and expands the haematologic phenotypic spectrum. In carriers, the previously suggested findings of low MCV, high Hb A2 and high Hb F are inconsistent; thus this necessitates molecular studies for the identification of carriers.
Collapse
Affiliation(s)
- Tanu Tangsricharoen
- Department of Pediatrics, Division of Hematology and Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Rungrote Natesirinilkul
- Department of Pediatrics, Division of Hematology and Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Arunee Phusua
- Department of Pediatrics, Division of Hematology and Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kanda Fanhchaksai
- Department of Pediatrics, Division of Hematology and Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chupong Ittiwut
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Wanna Chetruengchai
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Monthana Juntharaniyom
- Department of Pediatrics, Division of Hematology and Oncology, Khon Kaen Regional Hospital, Khon Kaen, Thailand
| | - Pimlak Charoenkwan
- Department of Pediatrics, Division of Hematology and Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Vip Viprakasit
- Department of Pediatrics, Division of Hematology and Oncology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chureerat Phokaew
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Department of Pediatrics, Center of Excellence for Medical Genomics, Medical Genomics Cluster, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
21
|
Xu L, Zhu D, Zhang Y, Liang G, Liang M, Wei X, Feng X, Wu X, Shang X. Compound Heterozygosity for KLF1 Mutations Causing Hemolytic Anemia in Children: A Case Report and Literature Review. Front Genet 2021; 12:691461. [PMID: 34249106 PMCID: PMC8267787 DOI: 10.3389/fgene.2021.691461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
Abstract
Background Anemia is one of the most common diseases affecting children worldwide. Hereditary forms of anemia due to gene mutations are difficult to diagnose because they only rely on clinical manifestations. In regions with high prevalence of thalassemia such as southern China, pediatric patients with a hereditary hemolytic anemia (HHA) phenotype are often diagnosed with β-thalassemia. However, HHA can be caused by other gene defects. Here, a case previously diagnosed with thalassemia in a local hospital was sent to our laboratory for further genetic diagnosis. Preliminary molecular testing did not identify any mutations in globin genes. Methods All blood samples were collected after informed consent had been obtain from the proband’s parents. Both clinical and genetic analyses were conducted for the patient and her family members, including clinical data collection and sequencing of the KLF1 gene. Relevant literature was reviewed, including genetically confirmed cases with well-documented clinical summaries. Results Based on the detailed clinical data for this case, we diagnosed the patient with severe HHA. Sanger sequencing confirmed that there was a mutation on each KLF1 allele in the proband, which is missense mutation c.892G > C (p.Ala298Pro) inherited from father and frameshift mutation c.525_526insCGGCGCC (p.Gly176Argfs∗179) from the mother, respectively. A summary of the KLF1 mutation spectrum and a clarification of genotype–phenotype correlation were performed through a combined analysis of the case and literature studies. Conclusion This study corrected the misdiagnosis and identified the etiology in a Chinese patient with HHA. Identification of the disease-causing gene is important for the treatment and care of the patient and prevention of another affected childbirth in her family. In addition, this study provided insight to better distinguish HHA patients with β-thalassemia mutations from those with KLF1 mutations.
Collapse
Affiliation(s)
- Linlin Xu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dina Zhu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yanxia Zhang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guanxia Liang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min Liang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaofeng Wei
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoqing Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuedong Wu
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuan Shang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
22
|
Barbarani G, Labedz A, Stucchi S, Abbiati A, Ronchi AE. Physiological and Aberrant γ-Globin Transcription During Development. Front Cell Dev Biol 2021; 9:640060. [PMID: 33869190 PMCID: PMC8047207 DOI: 10.3389/fcell.2021.640060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/23/2021] [Indexed: 12/24/2022] Open
Abstract
The expression of the fetal Gγ- and Aγ-globin genes in normal development is confined to the fetal period, where two γ-globin chains assemble with two α-globin chains to form α2γ2 tetramers (HbF). HbF sustains oxygen delivery to tissues until birth, when β-globin replaces γ-globin, leading to the formation of α2β2 tetramers (HbA). However, in different benign and pathological conditions, HbF is expressed in adult cells, as it happens in the hereditary persistence of fetal hemoglobin, in anemias and in some leukemias. The molecular basis of γ-globin differential expression in the fetus and of its inappropriate activation in adult cells is largely unknown, although in recent years, a few transcription factors involved in this process have been identified. The recent discovery that fetal cells can persist to adulthood and contribute to disease raises the possibility that postnatal γ-globin expression could, in some cases, represent the signature of the fetal cellular origin.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Agata Labedz
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Sarah Stucchi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Alessia Abbiati
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Milano, Italy
| |
Collapse
|
23
|
Mukherjee K, Xue L, Planutis A, Gnanapragasam MN, Chess A, Bieker JJ. EKLF/KLF1 expression defines a unique macrophage subset during mouse erythropoiesis. eLife 2021; 10:61070. [PMID: 33570494 PMCID: PMC7932694 DOI: 10.7554/elife.61070] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Erythroblastic islands are a specialized niche that contain a central macrophage surrounded by erythroid cells at various stages of maturation. However, identifying the precise genetic and transcriptional control mechanisms in the island macrophage remains difficult due to macrophage heterogeneity. Using unbiased global sequencing and directed genetic approaches focused on early mammalian development, we find that fetal liver macrophages exhibit a unique expression signature that differentiates them from erythroid and adult macrophage cells. The importance of erythroid Krüppel-like factor (EKLF)/KLF1 in this identity is shown by expression analyses in EKLF-/- and in EKLF-marked macrophage cells. Single-cell sequence analysis simplifies heterogeneity and identifies clusters of genes important for EKLF-dependent macrophage function and novel cell surface biomarkers. Remarkably, this singular set of macrophage island cells appears transiently during embryogenesis. Together, these studies provide a detailed perspective on the importance of EKLF in the establishment of the dynamic gene expression network within erythroblastic islands in the developing embryo and provide the means for their efficient isolation.
Collapse
Affiliation(s)
- Kaustav Mukherjee
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
- Black Family Stem Cell InstituteNew York, NYUnited States
| | - Li Xue
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Antanas Planutis
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Merlin Nithya Gnanapragasam
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - Andrew Chess
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Mount Sinai School of MedicineNew York, NYUnited States
- Black Family Stem Cell InstituteNew York, NYUnited States
- Tisch Cancer InstituteNew York, NYUnited States
- Mindich Child Health and Development Institute, Mount Sinai School of MedicineNew York, NYUnited States
| |
Collapse
|
24
|
Korporaal A, Gillemans N, Heshusius S, Cantú I, van den Akker E, van Dijk TB, von Lindern M, Philipsen S. Hemoglobin switching in mice carrying the Klf1Nan variant. Haematologica 2021; 106:464-473. [PMID: 32467144 PMCID: PMC7849558 DOI: 10.3324/haematol.2019.239830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/23/2020] [Indexed: 12/21/2022] Open
Abstract
Haploinsufficiency for transcription factor KLF1 causes a variety of human erythroid phenotypes, such as the In(Lu) blood type, increased HbA2 levels, and hereditary persistence of fetal hemoglobin. Severe dominant congenital dyserythropoietic anemia IV (OMIM 613673) is associated with the KLF1 p.E325K variant. CDA-IV patients display ineffective erythropoiesis and hemolysis resulting in anemia, accompanied by persistent high levels of embryonic and fetal hemoglobin. The mouse Nan strain carries a variant in the orthologous residue, KLF1 p.E339D. Klf1Nan causes dominant hemolytic anemia with many similarities to CDA-IV. Here we investigated the impact of Klf1Nan on the developmental expression patterns of the endogenous beta-like and alpha-like globins, and the human beta-like globins carried on a HBB locus transgene. We observe that the switch from primitive, yolk sac-derived, erythropoiesis to definitive, fetal liver-derived, erythropoiesis is delayed in Klf1wt/Nan embryos. This is reflected in globin expression patterns measured between E12.5 and E14.5. Cultured Klf1wt/Nan E12.5 fetal liver cells display growth- and differentiation defects. These defects likely contribute to the delayed appearance of definitive erythrocytes in the circulation of Klf1wt/Nan embryos. After E14.5, expression of the embryonic/fetal globin genes is silenced rapidly. In adult Klf1wt/Nan animals, silencing of the embryonic/fetal globin genes is impeded, but only minute amounts are expressed. Thus, in contrast to human KLF1 p.E325K, mouse KLF1 p.E339D does not lead to persistent high levels of embryonic/fetal globins. Our results support the notion that KLF1 affects gene expression in a variant-specific manner, highlighting the necessity to characterize KLF1 variant-specific phenotypes of patients in detail.
Collapse
Affiliation(s)
- Anne Korporaal
- Erasmus MC Department of Cell Biology, Rotterdam, The Netherlands
| | - Nynke Gillemans
- Erasmus MC Department of Cell Biology, Rotterdam, The Netherlands
| | - Steven Heshusius
- Department of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
| | - Ileana Cantú
- Erasmus MC Department of Cell Biology, Rotterdam, The Netherlands
| | | | | | | | - Sjaak Philipsen
- Erasmus MC Department of Cell Biology, Rotterdam, The Netherlands
| |
Collapse
|
25
|
Kumar R, Yadav R, Mishra S, Singh MPSS, Gwal A, Bharti PK, Rajasubramaniam S. Krüppel-like factor 1 (KLF1) gene single nucleotide polymorphisms in sickle cell disease and its association with disease-related morbidities. Ann Hematol 2021; 100:365-373. [PMID: 33388857 DOI: 10.1007/s00277-020-04381-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Sickle cell disease has varied clinical symptoms, and patients having high fetal hemoglobin (HbF) have milder symptoms. Various genetic factors are known to modulate the HbF levels. Krüppel-like factor 1 (KLF1) is a transcription factor that regulates the beta-like globin gene expression. Any variation in KLF1 gene may alter the sickle cell disease phenotype. Xmn-I polymorphism is also known to regulate the gamma globin gene expression. Present studies were carried out to investigate the effect of KLF1 gene mutations and Xmn-I polymorphism on the sickle cell disease severity and to ascertain the genotype-phenotype correlation. One hundred and eighteen sickle cell disease patients having a median follow-up of 5 years (3-10 years) were recruited. Clinical details were recorded from their retrospective medical records. Xmn-I polymorphism were analyzed using PCR-RFLP method. Variations in KLF1 gene were identified using Sanger sequencing. Out of 118 patients, 24 had acute chest syndrome and 21 patients had more than 2 pain episodes per year. There were no significant differences in sickle cell disease-related morbidities in male and females barring leg ulcers. A total of 6 polymorphism were observed in KLF1 gene, out of which 3 are novel (c.-304G > C, c.*141A > G and c.*178A > G). No statistically significant association of any of SNPs identified in KLF1 gene or Xmn-I polymorphism was seen with HbF levels as well as the sickle cell disease-related morbidities. No association exists between fetal hemoglobin or sickle cell disease-related morbidities and Xmn-I polymorphism or with SNPs identified in KLF1 gene in the studied cohort.
Collapse
Affiliation(s)
- Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, P.O. Garha, Jabalpur, 482003, India
| | - Rajiv Yadav
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, P.O. Garha, Jabalpur, 482003, India
| | - Sweta Mishra
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, P.O. Garha, Jabalpur, 482003, India
| | - M P S S Singh
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, P.O. Garha, Jabalpur, 482003, India
| | - Anil Gwal
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, P.O. Garha, Jabalpur, 482003, India
| | - Praveen K Bharti
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, P.O. Garha, Jabalpur, 482003, India
| | - Shanmugam Rajasubramaniam
- ICMR-National Institute of Research in Tribal Health, Nagpur Road, P.O. Garha, Jabalpur, 482003, India.
| |
Collapse
|
26
|
Kumar S, Behera A, Saha P, Kumar Srivastava A. The role of Krüppel-like factor 8 in cancer biology: Current research and its clinical relevance. Biochem Pharmacol 2020; 183:114351. [PMID: 33253644 DOI: 10.1016/j.bcp.2020.114351] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the leading causes of mortality worldwide, ranked second after heart disease. Despite recent advancements in diagnosis and treatment, there are still numerous problems associated with cancer progression, disease recurrence, and therapeutic resistance that are partially explored. Several studies have recently revealed that Krüppel-like factor 8 (KLF8) regulates transcription of genes linked with diverse biological processes, including proliferation, epithelial to mesenchymal transition (EMT), migration, invasion, and inflammation. KLF8 is expressed ubiquitously in mammalian cells, and its aberrant expression has been manifested with several cancer types. Earlier studies demonstrated the crucial role of KLF8 in DNA repair and resistance to apoptosis in numerous cancer types. Hence, studying the function of KLF8 from the perspective of cancer progression and therapy resistance would help develop a new therapeutic avenue. In this review, we summarize the clinical relevance of KLF8 expression in various malignancies, focusing on recent updates in EMT, cellular signaling, and cancer stem cells. We also address the contribution of KLF8 in development, DNA repair, chemoresistance, and its clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Abhijeet Behera
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, AP, India.
| | - Priyanka Saha
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| | - Amit Kumar Srivastava
- Cancer Biology & Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, WB, India.
| |
Collapse
|
27
|
The erythroblastic island niche: modeling in health, stress, and disease. Exp Hematol 2020; 91:10-21. [DOI: 10.1016/j.exphem.2020.09.185] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
|
28
|
Kulczynska-Figurny K, Bieker JJ, Siatecka M. Severe anemia caused by dominant mutations in Krüppel-like factor 1 (KLF1). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 786:108336. [PMID: 33339573 DOI: 10.1016/j.mrrev.2020.108336] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/23/2020] [Accepted: 09/29/2020] [Indexed: 10/23/2022]
Abstract
The etiology and severity of anemia, a common blood disorder, are diverse. Dominant mutations in Krüppel-like factor 1 (KLF1/EKLF) underlie the molecular basis for some of them. KLF1 is a zinc finger transcription factor that plays an essential role in red blood cell proliferation and differentiation. Mutations have been identified in the KLF1 gene that cause hematologic diseases. Two of these alter one allele but generate an extreme phenotype: the mouse Nan mutation (E339D) leads to hemolytic neonatal anemia with hereditary spherocytosis, and the human CDA mutation (E325K) causes congenital dyserythropoietic anemia (CDA) type IV. These modify functionally important amino acids in the zinc finger DNA-binding domain at positions involved in direct interactions with regulatory elements of KLF1's target genes. Although the two dominant mutations alter the same evolutionarily conserved glutamic acid residue, the substitutions are not equivalent and lead to divergent consequences for the molecular mechanisms underlying activity of these mutants, particularly in recognition and interaction with their unique binding sites. Consequently, the properties of the protein are transformed such that it acquires novel dominant characteristics whose effects may not be limited to the erythroid compartment. KLF1 mutants cause loss-of-function/haploinsufficiency effects on some KLF1 wild-type target genes, while at the same time gain-of-function effects activate ectopic sites and neomorphic gene expression. Such anomalies not only lead to intrinsic red cell problems, but also to expression of non-erythroid genes that systemically disturb organ development. This review highlights recent molecular, biochemical, and genetic studies of KLF1 mutants, particularly the dramatic consequences that come from just a single amino acid change. The study of these variants provides an important contribution to the overall understanding of the DNA-protein interface of the zinc finger subtype of transcription factors, and the potential clinical consequences of what might appear to be a minor change in sequence.
Collapse
Affiliation(s)
| | - James J Bieker
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Miroslawa Siatecka
- Department of Genetics, Faculty of Biology, University of Adam Mickiewicz, Poznan, 61-614, Poland.
| |
Collapse
|
29
|
Perreault AA, Brown JD, Venters BJ. Erythropoietin Regulates Transcription and YY1 Dynamics in a Pre-established Chromatin Architecture. iScience 2020; 23:101583. [PMID: 33089097 PMCID: PMC7559257 DOI: 10.1016/j.isci.2020.101583] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
The three-dimensional architecture of the genome plays an essential role in establishing and maintaining cell identity. However, the magnitude and temporal kinetics of changes in chromatin structure that arise during cell differentiation remain poorly understood. Here, we leverage a murine model of erythropoiesis to study the relationship between chromatin conformation, the epigenome, and transcription in erythroid cells. We discover that acute transcriptional responses induced by erythropoietin (EPO), the hormone necessary for erythroid differentiation, occur within an invariant chromatin topology. Within this pre-established landscape, Yin Yang 1 (YY1) occupancy dynamically redistributes to sites in proximity of EPO-regulated genes. Using HiChIP, we identify chromatin contacts mediated by H3K27ac and YY1 that are enriched for enhancer-promoter interactions of EPO-responsive genes. Taken together, these data are consistent with an emerging model that rapid, signal-dependent transcription occurs in the context of a pre-established chromatin architecture. EPO induces rapid RNA Pol II response at a key subset of genes YY1 is redistributed in the genome following 1 h EPO stimulation CTCF and YY1 bind different locations pre and post 1 h EPO stimulation E-P loops mediated by H3K27ac are largely invariant in response to EPO
Collapse
Affiliation(s)
- Andrea A Perreault
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN 37232, USA.,Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan D Brown
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bryan J Venters
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
30
|
Ali G, Tariq MA, Shahid K, Ahmad FJ, Akram J. Advances in genome editing: the technology of choice for precise and efficient β-thalassemia treatment. Gene Ther 2020; 28:6-15. [PMID: 32355226 DOI: 10.1038/s41434-020-0153-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/16/2020] [Indexed: 11/09/2022]
Abstract
Beta (β)-thalassemia is one of the most significant hemoglobinopathy worldwide. The high prevalence of the β-thalassemia carriers aggravates the disease burden for patients and national economies in the developing world. The survival of β-thalassemia patients solely relies on repeated transfusions, which eventually results into multi-organ damage. The fetal γ-globin genes are ordinarily silenced at birth and replaced by the adult β-globin genes. However, mutations that cause lifelong persistence of fetal γ-globin, ameliorate the debilitating effects of β-globin mutations. Therefore, therapeutically reactivating the fetal γ-globin gene is a prime focus of researchers. CRISPR/Cas9 is the most common approach to correct disease causative mutations or to enhance or disrupt the expression of proteins to mitigate the effects of the disease. CRISPR/cas9 and prime gene editing to correct mutations in hematopoietic stem cells of β-thalassemia patients has been considered a novel therapeutic approach for effective hemoglobin production. However, genome-editing technologies, along with all advantages, have shown some disadvantages due to either random insertions or deletions at the target site of edition or non-specific targeting in genome. Therefore, the focus of this review is to compare pros and cons of these editing technologies and to elaborate the retrospective scope of gene therapy for β-thalassemia patients.
Collapse
Affiliation(s)
- Gibran Ali
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan.
| | - Muhammad Akram Tariq
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| | - Kamran Shahid
- Department of Oncology Medicine, University of Texas Health Science Center at Tyler, 11937 US HWY 271, Tyler, 75708, TX, USA
| | - Fridoon Jawad Ahmad
- Institute of Regenerative Medicine, Physiology and Cell Biology Department, University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan.
| | - Javed Akram
- University of Health Sciences Lahore, Khyaban-e-Jamia Punjab, Lahore, 54600, Pakistan
| |
Collapse
|
31
|
The Distinct Roles of Transcriptional Factor KLF11 in Normal Cell Growth Regulation and Cancer as a Mediator of TGF-β Signaling Pathway. Int J Mol Sci 2020; 21:ijms21082928. [PMID: 32331236 PMCID: PMC7215894 DOI: 10.3390/ijms21082928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
KLF11 (Krüppel-like factor 11) belongs to the family of Sp1/Krüppel-like zinc finger transcription factors that play important roles in a variety of cell types and tissues. KLF11 was initially described as a transforming growth factor-beta (TGF-β) inducible immediate early gene (TIEG). KLF11 promotes the effects of TGF-β on cell growth control by influencing the TGFβ–Smads signaling pathway and regulating the transcription of genes that induce either apoptosis or cell cycle arrest. In carcinogenesis, KLF11 can show diverse effects. Its function as a tumor suppressor gene can be suppressed by phosphorylation of its binding domains via oncogenic pathways. However, KLF 11 can itself also show tumor-promoting effects and seems to have a crucial role in the epithelial–mesenchymal transition process. Here, we review the current knowledge about the function of KLF11 in cell growth regulation. We focus on its transcriptional regulatory function and its influence on the TGF-β signaling pathway. We further discuss its possible role in mediating crosstalk between various signaling pathways in normal cell growth and in carcinogenesis.
Collapse
|
32
|
Mansoor A, Mansoor MO, Patel JL, Zhao S, Natkunam Y, Bieker JJ. KLF1/EKLF expression in acute leukemia is correlated with chromosomal abnormalities. Blood Cells Mol Dis 2020; 83:102434. [PMID: 32311573 DOI: 10.1016/j.bcmd.2020.102434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 12/15/2022]
Abstract
KLF1 (EKLF) is a master regulator of erythropoiesis and controls expression of a wide array of target genes. We interrogated human tissue microarray samples via immunohistological analysis to address whether levels of KLF1 protein are associated with leukemia. We have made the unexpected findings that higher KLF1 levels are correlated with cells containing abnormal chromosomes, and that high KLF1 expression is not limited to acute myeloid leukemia (AML) associated with erythroid/megakaryoblastic differentiation. Expression of KLF1 is associated with poor survival. Further analyses reveal that KLF1 directly regulates a number of genes that play a role in chromosomal integrity. Together these results suggest that monitoring KLF1 levels may provide a new marker for risk stratification and prognosis in patients with AML.
Collapse
Affiliation(s)
- Adnan Mansoor
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Mohammad Omer Mansoor
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
| | - Jay L Patel
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Shuchun Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Yasodha Natkunam
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - James J Bieker
- Department of Cell, Developmental, & Regenerative Biology, Black Family Stem Cell Institute, Tisch Cancer Institute, Mount Sinai School of Medicine, New York, NY, USA.
| |
Collapse
|
33
|
Turpaev KT. Transcription Factor KLF2 and Its Role in the Regulation of Inflammatory Processes. BIOCHEMISTRY (MOSCOW) 2020; 85:54-67. [PMID: 32079517 DOI: 10.1134/s0006297920010058] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
KLF2 is a member of the Krüppel-like transcription factor family of proteins containing highly conserved DNA-binding zinc finger domains. KLF2 participates in the differentiation and regulation of the functional activity of monocytes, T lymphocytes, adipocytes, and vascular endothelial cells. The activity of KLF2 is controlled by several regulatory systems, including the MEKK2,3/MEK5/ERK5/MEF2 MAP kinase cascade, Rho family G-proteins, histone acetyltransferases CBP and p300, and histone deacetylases HDAC4 and HDAC5. Activation of KLF2 in endothelial cells induces eNOS expression and provides vasodilatory effect. Many KLF2-dependent genes participate in the suppression of blood coagulation and aggregation of T cells and macrophages with the vascular endothelium, thereby preventing atherosclerosis progression. KLF2 can have a dual effect on the gene transcription. Thus, it induces expression of multiple genes, but suppresses transcription of NF-κB-dependent genes. Transcription factors KLF2 and NF-κB are reciprocal antagonists. KLF2 inhibits induction of NF-κB-dependent genes, whereas NF-κB downregulates KLF2 expression. KLF2-mediated inhibition of NF-κB signaling leads to the suppression of cell response to the pro-inflammatory cytokines IL-1β and TNFα and results in the attenuation of inflammatory processes.
Collapse
Affiliation(s)
- K T Turpaev
- Center for Theoretical Problems of Physicochemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
34
|
A Krüppel-like factor 1 ( KLF1) Mutation Associated with Severe Congenital Dyserythropoietic Anemia Alters Its DNA-Binding Specificity. Mol Cell Biol 2020; 40:MCB.00444-19. [PMID: 31818881 DOI: 10.1128/mcb.00444-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/04/2019] [Indexed: 11/20/2022] Open
Abstract
Krüppel-like factor 1 (KLF1/EKLF) is a transcription factor that globally activates genes involved in erythroid cell development. Various mutations are identified in the human KLF1 gene. The E325K mutation causes congenital dyserythropoietic anemia (CDA) type IV, characterized by severe anemia and non-erythroid-cell-related symptoms. The CDA mutation is in the second zinc finger of KLF1 at a position functionally involved in its interactions with DNA. The molecular parameters of how CDA-KLF1 exerts its biological effects have not been addressed. Here, using an in vitro selection strategy, we determined the preferred DNA-binding site for CDA-KLF1. Binding to the deduced consensus sequence is supported by in vitro gel shifts and by in vivo functional reporter gene studies. Two significant changes compared to wild-type (WT) binding are observed: G is selected as the middle nucleotide, and the 3' portion of the consensus sequence is more degenerate. As a consequence, CDA-KLF1 did not bind the WT consensus sequence. However, activation of ectopic sites is promoted. Continuous activation of WT target genes occurs if they fortuitously contain the novel CDA site nearby. Our findings provide a molecular understanding of how a single mutation in the KLF1 zinc finger exerts effects on erythroid physiology in CDA type IV.
Collapse
|
35
|
Wang G, Kostidis S, Tiemeier GL, Sol WMPJ, de Vries MR, Giera M, Carmeliet P, van den Berg BM, Rabelink TJ. Shear Stress Regulation of Endothelial Glycocalyx Structure Is Determined by Glucobiosynthesis. Arterioscler Thromb Vasc Biol 2019; 40:350-364. [PMID: 31826652 DOI: 10.1161/atvbaha.119.313399] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Endothelial cells exposed to laminar shear stress express a thick glycocalyx on their surface that plays an important role in reducing vascular permeability and endothelial anti-inflammatory, antithrombotic, and antiangiogenic properties. Production and maintenance of this glycocalyx layer is dependent on cellular carbohydrate synthesis, but its regulation is still unknown. Approach and Results: Here, we show that biosynthesis of the major structural component of the endothelial glycocalyx, hyaluronan, is regulated by shear. Both in vitro as well as in in vivo, hyaluronan expression on the endothelial surface is increased on laminar shear and reduced when exposed to oscillatory flow, which is regulated by KLF2 (Krüppel-like Factor 2). Using a CRISPR-CAS9 edited small tetracysteine tag to endogenous HAS2 (hyaluronan synthase 2), we demonstrated increased translocation of HAS2 to the endothelial cell membrane during laminar shear. Hyaluronan production by HAS2 was shown to be further driven by availability of the hyaluronan substrates UDP-glucosamine and UDP-glucuronic acid. KLF2 inhibits endothelial glycolysis and allows for glucose intermediates to shuttle into the hexosamine- and glucuronic acid biosynthesis pathways, as measured using nuclear magnetic resonance analysis in combination with 13C-labeled glucose. CONCLUSIONS These data demonstrate how endothelial glycocalyx function and functional adaptation to shear is coupled to KLF2-mediated regulation of endothelial glycolysis.
Collapse
Affiliation(s)
- Gangqi Wang
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Sarantos Kostidis
- Center for Proteomics and Metabolomics, Leiden University Medical Center, the Netherlands (S.K., M.G.)
| | - Gesa L Tiemeier
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Wendy M P J Sol
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Margreet R de Vries
- Department of Surgery (M.R.d.V.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, the Netherlands (S.K., M.G.)
| | - Peter Carmeliet
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven, Vesalius Research Center, VIB, Belgium (P.C.).,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, Leuven, Belgium (P.C.)
| | - Bernard M van den Berg
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| | - Ton J Rabelink
- From the Division of Nephrology, Department of Internal Medicine (G.W., G.L.T., W.M.P.J.S., B.M.v.d.B., T.J.R.), The Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, the Netherlands
| |
Collapse
|
36
|
Fanis P, Kousiappa I, Phylactides M, Kyrri A, Hadjigavriel M, Christou S, Sitarou M, Kleanthous M. A novel mutation in the erythroid transcription factor KLF1 is likely responsible for ameliorating β-thalassemia major. Hum Mutat 2019; 40:1768-1780. [PMID: 31115947 PMCID: PMC6790707 DOI: 10.1002/humu.23817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/02/2019] [Accepted: 05/05/2019] [Indexed: 12/02/2022]
Abstract
We describe the identification of a novel missense mutation in the second zinc finger of KLF1 in two siblings who, based on their genotype, are predicted to suffer from beta thalassemia major but are, in fact, transfusion‐free and in good health. These individuals, as well as two additional members of the same family also carrying this KLF1 mutation, exhibit high levels of fetal hemoglobin (HbF). KLF1 is an erythroid transcription factor, which plays a critical role in the regulation of the developmental switch between fetal and adult hemoglobin by regulating the expression of a multitude of genes including that of BCL11A. The mutation appears to be the main candidate responsible for the beta thalassemia‐ameliorating effect as this segregates with the observed phenotype and also exogenous expression of the KLF1 mutant protein in human erythroid progenitor cells resulted in the induction of γ‐globin, without, however, affecting BCL11A levels. This report adds to the weight of evidence that heterozygous KLF1 mutations can ameliorate the severity of the β‐thalassemia major phenotype.
Collapse
Affiliation(s)
- Pavlos Fanis
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Ioanna Kousiappa
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Marios Phylactides
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreani Kyrri
- Population Screening Laboratory, Archbishop Makarios III Hospital, Nicosia, Cyprus
| | | | | | - Maria Sitarou
- Thalassaemia Clinic, Larnaca General Hospital, Larnaca, Cyprus
| | - Marina Kleanthous
- Molecular Genetics Thalassaemia Department, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
37
|
Ilsley MD, Huang S, Magor GW, Landsberg MJ, Gillinder KR, Perkins AC. Corrupted DNA-binding specificity and ectopic transcription underpin dominant neomorphic mutations in KLF/SP transcription factors. BMC Genomics 2019; 20:417. [PMID: 31126231 PMCID: PMC6534859 DOI: 10.1186/s12864-019-5805-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/17/2019] [Indexed: 02/07/2023] Open
Abstract
Background Mutations in the transcription factor, KLF1, are common within certain populations of the world. Heterozygous missense mutations in KLF1 mostly lead to benign phenotypes, but a heterozygous mutation in a DNA-binding residue (E325K in human) results in severe Congenital Dyserythropoietic Anemia type IV (CDA IV); i.e. an autosomal-dominant disorder characterized by neonatal hemolysis. Results To investigate the biochemical and genetic mechanism of CDA IV, we generated murine erythroid cell lines that harbor tamoxifen-inducible (ER™) versions of wild type and mutant KLF1 on a Klf1−/− genetic background. Nuclear translocation of wild type KLF1 results in terminal erythroid differentiation, whereas mutant KLF1 results in hemolysis without differentiation. The E to K variant binds poorly to the canonical 9 bp recognition motif (NGG-GYG-KGG) genome-wide but binds at high affinity to a corrupted motif (NGG-GRG-KGG). We confirmed altered DNA-binding specificity by quantitative in vitro binding assays of recombinant zinc-finger domains. Our results are consistent with previously reported structural data of KLF-DNA interactions. We employed 4sU-RNA-seq to show that a corrupted transcriptome is a direct consequence of aberrant DNA binding. Conclusions Since all KLF/SP family proteins bind DNA in an identical fashion, these results are likely to be generally applicable to mutations in all family members. Importantly, they explain how certain mutations in the DNA-binding domain of transcription factors can generate neomorphic functions that result in autosomal dominant disease. Electronic supplementary material The online version of this article (10.1186/s12864-019-5805-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melissa D Ilsley
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Stephen Huang
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Graham W Magor
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| | - Michael J Landsberg
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD, Australia
| | - Kevin R Gillinder
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia. .,Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia.
| | - Andrew C Perkins
- Mater Research, Translational Research Institute, University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Genetic Variants Within the Erythroid Transcription Factor, KLF1, and Reduction of the Expression of Lutheran and Other Blood Group Antigens: Review of the In(Lu) Phenotype. Transfus Med Rev 2019; 33:111-117. [DOI: 10.1016/j.tmrv.2019.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/22/2019] [Accepted: 01/30/2019] [Indexed: 11/22/2022]
|
39
|
Fang Y, Wu D, Birukov KG. Mechanosensing and Mechanoregulation of Endothelial Cell Functions. Compr Physiol 2019; 9:873-904. [PMID: 30873580 PMCID: PMC6697421 DOI: 10.1002/cphy.c180020] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vascular endothelial cells (ECs) form a semiselective barrier for macromolecules and cell elements regulated by dynamic interactions between cytoskeletal elements and cell adhesion complexes. ECs also participate in many other vital processes including innate immune reactions, vascular repair, secretion, and metabolism of bioactive molecules. Moreover, vascular ECs represent a unique cell type exposed to continuous, time-dependent mechanical forces: different patterns of shear stress imposed by blood flow in macrovasculature and by rolling blood cells in the microvasculature; circumferential cyclic stretch experienced by the arterial vascular bed caused by heart propulsions; mechanical stretch of lung microvascular endothelium at different magnitudes due to spontaneous respiration or mechanical ventilation in critically ill patients. Accumulating evidence suggests that vascular ECs contain mechanosensory complexes, which rapidly react to changes in mechanical loading, process the signal, and develop context-specific adaptive responses to rebalance the cell homeostatic state. The significance of the interactions between specific mechanical forces in the EC microenvironment together with circulating bioactive molecules in the progression and resolution of vascular pathologies including vascular injury, atherosclerosis, pulmonary edema, and acute respiratory distress syndrome has been only recently recognized. This review will summarize the current understanding of EC mechanosensory mechanisms, modulation of EC responses to humoral factors by surrounding mechanical forces (particularly the cyclic stretch), and discuss recent findings of magnitude-specific regulation of EC functions by transcriptional, posttranscriptional and epigenetic mechanisms using -omics approaches. We also discuss ongoing challenges and future opportunities in developing new therapies targeting dysregulated mechanosensing mechanisms to treat vascular diseases. © 2019 American Physiological Society. Compr Physiol 9:873-904, 2019.
Collapse
Affiliation(s)
- Yun Fang
- Department of Medicine, University of Chicago, Chicago, Illinois, USA,Correspondence to
| | - David Wu
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Konstantin G. Birukov
- Department of Anesthesiology, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
40
|
Wang R, Xu J, Xu J, Zhu W, Qiu T, Li J, Zhang M, Wang Q, Xu T, Guo R, Lu K, Yin Y, Gu Y, Zhu L, Huang P, Liu P, Liu L, De W, Shu Y. MiR-326/Sp1/KLF3: A novel regulatory axis in lung cancer progression. Cell Prolif 2019; 52:e12551. [PMID: 30485570 PMCID: PMC6495967 DOI: 10.1111/cpr.12551] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 09/27/2018] [Accepted: 10/17/2018] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES To investigate the function and regulatory mechanism of Krüppel-like factor 3 (KLF3) in lung cancer. MATERIALS AND METHODS KLF3 expression was analysed by qRT-PCR and Western blot assays. The proliferation, migration, invasion, cycle and apoptosis were measured by CCK-8 and EdU, wound-healing and Transwell, and flow cytometry assays. The tumour growth was detected by nude mouse tumorigenesis assay. In addition, the interaction between KLF3 and Sp1 was accessed by luciferase reporter, EMSA and ChIP assay. JAK2, STAT3, PI3K and p-AKT levels were evaluated by Western blot and IHC assays. RESULTS The results indicated that KLF3 expression was elevated in lung cancer tissues. Knockdown of KLF3 inhibited lung cancer cell proliferation, migration and invasion, and induced cell cycle arrest and apoptosis. In addition, the downregulation of KLF3 suppressed tumour growth in vivo. KLF3 was transcriptionally activated by Sp1. miR-326 could bind to 3'UTR of Sp1 but not KLF3 and decreased the accumulation of Sp1, which further indirectly reduced KLF3 expression and inactivated JAK2/STAT3 and PI3K/AKT signaling pathways in vitro and in vivo. CONCLUSIONS Our data demonstrate that miR-326/Sp1/KLF3 regulatory axis is involved in the development of lung cancer, which hints the potential target for the further therapeutic strategy against lung cancer.
Collapse
Affiliation(s)
- Rong Wang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jiali Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jing Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Wei Zhu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Tianzhu Qiu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Jun Li
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Meiling Zhang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Qianqian Wang
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Tongpeng Xu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Renhua Guo
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Kaihua Lu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Yongmei Yin
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Yanhong Gu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Lingjun Zhu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Puwen Huang
- Department of OncologyLiyang people's Hospital of Jiangsu ProvinceLiyangChina
| | - Ping Liu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Lianke Liu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| | - Wei De
- Department of Biochemistry and Molecular BiologyNanjing Medical UniversityNanjingChina
| | - Yongqian Shu
- Department of Oncologythe First Affiliated Hospital of Nanjing Medical University, Jiangsu Province HospitalNanjingChina
| |
Collapse
|
41
|
Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The Pleiotropic Effects of GATA1 and KLF1 in Physiological Erythropoiesis and in Dyserythropoietic Disorders. Front Physiol 2019; 10:91. [PMID: 30809156 PMCID: PMC6379452 DOI: 10.3389/fphys.2019.00091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 01/19/2023] Open
Abstract
In the last few years, the advent of new technological approaches has led to a better knowledge of the ontogeny of erythropoiesis during development and of the journey leading from hematopoietic stem cells (HSCs) to mature red blood cells (RBCs). Our view of a well-defined hierarchical model of hematopoiesis with a near-homogeneous HSC population residing at the apex has been progressively challenged in favor of a landscape where HSCs themselves are highly heterogeneous and lineages separate earlier than previously thought. The coordination of these events is orchestrated by transcription factors (TFs) that work in a combinatorial manner to activate and/or repress their target genes. The development of next generation sequencing (NGS) has facilitated the identification of pathological mutations involving TFs underlying hematological defects. The examples of GATA1 and KLF1 presented in this review suggest that in the next few years the number of TF mutations associated with dyserythropoietic disorders will further increase.
Collapse
Affiliation(s)
- Gloria Barbarani
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - Cristina Fugazza
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| | - John Strouboulis
- School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Antonella E Ronchi
- Dipartimento di Biotecnologie e Bioscienze, Università degli Studi Milano-Bicocca, Milan, Italy
| |
Collapse
|
42
|
Rane MJ, Zhao Y, Cai L. Krϋppel-like factors (KLFs) in renal physiology and disease. EBioMedicine 2019; 40:743-750. [PMID: 30662001 PMCID: PMC6414320 DOI: 10.1016/j.ebiom.2019.01.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 01/08/2019] [Accepted: 01/08/2019] [Indexed: 12/20/2022] Open
Abstract
Dysregulated Krϋppel-like factor (KLF) gene expression appears in many disease-associated pathologies. In this review, we discuss physiological functions of KLFs in the kidney with a focus on potential pharmacological modulation/therapeutic applications of these KLF proteins. KLF2 is critical to maintaining endothelial barrier integrity and preventing gap formations and in prevention of glomerular endothelial cell and podocyte damage in diabetic mice. KLF4 is renoprotective in the setting of AKI and is a critical regulator of proteinuria in mice and humans. KLF6 expression in podocytes preserves mitochondrial function and prevents podocyte apoptosis, while KLF5 expression prevents podocyte apoptosis by blockade of ERK/p38 MAPK pathways. KLF15 is a critical regulator of podocyte differentiation and is protective against podocyte injury. Loss of KLF4 and KLF15 promotes renal fibrosis, while fibrotic kidneys have increased KLF5 and KLF6 expression. For therapeutic modulation of KLFs, continued screening of small molecules will promote drug discoveries targeting KLF proteins.
Collapse
Affiliation(s)
- Madhavi J Rane
- Department of Medicine, Division Nephrology, Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA.
| | - Yuguang Zhao
- Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, 130021, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
43
|
Chen Y, Bi F, An Y, Yang Q. Coexpression network analysis identified Krüppel-like factor 6 (KLF6) association with chemosensitivity in ovarian cancer. J Cell Biochem 2019; 120:2607-2615. [PMID: 30206992 DOI: 10.1002/jcb.27567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
Although most patients with ovarian cancer (OC) are initially sensitive to paclitaxel/carboplatin combination chemotherapy, eventually they develop resistance to chemotherapy drugs and experience disease relapse. OC is the most lethal gynecological malignancy, and the five-year survival rate is extremely low. Thus, research on specific biomarkers and potential targets for chemotherapy-resistant patients with OC is needed. In our study, genes in the top 10% of variance in data set GSE30161 from chemoresistant and chemosensitive OC tissues were determined to conduct a weighted gene coexpression network analysis (WGCNA). The magenta module was most strongly related to OC chemoresponse. Gene ontology enrichment analysis indicated that the function of the magenta module primarily focused on transcription regulation, cell cycle control, and apoptosis modulation. Integration of the WGCN with the protein-protein interaction network identified five candidate genes. These five genes were verified using the GSE51373 test set, and Krüppel-like factor 6 ( KLF6) was identified as tightly linked to OC chemosensitivity. The receiver operating characteristic (ROC) curve showed that KLF6 differentiated chemoresistant from chemosensitive OC tissues. The Kaplan-Meier online database indicated that high KLF6 expression was associated with poor OC prognosis. Gene set enrichment analysis determined that the KLF6 mechanism was potentially associated with cell cycle, mTOR, and DNA-damage repair signaling pathways. In conclusion, KLF6 was identified in association with OC chemoresistance, and the mechanism of KLF6-mediated chemoresistance may involve the cell cycle, mTOR, and DNA-damage repair signaling pathways.
Collapse
Affiliation(s)
- Ying Chen
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yuanyuan An
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
44
|
Hariharan P, Colah R, Ghosh K, Nadkarni A. Differential role of Kruppel like factor 1 (KLF1) gene in red blood cell disorders. Genomics 2018; 111:1771-1776. [PMID: 30529538 DOI: 10.1016/j.ygeno.2018.11.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/27/2018] [Accepted: 11/30/2018] [Indexed: 01/06/2023]
Abstract
The master erythroid regulator KLF1,plays a pivotal role during erythroid lineage development by regulating the expression of many erythroid genes. Variations in the KLF1 gene are found to be associated with varied erythroid phenotypes. With the aim of determining the role of KLF1 gene variations in HbF induction and their genotype phenotype relationship, in this study, we screened 370 individuals with different hemoglobinopathy condition. Hematological analysis was carried out using automated blood cell counter and Variant II HPLC (Biorad). KLF1 gene mutations were screened using automated DNA sequencing. Expression analysis was carried out using q-RT PCR of KLF1, BCL11A and γ-globin after selective enrichment and culturing of CD 34 +ve cells into an erythroid lineage. Over all 14 KLF1 gene variations were identified, of which six variants were novel. The incidence of KLF1 gene mutations was found to be 8.1%. It was seen that KLF1 mutations contributed in borderline HbA2 levels as 7.6% of our borderline HbA2 cases showed presence of KLF1 variations. It also contributed in induction of HbF levels under stress erythropoietic conditions. Gene expression studies revealed inverse correlation of KLF1, BCL11A (reduced) with γ-globin gene expression (increased) in patients showing KLF1 gene mutations, thus indicating the role of KLF1 gene in regulating the γ-globin gene expression. The identification of genomic variants of the KLF1 may help in determining the functionally active domain of this protein and will facilitate in understanding the wide spectrum of phenotypes generated by these variants.
Collapse
Affiliation(s)
- Priya Hariharan
- National Institute of Immunohematology (ICMR), 13th Floor, New Multi-storeyed Building, K.E.M. Hospital Campus, Parel, Mumbai 400012, India
| | - Roshan Colah
- National Institute of Immunohematology (ICMR), 13th Floor, New Multi-storeyed Building, K.E.M. Hospital Campus, Parel, Mumbai 400012, India
| | - Kanjaksha Ghosh
- National Institute of Immunohematology (ICMR), 13th Floor, New Multi-storeyed Building, K.E.M. Hospital Campus, Parel, Mumbai 400012, India
| | - Anita Nadkarni
- National Institute of Immunohematology (ICMR), 13th Floor, New Multi-storeyed Building, K.E.M. Hospital Campus, Parel, Mumbai 400012, India.
| |
Collapse
|
45
|
Wienert B, Martyn GE, Funnell APW, Quinlan KGR, Crossley M. Wake-up Sleepy Gene: Reactivating Fetal Globin for β-Hemoglobinopathies. Trends Genet 2018; 34:927-940. [PMID: 30287096 DOI: 10.1016/j.tig.2018.09.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/23/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022]
Abstract
Disorders in hemoglobin (hemoglobinopathies) were the first monogenic diseases to be characterized and remain among the most common and best understood genetic conditions. Moreover, the study of the β-globin locus provides a textbook example of developmental gene regulation. The fetal γ-globin genes (HBG1/HBG2) are ordinarily silenced around birth, whereupon their expression is replaced by the adult β-globin genes (HBB primarily and HBD). Over 50 years ago it was recognized that mutations that cause lifelong persistence of fetal γ-globin expression ameliorate the debilitating effects of mutations in β-globin. Since then, research has focused on therapeutically reactivating the fetal γ-globin genes. Here, we summarize recent discoveries, focusing on the influence of genome editing technologies, including CRISPR-Cas9, and emerging gene therapy approaches.
Collapse
Affiliation(s)
- Beeke Wienert
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia; Innovative Genomics Institute, University of California, Berkeley, CA, USA; Present address: Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Gabriella E Martyn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Alister P W Funnell
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia; Present address: Altius Institute for Biomedical Sciences, Seattle, WA, USA
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
46
|
Baron MH. Developmental regulation of the vertebrate globin multigene family. Gene Expr 2018; 6:129-37. [PMID: 9041120 PMCID: PMC6148311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
"Hemoglobin switching," or the sequential expression of globin genes in erythroid cells during development, has provided an important paradigm for tissue- and stage-specific gene regulation. Over the past decade, regulatory DNA sequences and transcription factors involved in controlling the expression of individual globin genes in erythroid cells have been identified. The picture that has emerged indicates that gene proximal control elements collaborate with a "locus control region" located far upstream - probably via a DNA looping mechanism - to ensure that each gene is turned on only in erythroid cells and at the appropriate time during development. Interactions among the various regulatory sequences are thought to be mediated and stabilized by an array of tissue-specific and ubiquitous proteins. Chromatin structure plays a critical but still poorly understood role in this process.
Collapse
Affiliation(s)
- M H Baron
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
47
|
Nébor D, Graber JH, Ciciotte SL, Robledo RF, Papoin J, Hartman E, Gillinder KR, Perkins AC, Bieker JJ, Blanc L, Peters LL. Mutant KLF1 in Adult Anemic Nan Mice Leads to Profound Transcriptome Changes and Disordered Erythropoiesis. Sci Rep 2018; 8:12793. [PMID: 30143664 PMCID: PMC6109071 DOI: 10.1038/s41598-018-30839-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/02/2018] [Indexed: 12/31/2022] Open
Abstract
Anemic Nan mice carry a mutation (E339D) in the second zinc finger of erythroid transcription factor KLF1. Nan-KLF1 fails to bind a subset of normal KLF1 targets and ectopically binds a large set of genes not normally engaged by KLF1, resulting in a corrupted fetal liver transcriptome. Here, we performed RNAseq using flow cytometric-sorted spleen erythroid precursors from adult Nan and WT littermates rendered anemic by phlebotomy to identify global transcriptome changes specific to the Nan Klf1 mutation as opposed to anemia generally. Mutant Nan-KLF1 leads to extensive and progressive transcriptome corruption in adult spleen erythroid precursors such that stress erythropoiesis is severely compromised. Terminal erythroid differentiation is defective in the bone marrow as well. Principle component analysis reveals two major patterns of differential gene expression predicting that defects in basic cellular processes including translation, cell cycle, and DNA repair could contribute to disordered erythropoiesis and anemia in Nan. Significant erythroid precursor stage specific changes were identified in some of these processes in Nan. Remarkably, however, despite expression changes in large numbers of associated genes, most basic cellular processes were intact in Nan indicating that developing red cells display significant physiological resiliency and establish new homeostatic set points in vivo.
Collapse
Affiliation(s)
| | - Joel H Graber
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA.,MDI Biological Laboratory, Salisbury Cove, ME, 04672, USA
| | | | | | - Julien Papoin
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Emily Hartman
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | - Kevin R Gillinder
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Andrew C Perkins
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia.,The Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - James J Bieker
- Department of Cell, Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY, 10029, USA
| | - Lionel Blanc
- Feinstein Institute for Medical Research, Manhasset, NY, 11030, USA
| | | |
Collapse
|
48
|
Tanimura N, Liao R, Wilson GM, Dent MR, Cao M, Burstyn JN, Hematti P, Liu X, Zhang Y, Zheng Y, Keles S, Xu J, Coon JJ, Bresnick EH. GATA/Heme Multi-omics Reveals a Trace Metal-Dependent Cellular Differentiation Mechanism. Dev Cell 2018; 46:581-594.e4. [PMID: 30122630 DOI: 10.1016/j.devcel.2018.07.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/01/2018] [Accepted: 07/19/2018] [Indexed: 01/27/2023]
Abstract
By functioning as an enzyme cofactor, hemoglobin component, and gene regulator, heme is vital for life. One mode of heme-regulated transcription involves amplifying the activity of GATA-1, a key determinant of erythrocyte differentiation. To discover biological consequences of the metal cofactor-transcription factor mechanism, we merged GATA-1/heme-regulated sectors of the proteome and transcriptome. This multi-omic analysis revealed a GATA-1/heme circuit involving hemoglobin subunits, ubiquitination components, and proteins not implicated in erythrocyte biology, including the zinc exporter Slc30a1. Though GATA-1 induced expression of Slc30a1 and the zinc importer Slc39a8, Slc39a8 dominantly increased intracellular zinc, which conferred erythroblast survival. Subsequently, a zinc transporter switch, involving decreased importer and sustained exporter expression, reduced intracellular zinc during terminal differentiation. Downregulating Slc30a1 increased intracellular zinc and, strikingly, accelerated differentiation. This analysis established a conserved paradigm in which a GATA-1/heme circuit controls trace metal transport machinery and trace metal levels as a mechanism governing cellular differentiation.
Collapse
Affiliation(s)
- Nobuyuki Tanimura
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ruiqi Liao
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Gary M Wilson
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Matthew R Dent
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Miao Cao
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Judith N Burstyn
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peiman Hematti
- UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Xin Liu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ye Zheng
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53706, USA
| | - Jian Xu
- Children's Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine, Madison, WI 53706, USA; Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53715, USA; Genome Center of Wisconsin, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
49
|
Fan Y, Lu H, Liang W, Hu W, Zhang J, Chen YE. Krüppel-like factors and vascular wall homeostasis. J Mol Cell Biol 2018; 9:352-363. [PMID: 28992202 DOI: 10.1093/jmcb/mjx037] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are major causes of death worldwide. Identification of promising targets for prevention and treatment of CVDs is paramount in the cardiovascular field. Numerous transcription factors regulate cellular function through modulation of specific genes and thereby are involved in the physiological and pathophysiological processes of CVDs. Although Krüppel-like factors (KLFs) have a similar protein structure with a conserved zinc finger domain, they possess distinct tissue and cell distribution patterns as well as biological functions. In the vascular system, KLF activities are regulated at both transcriptional and posttranscriptional levels. Growing in vitro, in vivo, and genetic epidemiology studies suggest that specific KLFs play important roles in vascular wall biology, which further affect vascular diseases. KLFs regulate various functional aspects such as cell growth, differentiation, activation, and development through controlling a whole cluster of functionally related genes and modulating various signaling pathways in response to pathological conditions. Therapeutic targeting of selective KLF family members may be desirable to achieve distinct treatment effects in the context of various vascular diseases. Further elucidation of the association of KLFs with human CVDs, their underlying molecular mechanisms, and precise protein structure studies will be essential to define KLFs as promising targets for therapeutic interventions in CVDs.
Collapse
Affiliation(s)
- Yanbo Fan
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Haocheng Lu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenying Liang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Wenting Hu
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Jifeng Zhang
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Y Eugene Chen
- Cardiovascular Center, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| |
Collapse
|
50
|
Memon A, Lee WK. KLF10 as a Tumor Suppressor Gene and Its TGF-β Signaling. Cancers (Basel) 2018; 10:E161. [PMID: 29799499 PMCID: PMC6025274 DOI: 10.3390/cancers10060161] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022] Open
Abstract
Krüppel-like factor 10 (KLF10), originally named TGF-β (Transforming growth factor beta) inducible early gene 1 (TIEG1), is a DNA-binding transcriptional regulator containing a triple C2H2 zinc finger domain. By binding to Sp1 (specificity protein 1) sites on the DNA and interactions with other regulatory transcription factors, KLF10 encourages and suppresses the expression of multiple genes in many cell types. Many studies have investigated its signaling cascade, but other than the TGF-β/Smad signaling pathway, these are still not clear. KLF10 plays a role in proliferation, differentiation as well as apoptosis, just like other members of the SP (specificity proteins)/KLF (Krüppel-like Factors). Recently, several studies reported that KLF10 KO (Knock out) is associated with defects in cell and organs such as osteopenia, abnormal tendon or cardiac hypertrophy. Since KLF10 was first discovered, several studies have defined its role in cancer as a tumor suppressor. KLF10 demonstrate anti-proliferative effects and induce apoptosis in various carcinoma cells including pancreatic cancer, leukemia, and osteoporosis. Collectively, these data indicate that KLF10 plays a significant role in various biological processes and diseases, but its role in cancer is still unclear. Therefore, this review was conducted to describe and discuss the role and function of KLF10 in diseases, including cancer, with a special emphasis on its signaling with TGF-β.
Collapse
Affiliation(s)
- Azra Memon
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea.
| | - Woon Kyu Lee
- Laboratory of Developmental Genetics, Department of Biomedical Sciences, School of Medicine, Inha University, Incheon 22212, Korea.
| |
Collapse
|