1
|
Nili F, Mirzaian E, Doustmohammadi T, Moradpanah S, Ameli F, Sarmadi S, Momeni N. GATA3 expression in tumor-infiltrating mononuclear inflammatory cells is associated with poor prognostic factors in tubo-ovarian carcinomas. Pathol Int 2024; 74:682-690. [PMID: 39503188 DOI: 10.1111/pin.13488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 12/13/2024]
Abstract
The study investigated the expression of GATA3, a transcription factor involved in immune regulation, in tubo-ovarian carcinomas and its association with clinicopathological factors and prognosis. Immunohistochemical analysis was performed on 91 tubo-ovarian carcinoma samples to determine the presence of GATA3-positive inflammatory cells in the tumor microenvironment. A threshold of 10% or higher was considered a positive expression. The results showed that 46.7% of tubo-ovarian carcinomas exhibited positive expression of GATA3 in inflammatory cells. There was no significant difference in GATA3 expression between patients who received pre-surgical chemotherapy and those who underwent primary surgery. However, high-grade serous carcinomas had a significantly higher proportion of GATA3-positive inflammatory cells compared to other subtypes. Advanced-stage tumors (stage III) had a higher percentage of GATA3-positive inflammatory cells compared to stage II and I tumors. Patients with positive GATA3 expression had a significantly lower disease-free survival rate. However, there was no significant association between GATA3 expression and chemotherapy response score. These findings suggest that increased expression of GATA3 in mononuclear inflammatory cells is associated with higher grade, advanced stage, and increased risk of recurrence in tubo-ovarian carcinoma. This implies that heightened GATA3 expression negatively impacts anti-tumor immunity, tumor growth progression, and invasiveness in tubo-ovarian carcinomas.
Collapse
Affiliation(s)
- Fatemeh Nili
- Department of Pathology, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Mirzaian
- Department of Pathology, Dr Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahereh Doustmohammadi
- Department of Pathology, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Moradpanah
- Department of Gynecology and Obstetrics, Dr Shariati Hospital, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Ameli
- Department of Pathology, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Sarmadi
- Department of Pathology, Yas Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Niusha Momeni
- Department of Pathology, Imam Khomeini Hospital Complex, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Kim M. Comparative analysis of amino acid sequence level in plant GATA transcription factors. Sci Rep 2024; 14:29786. [PMID: 39616200 PMCID: PMC11608367 DOI: 10.1038/s41598-024-81159-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 11/25/2024] [Indexed: 03/15/2025] Open
Abstract
Transcription factors (TFs) are essential regulators of gene expression, influencing numerous biological processes such as development, growth, and cellular responses in plants. Among these, GATA TFs are distinguished by their highly conserved DNA-binding domain, characterized by a class IV zinc finger motif (CX2CX18-20CX2C). This study investigates the amino acid sequence patterns of 5,335 GATA TFs across 165 plant species sourced from the PlantTFDB database ( http://planttfdb.gao-lab.org/ ), encompassing diverse taxonomic groups. Through comparative sequence analysis, I identify conserved domains and structural features that enhance the understanding functional roles, evolutionary conservation, and lineage-specific adaptations of GATA TFs. These findings provide valuable insights into the diversification and functional specialization of GATA TFs, with implications for improving stress tolerance and adaptability in crops. This study contributes to the broader knowledge of transcriptional regulation in plant biology.
Collapse
Affiliation(s)
- Mangi Kim
- Department of Biotechnology, Sangmyung University, 03016, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Dror Y. Unfriendly protein of GATA1 and mechanisms of bone marrow failure. Haematologica 2024; 109:2761-2763. [PMID: 38618686 PMCID: PMC11367186 DOI: 10.3324/haematol.2024.285041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Yigal Dror
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children; Institute of Medical Science, Faculty of Medicine, University of Toronto and Bone Marrow Failure and Myelodysplasia Program, Division of Haematology/Oncology, Department of Paediatrics, The Hospital for Sick Children and University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Choi K, Lee J, Kim G, Lim Y, Kang HJ. Recovery of synaptic loss and depressive-like behavior induced by GATA1 through blocking of the neuroinflammatory response. Front Cell Neurosci 2024; 18:1369951. [PMID: 38784708 PMCID: PMC11112091 DOI: 10.3389/fncel.2024.1369951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/09/2024] [Indexed: 05/25/2024] Open
Abstract
GATA1, a member of the GATA transcription factor family, is a critical factor in hematopoietic system development. In a previous study, we demonstrated the increased expression of GATA1 in the dorsolateral prefrontal cortex (dlPFC) of patients suffering from depression and described its role as a transcriptional repressor of synapse-related genes. In this study, we investigated how GATA1 globally altered gene expression using multi-omics approaches. Through the combined analyses of ChIPseq, mRNAseq, and small RNAseq, we profiled genes that are potentially affected by GATA1 in cultured cortical neurons, and Gene Ontology (GO) analysis revealed that GATA1 might be associated with immune-related functions. We hypothesized that GATA1 induces immune activation, which has detrimental effects including synapse loss and depressive-like behavior. To test this hypothesis, we first performed a microglial morphometric analysis of a brain having overexpression of GATA1 because microglia are the resident immune cells of the central nervous system. Fractal analysis showed that the ramification and process length of microglia decreased in brains having GATA1 overexpression compared to the control, suggesting that GATA1 overexpression increases the activation of microglia. Through flow cytometry and immunohistochemical analysis, we found that activated microglia showed pro-inflammatory phenotypes characterized by the expression of CD86 and CD68. Finally, we demonstrated that the effects of GATA1 overexpression including synapse loss and depressive-like behavior could be blocked by inhibiting microglial activation using minocycline. These results will elucidate the regulatory mechanisms of GATA1 that affect pathophysiological conditions such as depression and provide a potential target for the treatment of depression.
Collapse
Affiliation(s)
| | | | | | | | - Hyo Jung Kang
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
5
|
Abunimye DA, Okafor IM, Okorowo H, Obeagu EI. The role of GATA family transcriptional factors in haematological malignancies: A review. Medicine (Baltimore) 2024; 103:e37487. [PMID: 38518015 PMCID: PMC10956995 DOI: 10.1097/md.0000000000037487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/13/2024] [Indexed: 03/24/2024] Open
Abstract
GATA transcriptional factors are zinc finger DNA binding proteins that regulate transcription during development and cell differentiation. The 3 important GATA transcription factors GATA1, GATA2 and GATA3 play essential role in the development and maintenance of hematopoietic systems. GATA1 is required for the erythroid and Megakaryocytic commitment during hematopoiesis. GATA2 is crucial for the proliferation and survival of early hematopoietic cells, and is also involved in lineage specific transcriptional regulation as the dynamic partner of GATA1. GATA3 plays an essential role in T lymphoid cell development and immune regulation. As a result, mutations in gene encoding the GATA transcription factor or alteration in the protein expression level or their function have been linked to a variety of human haematological malignancies. This review presents a summary of recent understanding of how the disrupted biological function of GATA may contribute to hematologic diseases.
Collapse
Affiliation(s)
- Dennis Akongfe Abunimye
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | - Ifeyinwa Maryanne Okafor
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | - Henshew Okorowo
- Department of Haematology and Blood Transfusion Science, University of Calabar, Calabar, Nigeria
| | | |
Collapse
|
6
|
Ramal M, Corral S, Kalisz M, Lapi E, Real FX. The urothelial gene regulatory network: understanding biology to improve bladder cancer management. Oncogene 2024; 43:1-21. [PMID: 37996699 DOI: 10.1038/s41388-023-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The urothelium is a stratified epithelium composed of basal cells, one or more layers of intermediate cells, and an upper layer of differentiated umbrella cells. Most bladder cancers (BLCA) are urothelial carcinomas. Loss of urothelial lineage fidelity results in altered differentiation, highlighted by the taxonomic classification into basal and luminal tumors. There is a need to better understand the urothelial transcriptional networks. To systematically identify transcription factors (TFs) relevant for urothelial identity, we defined highly expressed TFs in normal human bladder using RNA-Seq data and inferred their genomic binding using ATAC-Seq data. To focus on epithelial TFs, we analyzed RNA-Seq data from patient-derived organoids recapitulating features of basal/luminal tumors. We classified TFs as "luminal-enriched", "basal-enriched" or "common" according to expression in organoids. We validated our classification by differential gene expression analysis in Luminal Papillary vs. Basal/Squamous tumors. Genomic analyses revealed well-known TFs associated with luminal (e.g., PPARG, GATA3, FOXA1) and basal (e.g., TP63, TFAP2) phenotypes and novel candidates to play a role in urothelial differentiation or BLCA (e.g., MECOM, TBX3). We also identified TF families (e.g., KLFs, AP1, circadian clock, sex hormone receptors) for which there is suggestive evidence of their involvement in urothelial differentiation and/or BLCA. Genomic alterations in these TFs are associated with BLCA. We uncover a TF network involved in urothelial cell identity and BLCA. We identify novel candidate TFs involved in differentiation and cancer that provide opportunities for a better understanding of the underlying biology and therapeutic intervention.
Collapse
Affiliation(s)
- Maria Ramal
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sonia Corral
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Mark Kalisz
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Eleonora Lapi
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- CIBERONC, Madrid, Spain
| | - Francisco X Real
- Epithelial Carcinogenesis Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain.
- CIBERONC, Madrid, Spain.
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
7
|
Liao R, Babatunde A, Qiu S, Harikumar H, Coon JJ, Overmyer KA, Hannun YA, Luberto C, Bresnick EH. A transcriptional network governing ceramide homeostasis establishes a cytokine-dependent developmental process. Nat Commun 2023; 14:7262. [PMID: 37945603 PMCID: PMC10636182 DOI: 10.1038/s41467-023-42978-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Transcriptional mechanisms controlling developmental processes establish and maintain proteomic networks, which can govern the levels of intracellular small molecules. Although dynamic changes in bioactive small molecules can link transcription factor and genome activity with cell state transitions, many mechanistic questions are unresolved. Using quantitative lipidomics and multiomics, we discover that the hematopoietic transcription factor GATA1 establishes ceramide homeostasis during erythroid differentiation by regulating genes encoding sphingolipid metabolic enzymes. Inhibiting a GATA1-induced sphingolipid biosynthetic enzyme, delta(4)-desaturase, or disrupting ceramide homeostasis with cell-permeable dihydroceramide or ceramide is detrimental to erythroid, but not myeloid, progenitor activity. Coupled with genetic editing-based rewiring of the regulatory circuitry, we demonstrate that ceramide homeostasis commissions vital stem cell factor and erythropoietin signaling by opposing an inhibitory protein phosphatase 2A-dependent, dual-component mechanism. Integrating bioactive lipids as essential components of GATA factor mechanisms to control cell state transitions has implications for diverse cell and tissue types.
Collapse
Affiliation(s)
- Ruiqi Liao
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Abiola Babatunde
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Stephanie Qiu
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Hamsini Harikumar
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Katherine A Overmyer
- Department of Biomolecular Chemistry, National Center for Quantitative Biology of Complex Systems, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Morgridge Institute for Research, Madison, WI, USA
| | - Yusuf A Hannun
- Department of Medicine, Stony Book University, Stony Brook, NY, USA
- Northport Veterans Affairs Medical Center, Northport, NY, USA
| | - Chiara Luberto
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, USA
| | - Emery H Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| |
Collapse
|
8
|
Arunkumar R, Zhou SO, Day JP, Bakare S, Pitton S, Zhang Y, Hsing CY, O’Boyle S, Pascual-Gil J, Clark B, Chandler RJ, Leitão AB, Jiggins FM. Natural selection has driven the recurrent loss of an immunity gene that protects Drosophila against a major natural parasite. Proc Natl Acad Sci U S A 2023; 120:e2211019120. [PMID: 37552757 PMCID: PMC10438844 DOI: 10.1073/pnas.2211019120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 06/26/2023] [Indexed: 08/10/2023] Open
Abstract
Polymorphisms in immunity genes can have large effects on susceptibility to infection. To understand the origins of this variation, we have investigated the genetic basis of resistance to the parasitoid wasp Leptopilina boulardi in Drosophila melanogaster. We found that increased expression of the gene lectin-24A after infection by parasitic wasps was associated with a faster cellular immune response and greatly increased rates of killing the parasite. lectin-24A encodes a protein that is strongly up-regulated in the fat body after infection and localizes to the surface of the parasite egg. In certain susceptible lines, a deletion upstream of the lectin-24A has largely abolished expression. Other mutations predicted to abolish the function of this gene have arisen recurrently in this gene, with multiple loss-of-expression alleles and premature stop codons segregating in natural populations. The frequency of these alleles varies greatly geographically, and in some southern African populations, natural selection has driven them near to fixation. We conclude that natural selection has favored the repeated loss of an important component of the immune system, suggesting that in some populations, a pleiotropic cost to lectin-24A expression outweighs the benefits of resistance.
Collapse
Affiliation(s)
- Ramesh Arunkumar
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Shuyu Olivia Zhou
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Jonathan P. Day
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Sherifat Bakare
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
- Department of Biochemical Sciences, School of Biosciences, University of Surrey, 388 Stag Hill, Guildford,GU2 7XH, United Kingdom
| | - Simone Pitton
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
- Biosciences Department, Università degli Studi di Milano, Via Celoria 26, Milano, MI20133, Italy
| | - Yexin Zhang
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Chi-Yun Hsing
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Sinead O’Boyle
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
- School of Biomolecular and Biomedical Science, University College Dublin, DublinD04 V1W8, Ireland
| | - Juan Pascual-Gil
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
- Facultad de Ciencias, Universidad Autónoma de Madrid, C. Francisco Tomás y Valiente 7, 28049Madrid, Spain
| | - Belinda Clark
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Rachael J. Chandler
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
- Department of Biochemical Sciences, School of Biosciences, University of Surrey, 388 Stag Hill, Guildford,GU2 7XH, United Kingdom
| | - Alexandre B. Leitão
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, School of Biological Sciences, University of Cambridge, Downing Street, CambridgeCB2 3EH, United Kingdom
| |
Collapse
|
9
|
Scott TG, Sathyan KM, Gioeli D, Guertin MJ. TRPS1 modulates chromatin accessibility to regulate estrogen receptor (ER) binding and ER target gene expression in luminal breast cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547524. [PMID: 37461612 PMCID: PMC10349936 DOI: 10.1101/2023.07.03.547524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Breast cancer is the most frequently diagnosed cancer in women. The most common subtype is luminal breast cancer, which is typically driven by the estrogen receptor α (ER), a transcription factor (TF) that activates many genes required for proliferation. Multiple effective therapies target this pathway, but individuals often develop resistance. Thus, there is a need to identify additional targets that regulate ER activity and contribute to breast tumor progression. TRPS1 is a repressive GATA-family TF that is overexpressed in breast tumors. Common genetic variants in the TRPS1 locus are associated with breast cancer risk, and luminal breast cancer cell lines are particularly sensitive to TRPS1 knockout. However, we do not know how TRPS1 regulates target genes to mediate these breast cancer patient and cellular outcomes. We introduced an inducible degron tag into the native TRPS1 locus within a luminal breast cancer cell line to identify the direct targets of TRPS1 and determine how TRPS1 mechanistically regulates gene expression. We acutely deplete over eighty percent of TRPS1 from chromatin within 30 minutes of inducing degradation. We find that TRPS1 regulates transcription of hundreds of genes, including those related to estrogen signaling. TRPS1 directly regulates chromatin structure, which causes ER to redistribute in the genome. ER redistribution leads to both repression and activation of dozens of ER target genes. Downstream from these primary effects, TRPS1 depletion represses cell cycle-related gene sets and reduces cell doubling rate. Finally, we show that high TRPS1 activity, calculated using a gene expression signature defined by primary TRPS1-regulated genes, is associated with worse breast cancer patient prognosis. Taken together, these data suggest a model in which TRPS1 modulates the activity of other TFs, both activating and repressing transcription of genes related to cancer cell fitness.
Collapse
Affiliation(s)
- Thomas G Scott
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Kizhakke Mattada Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, Connecticut, United States of America
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, United States of America
| |
Collapse
|
10
|
Jung MM, Shen S, Botten GA, Olender T, Katsumura KR, Johnson KD, Soukup AA, Liu P, Zhang Q, Jensvold ZD, Lewis PW, Beagrie RA, Low JK, Yang L, Mackay JP, Godley LA, Brand M, Xu J, Keles S, Bresnick EH. Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks. J Clin Invest 2023; 133:e162685. [PMID: 36809258 PMCID: PMC10065080 DOI: 10.1172/jci162685] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.
Collapse
Affiliation(s)
- Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Siqi Shen
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Giovanni A. Botten
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Qingzhou Zhang
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Zena D. Jensvold
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert A. Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jason K.K. Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lihua Yang
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lucy A. Godley
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Marjorie Brand
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sunduz Keles
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| |
Collapse
|
11
|
Luo T, Pan Y, Liu Y, Zheng J, Zhuang Z, Ren Z, Zhu J, Gu Y, Zeng Y. LANA regulates miR-155/GATA3 signaling axis by enhancing c-Jun/c-Fos interaction to promote the proliferation and migration of KSHV-infected cells. J Med Virol 2023; 95:e28255. [PMID: 36284455 DOI: 10.1002/jmv.28255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/08/2022] [Accepted: 10/21/2022] [Indexed: 01/11/2023]
Abstract
Kaposi's sarcoma (KS) is the second most common tumor in people infected with human immunodeficiency virus worldwide, but its pathogenesis is still unclear. In this study, we discovered that the expression of GATA-binding protein 3 (GATA3) was lowly expressed in KS tissues and KSHV-infected cells, while microRNA-155 (miR-155) was highly expressed in KS serum and KSHV-infected cells. miR-155 promoted the proliferation, migration and invasion of KSHV infection by targeting GATA3. Further, The KSHV-encoded protein, the Latency associated nuclear antigen (LANA), promotes the proliferation, migration and invasion of KSHV-infected cells by regulating the miR-155/GATA3 axis. Regarding the molecular mechanism, c-Jun and c-Fos interact to form a complex. LANA upregulates the expression of c-Jun and c-Fos and enhances the formation of c-Jun/c-Fos complex. The complex binds to the -95∼-100 bp site of miR-155 promoter and transcriptionally activates miR-155. All in all, LANA enhances the c-Jun/c-Fos interaction, resulting in enhanced transcriptional regulation of miR-155 by the c-Jun/c-Fos complex, thereby downregulating GATA3 and promoting the proliferation, migration and invasion of KSHV-infected cells. The discovery of LANA/c-Jun/c-Fos/miR-155/GATA3 further refines the pathogenesis of KS, potentially opening a new avenue for developing effective drugs against KS.
Collapse
Affiliation(s)
- Ting Luo
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yangyang Pan
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yuhao Liu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Jun Zheng
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zhaowei Zhuang
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zuodong Ren
- Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Jiaojiao Zhu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yongqing Gu
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yan Zeng
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,Key Laboratory of Xinjiang Endemic and Ethnic Disease, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
12
|
Zhang S, Zheng S. Host Combats IBDV Infection at Both Protein and RNA Levels. Viruses 2022; 14:v14102309. [PMID: 36298864 PMCID: PMC9607458 DOI: 10.3390/v14102309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/15/2022] [Accepted: 10/18/2022] [Indexed: 01/24/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by infectious bursal disease virus (IBDV). In recent years, with the emergence of IBDV variants and recombinant strains, IBDV still threatens the poultry industry worldwide. It seems that the battle between host and IBDV will never end. Thus, it is urgent to develop a more comprehensive and effective strategy for the control of this disease. A better understanding of the mechanisms underlying virus-host interactions would be of help in the development of novel vaccines. Recently, much progress has been made in the understanding of the host response against IBDV infection. If the battle between host and IBDV at the protein level is considered the front line, at the RNA level, it can be taken as a hidden line. The host combats IBDV infection at both the front and hidden lines. Therefore, this review focuses on our current understanding of the host response to IBDV infection at both the protein and RNA levels.
Collapse
Affiliation(s)
- Shujun Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun Zheng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-(10)-6273-4681
| |
Collapse
|
13
|
Saultier P, Cabantous S, Puceat M, Peiretti F, Bigot T, Saut N, Bordet JC, Canault M, van Agthoven J, Loosveld M, Payet-Bornet D, Potier D, Falaise C, Bernot D, Morange PE, Alessi MC, Poggi M. GATA1 pathogenic variants disrupt MYH10 silencing during megakaryopoiesis. J Thromb Haemost 2021; 19:2287-2301. [PMID: 34060193 DOI: 10.1111/jth.15412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/24/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND GATA1 is an essential transcription factor for both polyploidization and megakaryocyte (MK) differentiation. The polyploidization defect observed in GATA1 variant carriers is not well understood. OBJECTIVE To extensively phenotype two pedigrees displaying different variants in the GATA1 gene and determine if GATA1 controls MYH10 expression levels, a key modulator of MK polyploidization. METHOD A total of 146 unrelated propositi with constitutional thrombocytopenia were screened on a multigene panel. We described the genotype-phenotype correlation in GATA1 variant carriers and investigated the effect of these novel variants on MYH10 transcription using luciferase constructs. RESULTS The clinical profile associated with the p.L268M variant localized in the C terminal zinc finger was unusual in that the patient displayed bleeding and severe platelet aggregation defects without early-onset thrombocytopenia. p.N206I localized in the N terminal zinc finger was associated, on the other hand, with severe thrombocytopenia (15G/L) in early life. High MYH10 levels were evidenced in platelets of GATA1 variant carriers. Analysis of MKs anti-GATA1 chromatin immunoprecipitation-sequencing data revealed two GATA1 binding sites, located in the 3' untranslated region and in intron 8 of the MYH10 gene. Luciferase reporter assays showed their respective role in the regulation of MYH10 gene expression. Both GATA1 variants significantly alter intron 8 driven MYH10 transcription. CONCLUSION The discovery of an association between MYH10 and GATA1 is a novel one. Overall, this study suggests that impaired MYH10 silencing via an intronic regulatory element is the most likely cause of GATA1-related polyploidization defect.
Collapse
Affiliation(s)
- Paul Saultier
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
| | | | | | | | - Timothée Bigot
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | - Noémie Saut
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | | | | | - Johannes van Agthoven
- Structural Biology Program, Division of Nephrology/Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Marie Loosveld
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
- Aix-Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | | - Céline Falaise
- Department of Pediatric Hematology, Immunology and Oncology, APHM, La Timone Children's Hospital, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Denis Bernot
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| | - Pierre-Emmanuel Morange
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Marie-Christine Alessi
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
- APHM, CHU Timone, French Reference Center on Inherited Platelet Disorders, Marseille, France
| | - Marjorie Poggi
- Aix Marseille Univ, INSERM, INRAe, C2VN, Marseille, France
| |
Collapse
|
14
|
de Castro CPM, Cadefau M, Cuartero S. The Mutational Landscape of Myeloid Leukaemia in Down Syndrome. Cancers (Basel) 2021; 13:4144. [PMID: 34439298 PMCID: PMC8394284 DOI: 10.3390/cancers13164144] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Children with Down syndrome (DS) are particularly prone to haematopoietic disorders. Paediatric myeloid malignancies in DS occur at an unusually high frequency and generally follow a well-defined stepwise clinical evolution. First, the acquisition of mutations in the GATA1 transcription factor gives rise to a transient myeloproliferative disorder (TMD) in DS newborns. While this condition spontaneously resolves in most cases, some clones can acquire additional mutations, which trigger myeloid leukaemia of Down syndrome (ML-DS). These secondary mutations are predominantly found in chromatin and epigenetic regulators-such as cohesin, CTCF or EZH2-and in signalling mediators of the JAK/STAT and RAS pathways. Most of them are also found in non-DS myeloid malignancies, albeit at extremely different frequencies. Intriguingly, mutations in proteins involved in the three-dimensional organization of the genome are found in nearly 50% of cases. How the resulting mutant proteins cooperate with trisomy 21 and mutant GATA1 to promote ML-DS is not fully understood. In this review, we summarize and discuss current knowledge about the sequential acquisition of genomic alterations in ML-DS.
Collapse
Affiliation(s)
| | - Maria Cadefau
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| | - Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, 08916 Badalona, Spain; (C.P.M.d.C); (M.C.)
- Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, 08916 Badalona, Spain
| |
Collapse
|
15
|
Transcriptional Pausing and Activation at Exons-1 and -2, Respectively, Mediate the MGMT Gene Expression in Human Glioblastoma Cells. Genes (Basel) 2021; 12:genes12060888. [PMID: 34201219 PMCID: PMC8228370 DOI: 10.3390/genes12060888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/17/2022] Open
Abstract
Background: The therapeutically important DNA repair gene O6-methylguanine DNA methyltransferase (MGMT) is silenced by promoter methylation in human brain cancers. The co-players/regulators associated with this process and the subsequent progression of MGMT gene transcription beyond the non-coding exon 1 are unknown. As a follow-up to our recent finding of a predicted second promoter mapped proximal to the exon 2 [Int. J. Mol. Sci.2021, 22(5), 2492], we addressed its significance in MGMT transcription. Methods: RT-PCR, RT q-PCR, and nuclear run-on transcription assays were performed to compare and contrast the transcription rates of exon 1 and exon 2 of the MGMT gene in glioblastoma cells. Results: Bioinformatic characterization of the predicted MGMT exon 2 promoter showed several consensus TATA box and INR motifs and the absence of CpG islands in contrast to the established TATA-less, CpG-rich, and GAF-bindable exon 1 promoter. RT-PCR showed very weak MGMT-E1 expression in MGMT-proficient SF188 and T98G GBM cells, compared to active transcription of MGMT-E2. In the MGMT-deficient SNB-19 cells, the expression of both exons remained weak. The RT q-PCR revealed that MGMT-E2 and MGMT-E5 expression was about 80- to 175-fold higher than that of E1 in SF188 and T98G cells. Nuclear run-on transcription assays using bromo-uridine immunocapture followed by RT q-PCR confirmed the exceptionally lower and higher transcription rates for MGMT-E1 and MGMT-E2, respectively. Conclusions: The results provide the first evidence for transcriptional pausing at the promoter 1- and non-coding exon 1 junction of the human MGMT gene and its activation/elongation through the protein-coding exons 2 through 5, possibly mediated by a second promoter. The findings offer novel insight into the regulation of MGMT transcription in glioma and other cancer types.
Collapse
|
16
|
Watanabe-Asaka T, Hayashi M, Uemura S, Takai J, Suzuki A, Moriguchi T, Kawai Y. GATA2 participates in the recanalization of lymphatic vessels after surgical lymph node extirpation. Genes Cells 2021; 26:474-484. [PMID: 33864419 DOI: 10.1111/gtc.12852] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 11/27/2022]
Abstract
Lymphatic recanalization failure after lymphadenectomy constitutes a major risk of lymphedema in cancer surgery. It has been reported that GATA2, a zinc finger transcription factor, is expressed in lymphatic endothelial cells and is involved in the development of fetal lymphatic vessels. GATA3, another member of the GATA family of transcription factors, is required for the differentiation of lymphoid tissue inducer (LTi) cells and is essential for lymph node formation. However, how GATA2 and GATA3 function in recanalization after the surgical extirpation of lymphatic vessels has not been elucidated. Employing a new model of lymphatic recanalization, we examined the lymphatic reconnection process in Gata2 heterozygous deficient (Gata2+/- ) and Gata3 heterozygous deficient (Gata3+/- ) mice. We found that lymphatic recanalization was significantly impaired in Gata2+/- mice, while Gata3+/- mice rarely showed such abnormalities. Notably, the perturbed lymphatic recanalization in the Gata2+/- mice was partially restored by crossing with the Gata3+/- mice. Our results demonstrate for the first time that GATA2 participates in the regeneration of damaged lymphatic vessels and the unexpected suppressive activity of GATA3 against lymphatic recanalization processes.
Collapse
Affiliation(s)
| | - Moyuru Hayashi
- Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Satoshi Uemura
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Akane Suzuki
- Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Yoshiko Kawai
- Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
17
|
Zhang T, Qin Z, Liu D, Wei M, Fu Z, Wang Q, Ma Y, Zhang Z. A novel transcription factor MRPS27 up-regulates the expression of sqr, a key gene of mitochondrial sulfide metabolism in echiuran worm Urechis unicinctus. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108997. [PMID: 33549829 DOI: 10.1016/j.cbpc.2021.108997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide is a natural, widely distributed, poisonous substance and sulfide: quinone oxidoreductase (SQR) is responsible for oxidizing hydrogen sulfide to less toxic sulfur compounds. The increase of SQR mRNA level is an important mechanism for organisms to adapt to hydrogen sulfide-rich environments. However, its transcriptional regulation mechanism is not very clear. In this study, a mitochondrial 28S ribosomal protein S27 (MRPS27), which has never been reported as a transcription factor, was screened by yeast one-hybrid experiment from the echiuran worm Urechis unicinctus, a benthic organism living in marine sediments. Western blotting indicated that UuMRPS27 contents increased significantly in the nuclear extract of hindgut under exposed to 150 μM sulfide. ChIP and EMSA assays demonstrated that UuMRPS27 did bind to the sqr proximal promoter, the key binding sequence was CTAGAG (+12 to +17 of the promoter) detected by DNase I footprinting assay as well as transient transfection experiments. Furthermore, UuMRPS27, as a transcription activator, exhibited the highest transcription activity compared with other reported sqr transcription factors. Our data revealed for the first time the role of MRPS27 acting as a transcription factor which expanded the understanding of sqr transcriptional regulation in sulfide metabolism mechanism.
Collapse
Affiliation(s)
- Tingting Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenkui Qin
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Danwen Liu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Maokai Wei
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhong Fu
- Hebei Research Institute of Marine and Fishery Science, Qinhuangdao 066002, China
| | - Qing Wang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yubin Ma
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| | - Zhifeng Zhang
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
18
|
Genomic Space of MGMT in Human Glioma Revisited: Novel Motifs, Regulatory RNAs, NRF1, 2, and CTCF Involvement in Gene Expression. Int J Mol Sci 2021; 22:ijms22052492. [PMID: 33801310 PMCID: PMC7958331 DOI: 10.3390/ijms22052492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background: The molecular regulation of increased MGMT expression in human brain tumors, the associated regulatory elements, and linkages of these to its epigenetic silencing are not understood. Because the heightened expression or non-expression of MGMT plays a pivotal role in glioma therapeutics, we applied bioinformatics and experimental tools to identify the regulatory elements in the MGMT and neighboring EBF3 gene loci. Results: Extensive genome database analyses showed that the MGMT genomic space was rich in and harbored many undescribed RNA regulatory sequences and recognition motifs. We extended the MGMT’s exon-1 promoter to 2019 bp to include five overlapping alternate promoters. Consensus sequences in the revised promoter for (a) the transcriptional factors CTCF, NRF1/NRF2, GAF, (b) the genetic switch MYC/MAX/MAD, and (c) two well-defined p53 response elements in MGMT intron-1, were identified. A putative protein-coding or non-coding RNA sequence was located in the extended 3′ UTR of the MGMT transcript. Eleven non-coding RNA loci coding for miRNAs, antisense RNA, and lncRNAs were identified in the MGMT-EBF3 region and six of these showed validated potential for curtailing the expression of both MGMT and EBF3 genes. ChIP analysis verified the binding site in MGMT promoter for CTCF which regulates the genomic methylation and chromatin looping. CTCF depletion by a pool of specific siRNA and shRNAs led to a significant attenuation of MGMT expression in human GBM cell lines. Computational analysis of the ChIP sequence data in ENCODE showed the presence of NRF1 in the MGMT promoter and this occurred only in MGMT-proficient cell lines. Further, an enforced NRF2 expression markedly augmented the MGMT mRNA and protein levels in glioma cells. Conclusions: We provide the first evidence for several new regulatory components in the MGMT gene locus which predict complex transcriptional and posttranscriptional controls with potential for new therapeutic avenues.
Collapse
|
19
|
Al-Jaber H, Al-Mansoori L, Elrayess MA. GATA-3 as a Potential Therapeutic Target for Insulin Resistance and Type 2 Diabetes Mellitus. Curr Diabetes Rev 2021; 17:169-179. [PMID: 32628587 DOI: 10.2174/1573399816666200705210417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 11/22/2022]
Abstract
Impaired adipogenesis plays an important role in the development of obesity-associated insulin resistance and type 2 diabetes as it leads to ectopic fat deposition. The anti-adipogenic transcription factor GATA-3 was identified as one of the potential molecular targets responsible for the impairment of adipogenesis. The expression of GATA-3 is higher in insulinresistant obese individuals compared to BMI-matched insulin-sensitive counterparts. Adipose tissue inflammation is a crucial mediator of this process. Hyperglycemia mediates the activation of the immune system, partially through upregulation of GATA- 3, causing exacerbation of the inflammatory state associated with obesity. This review discusses the evidence supporting the inhibition of GATA-3 as a useful therapeutic strategy in obesity-associated insulin resistance and type 2 diabetes, through up-regulation adipogenesis and amelioration of the immune response.
Collapse
Affiliation(s)
- Hend Al-Jaber
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | | |
Collapse
|
20
|
Kuroda G, Sasaki S, Matsushita A, Ohba K, Sakai Y, Shinkai S, Nakamura HM, Yamagishi S, Sato K, Hirahara N, Oki Y, Ito M, Suzuki T, Suda T. G ATA2 mediates the negative regulation of the prepro-thyrotropin-releasing hormone gene by liganded T3 receptor β2 in the rat hypothalamic paraventricular nucleus. PLoS One 2020; 15:e0242380. [PMID: 33201916 PMCID: PMC7671546 DOI: 10.1371/journal.pone.0242380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/31/2020] [Indexed: 12/25/2022] Open
Abstract
Thyroid hormone (T3) inhibits thyrotropin-releasing hormone (TRH) synthesis in the hypothalamic paraventricular nucleus (PVN). Although the T3 receptor (TR) β2 is known to mediate the negative regulation of the prepro-TRH gene, its molecular mechanism remains unknown. Our previous studies on the T3-dependent negative regulation of the thyrotropin β subunit (TSHβ) gene suggest that there is a tethering mechanism, whereby liganded TRβ2 interferes with the function of the transcription factor, GATA2, a critical activator of the TSHβ gene. Interestingly, the transcription factors Sim1 and Arnt2, the determinants of PVN differentiation in the hypothalamus, are reported to induce expression of TRβ2 and GATA2 in cultured neuronal cells. Here, we confirmed the expression of the GATA2 protein in the TRH neuron of the rat PVN using immunohistochemistry with an anti-GATA2 antibody. According to an experimental study from transgenic mice, a region of the rat prepro-TRH promoter from nt. -547 to nt. +84 was able to mediate its expression in the PVN. We constructed a chloramphenicol acetyltransferase (CAT) reporter gene containing this promoter sequence (rTRH(547)-CAT) and showed that GATA2 activated the promoter in monkey kidney-derived CV1 cells. Deletion and mutation analyses identified a functional GATA-responsive element (GATA-RE) between nt. -357 and nt. -352. When TRβ2 was co-expressed, T3 reduced GATA2-dependent promoter activity to approximately 30%. Unexpectedly, T3-dependent negative regulation was maintained after mutation of the reported negative T3-responsive element, site 4. T3 also inhibited the GATA2-dependent transcription enhanced by cAMP agonist, 8-bromo-cAMP. A rat thyroid medullary carcinoma cell line, CA77, is known to express the preproTRH mRNA. Using a chromatin immunoprecipitation assay with this cell line where GATA2 expression plasmid was transfected, we observed the recognition of the GATA-RE by GATA2. We also confirmed GATA2 binding using gel shift assay with the probe for the GATA-RE. In CA77 cells, the activity of rTRH(547)-CAT was potentiated by overexpression of GATA2, and it was inhibited in a T3-dependent manner. These results suggest that GATA2 transactivates the rat prepro-TRH gene and that liganded TRβ2 interferes with this activation via a tethering mechanism as in the case of the TSHβ gene.
Collapse
Affiliation(s)
- Go Kuroda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shigekazu Sasaki
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
- * E-mail:
| | - Akio Matsushita
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Kenji Ohba
- Medical Education Center, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Yuki Sakai
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Shinsuke Shinkai
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Hiroko Misawa Nakamura
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Satoru Yamagishi
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Hamamatsu, Shizuoka, Japan
| | - Kohji Sato
- Department of Organ and Tissue Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Hamamatsu, Shizuoka, Japan
| | - Naoko Hirahara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Japanese Red Cross Shizuoka Hospital, Shizuoka, Shizuoka, Japan
| | - Yutaka Oki
- Department of Internal medicine, Hamamatsu Kita Hospital, Hamamatsu, Shizuoka, Japan
| | - Masahiko Ito
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Tetsuro Suzuki
- Department of Virology and Parasitology, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| | - Takafumi Suda
- Second Division, Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan
| |
Collapse
|
21
|
Wang CX, Xiong HF, Wang S, Wang J, Nie X, Guo Q, Li X, Qi Y, Liu JJ, Lin B. Overexpression of TEM8 promotes ovarian cancer progression via Rac1/Cdc42/JNK and MEK/ERK/STAT3 signaling pathways. Am J Transl Res 2020; 12:3557-3576. [PMID: 32774719 PMCID: PMC7407733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Tumor endothelial cell marker 8 (TEM8) is a type I transmembrane protein, that has been widely studied in the areas of anthrax toxin infection and tumor angiogenesis. However, the role of TEM8 in the progression of epithelial ovarian cancer (EOC) remains unclear. In this study, we determined that TEM8 was highly expressed in ovarian cancer and associated with poor prognosis in EOC patients. In vitro experiments showed that TEM8 overexpression significantly promoted ovarian cancer proliferation. TEM8 overexpression also promoted the G0/G1 phase transition, migration, and invasion of ovarian cancer cells but suppressed apoptosis. Moreover, experimental verification confirmed that TEM8 overexpression increased the expression of Ki-67, cyclin D1, Bcl2/Bax, MMP2, MMP9, and VEGFA and the phosphorylation of Rac1/Cdc42, JNK, MEK, ERK, and STAT3 (Ser727). Subsequently, the addition of RAC1 (EHop-016) and MEK (PD98059) pathway inhibitors suppressed malignant behaviors in the TEM8 overexpression group, which robustly indicated that TEM8 activated Rac1/Cdc42/JNK and MEK/ERK/STAT3 signaling pathways. In addition, we also revealed that the transcription factor GATA2 bound to the TATTAGTTATCTTT site of the TEM8 promoter region and regulated its expression. In conclusion, our study may provide a new theoretical basis for TEM8 application as a clinical biomarker and potential target in EOC patients.
Collapse
Affiliation(s)
- Cai-Xia Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, People’s Republic of China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, People’s Republic of China
| | - Hui-Fang Xiong
- Department of Obstetrics and Gynaecology, The Affiliated Longyan First Hospital of Fujian Medical UniversityFujian, People’s Republic of China
| | - Shuang Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, People’s Republic of China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, People’s Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, People’s Republic of China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, People’s Republic of China
| | - Xin Nie
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, People’s Republic of China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, People’s Republic of China
| | - Qian Guo
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, People’s Republic of China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, People’s Republic of China
| | - Xiao Li
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, People’s Republic of China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, People’s Republic of China
| | - Yue Qi
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, People’s Republic of China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, People’s Republic of China
| | - Juan-Juan Liu
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, People’s Republic of China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, People’s Republic of China
| | - Bei Lin
- Department of Obstetrics and Gynaecology, Shengjing Hospital Affiliated to China Medical UniversityLiaoning, People’s Republic of China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning ProvinceLiaoning, People’s Republic of China
| |
Collapse
|
22
|
Watanabe-Asaka T, Hayashi M, Engel JD, Kawai Y, Moriguchi T. GATA2 functions in adrenal chromaffin cells. Genes Cells 2020; 25:607-614. [PMID: 32562431 DOI: 10.1111/gtc.12795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/29/2022]
Abstract
Catecholamine synthesized in the sympathoadrenal system, including sympathetic neurons and adrenal chromaffin cells, is vital for cardiovascular homeostasis. It has been reported that GATA2, a zinc finger transcription factor, is expressed in murine sympathoadrenal progenitor cells. However, a physiological role for GATA2 in adrenal chromaffin cells has not been established. In this study, we demonstrate that GATA2 is specifically expressed in adrenal chromaffin cells. We examined the consequences of Gata2 loss-of-function mutations, exploiting a Gata2 conditional knockout allele crossed to neural crest-specific Wnt1-Cre transgenic mice (Gata2 NC-CKO). The vast majority of Gata2 NC-CKO embryos died by embryonic day 14.5 (e14.5) and exhibited a decrease in catecholamine-producing adrenal chromaffin cells, implying that a potential catecholamine defect might lead to the observed embryonic lethality. When intercrossed pregnant dams were fed with synthetic adrenaline analogs, the lethality of the Gata2 NC-CKO embryos was partially rescued, indicating that placental transfer of the adrenaline analogs complements the lethal catecholamine deficiency in the Gata2 NC-CKO embryos. These results demonstrate that GATA2 participates in the development of neuroendocrine adrenaline biosynthesis, which is essential for fetal survival.
Collapse
Affiliation(s)
| | - Moyuru Hayashi
- Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | | | - Yoshiko Kawai
- Division of Physiology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
23
|
Brown AL, Hahn CN, Scott HS. Secondary leukemia in patients with germline transcription factor mutations (RUNX1, GATA2, CEBPA). Blood 2020; 136:24-35. [PMID: 32430494 PMCID: PMC7332898 DOI: 10.1182/blood.2019000937] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Recognition that germline mutations can predispose individuals to blood cancers, often presenting as secondary leukemias, has largely been driven in the last 20 years by studies of families with inherited mutations in the myeloid transcription factors (TFs) RUNX1, GATA2, and CEBPA. As a result, in 2016, classification of myeloid neoplasms with germline predisposition for each of these and other genes was added to the World Health Organization guidelines. The incidence of germline mutation carriers in the general population or in various clinically presenting patient groups remains poorly defined for reasons including that somatic mutations in these genes are common in blood cancers, and our ability to distinguish germline (inherited or de novo) and somatic mutations is often limited by the laboratory analyses. Knowledge of the regulation of these TFs and their mutant alleles, their interaction with other genes and proteins and the environment, and how these alter the clinical presentation of patients and their leukemias is also incomplete. Outstanding questions that remain for patients with these germline mutations or their treating clinicians include: What is the natural course of the disease? What other symptoms may I develop and when? Can you predict them? Can I prevent them? and What is the best treatment? The resolution of many of the remaining clinical and biological questions and effective evidence-based treatment of patients with these inherited mutations will depend on worldwide partnerships among patients, clinicians, diagnosticians, and researchers to aggregate sufficient longitudinal clinical and laboratory data and integrate these data with model systems.
Collapse
MESH Headings
- Age of Onset
- Blood Cell Count
- CCAAT-Enhancer-Binding Proteins/genetics
- Core Binding Factor Alpha 2 Subunit/genetics
- Disease Management
- Early Detection of Cancer
- Forecasting
- GATA2 Transcription Factor/genetics
- Genes, Neoplasm
- Genetic Counseling
- Genetic Predisposition to Disease
- Germ-Line Mutation
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/epidemiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- Myelodysplastic Syndromes/genetics
- Neoplasms, Second Primary/genetics
- Penetrance
- Prognosis
Collapse
Affiliation(s)
- Anna L Brown
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Christopher N Hahn
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
| | - Hamish S Scott
- Department of Genetics and Molecular Pathology, SA Pathology, Adelaide, SA, Australia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia; and
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
24
|
Adkins BD, Geromes A, Zhang LY, Chernock R, Kimmelshue K, Lewis J, Ely K. SOX10 and GATA3 in Adenoid Cystic Carcinoma and Polymorphous Adenocarcinoma. Head Neck Pathol 2020; 14:406-411. [PMID: 31222589 PMCID: PMC7235140 DOI: 10.1007/s12105-019-01046-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
Differentiating between adenoid cystic carcinoma (AdCC) and polymorphous adenocarcinoma (PAC) can be difficult on small biopsies and cytologic specimens. As such, further characterization of their immunophenotype may aid in distinction. Previous studies have found AdCC to be SOX10+/GATA3 variable and PAC to be GATA3 negative. SOX10 expression in PAC has, as yet, not been established. We performed GATA3 and SOX10 immunohistochemistry on whole sections of 25 cases each of AdCC and PAC (including both classic PAC and the cribriform variant) to assess whether these markers are of diagnostic utility in distinguishing between these entities. SOX10 was found to be positive in 100% of PAC and AdCC whereas GATA 3 was immunoreactive in 45% of AdCCs and 20% of PAC. While this is the first series to compare SOX10 and GATA3 staining in these two tumor types, their frequent expression and similar staining patterns render them of limited value in discriminating between these neoplasms.
Collapse
Affiliation(s)
- Brian D Adkins
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN CC3322, Nashville, TN, 37232-2561, USA
| | - Ariana Geromes
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN CC3322, Nashville, TN, 37232-2561, USA
| | - Lily Y Zhang
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rebecca Chernock
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Katherine Kimmelshue
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN CC3322, Nashville, TN, 37232-2561, USA
| | - James Lewis
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN CC3322, Nashville, TN, 37232-2561, USA
| | - Kim Ely
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 1161 21st Avenue South, MCN CC3322, Nashville, TN, 37232-2561, USA.
| |
Collapse
|
25
|
Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 2020; 52:750-761. [PMID: 32439954 PMCID: PMC7272404 DOI: 10.1038/s12276-020-0435-8] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
T cell activation requires extracellular stimulatory signals that are mainly mediated by T cell receptor (TCR) complexes. The TCR recognizes antigens on major histocompatibility complex molecules with the cooperation of CD4 or CD8 coreceptors. After recognition, TCR-induced signaling cascades that propagate signals via various molecules and second messengers are induced. Consequently, many features of T cell-mediated immune responses are determined by these intracellular signaling cascades. Furthermore, differences in the magnitude of TCR signaling direct T cells toward distinct effector linages. Therefore, stringent regulation of T cell activation is crucial for T cell homeostasis and proper immune responses. Dysregulation of TCR signaling can result in anergy or autoimmunity. In this review, we summarize current knowledge on the pathways that govern how the TCR complex transmits signals into cells and the roles of effector molecules that are involved in these pathways.
Collapse
|
26
|
Feng S, Zeng D, Zheng J, Zhao D. New Insights of Human Parvovirus B19 in Modulating Erythroid Progenitor Cell Differentiation. Viral Immunol 2020; 33:539-549. [PMID: 32412895 DOI: 10.1089/vim.2020.0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Human parvovirus B19 (B19), a human pathogen of the erythroparvovirus genus, is responsible for a variety of diseases. B19 cause less symptoms in healthy individuals, also cause acute and chronic anemia in immunodeficiency patients. Transient aplastic crisis and pure red cell aplasia are two kinds of anemic hemogram, respectively, in acute and chronic B19 infection phase, especially occurring in patients with a shortened red cell survival or with immunodeficiency. In addition, B19-infected pregnant women may cause hydrops fetalis or fetal loss. B19 possesses high affinity to bone marrow and fetal liver due to its extremely restricted cytotoxicity to erythroid progenitor cells (EPCs) mediated by viral proteins. The nonstructural protein NS1 is considered to be the major pathogenic factor, which has been shown to inhibit the differentiation and maturation of EPCs through inducing viral DNA damage responses and cell cycle arrest. The time phase property of NS1 activity during DNA replication and conformity to transient change of hemogram are suggestive of its role in regulating differentiation of hematopoietic cells, which is not completely understood. In this review, we summarized the bridge between B19 NS1 and Notch signaling pathway or transcriptional factors GATA, which play an important role in erythroid cell proliferation and differentiation, to provide a new insight of the potential mechanism of B19-induced differential inhibition of EPCs.
Collapse
Affiliation(s)
- Shuwen Feng
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongxin Zeng
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junwen Zheng
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongchi Zhao
- Pediatrics Department, Children Digital and Health Data Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Nutan KK, Singla-Pareek SL, Pareek A. The Saltol QTL-localized transcription factor OsGATA8 plays an important role in stress tolerance and seed development in Arabidopsis and rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:684-698. [PMID: 31613368 DOI: 10.1093/jxb/erz368] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/06/2019] [Indexed: 05/23/2023]
Abstract
GATA represents a highly conserved family of transcription factors reported in organisms ranging from fungi to angiosperms. A member of this family, OsGATA8, localized within the Saltol QTL in rice, has been reported to be induced by salinity, drought, and ABA. However, its precise role in stress tolerance has not yet been elucidated. Using genetic, molecular, and physiological analyses, in this study we show that OsGATA8 increases seed size and tolerance to abiotic stresses in both Arabidopsis and rice. Transgenic lines of rice were generated with 3-fold overexpression of OsGATA8 compared to the wild-type together with knockdown lines with 2-fold lower expression. The overexpressing lines showed higher biomass accumulation and higher photosynthetic efficiency in seedlings compared to the wild-type and knockdown lines under both normal and salinity-stress conditions. OsGATA8 appeared to be an integrator of diverse cellular processes, including K+/Na+ content, photosynthetic efficiency, relative water content, Fv/Fm ratio, and the stability to sub-cellular organelles. It also contributed to maintaining yield under stress, which was ~46% higher in overexpression plants compared with the wild-type. OsGATA8 produced these effects by regulating the expression of critical genes involved in stress tolerance, scavenging of reactive oxygen species, and chlorophyll biosynthesis.
Collapse
Affiliation(s)
- Kamlesh K Nutan
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh L Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
28
|
Martynova E, Zhao Y, Xie Q, Zheng D, Cvekl A. Transcriptomic analysis and novel insights into lens fibre cell differentiation regulated by Gata3. Open Biol 2019; 9:190220. [PMID: 31847788 PMCID: PMC6936257 DOI: 10.1098/rsob.190220] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gata3 is a DNA-binding transcription factor involved in cellular differentiation in a variety of tissues including inner ear, hair follicle, kidney, mammary gland and T-cells. In a previous study in 2009, Maeda et al. (Dev. Dyn.238, 2280–2291; doi:10.1002/dvdy.22035) found that Gata3 mutants could be rescued from midgestational lethality by the expression of a Gata3 transgene in sympathoadrenal neuroendocrine cells. The rescued embryos clearly showed multiple defects in lens fibre cell differentiation. To determine whether these defects were truly due to the loss of Gata3 expression in the lens, we generated a lens-specific Gata3 loss-of-function model. Analogous to the previous findings, our Gata3 null embryos showed abnormal regulation of cell cycle exit during lens fibre cell differentiation, marked by reduction in the expression of the cyclin-dependent kinase inhibitors Cdkn1b/p27 and Cdkn1c/p57, and the retention of nuclei accompanied by downregulation of Dnase IIβ. Comparisons of transcriptomes between control and mutated lenses by RNA-Seq revealed dysregulation of lens-specific crystallin genes and intermediate filament protein Bfsp2. Both Cdkn1b/p27 and Cdkn1c/p57 loci are occupied in vivo by Gata3, as well as Prox1 and c-Jun, in lens chromatin. Collectively, our studies suggest that Gata3 regulates lens differentiation through the direct regulation of the Cdkn1b/p27and Cdkn1c/p57 expression, and the direct/or indirect transcriptional control of Bfsp2 and Dnase IIβ.
Collapse
Affiliation(s)
- Elena Martynova
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yilin Zhao
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qing Xie
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
29
|
Suzuki M, Katayama S, Yamamoto M. Two effects of GATA2 enhancer repositioning by 3q chromosomal rearrangements. IUBMB Life 2019; 72:159-169. [PMID: 31820561 DOI: 10.1002/iub.2191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/09/2019] [Indexed: 01/15/2023]
Abstract
Chromosomal inversion and translocation between 3q21 and 3q26 [inv (3)(q21.3q26.2) and t(3;3)(q21.3;q26.2), respectively] give rise to acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), which have poor prognoses. The chromosomal rearrangements reposition a GATA2 distal hematopoietic enhancer from the original 3q21 locus to the EVI1 (also known as MECOM) locus on 3q26. Therefore, the GATA2 enhancer from one of two GATA2 alleles drives EVI1 gene expression in hematopoietic stem and progenitor cells, which promotes the accumulation of abnormal progenitors and induces leukemogenesis. On the other hand, one allele of the GATA2 gene loses its enhancer, which results in reduced GATA2 expression. The GATA2 gene encodes a transcription factor critical for the generation and maintenance of hematopoietic stem and progenitor cells. GATA2 haploinsufficiency has been known to cause immunodeficiency and myeloid leukemia. Notably, reduced GATA2 expression suppresses the differentiation but promotes the proliferation of EVI1-expressing leukemic cells, which accelerates EVI1-driven leukemogenesis. A series of studies have shown that the GATA2 enhancer repositioning caused by the chromosomal rearrangements between 3q21 and 3q26 provokes misexpression of both the EVI1 and GATA2 genes and that these two effects coordinately elicit high-risk leukemia.
Collapse
Affiliation(s)
- Mikiko Suzuki
- Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Saori Katayama
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Pediatrics, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| |
Collapse
|
30
|
Leubolt G, Redondo Monte E, Greif PA. GATA2
mutations in myeloid malignancies: Two zinc fingers in many pies. IUBMB Life 2019; 72:151-158. [DOI: 10.1002/iub.2204] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/13/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Georg Leubolt
- Department of Medicine IIIUniversity Hospital, LMU Munich Munich Germany
| | | | - Philipp A. Greif
- Department of Medicine IIIUniversity Hospital, LMU Munich Munich Germany
| |
Collapse
|
31
|
Gutiérrez L, Caballero N, Fernández-Calleja L, Karkoulia E, Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2019; 72:89-105. [PMID: 31769197 DOI: 10.1002/iub.2192] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
GATA1 is considered as the "master" transcription factor in erythropoiesis. It regulates at the transcriptional level all aspects of erythroid maturation and function, as revealed by gene knockout studies in mice and by genome-wide occupancies in erythroid cells. The GATA1 protein contains two zinc finger domains and an N-terminal transactivation domain. GATA1 translation results in the production of the full-length protein and of a shorter variant (GATA1s) lacking the N-terminal transactivation domain, which is functionally deficient in supporting erythropoiesis. GATA1 protein abundance is highly regulated in erythroid cells at different levels, including transcription, mRNA translation, posttranslational modifications, and protein degradation, in a differentiation-stage-specific manner. Maintaining high GATA1 protein levels is essential in the early stages of erythroid maturation, whereas downregulating GATA1 protein levels is a necessary step in terminal erythroid differentiation. The importance of maintaining proper GATA1 protein homeostasis in erythropoiesis is demonstrated by the fact that both GATA1 loss and its overexpression result in lethal anemia. Importantly, alterations in any of those GATA1 regulatory checkpoints have been recognized as an important cause of hematological disorders such as dyserythropoiesis (with or without thrombocytopenia), β-thalassemia, Diamond-Blackfan anemia, myelodysplasia, or leukemia. In this review, we provide an overview of the multilevel regulation of GATA1 protein homeostasis in erythropoiesis and of its deregulation in hematological disease.
Collapse
Affiliation(s)
- Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Noemí Caballero
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Fernández-Calleja
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elena Karkoulia
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Crete, Greece
| | - John Strouboulis
- Cancer Comprehensive Center, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
32
|
Rajib SA, Sharif Siam MK. Characterization and Analysis of Mammalian AKR7A Gene Promoters: Implications for Transcriptional Regulation. Biochem Genet 2019; 58:171-188. [PMID: 31529389 DOI: 10.1007/s10528-019-09936-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 09/03/2019] [Indexed: 01/14/2023]
Abstract
Aldo-keto reductase (AKR) superfamily is responsible for preventing mammalian cells from the toxic and carcinogenic effect of different genotoxic and non-genotoxic chemicals by reducing them, though the inducibility of these genes are different in different species. The aim of this paper is to compare the gene regulation mechanisms of AKR superfamily genes in different species and to identify the conserved areas, which are responsible for gene regulations in the presence of antioxidant, toxicants, and non-genotoxic carcinogens. At the beginning of the analysis AKR genes found in different species were divided into two groups based on their amino acid sequence similarities. Comparison of AKR7A gene clusters between different species revealed that Human AKR7A2 has orthologues in mammalians like rat, mouse, pigs, and other primates. On the other hand, AKR7A3 has orthologues only in rat and AKR7L is present only in primates. All the genes of AKR superfamily have a trend to stay in clusters in mammalian chromosomes having repeated sequences in between them. Transcription start site analysis revealed that genes like human AKR7A2 and rat Akr7a4 do not have conventional promoter regions such as TATA box, CAAT box and have several GC-rich regions, whereas gene like Akr7a1 contains a TATA box 25 bp upstream of transcription start site instead of having CpG islands. Putative orthologous genes i.e., rat AKR7A4, human AKR7A2, and mouse AKR7A5 share more common features such as common transcription factor binding site for specificity protein 1 (SP1), GATA binding factor family, Selenocysteine tRNA gene transcription activating factor (STAF) zinc finger protein, Krüppel-like C2H2 zinc finger (HICF) protein, negative glucocorticoid response element (NGRE) etc. Similarly, genes like rat AKR7A1, human AKR7A3, and human AKR7L share common sequence and transcription factor binding sites. Among those, Nuclear factor erythroid 2-related factor 2 (Nrf2) is thought to be responsible for the inducibility of these genes in the presence of antioxidants. Our analysis revealed that AKR7A gene family consists of genes having a large number of variations in them. Some of these, such as AKR7A2 are housekeeping genes, on the other hand, genes like AKR7A3 are highly inducible in the presence of antioxidants because of the presence of Nrf2 binding site in their promoter. AKR7A1 has a different promoter than others and function of AKR7L gene is still unknown.
Collapse
Affiliation(s)
- Samiul Alam Rajib
- Department of Pharmacy, Brac University, 41, Pacific Tower, Mohakhali, Dhaka, 1212, Bangladesh.
| | - Mohammad Kawsar Sharif Siam
- Department of Pharmacy, Brac University, 41, Pacific Tower, Mohakhali, Dhaka, 1212, Bangladesh.,Darwin College, University of Cambridge, Silver Street, Cambridge, CB3 9EU, UK
| |
Collapse
|
33
|
The Formaldehyde Dehydrogenase SsFdh1 Is Regulated by and Functionally Cooperates with the GATA Transcription Factor SsNsd1 in Sclerotinia sclerotiorum. mSystems 2019; 4:4/5/e00397-19. [PMID: 31506263 PMCID: PMC6739101 DOI: 10.1128/msystems.00397-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
S. sclerotiorum is a pathogenic fungus with sclerotium and infection cushion development, making S. sclerotiorum one of the most challenging agricultural pathogens with no effective control method. We identified important sclerotium and compound appressorium formation determinants, SsNsd1 and SsFdh1, and investigated their regulatory mechanism at the molecular level. SsNsd1 and SsFdh1 are zinc finger motif-containing proteins and associate with each other in the nucleus. On other hand, SsNsd1, as a GATA transcription factor, directly binds to GATA-box DNA in the promoter region of Ssfdh1. The SsNsd1-SsFdh1 interaction and nuclear translocation were found to prevent efficient binding of SsNsd1 to GATA-box DNA. Our results provide insights into the role of the GATA transcription factor and its regulation of formaldehyde dehydrogenase in stress resistance, fungal sclerotium and compound appressorium development, and pathogenicity. GATA transcription factors (TFs) are common eukaryotic regulators, and glutathione-dependent formaldehyde dehydrogenases (GD-FDH) are ubiquitous enzymes with formaldehyde detoxification activity. In this study, the formaldehyde dehydrogenase Sclerotinia sclerotiorum Fdh1 (SsFdh1) was first characterized as an interacting partner of a GATA TF, SsNsd1, in S. sclerotiorum. Genetic analysis reveals that SsFdh1 functions in formaldehyde detoxification, nitrogen metabolism, sclerotium development, and pathogenicity. Both SsNsd1 and SsFdh1 harbor typical zinc finger motifs with conserved cysteine residues. SsNsd1 regulates SsFdh1 in two distinct manners. SsNsd1 directly binds to GATA-box DNA in the promoter region of Ssfdh1; SsNsd1 associates with SsFdh1 through disulfide bonds formed by conserved Cys residues. The SsNsd1-SsFdh1 interaction and nuclear translocation were found to prevent efficient binding of SsNsd1 to GATA-box DNA. Site-directed point mutation of these Cys residues influences the SsNsd1-SsFdh1 interaction and SsNsd1 DNA binding capacity. SsFdh1 is regulated by and functions jointly with the SsNsd1 factor, providing new insights into the complex transcriptional regulatory mechanisms of GATA factors. IMPORTANCES. sclerotiorum is a pathogenic fungus with sclerotium and infection cushion development, making S. sclerotiorum one of the most challenging agricultural pathogens with no effective control method. We identified important sclerotium and compound appressorium formation determinants, SsNsd1 and SsFdh1, and investigated their regulatory mechanism at the molecular level. SsNsd1 and SsFdh1 are zinc finger motif-containing proteins and associate with each other in the nucleus. On other hand, SsNsd1, as a GATA transcription factor, directly binds to GATA-box DNA in the promoter region of Ssfdh1. The SsNsd1-SsFdh1 interaction and nuclear translocation were found to prevent efficient binding of SsNsd1 to GATA-box DNA. Our results provide insights into the role of the GATA transcription factor and its regulation of formaldehyde dehydrogenase in stress resistance, fungal sclerotium and compound appressorium development, and pathogenicity.
Collapse
|
34
|
Hoshino T, Terunuma T, Takai J, Uemura S, Nakamura Y, Hamada M, Takahashi S, Yamamoto M, Engel JD, Moriguchi T. Spiral ganglion cell degeneration-induced deafness as a consequence of reduced GATA factor activity. Genes Cells 2019; 24:534-545. [PMID: 31141264 DOI: 10.1111/gtc.12705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/18/2019] [Accepted: 05/21/2019] [Indexed: 12/19/2022]
Abstract
Zinc-finger transcription factors GATA2 and GATA3 are both expressed in the developing inner ear, although their overlapping versus distinct activities in adult definitive inner ear are not well understood. We show here that GATA2 and GATA3 are co-expressed in cochlear spiral ganglion cells and redundantly function in the maintenance of spiral ganglion cells and auditory neural circuitry. Notably, Gata2 and Gata3 compound heterozygous mutant mice had a diminished number of spiral ganglion cells due to enhanced apoptosis, which resulted in progressive hearing loss. The decrease in spiral ganglion cellularity was associated with lowered expression of neurotrophin receptor TrkC that is an essential factor for spiral ganglion cell survival. We further show that Gata2 null mutants that additionally bear a Gata2 YAC (yeast artificial chromosome) that counteracts the lethal hematopoietic deficiency due to complete Gata2 loss nonetheless failed to complement the deficiency in neonatal spiral ganglion neurons. Furthermore, cochlea-specific Gata2 deletion mice also had fewer spiral ganglion cells and resultant hearing impairment. These results show that GATA2 and GATA3 redundantly function to maintain spiral ganglion cells and hearing. We propose possible mechanisms underlying hearing loss in human GATA2- or GATA3-related genetic disorders.
Collapse
Affiliation(s)
- Tomofumi Hoshino
- Department of Otolaryngology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tsumoru Terunuma
- Department of Otolaryngology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Jun Takai
- Division of Medical Biochemistry, Tohoku Medical Pharmaceutical University, Sendai, Japan
| | - Satoshi Uemura
- Division of Medical Biochemistry, Tohoku Medical Pharmaceutical University, Sendai, Japan
| | - Yasuhiro Nakamura
- Division of Pathology, Tohoku Medical Pharmaceutical University, Sendai, Japan
| | - Michito Hamada
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Takashi Moriguchi
- Division of Medical Biochemistry, Tohoku Medical Pharmaceutical University, Sendai, Japan
| |
Collapse
|
35
|
Trilineage Dysplasia in an Adolescent With Germline GATA2 Mutation. J Pediatr Hematol Oncol 2019; 41:392-393. [PMID: 30933029 DOI: 10.1097/mph.0000000000001469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The GATA family of DNA binding proteins consists of six different transcription factors (GATA1-6), each with diverse biologic function. The GATA2 protein has been shown to be vital for proliferation and maintenance of hematopoietic stem cells; mutations result in variable phenotypes including myelodysplastic syndrome.
Collapse
|
36
|
Ding Y, Kathiresan V, Zhang X, Haworth IS, Qin PZ. Experimental Validation of the ALLNOX Program for Studying Protein-Nucleic Acid Complexes. J Phys Chem A 2019; 123:3592-3598. [PMID: 30978022 DOI: 10.1021/acs.jpca.9b01027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Measurement of distances between spectroscopic labels (e.g., spin labels, fluorophores) attached to specific sites of biomolecules is an important method for studying biomolecular complexes. ALLNOX (Addition of Labels and Linkers) has been developed as a program to model interlabel distances based on an input macromolecule structure. Here, we report validation of ALLNOX using measured distances between nitroxide spin labels attached to specific sites of a protein-DNA complex. The results demonstrate that ALLNOX predicts average interspin distances that matched with values measured with pairs of labels attached at the protein and/or DNA. This establishes a solid foundation for using spin labeling in conjunction with ALLNOX to investigate complexes without high-resolution structures. With its high degree of flexibility for the label or the target biomolecule, ALLNOX provides a useful tool for investigating the structure-function relationship in a large variety of biological molecules.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Venkatesan Kathiresan
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Xiaojun Zhang
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States
| | - Ian S Haworth
- Department of Pharmacology and Pharmaceutical Sciences , University of Southern California , Los Angeles , California 90089 , United States
| | - Peter Z Qin
- Department of Chemistry , University of Southern California , Los Angeles , California 90089 , United States.,Department of Biological Sciences , University of Southern California , Los Angeles , California 90089 , United States
| |
Collapse
|
37
|
Bouchard MF, Bergeron F, Grenier Delaney J, Harvey LM, Viger RS. In Vivo Ablation of the Conserved GATA-Binding Motif in the Amh Promoter Impairs Amh Expression in the Male Mouse. Endocrinology 2019; 160:817-826. [PMID: 30759208 PMCID: PMC6426834 DOI: 10.1210/en.2019-00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 02/08/2019] [Indexed: 12/23/2022]
Abstract
GATA4 is an essential transcriptional regulator required for gonadal development, differentiation, and function. In the developing testis, proposed GATA4-regulated genes include steroidogenic factor 1 (Nr5a1), SRY-related HMG box 9 (Sox9), and anti-Müllerian hormone (Amh). Although some of these genes have been validated as genuine GATA4 targets, it remains unclear whether GATA4 is a direct regulator of endogenous Amh transcription. We used a CRISPR/Cas9-based approach to specifically inactivate or delete the sole GATA-binding motif of the proximal mouse Amh promoter. AMH mRNA and protein levels were assessed at developmental time points corresponding to elevated AMH levels: fetal and neonate testes in males and adult ovaries in females. In males, loss of GATA binding to the Amh promoter significantly reduced Amh expression. Although the loss of GATA binding did not block the initiation of Amh transcription, AMH mRNA and protein levels failed to upregulate in the developing fetal and neonate testis. Interestingly, adult male mice presented no anatomical anomalies and had no evidence of retained Müllerian duct structures, suggesting that AMH levels, although markedly reduced, were sufficient to masculinize the male embryo. In contrast to males, GATA binding to the Amh promoter was dispensable for Amh expression in the adult ovary. These results provide conclusive evidence that in males, GATA4 is a positive modulator of Amh expression that works in concert with other key transcription factors to ensure that the Amh gene is sufficiently expressed in a correct spatiotemporal manner during fetal and prepubertal testis development.
Collapse
Affiliation(s)
- Marie France Bouchard
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Francis Bergeron
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Jasmine Grenier Delaney
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Louis-Mathieu Harvey
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de Recherche du CHU de Québec–Université Laval, Quebec, Quebec, Canada
- Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Quebec, Quebec, Canada
- Department of Obstetrics, Gynecology, and Reproduction, Université Laval, Quebec, Quebec, Canada
- Correspondence: Robert S. Viger, PhD, Reproduction, Mother and Child Health, Room T3-67, Centre de Recherche du CHU de Québec–Université Laval, 2705 Laurier Boulevard, Quebec, Quebec G1V 4G2, Canada. E-mail:
| |
Collapse
|
38
|
Yu S, Jiang X, Li J, Li C, Guo M, Ye F, Zhang M, Jiao Y, Guo B. Comprehensive analysis of the GATA transcription factor gene family in breast carcinoma using gene microarrays, online databases and integrated bioinformatics. Sci Rep 2019; 9:4467. [PMID: 30872657 PMCID: PMC6418253 DOI: 10.1038/s41598-019-40811-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Integrated studies of accumulated data can be performed to obtain more reliable information and more feasible measures for investigating the potential diagnostic and prognostic biomarkers of breast cancer and exploring related molecular mechanisms. Our study aimed to explore the GATA family members involved in breast cancer by integrating data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and other online databases. We performed an integrated analysis of published studies from GEO and analyzed clinical data from TCGA and GTEx to evaluate the clinical significance and prognosis values of the GATA family in breast cancer. GATA3 was found to be upregulated and exhibited a favorable value in the diagnosis and prognosis of breast cancer. Through this study, we identified possible GATA3-correlated genes and core pathways that play an important role, which requires further investigation in breast cancer.
Collapse
Affiliation(s)
- Shan Yu
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xuepeng Jiang
- Department of General Surgery, the Heilongjiang Power Hospital, Harbin, 150090, China
| | - Juan Li
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Chao Li
- Department of Orthopedics, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Mian Guo
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Fei Ye
- Department of Pathology, Harbin Medical University, Harbin, 150001, China
| | - Maomao Zhang
- The Key Laboratory of Myocardial Ischemia, Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yufei Jiao
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Baoliang Guo
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
39
|
Transcription-dependent spreading of the Dal80 yeast GATA factor across the body of highly expressed genes. PLoS Genet 2019; 15:e1007999. [PMID: 30818362 PMCID: PMC6413948 DOI: 10.1371/journal.pgen.1007999] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 03/12/2019] [Accepted: 01/31/2019] [Indexed: 12/30/2022] Open
Abstract
GATA transcription factors are highly conserved among eukaryotes and play roles in transcription of genes implicated in cancer progression and hematopoiesis. However, although their consensus binding sites have been well defined in vitro, the in vivo selectivity for recognition by GATA factors remains poorly characterized. Using ChIP-Seq, we identified the Dal80 GATA factor targets in yeast. Our data reveal Dal80 binding to a large set of promoters, sometimes independently of GATA sites, correlating with nitrogen- and/or Dal80-sensitive gene expression. Strikingly, Dal80 was also detected across the body of promoter-bound genes, correlating with high expression. Mechanistic single-gene experiments showed that Dal80 spreading across gene bodies requires active transcription. Consistently, Dal80 co-immunoprecipitated with the initiating and post-initiation forms of RNA Polymerase II. Our work suggests that GATA factors could play dual, synergistic roles during transcription initiation and post-initiation steps, promoting efficient remodeling of the gene expression program in response to environmental changes. GATA transcription factors are highly conserved among eukaryotes and play key roles in cancer progression and hematopoiesis. In budding yeast, four GATA transcription factors are involved in the response to the quality of nitrogen supply. Here, we have determined the whole genome binding profile of the Dal80 GATA factor, and revealed that it also associates with the body of promoter-bound genes. The observation that intragenic spreading correlates with high expression levels and exquisite Dal80 sensitivity suggests that GATA factors could play other, unexpected roles at post-initiation stages in eukaryotes.
Collapse
|
40
|
Churpek JE, Bresnick EH. Transcription factor mutations as a cause of familial myeloid neoplasms. J Clin Invest 2019; 129:476-488. [PMID: 30707109 DOI: 10.1172/jci120854] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The initiation and evolution of myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) are driven by genomic events that disrupt multiple genes controlling hematopoiesis. Human genetic studies have discovered germline mutations in single genes that instigate familial MDS/AML. The best understood of these genes encode transcription factors, such as GATA-2, RUNX1, ETV6, and C/EBPα, which establish and maintain genetic networks governing the genesis and function of blood stem and progenitor cells. Many questions remain unanswered regarding how genes and circuits within these networks function in physiology and disease and whether network integrity is exquisitely sensitive to or efficiently buffered from perturbations. In familial MDS/AML, mutations change the coding sequence of a gene to generate a mutant protein with altered activity or introduce frameshifts or stop codons or disrupt regulatory elements to alter protein expression. Each mutation has the potential to exert quantitatively and qualitatively distinct influences on networks. Consistent with this mechanistic diversity, disease onset is unpredictable and phenotypic variability can be considerable. Efforts to elucidate mechanisms and forge prognostic and therapeutic strategies must therefore contend with a spectrum of patient-specific leukemogenic scenarios. Here we illustrate mechanistic advances in our understanding of familial MDS/AML syndromes caused by germline mutations of hematopoietic transcription factors.
Collapse
Affiliation(s)
- Jane E Churpek
- Section of Hematology/Oncology and Center for Clinical Cancer Genetics, The University of Chicago, Chicago, Illinois, USA
| | - Emery H Bresnick
- UW-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, UW Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
41
|
Jin W, Qazi TJ, Quan Z, Li N, Qing H. Dysregulation of Transcription Factors: A Key Culprit Behind Neurodegenerative Disorders. Neuroscientist 2018; 25:548-565. [PMID: 30484370 DOI: 10.1177/1073858418811787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurodegenerative diseases (NDs) are considered heterogeneous disorders characterized by progressive pathological changes in neuronal systems. Transcription factors are protein molecules that are important in regulating the expression of genes. Although the clinical manifestations of NDs vary, the pathological processes appear similar with regard to neuroinflammation, oxidative stress, and proteostasis, to which, as numerous studies have discovered, transcription factors are closely linked. In this review, we summarized and reviewed the roles of transcription factors in NDs, and then we elucidated their functions during pathological processes, and finally we discussed their therapeutic values in NDs.
Collapse
Affiliation(s)
- Wei Jin
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Talal Jamil Qazi
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Zhenzhen Quan
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Nuomin Li
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| | - Hong Qing
- Beijing Key Laboratory of Separation and Analysis in Biomedical and Pharmaceuticals, Department of Biomedical Engineering, School of Life Science, Beijing Institute of Technology, Haidian District, Beijing, China
| |
Collapse
|
42
|
Martynova E, Bouchard M, Musil LS, Cvekl A. Identification of Novel Gata3 Distal Enhancers Active in Mouse Embryonic Lens. Dev Dyn 2018; 247:1186-1198. [PMID: 30295986 PMCID: PMC6246825 DOI: 10.1002/dvdy.24677] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The tissue-specific transcriptional programs during normal development require tight control by distal cis-regulatory elements, such as enhancers, with specific DNA sequences recognized by transcription factors, coactivators, and chromatin remodeling enzymes. Gata3 is a sequence-specific DNA-binding transcription factor that regulates formation of multiple tissues and organs, including inner ear, lens, mammary gland, T-cells, urogenital system, and thyroid gland. In the eye, Gata3 has a highly restricted expression domain in the posterior part of the lens vesicle; however, the underlying regulatory mechanisms are unknown. RESULTS Here we describe the identification of a novel bipartite Gata3 lens-specific enhancer located ∼18 kb upstream from its transcriptional start site. We also found that a 5-kb Gata3 promoter possesses low activity in the lens. The bipartite enhancer contains arrays of AP-1, Ets-, and Smad1/5-binding sites as well as binding sites for lens-associated DNA-binding factors. Transient transfection studies of the promoter with the bipartite enhancer showed enhanced activation by BMP4 and FGF2. CONCLUSIONS These studies identify a novel distal enhancer of Gata3 with high activity in lens and indicate that BMP and FGF signaling can up-regulate expression of Gata3 in differentiating lens fiber cells through the identified Gata3 enhancer and promoter elements. Developmental Dynamics 247:1186-1198, 2018. © 2018 The Authors. Developmental Dynamics published by Wiley Periodicals, Inc. on behalf of American Association of Anatomists.
Collapse
Affiliation(s)
- Elena Martynova
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health Science University, Portland, Oregon
| | - Ales Cvekl
- Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
43
|
A Gata3 3' Distal Otic Vesicle Enhancer Directs Inner Ear-Specific Gata3 Expression. Mol Cell Biol 2018; 38:MCB.00302-18. [PMID: 30126893 DOI: 10.1128/mcb.00302-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022] Open
Abstract
Transcription factor GATA3 plays vital roles in inner ear development, while regulatory mechanisms controlling its inner ear-specific expression are undefined. We demonstrate that a cis-regulatory element lying 571 kb 3' to the Gata3 gene directs inner ear-specific Gata3 expression, which we refer to as the Gata3 otic vesicle enhancer (OVE). In transgenic murine embryos, a 1.5-kb OVE-directed lacZ reporter (TgOVE-LacZ) exhibited robust lacZ expression specifically in the otic vesicle (OV), an inner ear primordial tissue, and its derivative semicircular canal. To further define the regulatory activity of this OVE, we generated Cre transgenic mice in which Cre expression was directed by a 246-bp core sequence within the OVE element (TgcoreOVE-Cre). TgcoreOVE-Cre successfully marked the OV-derived inner ear tissues, including cochlea, semicircular canal and spiral ganglion, when crossed with ROSA26 lacZ reporter mice. Furthermore, Gata3 conditionally mutant mice, when crossed with the TgcoreOVE-Cre, showed hypoplasia throughout the inner ear tissues. These results demonstrate that OVE has a sufficient regulatory activity to direct Gata3 expression specifically in the otic vesicle and semicircular canal and that Gata3 expression driven by the OVE is crucial for normal inner ear development.
Collapse
|
44
|
Gould KA, Bresnick EH. Sequence determinants of DNA binding by the hematopoietic helix-loop-helix transcription factor TAL1: importance of sequences flanking the E-box core. Gene Expr 2018; 7:87-101. [PMID: 9699481 PMCID: PMC6190197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
TAL1 is a helix-loop-helix transcription factor that is essential for hematopoiesis. In vitro DNA binding site selection experiments have previously identified the preferred binding site for TAL1 heterodimers as AACAGATGGT. TAL1 homodimers do not bind DNA with significant affinity. A subset of other E-box sequences is also bound by TAL1 heterodimers. Here, we present an analysis of TAL1 heterodimer DNA binding specificity, using E-boxes derived from genomic clones, which were isolated by immunoadsorption of K562 erythroleukemia cell chromatin with a TAL1 antibody. We show that TAL1 heterodimer binding to a CAGATG E-box is strongly modulated by nucleotides flanking the E-box. A 10 base pair element consisting of the CAGATG E-box and two flanking nucleotides in both the 5' and 3' direction is sufficient for high-affinity binding. Certain mutations of nucleotides in either the 5' (-1 and -2) or 3' (+1 and +2) direction strongly inhibit binding. The importance of flanking nucleotides also exists in the context of nonpreferred E-boxes recognized by TAL1 heterodimers. Although there are no known target genes for TAL1, the regulatory regions of several genes involved in hematopoiesis contain the preferred E-box CAGATG. However, based on our results, the E-boxes in these potential target genes contain flanking sequences that would be expected to significantly reduce TAL1 heterodimer binding in vitro. Thus, additional stabilizing forces, such as protein-protein interactions between TAL1 heterodimers and accessory factors, may be required to confer high-affinity TAL1 heterodimer binding to such sequences.
Collapse
Affiliation(s)
- Karen A. Gould
- University of Wisconsin Medical School Department of Pharmacology, 1300 University Avenue, Madison, WI53706
| | - Emery H. Bresnick
- Address correspondence to Emery H. Bresnick. Tel: (608) 265-6446; Fax: (608) 262-1257; E-mail:
| |
Collapse
|
45
|
Zubo YO, Blakley IC, Franco-Zorrilla JM, Yamburenko MV, Solano R, Kieber JJ, Loraine AE, Schaller GE. Coordination of Chloroplast Development through the Action of the GNC and GLK Transcription Factor Families. PLANT PHYSIOLOGY 2018; 178:130-147. [PMID: 30002259 PMCID: PMC6130010 DOI: 10.1104/pp.18.00414] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/26/2018] [Indexed: 05/03/2023]
Abstract
Fundamental questions regarding how chloroplasts develop from proplastids remain poorly understood despite their central importance to plant life. Two families of nuclear transcription factors, the GATA NITRATE-INDUCIBLE CARBON-METABOLISM-INVOLVED (GNC) and GOLDEN TWO-LIKE (GLK) families, have been implicated in directly and positively regulating chloroplast development. Here, we determined the degree of functional overlap between the two transcription factor families in Arabidopsis (Arabidopsis thaliana), characterizing their ability to regulate chloroplast biogenesis both alone and in concert. We determined the DNA-binding motifs for GNC and GLK2 using protein-binding microarrays; the enrichment of these motifs in transcriptome datasets indicates that GNC and GLK2 are repressors and activators of gene expression, respectively. ChIP-seq analysis of GNC identified PHYTOCHROME INTERACTING FACTOR and brassinosteroid activity genes as targets whose repression by GNC facilitates chloroplast biogenesis. In addition, GNC targets and represses genes involved in ERECTA signaling and thereby facilitates stomatal development. Our results define key regulatory features of the GNC and GLK transcription factor families that contribute to the control of chloroplast biogenesis and photosynthetic activity, including areas of independence and cross talk.
Collapse
Affiliation(s)
- Yan O Zubo
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Ivory Clabaugh Blakley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, North Carolina 28081
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Darwin 3, 28049 Madrid, Spain
| | - Maria V Yamburenko
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Darwin 3, 28049 Madrid, Spain
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Kannapolis, North Carolina 28081
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
46
|
Wang X, Dong F, Wang F, Yan S, Chen X, Tozawa H, Ushijima T, Kapron CM, Wada Y, Liu J. Low dose cadmium upregulates the expression of von Willebrand factor in endothelial cells. Toxicol Lett 2018; 290:46-54. [PMID: 29571895 DOI: 10.1016/j.toxlet.2018.03.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 03/01/2018] [Accepted: 03/18/2018] [Indexed: 11/17/2022]
Abstract
Cadmium (Cd) is a persistent and widespread environmental pollutant of continuing worldwide concern. Previous studies have suggested that Cd exposure increases the risk of cardiovascular diseases, such as atherosclerosis and hypertension. However, the underlying mechanisms are poorly understood. In this study, we observed that low dose Cd treatment induced von Willebrand factor (vWF) expression in vascular endothelial cells in mouse lung and kidney tissues. In vitro analysis showed that 1 μM Cd specifically upregulated vWF mRNA and protein expression in human umbilical vein endothelial cells (HUVECs), indicating that Cd targets vascular endothelial cells even at relatively low concentrations. Further study demonstrated that nuclear factor kappa B (NF-κB) and GATA3, two established transcription regulators of the vWF gene, were not altered in the presence of Cd. However, ETS-related gene (ERG) was significantly induced by 1 μM Cd. When ERG was knocked down by siRNA, Cd induced upregulation of vWF was totally blocked. Chromatin immunoprecipitation (ChIP) assay showed that Cd increases the binding of ERG on the -56 ETS motif on the human vWF promoter. These results indicated that ERG mediated the increased expression of vWF by Cd. Since vWF is a key regulator for vascular homeostasis, our findings may provide a novel mechanism for understanding low dose Cd induced development of vascular diseases.
Collapse
Affiliation(s)
- Xia Wang
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Fengyun Dong
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Fufang Wang
- Department of Geriatrics, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, Shandong, China; Key laboratory of Cardiovascular Proteomics of Shandong Province, 107 Wenhua Xi Road, Jinan, Shandong, China
| | - Suhua Yan
- Department of Cardiology, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014 China
| | - Xiaocui Chen
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Hideto Tozawa
- The Research Center for Advanced Science and Technology, and Isotope Science Center, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Toshiyuki Ushijima
- The Research Center for Advanced Science and Technology, and Isotope Science Center, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Carolyn M Kapron
- Department of Biology, Trent University, Peterborough, Ontario, K9L 0G2, Canada
| | - Youichiro Wada
- The Research Center for Advanced Science and Technology, and Isotope Science Center, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ju Liu
- Laboratory of Microvascular Medicine, Medical Research Center, Shandong Provincial Qianfoshan Hospital, Shandong University, 16766 Jingshi Road, Jinan, Shandong, 250014, China.
| |
Collapse
|
47
|
Behera V, Evans P, Face CJ, Hamagami N, Sankaranarayanan L, Keller CA, Giardine B, Tan K, Hardison RC, Shi J, Blobel GA. Exploiting genetic variation to uncover rules of transcription factor binding and chromatin accessibility. Nat Commun 2018; 9:782. [PMID: 29472540 PMCID: PMC5823854 DOI: 10.1038/s41467-018-03082-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 01/18/2018] [Indexed: 12/13/2022] Open
Abstract
Single-nucleotide variants that underlie phenotypic variation can affect chromatin occupancy of transcription factors (TFs). To delineate determinants of in vivo TF binding and chromatin accessibility, we introduce an approach that compares ChIP-seq and DNase-seq data sets from genetically divergent murine erythroid cell lines. The impact of discriminatory single-nucleotide variants on TF ChIP signal enables definition at single base resolution of in vivo binding characteristics of nuclear factors GATA1, TAL1, and CTCF. We further develop a facile complementary approach to more deeply test the requirements of critical nucleotide positions for TF binding by combining CRISPR-Cas9-mediated mutagenesis with ChIP and targeted deep sequencing. Finally, we extend our analytical pipeline to identify nearby contextual DNA elements that modulate chromatin binding by these three TFs, and to define sequences that impact kb-scale chromatin accessibility. Combined, our approaches reveal insights into the genetic basis of TF occupancy and their interplay with chromatin features.
Collapse
Affiliation(s)
- Vivek Behera
- University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Perry Evans
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Carolyne J Face
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Nicole Hamagami
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | | | | | - Kai Tan
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | | | - Junwei Shi
- University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gerd A Blobel
- Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
48
|
Nasal and otic placode specific regulation of Sox2 involves both activation by Sox-Sall4 synergism and multiple repression mechanisms. Dev Biol 2018; 433:61-74. [DOI: 10.1016/j.ydbio.2017.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/02/2017] [Accepted: 11/10/2017] [Indexed: 01/21/2023]
|
49
|
Lohani N, Bhargava N, Munshi A, Ramalingam S. Pharmacological and molecular approaches for the treatment of β-hemoglobin disorders. J Cell Physiol 2017; 233:4563-4577. [PMID: 29159826 DOI: 10.1002/jcp.26292] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/07/2017] [Indexed: 12/25/2022]
Abstract
β-hemoglobin disorders, such as β-thalassemia and sickle cell anemia are among the most prevalent inherited genetic disorders worldwide. These disorders are caused by mutations in the gene encoding hemoglobin-β (HBB), a vital protein found in red blood cells (RBCs) that carries oxygen from lungs to all parts of the human body. As a consequence, there has been an enduring interest in this field in formulating therapeutic strategies for the treatment of these diseases. Currently, there is no cure available for hemoglobin disorders, although, some patients have been treated with bone marrow transplantation, whose scope is limited because of the difficulty in finding a histocompatible donor and also due to transplant-associated clinical complications that can arise during the treatment. On account of these constraints, reactivation of fetal hemoglobin (HbF) synthesis holds immense promise and is a viable strategy to alleviate the symptoms of β-hemoglobin disorders. Development of new genomic tools has led to the identification of important natural genetic modifiers of hemoglobin switching which include BCL11A, KLF1, HBSIL-MYB, LRF, LSD1, LDB1, histone deacetylases 1 and 2 (HDAC1 and HDAC2). miRNAs are also promising therapeutic targets for development of more effective strategies for the induction of HbF production. Many new small molecule pharmacological inducers of HbF production are already under pre-clinical and clinical development. Furthermore, recent advancements in gene and cell therapy includes targeted genome editing and iPS cell technologies, both of which utilizes a patient's own cells, are emerging as extremely promising approaches for significantly reducing the burden of β-hemoglobin disorders.
Collapse
Affiliation(s)
- Neelam Lohani
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Nupur Bhargava
- CSIR-Institute of Genomics and Integrative Biology, New Delhi, India
| | - Anjana Munshi
- Centre for Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
50
|
Li J, Zhao L, Zhang Y, Li W, Duan X, Chen J, Guo Y, Yang S, Sun G, Li B. Imbalanced immune responses involving inflammatory molecules and immune-related pathways in the lung of acute and subchronic arsenic-exposed mice. ENVIRONMENTAL RESEARCH 2017; 159:381-393. [PMID: 28843991 DOI: 10.1016/j.envres.2017.08.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 06/07/2023]
Abstract
Inorganic arsenic has been claimed to increase the risk of pulmonary diseases through ingestion, as opposed to inhalation, which makes it a unique and intriguing environmental toxicant. However, the immunotoxic effects of lung, one of the targets of arsenic exposure, have not been extensively investigated in vivo. In the present study, we first confirmed that 2.5, 5 and 10mg/kg NaAsO2 orally for 24h dose-dependently triggered the infiltration of neutrophils, lymphocytes and macrophages in BALF. Not only the transcription activity, but also the secretion of proinflammatory cytokines IL-1β, IL-6 and TNF-α were consistently raised in the lung and BALF of acute arsenic-exposed mice. Acute oral administration of NaAsO2 also raised pulmonary MPO activity and mRNA levels of chemokine Mip-2 and Mcp-1. Meanwhile, obvious histopathological damages with inflammatory cells infiltration and erythrocyte aggregation around the capillaries were verified in the lung of mice drank arsenic-rich water freely for 3 months. Furthermore, we affirmed notable disturbance of CD4+ T-cell differentiation in the lung of acute arsenic-exposed mice, as demonstrated by up-regulated mRNA levels of regulator Gata3 and cytokine Il-4 of Th2, enhanced Foxp3 and Il-10 of Treg, down-regulated T-bet and Ifn-γ of Th1, as well as lessened Ror-γt and Il-23 of Th17. However, impressive elevation of cytokine Ifn-γ and Il-23, as well as moderate enhancement of Il-4 and Il-10 were found in the lung by subchronic arsenic administration. Finally, our present study demonstrated that both a single and sustained arsenic exposure prominently increased the expression of immune-related p38, JNK, ERK1/2 and NF-κB proteins in the lung tissue. While disrupting the pulmonary redox homeostasis by increasing MDA levels, exhausting GSH and impaired enzyme activities of CAT and GSH-Px, antioxidant regulator NRF2 and its downstream targets HO-1 and GSTO1/2 were also up-regulated by both acute and subchronic arsenic treatment. Conclusively, our present study demonstrated both acute and subchronic oral administration of arsenic triggers multiple pulmonary immune responses involving inflammatory molecules and T-cell differentiation, which might be closely associated with the imbalanced redox status and activation of immune-related MAPKs, NF-κB and anti-inflammatory NRF2 pathways.
Collapse
Affiliation(s)
- Jinlong Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China; Department of Occupational and Environmental Health, Key Laboratory of Occupational Health and Safety for Coal Industry in Hebei Province, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Lu Zhao
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yang Zhang
- Chengde City Center for Disease Prevention and Control, Chengde City, Hebei Province 069000, China
| | - Wei Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Xiaoxu Duan
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang 110034, Liaoning, China
| | - Jinli Chen
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Yuanyuan Guo
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shan Yang
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Guifan Sun
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China
| | - Bing Li
- Environment and Non-Communicable Disease Research Center, Key Laboratory of Arsenic-related Biological Effects and Prevention and Treatment in Liaoning Province, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|