1
|
Sun L, Yuan C, An X, Kong L, Zhang D, Chen B, Lu Z, Liu J. Delta-like noncanonical notch ligand 2 regulates the proliferation and differentiation of sheep myoblasts through the Wnt/β-catenin signaling pathway. J Cell Physiol 2024; 239:e31385. [PMID: 39030845 DOI: 10.1002/jcp.31385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024]
Abstract
This study delved into the role of delta-like noncanonical notch ligand 2 (DLK2) in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts, as well as its interaction with the classical Wnt/β-catenin signaling pathway in regulating myoblast function. The research revealed that upregulation of DLK2 in myoblasts during the proliferation phase enhanced myoblast proliferation, facilitated cell cycle progression, and reduced apoptosis. Conversely, downregulation of DLK2 expression using siRNA during the differentiation phase promoted myoblast hypertrophy and fusion, suppressed the expression of muscle fiber degradation factors, and expedited the differentiation process. DLK2 regulates myoblasts function by influencing the expression of various factors associated with the Wnt/β-catenin signaling pathway, including CTNNB1, FZD1, FZD6, RSPO1, RSPO4, WNT4, WNT5A, and adenomatous polyposis coli. In essence, DLK2, with the involvement of the Wnt/β-catenin signaling pathway, plays a crucial regulatory role in the cell cycle, proliferation, apoptosis, and differentiation of myoblasts.
Collapse
Affiliation(s)
- Lixia Sun
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yuan
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuejiao An
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lingying Kong
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Dan Zhang
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bowen Chen
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zengkui Lu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbin Liu
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
- Sheep Breeding Engineering Technology Research Center of Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
2
|
Song J, Yang K, Gajendran B, Varier KM, Li W, Liu Q, Rao Q, Hang Y, Shen X, Liu S, Huang L, Xu M, Li Y. A New Indole Derivative, LWX-473, Overcomes Glucocorticoid Resistance in Jurkat Cells by Activating Mediators of Apoptosis. FRONT BIOSCI-LANDMRK 2024; 29:163. [PMID: 38682179 DOI: 10.31083/j.fbl2904163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 01/02/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Glucocorticoids (GCs) are commonly used as the primary chemotherapy for lymphoid malignancies, including acute lymphoblastic leukemia (ALL). However, the development of GC resistance limits their prolonged use. METHODS In this study, we investigated the potential of a newly synthesized indole derivative called LWX-473, in combination with the classic GC Dexamethasone (DEX), to enhance the responsiveness of Jurkat cells to GC treatment. RESULTS Our findings demonstrate that LWX-473 alone or in combination with DEX significantly improves GC-induced cell apoptosis and arrests the cell cycle in the G1 phase. Notably, the combination of LWX-473 and DEX exhibits superior efficacy in killing Jurkat cells compared to LWX-473 alone. Importantly, this compound demonstrates reduced toxicity towards normal cells. CONCLUSIONS Our study reveals that LWX-473 has the ability to restore the sensitivity of Jurkat cells to DEX by modulating the mitochondrial membrane potential, activating the expression of DEX-liganded glucocorticoid receptor (GR), and inhibiting key molecules in the JAK/STAT signaling pathway. These findings suggest that LWX-473 could be a potential therapeutic agent for overcoming GC resistance in lymphoid malignancies.
Collapse
Affiliation(s)
- Jingrui Song
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Basic Medicine, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Kun Yang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
- Department of Pharmacy, Guizhou Provincial People's Hospital, 550002 Guiyang, Guizhou, China
| | - Babu Gajendran
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Krishnapriya M Varier
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Wenxue Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Qin Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Qing Rao
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Yubing Hang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Xiangchun Shen
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 550025 Guiyang, Guizhou, China
| | - Sheng Liu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Lei Huang
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Mei Xu
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| | - Yanmei Li
- State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, 550014 Guiyang, Guizhou, China
- Natural Products Research Center of Guizhou Province, 550014 Guiyang, Guizhou, China
| |
Collapse
|
3
|
Uppada SB, Gowrikumar S, Ahmad R, Kumar B, Szeglin B, Chen X, Smith JJ, Batra SK, Singh AB, Dhawan P. MASTL induces Colon Cancer progression and Chemoresistance by promoting Wnt/β-catenin signaling. Mol Cancer 2018; 17:111. [PMID: 30068336 PMCID: PMC6090950 DOI: 10.1186/s12943-018-0848-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Chemotherapeutic agents that modulate cell cycle checkpoints and/or tumor-specific pathways have shown immense promise in preclinical and clinical studies aimed at anti-cancer therapy. MASTL (Greatwall in Xenopus and Drosophila), a serine/threonine kinase controls the final G2/M checkpoint and prevents premature entry of cells into mitosis. Recent studies suggest that MASTL expression is highly upregulated in cancer and confers resistance against chemotherapy. However, the role and mechanism/s of MASTL mediated regulation of tumorigenesis remains poorly understood. METHODS We utilized a large patient cohort and mouse models of colon cancer as well as colon cancer cells to determine the role of Mastl and associated mechanism in colon cancer. RESULTS Here, we show that MASTL expression increases in colon cancer across all cancer stages compared with normal colon tissue (P < 0.001). Also, increased levels of MASTL associated with high-risk of the disease and poor prognosis. Further, the shRNA silencing of MASTL expression in colon cancer cells induced cell cycle arrest and apoptosis in vitro and inhibited xenograft-tumor growth in vivo. Mechanistic analysis revealed that MASTL expression facilitates colon cancer progression by promoting the β-catenin/Wnt signaling, the key signaling pathway implicated in colon carcinogenesis, and up-regulating anti-apoptotic proteins, Bcl-xL and Survivin. Further studies where colorectal cancer (CRC) cells were subjected to 5-fluorouracil (5FU) treatment revealed a sharp increase in MASTL expression upon chemotherapy, along with increases in Bcl-xL and Survivin expression. Most notably, inhibition of MASTL in these cells induced chemosensitivity to 5FU with downregulation of Survivin and Bcl-xL expression. CONCLUSION Overall, our data shed light on the heretofore-undescribed mechanistic role of MASTL in key oncogenic signaling pathway/s to regulate colon cancer progression and chemo-resistance that would tremendously help to overcome drug resistance in colon cancer treatment.
Collapse
Affiliation(s)
- Srijayaprakash Babu Uppada
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
| | - Saiprasad Gowrikumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
| | - Rizwan Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
| | - Balawant Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
| | - Bryan Szeglin
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Human Oncology and Pathogenesis Program at MSKCC, New York, NY USA
| | - Xi Chen
- Division of Biostatistics, University of Miami Miller School of Medicine, Miami, FL USA
| | - J. Joshua Smith
- Department of Surgery, Colorectal Service, Memorial Sloan Kettering Cancer Center, New York, NY USA
- Human Oncology and Pathogenesis Program at MSKCC, New York, NY USA
| | - Surinder K. Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE USA
| | - Amar B. Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE USA
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE-68022 USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE USA
| |
Collapse
|
4
|
Nakamura M, Wu L, Griffin JD, Kojika S, Goi K, Inukai T, Sugita K. Notch1 activation enhances proliferation via activation of cdc2 and delays differentiation of myeloid progenitors. Leuk Res 2018; 72:34-44. [PMID: 30086426 DOI: 10.1016/j.leukres.2018.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/21/2018] [Accepted: 07/28/2018] [Indexed: 11/16/2022]
Abstract
Accumulating evidence indicates that the Notch signaling pathway has crucial roles in the control of fate decision and differentiation in numerous cell types. However, the role of Notch signaling in regulating proliferation and differentiation of myeloid progenitor cells remains controversial. To elucidate this issue, we modulated Notch activity through transducing a constitutively activated form of Notch1 and/or a dominant-negative form of MAML1 (DNMAML1) into myeloid progenitor 32D cells and assessed their effects on cell proliferation and differentiation. We found that Notch1 activation enhances proliferation and delays granulocytic differentiation of 32D cells. The enhanced proliferation due to activated Notch1 signaling was associated with upregulation of c-Myc, followed by decreased expression of p21 and p27, and increased cdc2 kinase activity, through a mechanism that was not blocked by DNMAML1. Conversely, Notch1 activation significantly delayed granulocytic differentiation and maintained a part of myeloid progenitor cells in an immature stage, and this Notch1-mediated effect was dependent on MAML. The Notch1-induced effects on mye myeloid cell proliferation and differentiation were likely mediated by induction of c-Myc and repression of PU.1, respectively. Thus, Notch1 signaling plays an important part in modulating proliferation and differentiation in MAML-independent and -dependent manners and promoting expansion of myeloid progenitors.
Collapse
Affiliation(s)
- Makoto Nakamura
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamamashi 409-3898, Japan.
| | - Lizi Wu
- Department of Molecular Genetics and Microbiology, UF health Cancer Center, University of Florida, 1376 Mowry Rd, Gainesville, FL 32610-3363, United States
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, 450 Brookline Avenue, Boston, MA 02215, United States
| | - Satoru Kojika
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamamashi 409-3898, Japan
| | - Kumiko Goi
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamamashi 409-3898, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamamashi 409-3898, Japan
| | - Kanji Sugita
- Department of Pediatrics, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamamashi 409-3898, Japan
| |
Collapse
|
5
|
Cao L, Zhang P, Li J, Wu M. LAST, a c-Myc-inducible long noncoding RNA, cooperates with CNBP to promote CCND1 mRNA stability in human cells. eLife 2017; 6:30433. [PMID: 29199958 PMCID: PMC5739540 DOI: 10.7554/elife.30433] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/02/2017] [Indexed: 12/13/2022] Open
Abstract
Cyclin D1 is a critical regulator of cell cycle progression and works at the G1 to S-phase transition. Here, we report the isolation and characterization of the novel c-Myc-regulated lncRNA LAST (LncRNA-Assisted Stabilization of Transcripts), which acts as a CCND1 mRNA stabilizer. Mechanistically, LAST was shown to cooperate with CNBP to bind to the 5′UTR of CCND1 mRNA to protect against possible nuclease targeting. In addition, data from CNBP RIP-seq and LAST RNA-seq showed that CCND1 mRNA might not be the only target of LAST and CNBP; three additional mRNAs were shown to be post-transcriptional targets of LAST and CNBP. In a xenograft model, depletion of LAST diminished and ectopic expression of LAST induced tumor formation, which are suggestive of its oncogenic function. We thus report a previously unknown lncRNA involved in the fine-tuned regulation of CCND1 mRNA stability, without which CCND1 exhibits, at most, partial expression. Cell division involves a series of steps in which the cell grows, duplicates its contents, and then divides into two. Together these steps are called the cell cycle, and the transition between each step must be controlled to make sure that events take place in the right order. Any loss of control can cause cells to divide in an unrestrained manner, which may lead to cancer. Proteins called cyclins control progression through the cell cycle. As such, these proteins need to be produced in the correct amounts and at the correct times. Transcription factors are proteins that switch genes on or off to help regulate how much protein is made from those genes. A transcription factor known as c-Myc regulates the expression of the genes that encode the cyclins. Among these genes, one called CCND1 is particularly important because it encodes a protein that controls a crucial transition in the cell cycle: it marks a ‘point of no return’, beyond which cells are committed to dividing. When a transcription factor switches on a gene, the gene gets copied into a molecule of messenger RNA, which is then translated into protein. But, cells also contain genes that do not code for proteins. Transcription factors can bind to such non-coding genes, leading to the production of so-called long non-coding RNAs (often abbreviated to lncRNAs). Many lncRNAs can affect the expression of other genes. Cao, Zhang et al. have now asked whether any lncRNAs regulate CCND1 in human cells. The analysis revealed that the transcription factor c-Myc promotes the expression of a previously unidentified lncRNA. Cao, Zhang et al. name this lncRNA LAST, which is officially short for LncRNA-assisted stabilization of transcripts, and show thatit makes the CCND1 messenger RNA more stable. In other words, it makes the messenger RNAs ‘last’ longer in the cell. This in turn, ensures that the cell cycle progresses in the correct manner, allowing cells to complete their division. In the absence of LAST, the CCND1 messenger RNA becomes unstable and as a result the cell cycle does not progress. Cao, Zhang et al. then explored the role of LAST in cancer cells. When human colon cancer cells that expressed LAST were implanted into mice, they formed tumors. Yet, reducing the expression of LAST in the colon cancer cells made the tumors grow slower. Future challenges will be to understand how LAST makes messenger RNAs stable and further explore its role in cancer. A better understanding of this molecule could reveal whether it can be used to help doctors diagnose or treat cancers.
Collapse
Affiliation(s)
- Limian Cao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Pengfei Zhang
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, China
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University, Zhengzhou, China
| | - Mian Wu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, Innovation Center for Cell Signaling Network, School of Life Sciences, University of Science & Technology of China, Hefei, China.,Translational Research Institute, Henan Provincial People's Hospital, School of Medicine, Henan University, Zhengzhou, China
| |
Collapse
|
6
|
MYC Modulation around the CDK2/p27/SKP2 Axis. Genes (Basel) 2017; 8:genes8070174. [PMID: 28665315 PMCID: PMC5541307 DOI: 10.3390/genes8070174] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022] Open
Abstract
MYC is a pleiotropic transcription factor that controls a number of fundamental cellular processes required for the proliferation and survival of normal and malignant cells, including the cell cycle. MYC interacts with several central cell cycle regulators that control the balance between cell cycle progression and temporary or permanent cell cycle arrest (cellular senescence). Among these are the cyclin E/A/cyclin-dependent kinase 2 (CDK2) complexes, the CDK inhibitor p27KIP1 (p27) and the E3 ubiquitin ligase component S-phase kinase-associated protein 2 (SKP2), which control each other by forming a triangular network. MYC is engaged in bidirectional crosstalk with each of these players; while MYC regulates their expression and/or activity, these factors in turn modulate MYC through protein interactions and post-translational modifications including phosphorylation and ubiquitylation, impacting on MYC's transcriptional output on genes involved in cell cycle progression and senescence. Here we elaborate on these network interactions with MYC and their impact on transcription, cell cycle, replication and stress signaling, and on the role of other players interconnected to this network, such as CDK1, the retinoblastoma protein (pRB), protein phosphatase 2A (PP2A), the F-box proteins FBXW7 and FBXO28, the RAS oncoprotein and the ubiquitin/proteasome system. Finally, we describe how the MYC/CDK2/p27/SKP2 axis impacts on tumor development and discuss possible ways to interfere therapeutically with this system to improve cancer treatment.
Collapse
|
7
|
O'Donovan KJ, Diedler J, Couture GC, Fak JJ, Darnell RB. The onconeural antigen cdr2 is a novel APC/C target that acts in mitosis to regulate c-myc target genes in mammalian tumor cells. PLoS One 2010; 5:e10045. [PMID: 20383333 PMCID: PMC2850929 DOI: 10.1371/journal.pone.0010045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 03/08/2010] [Indexed: 02/06/2023] Open
Abstract
Cdr2 is a tumor antigen expressed in a high percentage of breast and ovarian tumors and is the target of a naturally occurring tumor immune response in patients with paraneoplastic cerebellar degeneration, but little is known of its regulation or function in cancer cells. Here we find that cdr2 is cell cycle regulated in tumor cells with protein levels peaking in mitosis. As cells exit mitosis, cdr2 is ubiquitinated by the anaphase promoting complex/cyclosome (APC/C) and rapidly degraded by the proteasome. Previously we showed that cdr2 binds to the oncogene c-myc, and here we extend this observation to show that cdr2 and c-myc interact to synergistically regulate c-myc-dependent transcription during passage through mitosis. Loss of cdr2 leads to functional consequences for dividing cells, as they show aberrant mitotic spindle formation and impaired proliferation. Conversely, cdr2 overexpression is able to drive cell proliferation in tumors. Together, these data indicate that the onconeural antigen cdr2 acts during mitosis in cycling cells, at least in part through interactions with c-myc, to regulate a cascade of actions that may present new targeting opportunities in gynecologic cancer.
Collapse
Affiliation(s)
- Kevin J. O'Donovan
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute and The Rockefeller University, New York, New York, United States of America
| | - Jennifer Diedler
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute and The Rockefeller University, New York, New York, United States of America
| | - Graeme C. Couture
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute and The Rockefeller University, New York, New York, United States of America
| | - John J. Fak
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute and The Rockefeller University, New York, New York, United States of America
| | - Robert B. Darnell
- Laboratory of Molecular Neuro-Oncology, Howard Hughes Medical Institute and The Rockefeller University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
It is well known that G1 to S phase transition is tightly regulated by the expression and phosphorylation of a number of well-characterized cyclins, cyclin-dependent kinases and members of the retinoblastoma gene family. In this review we discuss the role of these components in regulation of G1 to S phase transition in somatic cells and human embryonic stem cells. Most importantly, we discuss some new tenable links between maintenance of pluripotency and cell cycle regulation in embryonic stem cells by describing the role that master transcription factors play in this process. Finally, the differences in cell cycle regulation between murine and human embryonic stem cells are highlighted, raising interesting questions regarding their biology and stages of embryonic development from which they have been derived.
Collapse
Affiliation(s)
- Irina Neganova
- North East Institute for Stem Cell Research, University of Newcastle upon Tyne, International Centre for Life, Newcastle NE1 3BZ, UK
| | | |
Collapse
|
9
|
Kotliarova S, Pastorino S, Kovell LC, Kotliarov Y, Song H, Zhang W, Bailey R, Maric D, Zenklusen JC, Lee J, Fine HA. Glycogen synthase kinase-3 inhibition induces glioma cell death through c-MYC, nuclear factor-kappaB, and glucose regulation. Cancer Res 2008; 68:6643-51. [PMID: 18701488 DOI: 10.1158/0008-5472.can-08-0850] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glycogen synthase kinase 3 (GSK3), a serine/threonine kinase, is involved in diverse cellular processes ranging from nutrient and energy homeostasis to proliferation and apoptosis. Its role in glioblastoma multiforme has yet to be elucidated. We identified GSK3 as a regulator of glioblastoma multiforme cell survival using microarray analysis and small-molecule and genetic inhibitors of GSK3 activity. Various molecular and genetic approaches were then used to dissect out the molecular mechanisms responsible for GSK3 inhibition-induced cytotoxicity. We show that multiple small molecular inhibitors of GSK3 activity and genetic down-regulation of GSK3alpha/beta significantly inhibit glioma cell survival and clonogenicity. The potency of the cytotoxic effects is directly correlated with decreased enzyme activity-activating phosphorylation of GSK3alpha/beta Y276/Y216 and with increased enzyme activity inhibitory phosphorylation of GSK3alpha S21. Inhibition of GSK3 activity results in c-MYC activation, leading to the induction of Bax, Bim, DR4/DR5, and tumor necrosis factor-related apoptosis-inducing ligand expression and subsequent cytotoxicity. Additionally, down-regulation of GSK3 activity results in alteration of intracellular glucose metabolism resulting in dissociation of hexokinase II from the outer mitochondrial membrane with subsequent mitochondrial destabilization. Finally, inhibition of GSK3 activity causes a dramatic decrease in intracellular nuclear factor-kappaB activity. Inhibition of GSK3 activity results in c-MYC-dependent glioma cell death through multiple mechanisms, all of which converge on the apoptotic pathways. GSK3 may therefore be an important therapeutic target for gliomas. Future studies will further define the optimal combinations of GSK3 inhibitors and cytotoxic agents for use in gliomas and other cancers.
Collapse
Affiliation(s)
- Svetlana Kotliarova
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Shachaf CM, Perez OD, Youssef S, Fan AC, Elchuri S, Goldstein MJ, Shirer AE, Sharpe O, Chen J, Mitchell DJ, Chang M, Nolan GP, Steinman L, Felsher DW. Inhibition of HMGcoA reductase by atorvastatin prevents and reverses MYC-induced lymphomagenesis. Blood 2007; 110:2674-84. [PMID: 17622571 PMCID: PMC1988916 DOI: 10.1182/blood-2006-09-048033] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Statins are a class of drugs that inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMGcoA) reductase, a critical enzyme in the mevalonate pathway. Several reports document that statins may prevent different human cancers. However, whether or not statins can prevent cancer is controversial due to discordant results. One possible explanation for these conflicting conclusions is that only some tumors or specific statins may be effective. Here, we demonstrate in an in vivo transgenic model in which atorvastatin reverses and prevents the onset of MYC-induced lymphomagenesis, but fails to reverse or prevent tumorigenesis in the presence of constitutively activated K-Ras (G12D). Using phosphoprotein fluorescence-activated cell sorter (FACS) analysis, atorvastatin treatment was found to result in the inactivation of the Ras and ERK1/2 signaling pathways associated with the dephosphorylation and inactivation of MYC. Correspondingly, tumors with a constitutively activated K-Ras (G12D) did not exhibit dephosphorylation of ERK1/2 and MYC. Atorvastatin's effects on MYC were specific to the inhibition of HMGcoA reductase, as treatment with mevalonate, the product of HMG-CoA reductase activity, abrogated these effects and inhibited the ability of atorvastatin to reverse or suppress tumorigenesis. Also, RNAi directed at HMGcoA reductase was sufficient to abrogate the neoplastic properties of MYC-induced tumors. Thus, atorvastatin, by inhibiting HMGcoA reductase, induces changes in phosphoprotein signaling that in turn prevent MYC-induced lymphomagenesis.
Collapse
Affiliation(s)
- Catherine M Shachaf
- Division of Medical Oncology, Department of Medicine, Stanford University, Stanford, CA 94305-5151, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gururajan M, Chui R, Karuppannan AK, Ke J, Jennings CD, Bondada S. c-Jun N-terminal kinase (JNK) is required for survival and proliferation of B-lymphoma cells. Blood 2005; 106:1382-91. [PMID: 15890690 PMCID: PMC1895189 DOI: 10.1182/blood-2004-10-3819] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Several primary murine and human B lymphomas and cell lines were found to constitutively express high levels of the activated form of c-jun N-terminal kinase (JNK), a member of the mitogen-activated protein (MAP) kinase family. Proliferation of murine B lymphomas CH31, CH12.Lx, BKS-2, and WEHI-231 and the human B lymphomas BJAB, RAMOS, RAJI, OCI-Ly7, and OCI-Ly10 was strongly inhibited by SP600125, an anthrapyrazolone inhibitor of JNK, in a dose-dependent manner. The lymphoma cells underwent apoptosis and arrested at the G2/M phase of cell cycle. Furthermore, JNK-specific small interfering RNA (siRNA) inhibited the growth of both murine and human B lymphomas. Thus in the B-lymphoma model, JNK appears to have a unique prosurvival role. Survival signals provided by CD40 and interleukin-10 (IL-10) together reversed the growth inhibition induced by the JNK inhibitor. c-Myc protein levels were reduced in the presence of both SP600125 and JNK-specific siRNA, and CD40 ligation restored c-Myc levels. Moreover, Bcl-xL rescued WEHI-231 cells from apoptosis induced by the JNK inhibitor. The JNK inhibitor also reduced levels of early growth response gene-1 (Egr-1) protein, and overexpressing Egr-1 partially rescued lymphoma cells from apoptosis. Thus, JNK may act via c-Myc and Egr-1, which were shown to be important for B-lymphoma survival and growth.
Collapse
Affiliation(s)
- Murali Gururajan
- Department of Microbiology, Immunology, & Molecular Genetics, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|
12
|
Lei K, Nimnual A, Zong WX, Kennedy NJ, Flavell RA, Thompson CB, Bar-Sagi D, Davis RJ. The Bax subfamily of Bcl2-related proteins is essential for apoptotic signal transduction by c-Jun NH(2)-terminal kinase. Mol Cell Biol 2002; 22:4929-42. [PMID: 12052897 PMCID: PMC133923 DOI: 10.1128/mcb.22.13.4929-4942.2002] [Citation(s) in RCA: 396] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Targeted gene disruption studies have established that the c-Jun NH(2)-terminal kinase (JNK) signaling pathway is required for stress-induced release of mitochondrial cytochrome c and apoptosis. Here we demonstrate that activated JNK is sufficient to induce rapid cytochrome c release and apoptosis. However, activated JNK fails to cause death in cells deficient of members of the Bax subfamily of proapoptotic Bcl2-related proteins. Furthermore, exposure to stress fails to activate Bax, cause cytochrome c release, and induce death in JNK-deficient cells. These data demonstrate that proapoptotic members of the Bax protein subfamily are essential for JNK-dependent apoptosis.
Collapse
Affiliation(s)
- Kui Lei
- Howard Hughes Medical Institute and Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Lewis BC, Shim H, Li Q, Wu CS, Lee LA, Maity A, Dang CV. Identification of putative c-Myc-responsive genes: characterization of rcl, a novel growth-related gene. Mol Cell Biol 1997; 17:4967-78. [PMID: 9271375 PMCID: PMC232348 DOI: 10.1128/mcb.17.9.4967] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The c-Myc protein is a helix-loop-helix leucine zipper oncogenic transcription factor that participates in the regulation of cell proliferation, differentiation, and apoptosis. The biochemical function of c-Myc has been well described, yet the identities of downstream effectors are just beginning to emerge. We describe the identification of a set of c-Myc-responsive genes in the Rat1a fibroblast through the application of cDNA representational difference analysis (RDA) to cDNAs isolated from nonadherent Rat1a and Rat1a-myc cells. In this system, c-Myc overexpression is sufficient to induce the transformed phenotype of anchorage-independent growth. We identified 20 differentially expressed cDNAs, several of which represent novel cDNA sequences. We further characterized one of the novel cDNAs identified in this screen, termed rcl. rcl expression is (i) directly stimulated by c-Myc; (ii) stimulated in the in vivo growth system of regenerating rat liver, as is c-myc; and (iii) elevated in human lymphoid cells that overexpress c-myc. By using an anti-Rcl antibody, immunoblot analysis, and immunofluorescence microscopy, the Rcl protein was found to be a 23-kDa nuclear protein. Ectopic expression of the protein encoded by the rcl cDNA induces anchorage-independent growth in Rat1a fibroblasts, albeit to a diminished extent compared to ectopic c-Myc expression. These data suggest a role for rcl during cellular proliferation and c-Myc-mediated transformation.
Collapse
Affiliation(s)
- B C Lewis
- Department of Medicine, Program in Human Genetics and Molecular Biology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Weissinger EM, Eissner G, Grammer C, Fackler S, Haefner B, Yoon LS, Lu KS, Bazarov A, Sedivy JM, Mischak H, Kolch W. Inhibition of the Raf-1 kinase by cyclic AMP agonists causes apoptosis of v-abl-transformed cells. Mol Cell Biol 1997; 17:3229-41. [PMID: 9154822 PMCID: PMC232176 DOI: 10.1128/mcb.17.6.3229] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Here we investigate the role of the Raf-1 kinase in transformation by the v-abl oncogene. Raf-1 can activate a transforming signalling cascade comprising the consecutive activation of Mek and extracellular-signal-regulated kinases (Erks). In v-abl-transformed cells the endogenous Raf-1 protein was phosphorylated on tyrosine and displayed high constitutive kinase activity. The activities of the Erks were constitutively elevated in both v-raf- and v-abl-transformed cells. In both cell types the activities of Raf-1 and v-raf were almost completely suppressed after activation of the cyclic AMP-dependent kinase (protein kinase A [PKA]), whereas the v-abl kinase was not affected. Raf inhibition substantially diminished the activities of Erks in v-raf-transformed cells but not in v-abl-transformed cells, indicating that v-abl can activate Erks by a Raf-1-independent pathway. PKA activation induced apoptosis in v-abl-transformed cells while reverting v-raf transformation without severe cytopathic effects. Overexpression of Raf-1 in v-abl-transformed cells partially protected the cells from apoptosis induced by PKA activation. In contrast to PKA activators, a Mek inhibitor did not induce apoptosis. The diverse biological responses correlated with the status of c-myc gene expression. v-abl-transformed cells featured high constitutive levels of expression of c-myc, which were not reduced following PKA activation. Myc activation has been previously shown to be essential for transformation by oncogenic Abl proteins. Using estrogen-regulated c-myc and temperature-sensitive Raf-1 mutants, we found that Raf-1 activation could protect cells from c-myc-induced apoptosis. In conclusion, these results suggest (i) that Raf-1 participates in v-abl transformation via an Erk-independent pathway by providing a survival signal which complements c-myc in transformation, and (ii) that cAMP agonists might become useful for the treatment of malignancies where abl oncogenes are involved, such as chronic myeloid leukemias.
Collapse
Affiliation(s)
- E M Weissinger
- Institut für Klinische Hämatologie, GSF, Hamatologikum, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Roussel MF, Ashmun RA, Sherr CJ, Eisenman RN, Ayer DE. Inhibition of cell proliferation by the Mad1 transcriptional repressor. Mol Cell Biol 1996; 16:2796-801. [PMID: 8649388 PMCID: PMC231271 DOI: 10.1128/mcb.16.6.2796] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mad1 is a basic helix-loop-helix-leucine zipper protein that is induced upon differentiation of a number of distinct cell types. Mad1 dimerizes with Max and recognizes the same DNA sequences as do Myc:Max dimers. However, Mad1 and Myc appear to have opposing functions. Myc:Max heterodimers activate transcription while Mad:Max heterodimers repress transcription from the same promoter. In addition Mad1 has been shown to block the oncogenic activity of Myc. Here we show that ectopic expression of Mad1 inhibits the proliferative response of 3T3 cells to signaling through the colony-stimulating factor-1 (CSF-1) receptor. The ability of over-expressed Myc and cyclin D1 to complement the mutant CSF-1 receptor Y809F (containing a Y-to-F mutation at position 809) is also inhibited by Mad1. Cell cycle analysis of proliferating 3T3 cells transfected with Mad1 demonstrates a significant decrease in the fraction of cells in the S and G2/M phases and a concomitant increase in the fraction of G1 phase cells, indicating that Mad1 negatively influences cell cycle progression from the G1 to the S phase. Mutations in Mad1 which inhibit its activity as a transcription repressor also result in loss of Mad1 cell cycle inhibitory activity. Thus, the ability of Mad1 to inhibit cell cycle progression is tightly coupled to its function as a transcriptional repressor.
Collapse
Affiliation(s)
- M F Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
16
|
Colman MS, Ostrowski MC. The transactivation potential of a c-Myc N-terminal region (residues 92-143) is regulated by growth factor/Ras signaling. Nucleic Acids Res 1996; 24:1971-8. [PMID: 8657582 PMCID: PMC145862 DOI: 10.1093/nar/24.10.1971] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The colony stimulating factor-1 receptor (CSF-1R) affects mitogenic growth and gene expression in NIH 3T3 cells through signaling pathways that require the products of the c-ras and c-myc proto-oncogenes. In this work we tested the hypothesis that there is direct communication between the Ras and Myc pathways. In transient transfection assays Ras increased by 5-fold transcriptional transactivation by chimeric c-Myc-Gal4 proteins. A constitutive active form of the CSF-1R also stimulated this activity and co-expression of a dominant negative ras gene ablated receptor stimulation. Deletion analysis of the c-Myc N-terminal region demonstrated that amino acid residues between positions 92 and 143 are the targets for Ras action. Transactivation by chimeric Myc proteins that were stably expressed could be transiently enhanced by either CSF-1 or serum, with peak activity occurring 2 h after mitogen stimulation. The steady-state levels of the chimeric c-Myc transactivators were increased following stimulation with CSF-1 or serum, but this increase in steady-state protein level did not strictly correlate with the increase in transactivation activity. Thus, Ras signaling may directly affect the activity of the c-Myc N-terminal region.
Collapse
Affiliation(s)
- M S Colman
- Department of Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
17
|
Lemaitre JM, Bocquet S, Buckle R, Mechali M. Selective and rapid nuclear translocation of a c-Myc-containing complex after fertilization of Xenopus laevis eggs. Mol Cell Biol 1995; 15:5054-62. [PMID: 7651422 PMCID: PMC230752 DOI: 10.1128/mcb.15.9.5054] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We report here unusual features of c-Myc specific to early embryonic development in Xenopus laevis, a period characterized by generalized transcriptional quiescence and rapid biphasic cell cycles. Two c-Myc protein forms, p61 and p64, are present in large amounts in the oocyte as well as during early development. In contrast, only p64 c-Myc is present in Xenopus somatic cells. p61 c-Myc is the direct translation product from both endogenous c-myc mRNAs and c-myc recombinant DNA. It is converted to the p64 c-Myc form after introduction into an egg extract, in the presence of phosphatase inhibitors. p61 and p64 belong to two distinct complexes localized in the cytoplasm of the oocyte. A 15S complex contains p64 c-Myc, and a 17.4S complex contains p61 c-Myc. Fertilization triggers the selective and total entry of only p64 c-Myc into the nucleus. This translocation occurs in a nonprogressive manner and is completed during the first cell cycles. This phenomenon results in an exceptionally high level of c-Myc in the nucleus, which returns to a somatic cell-like level only at the end of the blastulation period. During early development, when the entire embryonic genome is transcriptionally inactive, c-Myc does not exhibit a DNA binding activity with Max. Moreover, embryonic nuclei not only prevent the formation of c-Myc/Max complexes but also dissociate such preformed complexes. These peculiar aspects of c-Myc behavior suggest a function that could be linked to the rapid DNA replication cycles occurring during the early cell cycles rather than a function involving transcriptional activity.
Collapse
Affiliation(s)
- J M Lemaitre
- Unité d'Embryologie Moléculaire, Institut Jacques Monod, Paris, France
| | | | | | | |
Collapse
|
18
|
Hoang AT, Lutterbach B, Lewis BC, Yano T, Chou TY, Barrett JF, Raffeld M, Hann SR, Dang CV. A link between increased transforming activity of lymphoma-derived MYC mutant alleles, their defective regulation by p107, and altered phosphorylation of the c-Myc transactivation domain. Mol Cell Biol 1995; 15:4031-42. [PMID: 7623799 PMCID: PMC230642 DOI: 10.1128/mcb.15.8.4031] [Citation(s) in RCA: 115] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The c-Myc protein is a transcription factor with an N-terminal transcriptional regulatory domain and C-terminal oligomerization and DNA-binding motifs. Previous studies have demonstrated that p107, a protein related to the retinoblastoma protein, binds to the c-Myc transcriptional activation domain and suppresses its activity. We sought to characterize the transforming activity and transcriptional properties of lymphoma-derived mutant MYC alleles. Alleles encoding c-Myc proteins with missense mutations in the transcriptional regulatory domain were more potent than wild-type c-Myc in transforming rodent fibroblasts. Although the mutant c-Myc proteins retained their binding to p107 in in vitro and in vivo assays, p107 failed to suppress their transcriptional activation activities. Many of the lymphoma-derived MYC alleles contain missense mutations that result in substitution for the threonine at codon 58 or affect sequences flanking this amino acid. We observed that in vivo phosphorylation of Thr-58 was absent in a lymphoma cell line with a mutant MYC allele containing a missense mutation flanking codon 58. Our in vitro studies suggest that phosphorylation of Thr-58 in wild-type c-Myc was dependent on cyclin A and required prior phosphorylation of Ser-62 by a p107-cyclin A-CDK complex. In contrast, Thr-58 remained unphosphorylated in two representative mutant c-Myc transactivation domains in vitro. Our studies suggest that missense mutations in MYC may be selected for during lymphomagenesis, because the mutant MYC proteins have altered functional interactions with p107 protein complexes and fail to be phosphorylated at Thr-58.
Collapse
Affiliation(s)
- A T Hoang
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fotedar R, Flatt J, Gupta S, Margolis RL, Fitzgerald P, Messier H, Fotedar A. Activation-induced T-cell death is cell cycle dependent and regulated by cyclin B. Mol Cell Biol 1995; 15:932-42. [PMID: 7823958 PMCID: PMC231980 DOI: 10.1128/mcb.15.2.932] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Developing thymocytes and some T-cell hybridomas undergo activation-dependent programmed cell death. Although recent studies have identified some critical regulators in programmed cell death, the role of cell cycle regulation in activation-induced cell death in T cells has not been addressed. We demonstrate that synchronized T-cell hybridomas, irrespective of the point in the cell cycle at which they are activated, stop cycling shortly after they reach G2/M. These cells exhibit the diagnostic characteristics of apoptotic cell death. Although p34cdc2 levels are not perturbed after activation of synchronously cycling T cells, cyclin B- and p34cdc2-associated histone H1 kinase activity is persistently elevated. This activation-dependent induction of H1 kinase activity in T cells is associated with a decrease in the phosphotyrosine content of p34cdc2. We also demonstrate that transient inappropriate coexpression of cyclin B with p34cdc2 induces DNA fragmentation in a heterologous cell type. Finally, in T cells, cyclin B-specific antisense oligonucleotides suppress activation-induced cell death but not cell death induced by exposure to dexamethasone. We therefore conclude that a persistent elevation of the level of cyclin B kinase is required for activation-induced programmed T-cell death.
Collapse
Affiliation(s)
- R Fotedar
- Institut de Biologie Structurale J.-P. Ebel, Grenoble, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Expression of c-myc with constitutively active mutants of the ras gene results in the cooperative transformation of primary fibroblasts, although the precise mechanism by which these genes cooperate is unknown. Since c-Myc has been shown to function as a transcriptional activator, we have examined the ability of c-Myc and activated Ras (H-RasV-12) to cooperatively induce the promoter activity of cdc2, a gene which is critical for cell cycle progression. Microinjection of expression constructs encoding H-RasV-12 and c-Myc along with a cdc2 promoter-luciferase reporter plasmid into quiescent cells led to an increase in cdc2 promoter activity approximately 30 h after injection, a period which coincides with the S-to-G2/M transition in these cells. Expression of H-RasV-12 alone weakly activated the cdc2 promoter, while expression of c-Myc alone had no effect. Mutants of c-Myc lacking either the leucine zipper dimerization domain or the phosphoacceptor site Ser-62 could not cooperate with H-RasV-12 to induce the cdc2 promoter. These mutants also lacked the ability to cooperate with H-RasV-12 to stimulate DNA synthesis. Deletion analysis identified a distinct region of the cdc2 promoter which was required for c-Myc responsiveness. Taken together, these observations suggest a mechanistic link between the molecular activities of c-Myc and Ras and induction of the cell cycle regulator Cdc2.
Collapse
|
21
|
Born TL, Frost JA, Schönthal A, Prendergast GC, Feramisco JR. c-Myc cooperates with activated Ras to induce the cdc2 promoter. Mol Cell Biol 1994; 14:5710-8. [PMID: 8065306 PMCID: PMC359096 DOI: 10.1128/mcb.14.9.5710-5718.1994] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Expression of c-myc with constitutively active mutants of the ras gene results in the cooperative transformation of primary fibroblasts, although the precise mechanism by which these genes cooperate is unknown. Since c-Myc has been shown to function as a transcriptional activator, we have examined the ability of c-Myc and activated Ras (H-RasV-12) to cooperatively induce the promoter activity of cdc2, a gene which is critical for cell cycle progression. Microinjection of expression constructs encoding H-RasV-12 and c-Myc along with a cdc2 promoter-luciferase reporter plasmid into quiescent cells led to an increase in cdc2 promoter activity approximately 30 h after injection, a period which coincides with the S-to-G2/M transition in these cells. Expression of H-RasV-12 alone weakly activated the cdc2 promoter, while expression of c-Myc alone had no effect. Mutants of c-Myc lacking either the leucine zipper dimerization domain or the phosphoacceptor site Ser-62 could not cooperate with H-RasV-12 to induce the cdc2 promoter. These mutants also lacked the ability to cooperate with H-RasV-12 to stimulate DNA synthesis. Deletion analysis identified a distinct region of the cdc2 promoter which was required for c-Myc responsiveness. Taken together, these observations suggest a mechanistic link between the molecular activities of c-Myc and Ras and induction of the cell cycle regulator Cdc2.
Collapse
Affiliation(s)
- T L Born
- Department of Medicine, University of California, San Diego, La Jolla 92093-0636
| | | | | | | | | |
Collapse
|