1
|
Khaleel SA, Alzokaky AA, Raslan NA, Alwakeel AI, Abd El-Aziz HG, Abd-Allah AR. Lansoprazole halts contrast induced nephropathy through activation of Nrf2 pathway in rats. Chem Biol Interact 2017; 270:33-40. [DOI: 10.1016/j.cbi.2017.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/12/2017] [Indexed: 12/11/2022]
|
2
|
Fraczek J, Bolleyn J, Vanhaecke T, Rogiers V, Vinken M. Primary hepatocyte cultures for pharmaco-toxicological studies: at the busy crossroad of various anti-dedifferentiation strategies. Arch Toxicol 2012; 87:577-610. [PMID: 23242478 DOI: 10.1007/s00204-012-0983-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 11/19/2012] [Indexed: 01/24/2023]
Abstract
Continuously increasing understanding of the molecular triggers responsible for the onset of diseases, paralleled by an equally dynamic evolution of chemical synthesis and screening methods, offers an abundance of pharmacological agents with a potential to become new successful drugs. However, before patients can benefit of newly developed pharmaceuticals, stringent safety filters need to be applied to weed out unfavourable drug candidates. Cost effectiveness and the need to identify compound liabilities, without exposing humans to unnecessary risks, has stimulated the shift of the safety studies to the earliest stages of drug discovery and development. In this regard, in vivo relevant organotypic in vitro models have high potential to revolutionize the preclinical safety testing. They can enable automation of the process, to match the requirements of high-throughput screening approaches, while satisfying ethical considerations. Cultures of primary hepatocytes became already an inherent part of the preclinical pharmaco-toxicological testing battery, yet their routine use, particularly for long-term assays, is limited by the progressive deterioration of liver-specific features. The availability of suitable hepatic and other organ-specific in vitro models is, however, of paramount importance in the light of changing European legal regulations in the field of chemical compounds of different origin, which gradually restrict the use of animal studies for safety assessment, as currently witnessed in cosmetic industry. Fortunately, research groups worldwide spare no effort to establish hepatic in vitro systems. In the present review, both classical and innovative methodologies to stabilize the in vivo-like hepatocyte phenotype in culture of primary hepatocytes are presented and discussed.
Collapse
Affiliation(s)
- J Fraczek
- Department of Toxicology, Faculty of Medicine and Pharmacy, Centre for Pharmaceutical Research, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
3
|
Chatterjee S, Rana R, Corbett J, Kadiiska MB, Goldstein J, Mason RP. P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radic Biol Med 2012; 52:1666-79. [PMID: 22343416 PMCID: PMC3341527 DOI: 10.1016/j.freeradbiomed.2012.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 02/07/2012] [Accepted: 02/07/2012] [Indexed: 01/21/2023]
Abstract
While some studies show that carbon tetrachloride-mediated metabolic oxidative stress exacerbates steatohepatitic-like lesions in obese mice, the redox mechanisms that trigger the innate immune system and accentuate the inflammatory cascade remain unclear. Here we have explored the role of the purinergic receptor P2X7-NADPH oxidase axis as a primary event in recognizing the heightened release of extracellular ATP from CCl(4)-treated hepatocytes and generating redox-mediated Kupffer cell activation in obese mice. We found that an underlying condition of obesity led to the formation of protein radicals and posttranslational nitration, primarily in Kupffer cells, at 24h post-CCl(4) administration. The free radical-mediated oxidation of cellular macromolecules, which was NADPH oxidase and P2X7 receptor-dependent, correlated well with the release of TNF-α and MCP-2 from Kupffer cells. The Kupffer cells in CCl(4)-treated mice exhibited increased expression of MHC Class II proteins and showed an activated phenotype. Increased expression of MHC Class II was inhibited by the NADPH oxidase inhibitor apocynin , P2X7 receptor antagonist A438709 hydrochloride, and genetic deletions of the NADPH oxidase p47 phox subunit or the P2X7 receptor. The P2X7 receptor acted upstream of NADPH oxidase activation by up-regulating the expression of the p47 phox subunit and p47 phox binding to the membrane subunit, gp91 phox. We conclude that the P2X7 receptor is a primary mediator of oxidative stress-induced exacerbation of inflammatory liver injury in obese mice via NADPH oxidase-dependent mechanisms.
Collapse
Affiliation(s)
- Saurabh Chatterjee
- Free Radical Metabolism Group, Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709, USA.
| | | | | | | | | | | |
Collapse
|
4
|
Higgins LG, Hayes JD. Mechanisms of induction of cytosolic and microsomal glutathione transferase (GST) genes by xenobiotics and pro-inflammatory agents. Drug Metab Rev 2011; 43:92-137. [PMID: 21495793 DOI: 10.3109/03602532.2011.567391] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione transferase (GST) isoezymes are encoded by three separate families of genes (designated cytosolic, microsomal and mitochondrial transferases), with distinct evolutionary origins, that provide mammalian species with protection against electrophiles and oxidative stressors in the environment. Members of the cytosolic class Alpha, Mu, Pi and Theta GST, and also certain microsomal transferases (MGST2 and MGST3), are up-regulated by a diverse spectrum of foreign compounds typified by phenobarbital, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene, pregnenolone-16α-carbonitrile, 3-methylcholanthrene, 2,3,7,8-tetrachloro-dibenzo-p-dioxin, β-naphthoflavone, butylated hydroxyanisole, ethoxyquin, oltipraz, fumaric acid, sulforaphane, coumarin, 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole, 12-O-tetradecanoylphorbol-13-acetate, dexamethasone and thiazolidinediones. Collectively, these compounds induce gene expression through the constitutive androstane receptor (CAR), the pregnane X receptor (PXR), the aryl hydrocarbon receptor (AhR), NF-E2-related factor 2 (Nrf2), peroxisome proliferator-activated receptor-γ (PPARγ) and CAATT/enhancer binding protein (C/EBP) β. The microsomal T family includes 5-lipoxygenase activating protein (FLAP), leukotriene C(4) synthase (LTC4S) and prostaglandin E(2) synthase (PGES-1), and these are up-regulated by tumour necrosis factor-α, lipopolysaccharide and transforming growth factor-β. Induction of genes encoding FLAP, LTC4S and PGES-1 is mediated by the transcription factors C/EBPα, C/EBPδ, C/EBPϵ, nuclear factor-κB and early growth response-1. In this article we have reviewed the literature describing the mechanisms by which cytosolic and microsomal GST are up-regulated by xenobiotics, drugs, cytokines and endotoxin. We discuss cross-talk between the different induction mechanisms, and have employed bioinformatics to identify cis-elements in the upstream regions of GST genes to which the various transcription factors mentioned above may be recruited.
Collapse
Affiliation(s)
- Larry G Higgins
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | |
Collapse
|
5
|
Van Tiem LA, Di Giulio RT. AHR2 knockdown prevents PAH-mediated cardiac toxicity and XRE- and ARE-associated gene induction in zebrafish (Danio rerio). Toxicol Appl Pharmacol 2011; 254:280-7. [PMID: 21600235 PMCID: PMC3134122 DOI: 10.1016/j.taap.2011.05.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 11/16/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants often present in aquatic systems as complex mixtures. Embryonic fish are sensitive to the developmental toxicity of some PAHs, but the exact mechanisms involved in this toxicity are still unknown. This study explored the role of the aryl hydrocarbon receptor (AHR) in the oxidative stress response of zebrafish to the embryotoxicity of select PAHs. Embryos were exposed to two PAHs, benzo[k]fluoranthene (BkF; a strong AHR agonist) and fluoranthene (FL; a cytochrome P4501A (CYP1A) inhibitor), alone and in combination. CYP1A, CYP1B1, CYP1C1, and redox-responsive genes glutathione s-transferase pi 2 (GSTp2), glutathione peroxidase 1 (GPx1), the glutamate-cysteine ligase catalytic subunit (GCLc), MnSOD and CuZnSOD mRNA expression was examined. CYP1 activity was measured via an in vivo ethoxyresorufin-O-deethlyase (EROD) activity assay, and the area of the pericardium was measured as an index of cardiotoxicity. BkF or FL alone caused no deformities whereas BkF+FL resulted in extreme pericardial effusion. BkF induced CYP activity above controls and co-exposure with FL inhibited this activity. BkF induced expression of all three CYPs, GSTp2, and GCLc. BkF+FL caused greater than additive induction of the three CYPs, GSTp2, GPx1, and GCLc but had no effect on MnSOD or CuZnSOD. AHR2 knockdown protected against the cardiac deformities caused by BkF+FL and significantly inhibited the induction of the CYPs, GSTp2, GPx1, and GCLc after BkF+FL compared to non-injected controls. These results further show the protective role of AHR2 knockdown against cardiotoxic PAHs and the role of AHR2 as a mediator of redox-responsive gene induction.
Collapse
|
6
|
Cho IJ, Ki SH, Brooks C, Kim SG. Role of hepatitis B virus X repression of C/EBPbeta activity in the down-regulation of glutathione S-transferase A2 gene: implications in other phase II detoxifying enzyme expression. Xenobiotica 2009; 39:182-92. [PMID: 19255944 DOI: 10.1080/00498250802549808] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
1. A genome-wide in silico screening rendered the genes of phase II enzymes in the rat genome whose promoters contain the putative DNA elements interacting with CCAAT/enhancer binding protein (C/EBP) and NF-E2-related factor (Nrf2). The hepatitis B virus X (HBx) protein strongly modulates the transactivation and/or the repression of genes regulated by some bZIP transcription factors. 2. This study investigated the effects of HBx on the induction of phase II enzymes with the aim of elucidating the role of HBx interaction with C/EBPbeta or Nrf2 bZIP transcription factors in hepatocyte-derived cells. 3. Immunoblot and reporter gene analyses revealed that transfection of HBx interfered with the constitutive and inducible GSTA2 transactivation promoted by oltipraz (C/EBPbeta activator), but not that by tert-butylhydroquinone (t-BHQ, Nrf2 activator). Moreover, HBx transfection completely inhibited GSTA2 reporter gene activity induced by C/EBPbeta, but failed to inhibit that by Nrf2. 4. Gel shift assays identified that HBx inhibited the increase in C/EBPbeta-DNA complex formation by oltipraz, but not the increase in Nrf2-DNA complex by t-BHQ. Immunoprecipitation and immunoblot assays verified the direct interaction between HBx and C/EBPbeta. Moreover, chromatin immunoprecipitation assays confirmed HBx inhibition of C/EBPbeta binding to its binding site in the GSTA2 gene promoter. HBx repressed the induction of other phase II enzymes including GSTP, UDP-glucuronyltransferase 1A, microsomal epoxide hydrolase, GSTM1, GSTM2, and gamma-glutamylcysteine synthase. 5. These results demonstrate that HBx inhibits the induction of phase II detoxifying enzymes, which is mediated by its interaction with C/EBPbeta, but not Nrf2, substantiating the specific role of HBx in phase II detoxifying capacity.
Collapse
Affiliation(s)
- I J Cho
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy, Seoul National University, Seoul, South Korea
| | | | | | | |
Collapse
|
7
|
Kinehara M, Fukuda I, Yoshida KI, Ashida H. High-throughput evaluation of aryl hydrocarbon receptor-binding sites selected via chromatin immunoprecipitation-based screening in Hepa-1c1c7 cells stimulated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Genes Genet Syst 2009; 83:455-68. [PMID: 19282623 DOI: 10.1266/ggs.83.455] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Upon binding to ligands such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) is activated to form a heterodimer with an aryl hydrocarbon receptor nuclear translocator (Arnt) and binds to DNA. It has been shown that the binding of AhR to DNA depends on the dioxin response element (DRE) and controls xenobiotic-response genes. AhR-binding DNA fragments from mouse hepatoma Hepa-1c1c7 cells stimulated with TCDD were once enriched in a chromatin immunoprecipitation (ChIP) DNA library and screened through a high-throughput southwestern chemistry-based enzyme-linked immunosorbent assay (SW-ELISA). After screening 1700 fragments, the ChIP-SW-ELISA screening strategy allowed us to isolate 77 fragments tightly interacting with AhR in the presence of TCDD. Only 39 of the 77 fragments appeared to contain a typical DRE, indicating that in some cases the DRE was dispensable for AhR-binding, while 75 fragments were located within promoter-distal regions. Genomic mapping of the 77 fragments enabled us to estimate 121 potential AhR targets including known targets such as Cyp1A1 and Cyp1B1, but only a limited number exhibited an altered expression dependent on TCDD. This study revealed the fact that TCDD-activated AhR frequently binds to promoter-distal regions even without a DRE and is not always involved in transcriptional regulation, suggesting that within the genome DNA-binding of AhR could take place often in many regions without cis-regulatory elements and might not be a key determinant to establish its regulatory function.
Collapse
Affiliation(s)
- Masaki Kinehara
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Japan
| | | | | | | |
Collapse
|
8
|
Ki SH, Kim SG. Phase II enzyme induction by α-lipoic acid through phosphatidylinositol 3-kinase-dependent C/EBPs activation. Xenobiotica 2008; 38:587-604. [DOI: 10.1080/00498250802126920] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- S. H. Ki
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University , Seoul, Korea
| | - S. G. Kim
- Innovative Drug Research Center for Metabolic and Inflammatory Disease, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University , Seoul, Korea
| |
Collapse
|
9
|
Falkner KC, Prough RA. Regulation of the rat glutathione S-transferase A2 gene by glucocorticoids: crosstalk through C/EBPs. Drug Metab Rev 2007; 39:401-18. [PMID: 17786629 PMCID: PMC2423428 DOI: 10.1080/03602530701511216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Regulation of the rat glutathione S-transferase A2 (GSTA2) gene by glucocorticoids is biphasic in its concentration dependence to glucocorticoids, with concentrations of 10-100 nM repressing gene activity (GR-dependent), and concentrations above 1 microM increasing transactivation (PXR-dependent) in adult rat hepatocytes or transient transfection assays. Over-expression of either C/EBP alpha or beta negatively regulates basal and inducible expression of a 1.65 Kb GSTA2 luciferase reporter, and synergizes the response to glucocorticoids (GC). C/EBP responsive elements have been identified in the GSTA2 5'-flanking sequence, associated with the palindrominic Glucocorticoid Responsive Element (GRE), the Ah receptor response elements, and the antioxidant response element. In reporters lacking the palindromic GRE, negative regulation by GC is observed only when C/EBP alpha is co-expressed. Co-transfection of C/EBP alpha/beta induced gene expression of the GSTA2 XRE reporter, but negatively regulated the GSTA2 ARE-reporter. In contrast, the ARE from the rat NAD(P)H quinone oxidoreductase gene was induced by co-transfection of C/EBPs, but was still negatively regulated by GC. PXR-induction of the GSTA2 reporter was partially ablated by co-transfection of C/EBP alpha and enhanced by co-transfection of C/EBPbeta. We conclude that C/EBP alpha and beta are involved in GC-dependent repression of GSTA2 gene expression and ARE sequences that bind C/EBPs appears to be critical for these responses.
Collapse
Affiliation(s)
- K Cameron Falkner
- Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | |
Collapse
|
10
|
Fujita H, Samejima H, Kitagawa N, Mitsuhashi T, Washio T, Yonemoto J, Tomita M, Takahashi T, Kosaki K. Genome-wide screening of dioxin-responsive genes in fetal brain: bioinformatic and experimental approaches. Congenit Anom (Kyoto) 2006; 46:135-43. [PMID: 16922920 DOI: 10.1111/j.1741-4520.2006.00116.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Many of the effects of dioxins, which are potent environmental pollutants and teratogens, are mediated through the aryl hydrocarbon receptor, also known as the dioxin receptor. The purpose of the present study was to characterize dioxin-responsive genes in a comprehensive manner using two complementary approaches: bioinformatic analysis and microarray analysis. First, we characterized the overall distribution of the cis-regulatory element for the dioxin-responsive element sequence (DRE) 'gcgtg' within putative promoter regions. We assembled the upstream sequences 10 kb from the transcription start site and evaluated their location and frequency in the human and mouse genomes. Second, we characterized the expression profile of mouse embryonic day 12 fetal brain exposed to 2,3,7,8-tetrarchlorodibenzo-p-dioxin. The distributions of 26,680 DREs among 2,843 human genes and 98,711 DREs among 18,541 mouse genes were examined. In both species, the DREs tended to be located close to the transcription start site. Forty genes exhibited significant induction or repression following dioxin exposure in fetal mice. The set of genes exhibited a strong functional coherence, with statistically significant enrichment in organogenesis and the DNA-dependent regulation of transcription, according to Gene Ontology annotations. In both humans and mice, DREs were preferentially distributed close to transcription start sites. Evolutionary conservation of this unique DRE distribution pattern suggests that DREs may be involved in transcriptional regulation. In mice, prenatal dioxin exposure altered the expression of 10 transcription factors, many of which have been documented to play a role in organogenesis. These genes may represent potential mediators of dioxin's effects in fetal tissues.
Collapse
Affiliation(s)
- Hideki Fujita
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Schreiber TD, Köhle C, Buckler F, Schmohl S, Braeuning A, Schmiechen A, Schwarz M, Münzel PA. Regulation of CYP1A1 gene expression by the antioxidant tert-butylhydroquinone. Drug Metab Dispos 2006; 34:1096-101. [PMID: 16581943 DOI: 10.1124/dmd.106.009662] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CYP1A1, a major phase I enzyme, plays an important role in the metabolism of polycyclic aromatic hydrocarbons and in the chemical activation of xenobiotics to carcinogenic derivatives. The phenolic antioxidant tert-butylhydroquinone (tBHQ), often used as a food preservative, is generally considered to act only as a mono-functional inducer of phase II enzymes, thereby exerting chemo-protection. However, we recently observed that tBHQ elevated the activity of an aryl hydrocarbon receptor (AhR) response element (DRE)-driven luciferase reporter in human colon carcinoma cells (Caco-2). Therefore, we studied the effects of tBHQ on the activity of a DRE-driven reporter, CYP1A1 mRNA expression, and CYP1A enzyme activity in Caco-2 cells and human HepG2 hepatoma cells. We found tBHQ caused induction of reporter activity and CYP1A1 expression and activity in Caco-2 and HepG2 cells. Moreover, tBHQ combined with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increased reporter activity and mRNA expression in Caco-2 cells in an additive manner. By contrast, tBHQ decreased TCDD-mediated induction of reporter activity and CYP1A1 mRNA expression in HepG2 cells. Resveratrol, an AhR antagonist, repressed the induction of CYP1A1 by tBHQ. Cotransfection of HepG2 cells with a dominant negative AhR nuclear translocator mutant abolished the tBHQ-induced CYP1A1 reporter activity. These findings indicate that CYP1A1 may be induced by the antioxidant tBHQ via an AhR-dependent mechanism.
Collapse
Affiliation(s)
- Thomas D Schreiber
- Institute of Pharmacology and Toxicology, Department of Toxicology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The capacity of cells to maintain homeostasis during oxidative stress resides in activation or induction of protective enzymes. Nuclear-factor-E2-related factor (Nrf)-2 as a member of bZIP transcription factors is expressed in a variety of tissues. Transcriptional activation of antioxidant genes through an antioxidant response element (ARE) is largely dependent upon Nrf2. The genes that contain a functional ARE include those encoding GSTA1, GSTA2, NAD(P)H:quinone reductase, and gamma-glutamylcysteine synthetase heavy and light subunits that play a role in defense against oxidative stress. Previously, we showed that phosphatidylinositol 3-kinase (PI3-kinase) controls nuclear translocation of Nrf2 in response to oxidative stress, which involves rearrangement of actin microfilaments. Now, we report that PI3-kinase is responsible for the rise of cellular Ca(2+), which is requisite for nuclear translocation of Nrf2. Immunocytochemistry and subcellular fractionation analyses revealed that Nrf2 relocated from the cytoplasm to the plasma membrane prior to its nuclear translocation. We further found that CCAAT/enhancer binding protein-beta (C/EBPbeta), peroxisome proliferatoractivated receptor-gamma (PPARgamma), and retinoid X receptor (RXR) heterodimer serve as the activating transcription factors for the phase II gene induction. Hence, PI3-kinase-mediated Nrf2 activation in combination with activating PPARgamma-RXR and C/EBPbeta contributes to antioxidant phase II enzyme induction via coordinate gene transactivation.
Collapse
Affiliation(s)
- Keon Wook Kang
- National Research Laboratory, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | | | | |
Collapse
|
13
|
Koyano S, Saito Y, Fukushima-Uesaka H, Ishida S, Ozawa S, Kamatani N, Minami H, Ohtsu A, Hamaguchi T, Shirao K, Yoshida T, Saijo N, Jinno H, Sawada JI. Functional analysis of six human aryl hydrocarbon receptor variants in a Japanese population. Drug Metab Dispos 2005; 33:1254-60. [PMID: 15860653 DOI: 10.1124/dmd.105.004655] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aryl hydrocarbon receptor (AhR) is an important transcriptional regulator involved in the induction of CYP1A1, CYP1A2, CYP1B1, UGT1A1, and UGT1A6. In this study, functional properties of four novel naturally occurring human AhR variants (K401R, N487D, I514T, and K17T/R554K) were examined along with the single variants K17T and R554K. The luciferase reporter assay using the CYP1A1 promoter reporter in HeLa cells treated with beta-naphthoflavone or 3-methylcholanthrene, which are known as typical agonists for AhR, showed that reporter activities of the K401R and N487D variants were reduced to 40 to 58% of those of wild-type (WT) but not of the other variants. Similarly, the K401R and N487D variants also reduced the omeprazole-induced reporter activities to approximately 56 and 74% of those of the WT, respectively. The reduced activities of the two variants were probably caused by the reduced protein expression levels, since the protein levels of the K401R and N487D variants were approximately 52 and 47% of the WT, respectively, without any changes in their mRNA levels. The reduced protein levels were recovered by treatment with a proteasome inhibitor MG132 [N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal], suggesting that the reduced protein levels were caused by the accelerated proteasomal degradation by a proteasome. Together, the current data demonstrate that the K401R and N487D variants reduce their apparent transcriptional activities, both ligand-induced and omeprazole-induced activation, probably through reduced protein expression. Thus, these two variants may influence drug metabolism through reduced induction of CYP1A1 and other target enzymes.
Collapse
Affiliation(s)
- Satoru Koyano
- Project Team for Pharmacogenetics, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Sun YV, Boverhof DR, Burgoon LD, Fielden MR, Zacharewski TR. Comparative analysis of dioxin response elements in human, mouse and rat genomic sequences. Nucleic Acids Res 2004; 32:4512-23. [PMID: 15328365 PMCID: PMC516056 DOI: 10.1093/nar/gkh782] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Comparative approaches were used to identify human, mouse and rat dioxin response elements (DREs) in genomic sequences unambiguously assigned to a nucleotide RefSeq accession number. A total of 13 bona fide DREs, all including the substitution intolerant core sequence (GCGTG) and adjacent variable sequences, were used to establish a position weight matrix and a matrix similarity (MS) score threshold to rank identified DREs. DREs with MS scores above the threshold were disproportionately distributed in close proximity to the transcription start site in all three species. Gene expression assays in hepatic mouse tissue confirmed the responsiveness of 192 genes possessing a putative DRE. Previously identified functional DREs in well-characterized AhR-regulated genes including Cyp1a1 and Cyp1b1 were corroborated. Putative DREs were identified in 48 out of 2437 human-mouse-rat orthologous genes between -1500 and the transcriptional start site, of which 19 of these genes possessed positionally conserved DREs as determined by multiple sequence alignment. Seven of these nineteen genes exhibited 2,3,7,8-tetrachlorodibenzo-p-dioxin-mediated regulation, although there were significant discrepancies between in vivo and in vitro results. Interestingly, of the mouse-rat orthologous genes with a DRE between -1500 and +1500, only 37% had an equivalent human ortholog. These results suggest that AhR-mediated gene expression may not be well conserved across species, which could have significant implications in human risk assessment.
Collapse
Affiliation(s)
- Y V Sun
- Department of Biochemistry and Molecular Biology, National Food Safety and Toxicology Center, Michigan State University, East Lansing, MI 48824, USA
| | | | | | | | | |
Collapse
|
15
|
Minsavage GD, Park SK, Gasiewicz TA. The aryl hydrocarbon receptor (AhR) tyrosine 9, a residue that is essential for AhR DNA binding activity, is not a phosphoresidue but augments AhR phosphorylation. J Biol Chem 2004; 279:20582-93. [PMID: 14978034 DOI: 10.1074/jbc.m312977200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We delineate a mechanism by which dioxin (2,3,7,8-tetrachlorodibenzo-p-dioxin or TCDD)-mediated formation of the aryl hydrocarbon receptor (AhR) DNA binding complex is disrupted by a single mutation at the conserved AhR tyrosine 9. Replacement of tyrosine 9 with the structurally conservative phenylalanine (AhRY9F) abolished binding to dioxin response element (DRE) D, E, and A and abrogated DRE-driven gene induction mediated by the AhR with no effect on TCDD binding, TCDD-induced nuclear localization, or ARNT heterodimerization. The speculated role for phosphorylation at tyrosine 9 was also examined. Anti-phosphotyrosine immunoblotting could not detect a major difference between the AhRY9F mutant and wild-type AhR, but a basic isoelectric point shift was detected by two-dimensional gel electrophoresis of AhRY9F. However, an antibody raised to recognize only phosphorylated tyrosine 9 (anti-AhRpY9) confirmed that AhR tyrosine 9 is not a phosphorylated residue required for DRE binding. Kinase assays using synthetic peptides corresponding to the wild-type and mutant AhR residues 1-23 demonstrated that a tyrosine at position 9 is important for substrate recognition at serine(s)/threonine(s) within this sequence by purified protein kinase C (PKC). Also, compared with AhRY9F, immunopurified full-length wild-type receptor was more rapidly phosphorylated by PKC. Furthermore, co-treatment of AhR-deficient cells that expressed AhRY9F and a DRE-driven luciferase construct with phorbol 12-myristate 13-acetate and TCDD resulted in a 30% increase in luciferase activity compared with AhRY9F treated with TCDD alone. Overall, AhR tyrosine 9, which is not a phosphorylated residue itself but is required for DNA binding, appears to play a crucial role in AhR activity by permitting proper phosphorylation of the AhR.
Collapse
Affiliation(s)
- Gary D Minsavage
- Department of Environmental Medicine, School of Medicine, University of Rochester, 575 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|
16
|
Kang KW, Cho IJ, Lee CH, Kim SG. Essential role of phosphatidylinositol 3-kinase-dependent CCAAT/enhancer binding protein beta activation in the induction of glutathione S-transferase by oltipraz. J Natl Cancer Inst 2003; 95:53-66. [PMID: 12509401 DOI: 10.1093/jnci/95.1.53] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Cancer chemopreventive agents transcriptionally induce genes whose protein products can protect cells from chemical-induced carcinogenesis. Oltipraz, a dithiolthione, exerts chemopreventive responses through glutathione S-transferase (GST) induction. We investigated the role of the CCAAT/enhancer binding protein (C/EBP) in the induction of the GSTA2 gene (alpha class) by oltipraz and identified the enhancer element(s) responsible for GSTA2 gene expression. METHODS H4IIE rat hepatocyte-derived cells were treated with oltipraz, and GSTA2 expression was determined by northern and immunoblot analyses. The activation of C/EBPbeta and alpha forms and NF-E2-related factor 2 (Nrf2) was assessed by immunochemical assays. C/EBPbeta-DNA binding activity was determined by subcellular fractionation and electrophoretic mobility shift assays. The role of the C/EBP binding site in the induction of the GSTA2 gene was assessed by luciferase reporter-gene activity. The role of phosphatidylinositol 3-kinase (PI3-kinase) and mitogen-activated protein (MAP) kinase signaling pathways in C/EBP-mediated GSTA2 induction was studied by using chemical inhibitors, overexpression vectors, and dominant-negative mutants. All statistical tests were two-sided. RESULTS Oltipraz induced GSTA2 mRNA and protein expression. In oltipraz-treated cells, C/EBPbeta translocated to the nucleus and bound to the consensus sequence of C/EBP (TTGCGCAA). Oltipraz treatment increased luciferase reporter-gene activity in H4IIE cells transfected with the C/EBP-containing regulatory region of the GSTA2 gene. Deletion of the C/EBP binding site or overexpression of a dominant-negative mutant form of C/EBP (AC/EBP) abolished the reporter gene activity. PI3-kinase, but not MAP kinases, was required for C/EBPbeta-dependent induction of GSTA2 by oltipraz. CONCLUSIONS Oltipraz-induced GSTA2 gene expression is dependent upon PI3-kinase-mediated nuclear translocation and binding of C/EBPbeta to the C/EBP response element in the GSTA2 gene promoter.
Collapse
Affiliation(s)
- Keon Wook Kang
- National Research Laboratory, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Korea
| | | | | | | |
Collapse
|
17
|
Lamb JG, Franklin MR. Cell-based studies reveal differences in glutathione S-transferase induction between oltipraz and tert-butylhydroquinone. J Biochem Mol Toxicol 2002; 16:154-61. [PMID: 12242683 DOI: 10.1002/jbt.10033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Selective induction of Phase II over Phase I drug-metabolizing enzymes has been proposed as a mechanism for reduction of chemical carcinogenesis. Enzymes likely to play a role in this amelioration include the glutathione S-transferases (GSTs) and among compounds that selectively induce key GSTs are tert-butylhydroquinone (tBHQ) and oltipraz [4-methyl-5-(2-pyrazinyl)-3H-1,2-dithiole-3-thione]. In vivo, and in hepatoma cells (H4IIE), these two agents induce rat GSTA2 mRNA to a similar extent. However, with a luciferase reporter construct containing 1651 bp of the proximal 5' flanking region of the rGSTA2 gene in the same cell line and under similar conditions, luciferase activity was induced to a much greater extent by tBHQ than by oltipraz. A similar large intercompound differential was seen with reporter constructs containing either the rGSTA2 ARE enhancer and HNF1 site (-872 to -582) or XRE enhancer and HNF1 site (-1110 to -812). In H4IIE cells, the rGSTA2 mRNA response to each agent was completely inhibited by 1 microM actinomycin-D cotreatment. With 1 microM cycloheximide cotreatment however, some induction by tBHQ remained, while induction by oltipraz was completely abolished. The induction response to tBHQ but not oltipraz was augmented by pretreatment with PD98059, a MEK1/2 specific inhibitor. Notwithstanding induction characteristics in common, oltipraz, and tBHQ have sufficient dissimilarities to indicate that rGSTA2 upregulation by the two agents is not identical.
Collapse
Affiliation(s)
- John G Lamb
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
18
|
Borlak J, Dangers M, Thum T. Aroclor 1254 modulates gene expression of nuclear transcription factors: implications for albumin gene transcription and protein synthesis in rat hepatocyte cultures. Toxicol Appl Pharmacol 2002; 181:79-88. [PMID: 12051991 DOI: 10.1006/taap.2002.9392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human exposure to polychlorinated biphenyls (PCBs) may lead to increased albumin serum levels, but little is known about the underlying events. Certain PCBs are also ligands for the aryl hydrocarbon receptor (Ahr) and this receptor regulates transcriptional activation of many different genes, including CYP1A1. We tested our hypothesis that expression of certain nuclear transcription factors is altered upon treatment of rat hepatocyte cultures with Aroclor 1254 and we studied the gene expression of albumin and liver-enriched transcription factors simultaneously. We correlate albumin gene expression with protein synthesis and we used CYP1A1 gene expression and enzyme activity as a surrogate endpoint for aryl hydrocarbon receptor activation. We found mRNA transcripts of CCAAT/enhancer binding protein alpha and gamma, hepatic nuclear factor 1, and hepatic nuclear factor 4 to be increased up to 62-fold, whereas albumin gene expression and secretion was increased 3-fold. Noticeably, expression of c-fos, c-jun (AP-1), HNF-6, CCAAT/enhancer binding protein beta and delta, tissue-specific enhancer-1, Ah-receptor, and albumin D-site-binding protein was unchanged. We show coordinate albumin gene expression and protein secretion in primary rat hepatocyte cultures and propose a relationship between induction of certain liver-enriched transcription factors and of the albumin gene via an Ahr-mediated mechanism.
Collapse
Affiliation(s)
- Jürgen Borlak
- Center for Drug Research and Medical Biotechnology, Fraunhofer Institute of Toxicology and Aerosol Research, Germany.
| | | | | |
Collapse
|
19
|
Tchounwou PB, Ishaque AB, Schneider J. Cytotoxicity and transcriptional activation of stress genes in human liver carcinoma cells (HepG2) exposed to cadmium chloride. Mol Cell Biochem 2001; 222:21-8. [PMID: 11678604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Epidemiological studies have shown that there exists some correlation between cadmium exposure and human cancers. The evidence that cadmium and cadmium compounds are probable human carcinogens is also supported by experimental studies reporting induction of malignant tumors formation in multiple species of laboratory animals exposed to these compounds. In vitro studies with mammalian cells have also shown that cadmium is clastogenic, but its mutagenic potential is rather weak. In this research, we performed the MTT assay for cell viability to assess the cytotoxicity of cadmium chloride (CdCl2), and the CAT-Tox (L) assay to measure the induction of stress genes in thirteen different recombinant cell lines generated from human liver carcinoma cells (HepG2), by creating stable transfectants of different mammalian promoter-chloramphenicol acetyltransferase (CAT) gene fusions. Cytotoxicity experiments with the parental cell line yielded a LC50 of 6.1 +/- 0.8 microg/mL, upon 48 h of exposure. Four (metallothionein--HMTIIA, 70-kDa heat shock protein--HSP70, xenobitic response element--XRE, and cyclic adenosine monophosphate response element--CRE) out of the 13 constructs evaluated showed statistically significant inductions (p < 0.05). The induction of these genes was concentration-dependent. Marginal inductions were also recorded for the c-fos, and 153-kDa growth arrest DNA damage (GADD153) promoters, indicating a potential for CdCl2 to damage DNA. However, no significant inductions (p > 0.05) of gene expression were recorded for cytochrome P4501A1--CYP1A1, glutathion-S-transferase Ya subunit--GST Ya, nuclear factor kappa (B site) response element--NFkappaBRE, tumor suppressor protein response element--p53RE, 45-kDa growth arrest DNA damage--GADD45, 78-kDa glucose regulated protein--GRP78, and retinoic acid response element--RARE. As expected, these results indicate that metallothioneins and heat shock proteins appear to be excellent candidates for biomarkers for detecting cadmium-induced proteotoxic effects at the molecular and cellular levels. Induction of XRE indicates the potential involvement of CdCl2 in the biotransformation process in the liver, while activation of CRE indicates stimulation of cellular signaling through the protein kinases pathway.
Collapse
Affiliation(s)
- P B Tchounwou
- NIH-Center for Environmental Health, School of Science and Technology, Jackson State University, MS 39217, USA
| | | | | |
Collapse
|
20
|
Chen YH, Ramos KS. A CCAAT/Enhancer-binding Protein Site within Antioxidant/Electrophile Response Element Along with CREB-binding Protein Participate in the Negative Regulation of RatGST-Ya Gene in Vascular Smooth Muscle Cells. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61520-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
21
|
Chen Y, Ramos KS. Negative regulation of rat GST-Ya gene via Antioxidant/Electrophile response element is directed by a C/EBP-like site. Biochem Biophys Res Commun 1999; 265:18-23. [PMID: 10548484 DOI: 10.1006/bbrc.1999.1609] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present studies were conducted to evaluate functional interactions between aryl hydrocarbon and antioxidant/electrophile response elements (AhRE and ARE/EpRE, respectively) in transcriptional regulation of the rat (r)GST-Ya gene. Transient transfection of an AhRECAT reporter construct into vascular smooth muscle cells (vSMCs) or HepG2 cells showed that benzo(a)pyrene (BaP) (0.3-30 microM) or 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (0. 1-10 nM), but not hydrogen peroxide (H(2)O(2)) (100-400 microM), increased gene transcription. ARE/EpRE did not mediate gene inducibility by any of the chemicals in vSMCs but increased transcription in HepG2 cells treated with BaP or H(2)O(2), but not TCDD. Gene inducibility in response to all chemicals was repressed in both cell types transfected with a 1.6CAT full-length promoter construct containing the AhRE and ARE/EpRE in genomic context. Site-directed mutagenesis of 1.6CAT showed that a CCAAT/enhancer-binding protein (C/EBP)-like site within the ARE/EpRE directed negative regulation of the rGST-Ya gene in vSMCs and HepG2 cells. These results show that ARE/EpRE in rGST-Ya does not function as a positive cis-acting regulatory element in all cell types, and that in the context of the full-length rGST-Ya promoter a C/EBP-like site directs negative regulation of the gene by BaP and related chemicals.
Collapse
Affiliation(s)
- Y Chen
- College of Veterinary Medicine, Texas A & M University, College Station, Texas, 77843-4466, USA
| | | |
Collapse
|
22
|
Knasmüller S, Parzefall W, Sanyal R, Ecker S, Schwab C, Uhl M, Mersch-Sundermann V, Williamson G, Hietsch G, Langer T, Darroudi F, Natarajan AT. Use of metabolically competent human hepatoma cells for the detection of mutagens and antimutagens. Mutat Res 1998; 402:185-202. [PMID: 9675276 DOI: 10.1016/s0027-5107(97)00297-2] [Citation(s) in RCA: 309] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The human hepatoma line (Hep G2) has retained the activities of various phase I and phase II enzymes which play a crucial role in the activation/detoxification of genotoxic procarcinogens and reflect the metabolism of such compounds in vivo better than experimental models with metabolically incompetent cells and exogenous activation mixtures. In the last years, methodologies have been developed which enable the detection of genotoxic effects in Hep G2 cells. Appropriate endpoints are the induction of 6-TGr mutants, of micronuclei and of comets (single cell gel electrophoresis assay). It has been demonstrated that various classes of environmental carcinogens such as nitrosamines, aflatoxins, aromatic and heterocyclic amines and polycyclic aromatic hydrocarbons can be detected in genotoxicity assays with Hep G2 cells. Furthermore, it has been shown that these assays can distinguish between structurally related carcinogens and non-carcinogens, and positive results have been obtained with rodent carcinogens (such as safrole and hexamethylphosphoramide) which give false negative results in conventional in vitro assays with rat liver homogenates. Hep G2 cells have also been used in antimutagenicity studies and can identify mechanisms not detected in conventional in vitro systems such as induction of detoxifying enzymes, inactivation of endogenously formed DNA-reactive metabolites and intracellular inhibition of activating enzymes.
Collapse
Affiliation(s)
- S Knasmüller
- Institute of Tumor Biology and Cancer Research, University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Vogel C, Schuhmacher US, Degen GH, Goebel C, Abel J. Differential effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the expression of prostaglandin-H synthase isoenzymes in mouse tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 433:139-43. [PMID: 9561121 DOI: 10.1007/978-1-4899-1810-9_28] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- C Vogel
- Heinrich-Heine-University Düsseldorf, Department of Toxicology, FRG
| | | | | | | | | |
Collapse
|
24
|
Schuur AG, Tacken PJ, Visser TJ, Brouwer A. Modulating effects of thyroid state on the induction of biotransformation enzymes by 2,3,7,8-tetrachlorodibenzo-p-dioxin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 1998; 5:7-16. [PMID: 21781845 DOI: 10.1016/s1382-6689(97)10001-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/1997] [Revised: 07/04/1997] [Accepted: 07/24/1997] [Indexed: 05/31/2023]
Abstract
In this study we investigated to what extent the induction of detoxification enzymes by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is modulated by concomitant TCDD-induced changes in thyroid state. Euthyroid (Eu) male Sprague-Dawley rats, surgically thyroidectomized (Tx) rats and Tx rats receiving substitution doses of 3,3',5-triiodothyronine (Tx+T3) or thyroxine (Tx+T4) by osmotic minipumps were treated with a single ip injection of 10 μg TCDD/kg/bwt or with vehicle (corn oil). Three days after TCDD administration, rats were sacrificed and blood and livers were collected for analysis. Total hepatic cytochrome P450 (CYP) content was increased by ≈50% by TCDD in all groups but was not affected by thyroid state. In Eu rats, TCDD increased CYP1A1/1A2 activity 90-fold, CYP1A1 protein content 52-fold and CYP1A1 mRNA levels ≈5.8-fold. Similar findings were obtained in Tx, Tx+T3 and Tx+T4 rats except that TCDD-induced CYP1A1 activity was significantly decreased in Tx rats. NADPH cytochrome P450 reductase activity was not affected by TCDD but was decreased in Tx rats, which may explain the diminished TCDD-induced CYP1A1 activity in Tx rats. Hepatic p-nitrophenol UDP-glucuronyltransferase (UGT) activity was induced ≈4-fold by TCDD in Eu rats. Similar basal and TCDD-induced activities were observed in Tx+T3 and Tx+T4 rats, but TCDD-induced activities were significantly lower in Tx rats. TCDD did not have a significant effect on overall glutathione-S-transferase (GST) activity or hepatic GST 2-2, 3-3 or 4-4 protein levels but produced a marked increase in GST 1-1 protein levels. Thyroid state did not affect basal or TCDD-induced GST activity or subunit pattern. Iodothyronine sulfotransferase (ST) activity was not affected by TCDD treatment and was slightly but not significantly lower in Tx rats than in Eu, Tx+T3 and Tx+T4 rats. These results suggest that the changes in thyroid hormone levels associated with TCDD treatment have little modulating effects on the induction of hepatic detoxification enzymes in Sprague-Dawley rats exposed to this compound.
Collapse
Affiliation(s)
- A G Schuur
- Department of Toxicology, Agricultural University of Wageningen, P.O. Box 8000, 6700 EA Wageningen, The Netherlands
| | | | | | | |
Collapse
|
25
|
Hoivik D, Wilson C, Wang W, Willett K, Barhoumi R, Burghardt R, Safe S. Studies on the relationship between estrogen receptor content, glutathione S-transferase pi expression, and induction by 2,3,7,8-tetrachlorodibenzo-p-dioxin and drug resistance in human breast cancer cells. Arch Biochem Biophys 1997; 348:174-182. [PMID: 9390189 DOI: 10.1006/abbi.1997.0380] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) induces both phase I and phase II drug-metabolizing enzymes in rodent liver and hepatoma cell lines and this induction is mediated by the aryl hydrocarbon (Ah) receptor. Induction of CYP1A1 by TCDD in human breast cancer cells has been reported and results of several studies suggest that the estrogen receptor (ER) may be required for Ah responsiveness. This study investigates the induction of GST pi by TCDD in human breast cancer cells and the role of the ER in mediating this response. TCDD did not induce chloramphenicol acetyl transferase (CAT) activity in ER positive (ER+) MCF-7 and ER- MDA-MB-468 and MDA-MB-231 human breast cancer cell lines transiently transfected with GST pi (human) or GSTP (rat) promoter-reporter constructs containing the -291/+36 and -2.9/+59 region, respectively, of the GST pi and GSTP gene promoters. Furthermore, TCDD did not induce GST pi or GSTP in MDA-MB-468 and MDA-MB-231 human breast cancer cells stably transfected with the ER. RT-PCR confirmed that GST pi mRNA levels were low in ER+ MCF-7 cells and high in ER- MDA-MB-468 and MDA-MB-231 cells; however, in MDA-MB-468 and MDA-MB-231 cells stably transfected with the ER GST pi mRNA levels remained elevated and were not inducible. MDA-MB-468 and MDA-MB-231 cells stably transfected with the ER exhibited increased GST activity and decreased GSH content compared to wild-type cells; however, in MDA-MB-468 cells stably transfected with ER, the susceptibility to doxorubicin, ellipticine, chlorambucil, malphalan, or cisplatin was similar to that observed in wild-type cells. Adriamycin accumulation was similar in wild-type and ER stably transfected cells and verapamil did not affect this response, suggesting that ER expression did not influence p-glycoprotein activity. Taken together these data suggest that not all GST isoforms are responsive to TCDD and stable transfection of ER- cells with ER is not sufficient to restore the ER+ phenotype in some breast cancer cell lines.
Collapse
Affiliation(s)
- D Hoivik
- Department of Physiology and Pharmacology, Texas A&M University, College Station 77843, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Wasserman WW, Fahl WE. Comprehensive analysis of proteins which interact with the antioxidant responsive element: correlation of ARE-BP-1 with the chemoprotective induction response. Arch Biochem Biophys 1997; 344:387-96. [PMID: 9264553 DOI: 10.1006/abbi.1997.0215] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transcriptional activation of the mouse glutathione S-transferase Ya gene by chemoprotective molecules is mediated through the interaction of trans-acting factors with an antioxidant responsive element (ARE) in the promoter region of this gene. In a step toward identifying those factors which bind productively to the GST Ya ARE, all of the discernible, specific ARE-binding proteins (ARE-BP) in nuclear extracts from HepG2 cells were systematically characterized. By gel-mobility-shift analysis, seven specific ARE-BPs, termed ARE-BP-1 through 7 in order of increasing mobility, were observed that did not vary in concentration or migration between induced and uninduced cell extracts. The molecular weights of the individual ARE-BP subunits were determined by a two-dimensional electrophoresis protocol. Ferguson gel analysis of native protein size indicated that several of the ARE-BP-DNA complexes are composed of multiple protein subunits. Wild-type AREs and GST Ya ARE fragments and mutant sequences were evaluated for their ability to mediate induction in a reporter gene system in HepG2 cells. This same panel of sites was tested in an in vitro binding assay for the ability to compete for the ARE-BPs. A binding profile for each ARE-BP was compiled. Correlation between the ARE-BP binding profiles and induction results indicated that: (i) the ARE-BP-1 and ARE-BP-2 complexes formed only with AREs that supported induction, and (ii) the ARE-BP-4 complex formed with all inducible AREs, but it also bound to ARE mutants that failed to support induction. Based on the studies, an early composite regulatory element model for ARE-mediated expression is presented. ARE-BP-1 is proposed to be the mediator of the ARE's unique induction response to chemoprotective agents.
Collapse
Affiliation(s)
- W W Wasserman
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
27
|
Abstract
The aryl hydrocarbon (or dioxin) receptor (AhR) is a ligand-activated basic helix-loop-helix (bHLH) protein that heterodimerizes with the bHLH protein ARNT (aryl hydrocarbon nuclear translocator) forming a complex that binds to xenobiotic regulatory elements in target gene enhancers. Genetic, biochemical, and molecular biology studies have revealed that the AhR mediates the toxic and biological effects of environmentally persistent dioxins and related compounds. Cloning of the receptor and its DNA-binding partner, ARNT, has facilitated detailed efforts to understand the mechanisms of AhR-mediated signal transduction. These studies have determined that this unique receptor consists of several functional domains and belongs to a subfamily of bHLH proteins that share a conserved motif termed the PAS domain. In addition, recent genetic studies have revealed that expression of the AhR is a requirement for proper embryonal development, which appears to be a common function shared by many other bHLH proteins. This review is a summary of recent molecular studies of AhR-mediated gene regulation.
Collapse
Affiliation(s)
- J C Rowlands
- Department of Bioscience, Karolinska Institute, NOVUM, Huddinge, Sweden
| | | |
Collapse
|
28
|
Affiliation(s)
- A Raha
- Department of Pharmacology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | |
Collapse
|
29
|
Flodby P, Liao DZ, Blanck A, Xanthopoulos KG, Hällström IP. Expression of the liver-enriched transcription factors C/EBP alpha, C/EBP beta, HNF-1, and HNF-4 in preneoplastic nodules and hepatocellular carcinoma in rat liver. Mol Carcinog 1995; 12:103-9. [PMID: 7662115 DOI: 10.1002/mc.2940120207] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The expression patterns of the liver-enriched transcription factors CCAAT/enhancer-binding protein (C/EBP) alpha and beta and hepatocyte nuclear factor (HNF)-1 and HNF-4 were studied in liver nodules and hepatocellular carcinomas from male rats treated according to the resistant hepatocyte (RH) model. C/EBP alpha expression was lower at the transcriptional, mRNA, and protein levels in persistent nodules than in the respective surrounding livers. Expression was further decreased in the tumors. Transcriptional downregulation of C/EBP alpha gene expression was observed already in very early nodules, isolated 3 wk after partial hepatectomy in the RH model. However, no detectable changes were observed in preneoplastic nodules in the transcription or in steady-state mRNA levels of C/EBP beta, HNF-1, and HNF-4. A slight decrease in C/EBP beta protein and a more pronounced attenuation of HNF-1 and HNF-4 levels was observed in nodules, being 67%, 37%, and 46% of the levels in the corresponding surrounding livers, respectively. In conclusion, differential regulation of several transcription factors that are associated with the maintenance of the differentiated state of the hepatocytes was observed in preneoplastic and neoplastic liver lesions. This could have an impact on the regulation of a wide array of genes during liver carcinogenesis. Furthermore, the attenuation of C/EBP alpha expression, regarded as a negative growth regulator, could contribute to the proliferative advantage of nodules during liver carcinogenesis.
Collapse
Affiliation(s)
- P Flodby
- Center for BioTechnology, Huddinge University Hospital, Sweden
| | | | | | | | | |
Collapse
|
30
|
Safe SH. Modulation of gene expression and endocrine response pathways by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Pharmacol Ther 1995; 67:247-281. [PMID: 7494865 DOI: 10.1016/0163-7258(95)00017-b] [Citation(s) in RCA: 221] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The aryl hydrocarbon (Ah) receptor binds several different structural classes of chemicals, including halogenated aromatics, typified by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), polynuclear aromatic and heteropolynuclear aromatic hydrocarbons. TCDD induces expression of several genes including CYP1A1, and molecular biology studies show that the Ah receptor acts as a nuclear ligand-induced transcription factor that interacts with xenobiotic or dioxin responsive elements located in 5'-flanking regions of responsive genes. TCDD also elicits diverse toxic effects, modulates endocrine pathways and inhibits a broad spectrum of estrogen (17 beta-estradiol)-induced responses in rodents and human breast cancer cell lines. Molecular biology studies show that TCDD inhibited 17 beta-estradiol-induced cathepsin D gene expression by targeted interaction of the nuclear Ah receptor with imperfect dioxin responsive elements strategically located within the estrogen receptor-Sp1 enhancer sequence of this gene.
Collapse
Affiliation(s)
- S H Safe
- Texas A&M University, College Station 77843-4466, USA
| |
Collapse
|
31
|
Safe S, Krishnan V. Cellular and molecular biology of aryl hydrocarbon (Ah) receptor-mediated gene expression. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1995; 17:99-115. [PMID: 7786196 DOI: 10.1007/978-3-642-79451-3_8] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and related compounds elicit diverse toxic and biochemical responses in laboratory animals and mammalian cells in culture. TCDD induces CYP1A1 gene expression and results of extensive research have delineated the molecular mechanism of this response. In target cells, TCDD initially binds to the aryl hydrocarbon (Ah) receptor which accumulates in the nucleus as an Ah-receptor:aryl hydrocarbon nuclear translocator (Arnt) protein heterodimeric complex. The nuclear Ah receptor complex acts as a ligand-induced transcription factor which binds to transacting genomic dioxin/xenobiotic responsive elements (DREs/XREs) located in the 5'-regulatory region upstream from the initiation start site and this interaction results in transactivation of gene transcription. DREs have been identified in several other genes which are induced by TCDD, including CYP1A2, aldehyde-3-dehydrogenase, NAD(P)H quinone oxidoreductase, and glutathione S transferase Ya and similar induction response pathways have been observed or proposed. However, TCDD and other Ah receptor agonists also inhibit expression of several genes and research in this laboratory has investigated inhibition of estrogen (E2)-induced genes including uterine epidermal growth factor, c-fos protooncogene, and the progesterone receptor, estrogen receptor (ER) and cathepsin D genes in human breast cancer cell lines. In MCF-7 human breast cancer cells, E2 induces cathepsin D gene expression and this is associated with formation of an ER/Sp1 complex at the sequence in the promoter region (-199/-165) of this gene. Within 30 min TCDD causes a rapid inhibition of E2-induced cathepsin D gene expression in MCF-7 cells. Moreover, using a series of synthetic oligonucleotides which include the wild-type ER/Sp1 and various mutants, it was shown by gel electromobility shift and transient transfection assays that the nuclear Ah receptor complex binds to an imperfect DRE located between the ER and Sp1 binding sequences. This interaction results in disruption of the ER/Sp1 complex and inhibition of E2-induced gene expression. These results illustrate that the nuclear Ah receptor complex also exhibits activity as a negative transcription factor via a mechanism which is similar to that reported for Ah receptor-mediated induction of gene expression.
Collapse
Affiliation(s)
- S Safe
- Texas A&M University, College Station 77843-4466, USA
| | | |
Collapse
|
32
|
Carrier F, Chang CY, Duh JL, Nebert DW, Puga A. Interaction of the regulatory domains of the murine Cyp1a1 gene with two DNA-binding proteins in addition to the Ah receptor and the Ah receptor nuclear translocator (ARNT). Biochem Pharmacol 1994; 48:1767-78. [PMID: 7980646 DOI: 10.1016/0006-2952(94)90463-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The aromatic hydrocarbon (Ah) receptor complex is a ligand-activated transcriptional activator consisting of at least two protein components. The ligand-binding component is the AhR protein, a cytosolic receptor encoded by the Ahr gene, which, upon ligand binding, translocates to the nucleus in a heterodimeric complex with the ARNT (Ah receptor nuclear translocator) component. The complex binds to several discrete DNA domains containing aromatic hydrocarbon responsive elements (AhRE) present in the regulatory region of the murine cytochrome P(1)450 Cyp1a1 gene and of the other genes in the [Ah] gene battery. As a consequence of binding, a transcriptional complex is formed that activates the expression of these genes by as yet unidentified mechanisms. We have analyzed DNA-protein interactions in four of these domains, specifically, the AhREs located between -1085 and -482 (sites A, C, E, and D) of the upstream regulatory region of the murine Cyp1a1 gene. We found that two DNA-binding proteins, present in cytosolic and nuclear extracts of mouse Hepa-1 cells, showed overlapping DNA-binding specificities to those of the Ah receptor. One of these proteins had an apparent molecular mass of 35-40 kDa, bound only to AhRE3 (site D), and has been identified tentatively as a member of the C/EBP family of transcription factors. The second protein, purified by DNA-affinity chromatography, had an apparent molecular mass of 95 kDa and bound to a larger DNA motif that included the AhRE sequence, in AhRE3 and AhRE5 (sites D and A), but not in AhRE1 or AhRE2 (sites C and E). This protein was not AhR nor was it ARNT, since it was found in receptorless (Ahr-) and in nuclear translocation-defective (Arnt-) cells, as well as in cells that had not been exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; dioxin), a potent inducer of Cyp1a1 expression. Evidence from in vivo methylation protection indicated that two G residues flanking AhRE3, one of which is required for binding of the 95-kDa protein, may be protected from methylation in uninduced cells and become exposed upon dioxin treatment, suggesting that the 95-kDa protein may be constitutively bound to AhRE3, and be displaced by binding of the Ah receptor complex. These results lend support to the concept that the transcriptional regulation of the [Ah] battery genes could be modulated by combinatorial interactions of the Ah receptor complex with other transcription factors.
Collapse
Affiliation(s)
- F Carrier
- Laboratory of Molecular Pharmacology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|