1
|
Regulatory roles of Oct proteins in the mammary gland. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:812-9. [PMID: 27044595 DOI: 10.1016/j.bbagrm.2016.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 11/21/2022]
Abstract
The expression of Oct-1 and -2 and their binding to the octamer motif in the mammary gland are developmentally and hormonally regulated, consistent with the expression of milk proteins. Both of these transcription factors constitutively bind to the proximal promoter of the milk protein gene β-casein and might be involved in the inhibition or activation of promoter activity via interactions with other transcription factors or cofactors at different developmental stages. In particular, the lactogenic hormone prolactin and glucocorticoids induce Oct-1 and Oct-2 binding and interaction with both the signal transducer and activator of transcription 5 (STAT5) and the glucocorticoid receptor on the β-casein promoter to activate β-casein expression. In addition, increasing evidence has shown the involvement of another Oct factor, Oct-3/4, in mammary tumorigenesis, making Oct-3/4 an emerging prognostic marker of breast cancer and a molecular target for the gene-directed therapeutic intervention, prevention and treatment of breast cancer. This article is part of a Special Issue entitled: The Oct Transcription Factor Family, edited by Dr. Dean Tantin.
Collapse
|
2
|
Ganguli N, Ganguli N, Usmani A, Majumdar SS. Isolation and functional characterization of buffalo (Bubalus bubalis) β-casein promoter for driving mammary epithelial cell-specific gene expression. J Biotechnol 2015; 198:53-9. [PMID: 25678138 DOI: 10.1016/j.jbiotec.2015.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 01/24/2015] [Accepted: 02/02/2015] [Indexed: 11/25/2022]
Abstract
Therapeutic proteins are produced in microbes, mammalian cell lines, and body fluids by applying recombinant DNA technology. They are required for compensating the deficiency of essential proteins in patients. Animal bioreactors producing such valuable bio-pharmaceuticals in body fluids have lately emerged as efficient and cost-effective expression systems. Promoters, along with other regulatory elements of genes coding for milk proteins, have been cloned from few species for directing the expression of desired proteins in the milk of farm animals. However, buffaloes, which are the second largest source of milk production in the world, have remained unexplored for such use. Since mammary epithelial cell-specific β-casein is the most abundantly expressed protein found in buffalo milk, we have isolated the promoter region and the transcriptional regulatory element along with exon 1, Intron 1 and partial exon 2 of the β-casein gene from the genome of the Indian river buffalo (Bubalus bubalis) and have characterized the same (GenBank accession no. KF612339). Mammary epithelial cells of buffalo and human (MCF7) expressed Enhanced green fluorescent protein (EGFP) upon transfection with the construct where egfp was cloned under the β-casein promoter. Transfected HEK-293 cells failed to express EGFP. Transgenic female mice generated using this construct expressed EGFP in the milk gland during lactation, without leaky expression in any other organs. This promoter also drove expression of recombinant human Interferonγ suggesting its use for expressing recombinant bio-pharmaceuticals in the milk of buffalo or other farm animals. Additionally, this may also allow breast gland-specific gene expression for remediation of breast gland-associated diseases.
Collapse
Affiliation(s)
- Nirmalya Ganguli
- Embryo Biotechnology Laboratory, National Institute of Immunology, New Delhi, India
| | - Nilanjana Ganguli
- Embryo Biotechnology Laboratory, National Institute of Immunology, New Delhi, India
| | - Abul Usmani
- Embryo Biotechnology Laboratory, National Institute of Immunology, New Delhi, India
| | - Subeer S Majumdar
- Embryo Biotechnology Laboratory, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
3
|
Kaimala S, Kumar S. An evolutionarily conserved non-coding element in casein locus acts as transcriptional repressor. Gene 2015; 554:75-80. [PMID: 25455101 DOI: 10.1016/j.gene.2014.10.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 12/31/2022]
Abstract
In mammals, the casein locus consists of stretches of non-coding DNA, the functions of most of which are unknown. These regions are believed to harbour elements responsible for spatio-temporally regulated expression of genes in this locus and so far, only a few such elements have been identified. In this study, we report a novel regulatory element in the casein locus. Comparative analysis of genomic DNA sequences of casein loci from different mammals identified a 147bp long evolutionarily conserved region (ECR) upstream of Odam, a gene in this locus. The ECR was found in close proximity of Odam gene in all the mammals examined. In-silico analysis predicted the ECR as a potential regulatory element. Functional analysis in different cell lines identified it as a unidirectional repressor element. From our findings we speculate that the ECR may be involved in the repression of the Odam expression in the mammary gland during lactation.
Collapse
Affiliation(s)
- Suneesh Kaimala
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India.
| | - Satish Kumar
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research (CSIR), Hyderabad, India.
| |
Collapse
|
4
|
Najafi M, Rahimi Mianji G, Ansari Pirsaraie Z. Cloning and comparative analysis of gene structure in promoter site of alpha-s1 casein gene in Naeinian goat and sheep. Meta Gene 2014; 2:854-61. [PMID: 25606467 PMCID: PMC4287881 DOI: 10.1016/j.mgene.2014.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 07/14/2014] [Accepted: 11/02/2014] [Indexed: 11/30/2022] Open
Abstract
The 5' end or alpha-S1 casein promoter has a significant role in milk protein gene expression. The understanding of the translation process of alpha-S1 casein mutants will provide us an opportunity to make the best selection in livestock providing more proteins in milk. Blood samples were taken from three hundred of Naeinian goats and sheep, and DNA extraction was done using modified salting out method. Polymerase chain reactions (PCR) were carried out using a specific primer pairs for amplification a fragment of 1133 bp from part of 5'-UTR and exon 1 of alpha s1 casein gene. The AluI and HinfI restriction enzyme treatment of all samples provided the same homozygous AA genotype in both species. Subsequently, one sample of each species was selected and cloned, and the final sequences were analyzed by BioEdit, CLC genomic, Mega4 and DNASIS MAX software. Several polymorphisms are recognized between Naeinian goat and sheep that are presented on motif sites. In this research, the interested location, including exon I and a part of 5', was analyzed, and genetic element comparisons were done between Naeinian goat and sheep. The number and location of probable binding sites can have a crucial role as a result of antagonistic and synergistic effects on gene regulation activities.
Collapse
Affiliation(s)
- Mojtaba Najafi
- Department of Animal Science, Sari Agriculture sciences and Natural Resources University, Iran
| | | | | |
Collapse
|
5
|
Casey TM, Crodian J, Erickson E, Kuropatwinski KK, Gleiberman AS, Antoch MP. Tissue-specific changes in molecular clocks during the transition from pregnancy to lactation in mice. Biol Reprod 2014; 90:127. [PMID: 24759789 PMCID: PMC4094001 DOI: 10.1095/biolreprod.113.116137] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 01/02/2014] [Accepted: 04/16/2014] [Indexed: 12/20/2022] Open
Abstract
Circadian clocks regulate homeostasis and mediate responses to stressors. Lactation is one of the most energetically demanding periods of an adult female's life. Peripartum changes occur in almost every organ so the dam can support neonatal growth through milk production while homeostasis is maintained. How circadian clocks are involved in adaptation to lactation is currently unknown. The abundance and temporal pattern of core clock genes' expression were measured in suprachiasmatic nucleus, liver, and mammary from late pregnant and early lactation mice. Tissue-specific changes in molecular clocks occurred between physiological states. Amplitude and robustness of rhythms increased in suprachiasmatic nucleus and liver. Mammary rhythms of core molecular clock genes were suppressed. Attenuated rhythms appeared to be a physiological adaptation of mammary to lactation, because manipulation of timing of suckling resulting in significant differences in plasma prolactin and corticosterone had no effect on amplitude. Analysis of core clock proteins revealed that the stoichiometric relationship between positive (CLOCK) and negative (PER2) components remained 1:1 in liver but was increased to 4:1 in mammary during physiological transition. Induction of differentiation of mammary epithelial cell line HC11 with dexamethasone, insulin, and prolactin resulted in similar stoichiometric changes among positive and negative clock regulators, and prolactin induced phase shifts in HC11 Arntl expression rhythm. Data support that distinct mechanisms drive periparturient changes in mammary clock. Stoichiometric change in clock regulators occurs with gland differentiation. Suppression of mammary clock gene expression rhythms represents a physiological adaptation to suckling cues. Adaptations in mammary clock are likely needed in part to support suckling demands of neonates.
Collapse
Affiliation(s)
- Theresa M Casey
- Department of Animal Science, Purdue University, West Lafayette, Indiana
| | - Jennifer Crodian
- Department of Animal Science, Purdue University, West Lafayette, Indiana
| | - Emily Erickson
- Department of Animal Science, Purdue University, West Lafayette, Indiana
| | - Karen K Kuropatwinski
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| | | | - Marina P Antoch
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York
| |
Collapse
|
6
|
Patel AK, Singh M, Suryanarayana VVS. Buffalo alpha S1-casein gene 5'-flanking region and its interspecies comparison. J Appl Genet 2013; 55:75-87. [PMID: 24142689 DOI: 10.1007/s13353-013-0176-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 09/04/2013] [Accepted: 09/19/2013] [Indexed: 11/28/2022]
Abstract
The expression of milk protein genes is tightly regulated in a spatio-temporal manner through the combinatorial interaction of lactogenic hormones and a set of transcription factors mediating developmental and tissue-specific gene expression. The recruitment of a unique set of transcription factors is determined by the cis-regulatory motifs present in the gene promoter region. Here, we report the isolation, sequencing, structural analysis and interspecies comparison of the 5'cis-regulatory region of the buffalo alpha S1 (αS1)-casein gene. The proximal promoter region of the buffalo αS1-casein gene harbored the insertion of a 72-bp fragment of long interspersed nuclear element of the L1_BT retrotransposon family. Among the core and vertebrate-specific promoter elements, the motifs for the binding of Brn POU domain factors (BRNF), Lim homeodomain factors (LHXF), NK6 homeobox transcription factors (NKX6), nuclear factor kappa B/c-rel (NFKB), AT-rich interactive domain factor (ARID), Brn POU domain factor 5 (BRN5), pancreatic and intestinal homeodomain transcription factor (PDX1), Distal-less homeodomain transcription factors (DLXF), T-cell factor/lymphoid enhancer-binding factor-1 (LEFF) and GHF-1 pituitary-specific POU domain transcription factor (PIT1) were over-represented in the αS1-casein gene regulatory region (Z score >4.0). The Multiple EM for Motif elicitation predicted three motifs which consisted of the sequences known to bind mammary gland factor/signal transducer and activator of transcription 5 (MGF/STAT5), estrogen receptor-related alpha (ERα), steroidogenic factor 1 (SF1) and glucocorticoid receptor (GR), indicating their potential role in the mammary gland-specific gene expression. The interspecies comparison of the proximal promoter region revealed conserved sequences for TATA boxes and MGF/STAT5 in all species, whereas activator protein 1 (AP1), pregnancy-specific mammary nuclear factor (PMF), CCAAT/enhancer binding protein (C/EBP), double-stranded and single-stranded DNA-binding protein 1 (DS1 and SS), ying and yang factor 1 (YY1), and GR half-sites were among ruminants. The functional significance of the L1_BT retrotransposon insertion on the buffalo αS1-casein gene expression needs to be experimentally validated.
Collapse
Affiliation(s)
- Amrutlal K Patel
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Anand Agricultural University, Anand, India
| | | | | |
Collapse
|
7
|
Sigl T, Meyer HHD, Wiedemann S. Gene expression analysis of protein synthesis pathways in bovine mammary epithelial cells purified from milk during lactation and short-term restricted feeding. J Anim Physiol Anim Nutr (Berl) 2013; 98:84-95. [PMID: 23402545 DOI: 10.1111/jpn.12039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 01/04/2013] [Indexed: 01/04/2023]
Abstract
The objective of the study was to investigate selected key regulatory pathways of milk protein biosynthesis in primary bovine mammary epithelial cells (MECs) of dairy cows during the first 155 days of lactation. In addition, cows were exposed to feed restriction for a short period (FR) during different stages of lactation (week 4 and 21 pp) to study adjustment processes of molecular protein biosynthesis to metabolic challenge. Morning milk samples from twenty-four Holstein-Friesian cows were collected throughout the experimental period (n = 10 per animal). MEC from raw milk were purified using an immunomagnetic separation technique and used for real-time quantitative PCR analyses. As was seen in transcript abundances of all major milk proteins, mRNA levels of E74-like factor 5 (ELF5), an enhancer of signal transducer and activator of transcription (STAT) action, concomitantly decreased towards mid-lactation. Expression of ELF5 as well as of all milk protein genes showed a similar increase during FR in early lactation. Occasional changes in expression could be seen in other Janus kinase (JAK)/STAT factors and in mammalian target of rapamycin (mTOR) pathway elements. Amino acid transfer and glucose transporter and the β-casein expression were also partially affected. In conclusion, our findings suggest a pivotal role of the transcription factor ELF5 in milk protein mRNA expression with complementary JAK/STAT and mTOR signalling for the regulation of protein biosynthesis in the bovine mammary gland.
Collapse
Affiliation(s)
- T Sigl
- Physiology Weihenstephan, ZIEL, Technische Universitaet Muenchen, Freising, Germany
| | | | | |
Collapse
|
8
|
Obr A, Edwards DP. The biology of progesterone receptor in the normal mammary gland and in breast cancer. Mol Cell Endocrinol 2012; 357:4-17. [PMID: 22193050 PMCID: PMC3318965 DOI: 10.1016/j.mce.2011.10.030] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Revised: 09/23/2011] [Accepted: 10/26/2011] [Indexed: 11/21/2022]
Abstract
This paper reviews work on progesterone and the progesterone receptor (PR) in the mouse mammary gland that has been used extensively as an experimental model. Studies have led to the concept that progesterone controls proliferation and morphogenesis of the luminal epithelium in a tightly orchestrated manner at distinct stages of development by paracrine signaling pathways, including receptor activator of nuclear factor κB ligand (RANKL) as a major paracrine factor. Progesterone also drives expansion of stem cells by paracrine signals to generate progenitors required for alveologenesis. During mid-to-late pregnancy, progesterone has another role to suppress secretory activation until parturition mediated in part by crosstalk between PR and prolactin/Stat5 signaling to inhibit induction of milk protein gene expression, and by inhibiting tight junction closure. In models of hormone-dependent mouse mammary tumors, the progesterone/PR signaling axis enhances pre-neoplastic progression by a switch from a paracrine to an autocrine mode of proliferation and dysregulation of the RANKL signaling pathway. Limited experiments with normal human breast show that progesterone/PR signaling also stimulates epithelial cell proliferation by a paracrine mechanism; however, the signaling pathways and whether RANKL is a major mediator remains unknown. Work with human breast cancer cell lines, patient tumor samples and clinical studies indicates that progesterone is a risk factor for breast cancer and that alteration in progesterone/PR signaling pathways contributes to early stage human breast cancer progression. However, loss of PR expression in primary tumors is associated with a less differentiated more invasive phenotype and worse prognosis, suggesting that PR may limit later stages of tumor progression.
Collapse
Affiliation(s)
- Alison Obr
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| | - Dean P. Edwards
- Departments of Molecular & Cellular Biology and Pathology and Immunology, Baylor College of Medicine, Houston, Texas, 77030, USA
| |
Collapse
|
9
|
Fomichev K, Sazanova A, Malewski T, Kaminski S, Sazanov A. Associations between two novel rSNPs in 5′-flanking region of the bovine casein gene cluster and milk performance traits. Gene 2012; 496:49-54. [DOI: 10.1016/j.gene.2011.12.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 11/24/2022]
|
10
|
Talhouk RS, Khalil AA, Bajjani R, Rahme GJ, El-Sabban ME. Gap junctions mediate STAT5-independent β-casein expression in CID-9 mammary epithelial cells. ACTA ACUST UNITED AC 2011; 18:104-16. [DOI: 10.3109/15419061.2011.639468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Rabih S. Talhouk
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Antoine A. Khalil
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Rachid Bajjani
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Gilbert J. Rahme
- Department of Biology, American University of Beirut, Beirut, Lebanon
| | - Marwan E. El-Sabban
- Department of Human Morphology, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
11
|
Bednorz NL, Brill B, Klein A, Gäbel K, Groner B. Tracking the activation of Stat5 through the expression of an inducible reporter gene in a transgenic mouse line. Endocrinology 2011; 152:1935-47. [PMID: 21427222 DOI: 10.1210/en.2011-0053] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Signal transducer and activator of transcription 5 (Stat5), a latent cytoplasmic transcription factor, becomes activated by phosphorylation upon cytokine, hormone, and growth factor interactions with their appropriate receptors and induces the transcription of target genes. It plays crucial roles in principal cell fate decisions and regulates cell differentiation, development, proliferation, apoptosis, and inflammation. It is active in the mammary gland, the liver, hematopoietic cells, and other organs and has pleiotropic functions, depending on its activation pathway and its site of action. We derived transgenic mice in which the expression of a LacZ reporter gene is directed by Stat5-specific response elements and visualized the activation of Stat5 in cells of mouse organs at different developmental stages. The reporter gene activity reflects the timing and the location of Stat5 activation and was documented in mammary epithelial cells during developmental stages of the gland, cells of the liver, kidney, spleen, thymus, and uterus and in granulocytes and macrophages of the transgenic lines.
Collapse
Affiliation(s)
- Nadja Lydia Bednorz
- Georg-Speyer-Haus, Institute for Biomedical Research, D-60596 Frankfurt/Main, Germany.
| | | | | | | | | |
Collapse
|
12
|
Buser AC, Obr AE, Kabotyanski EB, Grimm SL, Rosen JM, Edwards DP. Progesterone receptor directly inhibits β-casein gene transcription in mammary epithelial cells through promoting promoter and enhancer repressive chromatin modifications. Mol Endocrinol 2011; 25:955-68. [PMID: 21527503 DOI: 10.1210/me.2011-0064] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Differentiated HC-11 cells ectopically expressing progesterone receptor (PR) were used to explore the molecular mechanisms by which progesterone suppresses β-casein gene transcription induced by prolactin (PRL) and glucocorticoids in the mammary gland. As detected by chromatin immunoprecipitation assays, treatment of cells with the progestin agonist R5020 induced a rapid recruitment (5 min) of PR to the proximal promoter (-235 bp) and distal enhancer (-6 kb upstream of transcription start site) of β-casein. PR remained bound for 4 h and was dissociated by 24 h after treatment. Despite efficient binding, the hormone agonist-occupied PR did not stimulate transcription of the β-casein gene. Recruitment of signal transducer and activator of transcription 5a, glucocorticoid receptor, and the CCAAT enhancer binding protein β to the enhancer and proximal promoter of β-casein induced by PRL and glucocorticoids was blocked by progestin cotreatment, whereas PR binding was induced under these conditions. PRL/glucocorticoid-induced histone acetylation and the recruitment of the coactivator p300 and RNA polymerase II required for gene activation were also inhibited by progestin. In addition, progestin prevented dissociation of the corepressors Yin and Yang 1 and histone deacetylase 3 from the promoter, and demethylation of lysine 9 of histone 3 induced by PRL and glucocorticoids. These studies are consistent with the conclusion that progesterone interferes with PRL/glucocorticoid induction of β-casein transcription by a physical interaction of PR with the promoter and enhancer that blocks assembly of a transcriptional activation complex and dissociation of corepressors and promotes repressive chromatin modifications. These studies define a novel mechanism of steroid receptor-mediated transcriptional repression of a physiologically important gene in mammary gland development and differentiation.
Collapse
Affiliation(s)
- Adam C Buser
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
13
|
Dual promoter lentiviral vector generates transgenic mice expressing E2-CSFV glycoprotein in their milk, but impairs early identification of transgenic embryos. Theriogenology 2011; 75:1280-9. [PMID: 21316751 DOI: 10.1016/j.theriogenology.2010.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 12/13/2022]
Abstract
Lentiviral vectors containing the green fluorescent protein gene have been successfully used to select transgenic embryos before transfer to a surrogate mother. However, there are apparently no reports regarding early detection of transgenic embryos using a lentiviral vector carrying an additional transcription unit for tissue-specific expression of a valuable protein. In this study, two HIV-based lentiviral vectors were constructed. The first one contained the green fluorescent protein (GFP) coding sequence driven by the early SV40 promoter (Lv-G), whereas the other contained an additional transcription unit for the expression of E2 glycoprotein from classical swine fever virus, driven by a 1.5 kb αS1casein promoter from water buffalo (Lv-αS1cE2hisG). Microinjection of single-cell mouse embryos with Lv-G lentiviral vector rendered embryos which were GFP-positive, beginning at the four-cell stage. Of 33 mice born, 28 (81%) carried the transgene DNA and 15 (55.5%) were GFP-positive. Microinjection of Lv-αS1cE2hisG lentiviral vector yielded 28 mice born; although 24 (85%) carried the transgene DNA, none were GFP-positive, suggesting that the tissue-specific expression cassette interfered with expression of the ubiquitous trancriptional unit. In Lv-αS1cE2hisG transgenic mice, E2his was expressed in milk as a homodimer (at concentrations ≤ 0.422 mg/mL). This was apparently the first report of expression of a recombinant protein in the milk of transgenic animals generated by lentiviral transgenesis.
Collapse
|
14
|
Morrison B, Cutler ML. The contribution of adhesion signaling to lactogenesis. J Cell Commun Signal 2010; 4:131-9. [PMID: 21063503 DOI: 10.1007/s12079-010-0099-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 08/30/2010] [Indexed: 11/28/2022] Open
Abstract
The mammary gland undergoes hormonally controlled cycles of pubertal maturation, pregnancy, lactation, and involution, and these processes rely on complex signaling mechanisms, many of which are controlled by cell-cell and cell-matrix adhesion. The adhesion of epithelial cells to the extracellular matrix initiates signaling mechanisms that have an impact on cell proliferation, survival, and differentiation throughout lactation. The control of integrin expression on the mammary epithelial cells, the composition of the extracellular matrix and the presence of secreted matricellular proteins all contribute to essential adhesion signaling during lactogenesis. In vitro and in vivo studies, including the results from genetically engineered mice, have shed light on the regulation of these processes at the cell and tissue level and have led to increased understanding of the essential signaling components that are regulated in temporal and cell specific manner during lactogenesis. Recent studies suggest that a secreted matricellular protein, CTGF/CCN2, may play a role in lactogenic differentiation through binding to β1 integrin complexes, enhancing the production of extracellular matrix components and contributions to cell adhesion signaling.
Collapse
|
15
|
Li W, Liu H, Fu L, Li D, Zhao Y. Identification of Yin Yang 1-interacting partners at −1026C/A in the human iNOS promoter. Arch Biochem Biophys 2010; 498:119-26. [DOI: 10.1016/j.abb.2010.04.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 11/27/2022]
|
16
|
Rijnkels M, Kabotyanski E, Montazer-Torbati MB, Hue Beauvais C, Vassetzky Y, Rosen JM, Devinoy E. The epigenetic landscape of mammary gland development and functional differentiation. J Mammary Gland Biol Neoplasia 2010; 15:85-100. [PMID: 20157770 PMCID: PMC3006238 DOI: 10.1007/s10911-010-9170-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Accepted: 01/21/2010] [Indexed: 12/16/2022] Open
Abstract
Most of the development and functional differentiation in the mammary gland occur after birth. Epigenetics is defined as the stable alterations in gene expression potential that arise during development and proliferation. Epigenetic changes are mediated at the biochemical level by the chromatin conformation initiated by DNA methylation, histone variants, post-translational modifications of histones, non-histone chromatin proteins, and non-coding RNAs. Epigenetics plays a key role in development. However, very little is known about its role in the developing mammary gland or how it might integrate the many signalling pathways involved in mammary gland development and function that have been discovered during the past few decades. An inverse relationship between marks of closed (DNA methylation) or open chromatin (DnaseI hypersensitivity, certain histone modifications) and milk protein gene expression has been documented. Recent studies have shown that during development and functional differentiation, both global and local chromatin changes occur. Locally, chromatin at distal regulatory elements and promoters of milk protein genes gains a more open conformation. Furthermore, changes occur both in looping between regulatory elements and attachment to nuclear matrix. These changes are induced by developmental signals and environmental conditions. Additionally, distinct epigenetic patterns have been identified in mammary gland stem and progenitor cell sub-populations. Together, these findings suggest that epigenetics plays a role in mammary development and function. With the new tools for epigenomics developed in recent years, we now can begin to establish a framework for the role of epigenetics in mammary gland development and disease.
Collapse
Affiliation(s)
- Monique Rijnkels
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Lace MJ, Yamakawa Y, Ushikai M, Anson JR, Haugen TH, Turek LP. Cellular factor YY1 downregulates the human papillomavirus 16 E6/E7 promoter, P97, in vivo and in vitro from a negative element overlapping the transcription-initiation site. J Gen Virol 2009; 90:2402-2412. [PMID: 19553391 DOI: 10.1099/vir.0.012708-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Cellular factors that bind to cis sequences in the human papillomavirus 16 (HPV-16) upstream regulatory region (URR) positively and negatively regulate the viral E6 and E7 oncogene promoter, P97. DNase I footprinting has revealed the binding of cellular proteins to two previously undetected cis elements overlapping and 3′ of the transcription-initiation site of the P97 promoter. Mutations within homologous motifs found in both of these cis elements abolished their negative function in vivo and the binding of the same cellular complex in vitro. This factor was identified as YY1 by complex mobility and binding specificity in comparison with vaccinia virus-expressed, purified recombinant YY1 protein and by antigenic reactivity with YY1 antisera. Cis mutations in the ‘initiator’ YY1 site activated the P97 promoter in vivo and in vitro. P97 was also activated threefold in vitro by depletion of endogenous YY1 with wild-type, but not mutant, YY1 oligonucleotides from the IgH kappa E3′ enhancer. Furthermore, increasing concentrations of exogenous, purified recombinant YY1 repressed wild-type P97 transcript levels by up to threefold, but did not influence the P97 promoter mutated in the ‘initiator’ YY1 site. Thus, the promoter-proximal YY1 site was not necessary for correct transcription initiation at the P97 promoter, but was found to be required for downregulation of P97 transcription in vivo and in vitro. In contrast to other viral and cellular promoters, where YY1 is thought to function as a positive transcription-‘initiator’ factor, HPV-16 P97 transcription is downregulated by YY1 from a critical motif overlapping the transcription start site.
Collapse
Affiliation(s)
- Michael J. Lace
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Yasushi Yamakawa
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Masato Ushikai
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - James R. Anson
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Thomas H. Haugen
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| | - Lubomir P. Turek
- Department of Pathology, University of Iowa Roy J. and Lucille A. Carver College of Medicine, Iowa City, IA 52242, USA
- Veterans Affairs Medical Center, 601 Highway 6 West, Iowa City, IA 52246, USA
| |
Collapse
|
18
|
Liu Q, Merkler KA, Zhang X, McLean MP. Prostaglandin F2alpha suppresses rat steroidogenic acute regulatory protein expression via induction of Yin Yang 1 protein and recruitment of histone deacetylase 1 protein. Endocrinology 2007; 148:5209-19. [PMID: 17702849 DOI: 10.1210/en.2007-0326] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prostaglandin F2alpha (PGF2alpha) plays a pivotal role in ovarian luteolysis by inhibiting the expression of steroidogenic acute regulatory (StAR) protein, leading to a decrease in intracellular cholesterol transport and luteal steroid production. Previously we have demonstrated that the transcription factor Yin Yang 1 (YY1) bound to three regions in the StAR promoter in vitro and repressed promoter activity. This study further defined the YY1-mediated PGF2alpha effect on the inhibition of StAR protein expression through YY1 interaction with a single region in the StAR promoter in vivo. PGF2alpha consistently suppressed StAR mRNA and protein expression in cultured luteal cells in a dose-dependent manner. PGF2alpha also enhanced YY1 protein expression and binding to its cis-element in a time-dependent pattern that preceded the decline in StAR protein levels. The StAR promoter region bound by YY1 was also associated with histone deacetylase 1 (HDAC1). PGF2alpha treatment promoted HDAC1 binding to and suppressed the histone H3 acetylation in this region. On the contrary, YY1 knockdown decreased HDAC1 binding, increased histone H3 acetylation, enhanced StAR protein expression, and negated PGF2alpha effect on StAR protein expression. Luciferase assays showed that YY1 overexpression inhibited StAR promoter activity and the addition of a HDAC inhibitor, trichostatin A, abrogated the effect of YY1. Trichostatin A-treated luteal cells displayed increased StAR protein expression. These data indicate that PGF2alpha enhances a direct YY1/StAR promoter interaction and the recruitment of HDAC1 to the promoter, thereby preventing transcriptional activation of the StAR gene.
Collapse
Affiliation(s)
- Qiyuan Liu
- Department of Obstetrics and Gynecology, University of South Florida, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
19
|
Buser AC, Gass-Handel EK, Wyszomierski SL, Doppler W, Leonhardt SA, Schaack J, Rosen JM, Watkin H, Anderson SM, Edwards DP. Progesterone Receptor Repression of Prolactin/Signal Transducer and Activator of Transcription 5-Mediated Transcription of the β-Casein Gene in Mammary Epithelial Cells. Mol Endocrinol 2007; 21:106-25. [PMID: 16973758 DOI: 10.1210/me.2006-0297] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prolactin (PRL) and glucocorticoids act synergistically to stimulate transcription of the beta-casein milk protein gene. Signal transducer and activator of transcription 5 (Stat5) mediates PRL-dependent trans-activation, and glucocorticoid potentiation occurs through cross talk between glucocorticoid receptor (GR) and Stat5 at the beta-casein promoter. In the mouse, progesterone withdrawal leads to terminal differentiation and secretory activation of the mammary gland at parturition, indicating progesterone's role in repressing milk protein gene expression during pregnancy. To investigate the mechanism of the inhibitory action of progesterone, experiments were performed with cell culture systems reconstituted to express progesterone receptor (PR), the PRL receptor/Stat5 signaling pathway, and GR, enabling evaluation of PR, GR, and Stat5 interactions at the beta-casein promoter. With COS-1, normal murine mammary gland, HC-11, and primary mammary epithelial cells, progestin-PR directly repressed the PRL receptor/Stat5a signaling pathway's mediation of PRL-induced beta-casein transcription. Progestin-PR also inhibited glucocorticoid-GR enhancement of PRL induced trans-activation of beta-casein. Inhibition depended on a functional PR DNA binding domain and specific PR-DNA interactions at the beta-casein promoter. Chromatin immunoprecipitation assays in HC-11 cells revealed recruitment of PR and Stat5a to the beta-casein promoter by progestin or PRL, respectively. Recruitment was disrupted by cotreatment with progestin and PRL, suggesting a mutual interference between activated PR and Stat5a. Without PRL, progestin-PR also recruited Stat5a to the beta-casein promoter, suggesting that recruitment of an unactivated form of Stat5a may contribute to inhibition of beta-casein by progesterone. These results define a negative cross talk between PR and Stat5a/GR that may contribute to the physiological role of progesterone to repress lactogenic hormone induction of the beta-casein gene in the mammary gland during pregnancy.
Collapse
Affiliation(s)
- Adam C Buser
- Department of Pathology, University of Colorado Health Sciences Center, Aurora, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kabotyanski EB, Huetter M, Xian W, Rijnkels M, Rosen JM. Integration of prolactin and glucocorticoid signaling at the beta-casein promoter and enhancer by ordered recruitment of specific transcription factors and chromatin modifiers. Mol Endocrinol 2006; 20:2355-68. [PMID: 16772529 DOI: 10.1210/me.2006-0160] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Lactogenic hormone regulation of beta-casein gene expression in mammary epithelial cells provides an excellent system in which to perform kinetic studies of chromatin remodeling and transcriptional activation. Using HC11 cells as a model, we have investigated the effects of prolactin (Prl) and glucocorticoids both singly and in combination at different time points after hormone treatment. Using chromatin immunoprecipitation analysis, we have determined the dynamics of assembly and disassembly of signal transducer and activator of transcription 5, glucocorticoid receptor, CCAAT enhancer binding protein beta, and Ying Yang-1 at the hormonally activated beta-casein proximal promoter as well as the distal mouse beta-casein enhancer located approximately -6 kb upstream of the transcription start site. Prl alone resulted in a rapid recruitment of both signal transducer and activator of transcription 5 and histone deacetylase 1 to the beta-casein promoter and enhancer, and reciprocally the dissociation of Ying Yang-1 from the proximal promoter. In addition, we have examined the recruitment of coactivator p300 and determined chromatin acetylation status as a function of hormonal treatment. Finally, we have established the time course of RNA polymerase II and phospho-RNA polymerase II accumulation at the beta-casein promoter and enhancer after stimulation with hydrocortisone and Prl. Although glucocorticoids alone led to a rapid increase in histone H3 acetylation, treatment with both hormones was required for stable association of p300 and phospho-RNA polymerase II at both the promoter and enhancer. Collectively, these data suggest a model for the assembly of a multiprotein complex that helps to define how the signaling pathways controlled by these lactogenic hormones are integrated to regulate beta-casein gene expression.
Collapse
Affiliation(s)
- Elena B Kabotyanski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
21
|
Wang CC, Tsai MF, Hong TM, Chang GC, Chen CY, Yang WM, Chen JJW, Yang PC. The transcriptional factor YY1 upregulates the novel invasion suppressor HLJ1 expression and inhibits cancer cell invasion. Oncogene 2005; 24:4081-93. [PMID: 15782117 DOI: 10.1038/sj.onc.1208573] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
By using microarray and an invasion/metastasis lung cell line model, we identified the DnaJ-like heat shock protein 40, HLJ1, and found that the expression of HLJ1 correlates negatively with cancer cell invasion ability. Overexpression of HLJ1 can suppress cancer cell invasion in vitro. We further characterize the putative promoter region and investigate the transcriptional regulations of human HLJ1. A serial deletion of the 1.2 kb at the 5'-flanking region of the human HLJ1 gene was subcloned into a vector containing reporter gene and transfected into human lung adenocarcinoma cell line CL1-0, followed by luciferase activity assay. The results indicated that the region from -232 to +176 could drive the basal transcriptional activity of the HLJ1 gene. Sequence analysis of the HLJ1 gene promoter region showed absence of a TATA box, but identified an inverted CCAAT box and four YY1 transcriptional factor-binding sites, which may be important in the regulation of HLJ1 expression. Co-transfection of the YY1 and HLJ1 basal promoter regions, site-directed mutagenesis, and electrophoretic mobility shift assay confirmed that YY1 could upregulate HLJ1 basal promoter activity. Furthermore, we also demonstrated that overexpression of YY1 in CL1-0 cells can increase HLJ1 expression and reduce cell invasive capability. The reduction of cancer cell invasive ability is, at least in part, through upregulation of E-cadherin expression. The increase in HLJ1 and E-cadherin expression, as well as the suppression of invasion ability, can be reversed specifically by HLJ1 siRNA.
Collapse
Affiliation(s)
- Chi-Chung Wang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Litterst CM, Kliem S, Lodrini M, Pfitzner E. Coactivators in Gene Regulation by STAT5. VITAMINS & HORMONES 2005; 70:359-86. [PMID: 15727811 DOI: 10.1016/s0083-6729(05)70012-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Signal transducer and activator of transcription 5 (STAT5) is a member of the STAT family of transcription factors that relay the effect of diverse cytokines, hormones, and growth factors by regulating the transcription of distinct target genes. This function is emphasized by its crucial role in the development of the mammary gland and the hematopoietic system. Cytokine receptor-associated Janus kinases (JAKs) induce dimerization, nuclear translocation, and DNA binding through tyrosine phosphorylation of STAT5. STAT5 regulates the expression of cytokine target genes by binding to gamma interferon-activated sequence (GAS) motifs. Transcriptional activation requires the contact of STAT5 to coactivators and components of the transcription machinery. Another important point in transcriptional activation is the cooperation with other transcription factors that bind in close vicinity to the target gene promoters and enhancers. Their concerted action can result in an enhanced binding to the promoters or in cooperative recruitment of coactivators. In addition, cross-talk with other signaling pathways as well as secondary modifications of STAT5 have been described to affect transactivation function.
Collapse
Affiliation(s)
- Claudia M Litterst
- Georg-Speyer-Haus, Institute for Biomedical Research, D-60596 Frankfurt, Germany
| | | | | | | |
Collapse
|
23
|
Zhang H, Zhang H, Lee L, Ip MM. The liver-enriched inhibitory protein isoform of CCAAT/enhancer-binding protein beta, but not nuclear factor-kappaB, mediates the transcriptional inhibition of beta-casein by tumor necrosis factor-alpha. Endocrinology 2004; 145:2833-44. [PMID: 14976147 DOI: 10.1210/en.2003-1738] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
TNF-alpha is a physiological regulator of mammary gland development that stimulates the growth of both normal and malignant mammary epithelial cells in primary culture and inhibits functional differentiation. To understand how TNF exerts its effects, the current study examined the mechanism by which TNF down-regulates expression of the beta-casein and whey acidic protein (WAP) genes. TNF treatment markedly decreased activity of the beta-casein and WAP promoters in transiently transfected HC11 mammary epithelial cells. Overexpression of the nuclear factor-kappaB (NFkappaB) p50 and/or p65 proteins increased the transcriptional activity of the beta-casein and WAP promoters in HC11 cells, suggesting that the inhibitory effect of TNF on transcription of these genes is not mediated by NFkappaB. This was further confirmed in experiments in which an NFkappaB super-repressor was overexpressed, and by deletion of an NFkappaB binding site in the beta-casein promoter. In contrast, we found that TNF induced both nuclear expression and the DNA-binding activity of liver-enriched inhibitory protein (LIP) isoform of CCAAT/enhancer-binding protein beta. Moreover, cotransfection of LIP and beta-casein expression vectors showed that LIP suppressed the transcriptional activity of the beta-casein promoter. Together, these results suggest that LIP plays a critical role in mediating TNF-induced down-regulation of the beta-casein gene.
Collapse
Affiliation(s)
- Haitao Zhang
- Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, New York 14263, USA
| | | | | | | |
Collapse
|
24
|
Prinzenberg EM, Weimann C, Brandt H, Bennewitz J, Kalm E, Schwerin M, Erhardt G. Polymorphism of the bovine CSN1S1 promoter: linkage mapping, intragenic haplotypes, and effects on milk production traits. J Dairy Sci 2003; 86:2696-705. [PMID: 12939094 DOI: 10.3168/jds.s0022-0302(03)73865-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The bovine CSN1S1 5' flanking region (CSN1S1-5') was screened for polymorphisms in different cattle breeds. Single-strand conformation polymorphisms (SSCP) and sequence analyses revealed four alleles (1-4), two of them being new allelic forms (3 and 4). Sequences were deposited in GenBank with accession numbers AF549499-502. In alleles 1 and 4, potential transcription factor binding sites are altered by the mutations. Using SSCP analysis, all four alleles were identified in German Holsteins. Six intragenic haplo-types comprising CSN1S1-5' (alleles 1, 2, 3, 4) and exon 17 (CSN1S1*B and C) genotypes were found. Linkage mapping using half-sib families from the German QTL project positioned CSN1S1 between the markers FBN14 and CSN3, with 5.6 cM distance between CSN1S1 and CSN3. Variance analysis, using family and CSN1S1 promoter genotypes as fixed effects, of breeding values and deregressed proofs for milk production traits (milk, fat, and protein yield and also fat and protein percentage) revealed significant effects on protein percentage when all families and genotypes were considered. Contrast calculations assigned a highly significant effect to genotype 24, which was associated with highest LS-means for protein percentage breeding values. As CSN1S1 is one of the main caseins in milk, this could be an effect of mutations in regulatory elements in the promoter region. An effect on milk yield breeding values was indicated for genotype 12, but is probably caused by a linked locus.
Collapse
Affiliation(s)
- E M Prinzenberg
- Institute for Animal Breeding and Genetics, Justus-Liebig-University, 35390 Giessen, Germany.
| | | | | | | | | | | | | |
Collapse
|
25
|
Groner B, Shemanko C. Cooperation of nuclear transcription factors regulated by steroid and peptide hormones. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2003:213-31. [PMID: 12355718 DOI: 10.1007/978-3-662-04660-9_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- B Groner
- Institute for Biomedical Research, Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt/Main, Germany.
| | | |
Collapse
|
26
|
Nishiyama C, Yokota T, Nishiyama M, Ra C, Okumura K, Ogawa H. Molecular cloning of rat transcription factor YY1. Biosci Biotechnol Biochem 2003; 67:654-8. [PMID: 12723621 DOI: 10.1271/bbb.67.654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
YY1 is a ubiquitously expressed multifunctional transcription factor that is involved in both positive and negative regulation of gene expression as well as initiation of transcription. Here, we isolated cDNA encoding a full-length open reading frame (ORF) of rat YY1. Rat YY1 is composed of 411 amino acid residues and its amino acid sequence is 97.6% identical to that of mouse YY1 and 97.8% identical to that of human YY1. The transactivating abilities of wild-type rat YY1 and four truncated mutant forms of YY1 were examined by transient reporter assays. When residues 114-193, which sequence includes a portion of the activation region and most of the Gly/Lys-rich region, were lacking, transactivation activity decreased somewhat, but the further deletion in the activation region (of residues 56-113) did not cause further decrease of the activity. On the other hand, N-terminus of the activation region (1-78/100-106) did not have transactivation activity by itself as well as synergistic activity with an erythroid specific transcription factor GATA-1.
Collapse
Affiliation(s)
- Chiharu Nishiyama
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Beaton A, Broadhurst MK, Wilkins RJ, Wheeler TT. Suppression of beta-casein gene expression by inhibition of protein synthesis in mouse mammary epithelial cells is associated with stimulation of NF-kappaB activity and blockage of prolactin-Stat5 signaling. Cell Tissue Res 2003; 311:207-15. [PMID: 12596040 DOI: 10.1007/s00441-002-0672-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2002] [Accepted: 11/04/2002] [Indexed: 12/01/2022]
Abstract
The protein synthesis inhibitor cycloheximide (Chx) suppresses prolactin-induced beta-casein gene expression in the mammary epithelial cell line COMMA-D. As the mechanism underlying this effect is unclear, the effects of protein synthesis inhibitors on interactions of transcription factors with the beta-casein promoter were examined. Suppression of prolactin-induced beta-casein gene expression occurred in both COMMA-D cells and primary mammary cell cultures with as little as 2 h protein synthesis inhibition. This was associated with changes in transcription factors interacting at a response element in the proximal region of the rat beta-casein promoter. Inhibition of protein synthesis was associated with NF-kappaB binding at a site immediately 3' to the Stat5-binding site at position 97-89 of the beta-casein promoter, suppression of Stat5 DNA-binding activity, and inhibition of Stat5 tyrosine phosphorylation. Treatment with the NF-kappaB inhibitor parthenolide failed to restore prolactin responsiveness. These results show that protein synthesis inhibition is associated with both blockage of prolactin-Stat5 signaling and NF-kappaB binding to the beta-casein promoter, but that the latter is not necessary for the suppression of beta-casein expression.
Collapse
Affiliation(s)
- Angela Beaton
- AgResearch, Ruakura Research Centre, Private Bag 3123, Hamilton, New Zealand
| | | | | | | |
Collapse
|
28
|
Lee IJ, Hyun SW, Nandi A, Kim KC. Transcriptional regulation of the hamster Muc1 gene: identification of a putative negative regulatory element. Am J Physiol Lung Cell Mol Physiol 2003; 284:L160-8. [PMID: 12388348 DOI: 10.1152/ajplung.00342.2000] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The mucin gene Muc1 is expressed in glandular epithelial cells and is involved in lubricative and protective functions. It is also overexpressed in many carcinomas including breast and lung cancer cells. To study the transcriptional regulation of Muc1, we cloned a 2.4-kb fragment containing the promoter region of the hamster Muc1 gene and analyzed it for its ability to mediate transcription. Transcriptional initiation was localized to 22 base pairs downstream of the TATA box. We performed functional analysis of the Muc1 promoter in hamster (HP-1 and Chinese hamster ovary) and human cells (MCF-7, A549, and BEAS-2B) using deletion/reporter constructs. A positive regulatory region between bases -555 and -252 and a putative negative regulatory element (P-NRE) between nucleotides -1,652 and -1,614 were found to be active in transfected cells. The P-NRE contains a yin yang 1 (YY1) transcription factor binding site, and electrophoretic mobility shift assays with HP-1 cell nuclear extract revealed the binding of YY1 to this site. Our data suggest that YY1 may play an inhibitory role in the transcription of the Muc1 gene.
Collapse
Affiliation(s)
- Insong James Lee
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
29
|
Abstract
The murine casein locus consists of five genes, which are coordinately regulated during mammary development. The levels of casein-specific mRNAs in mammary epithelial cells increase during the second half of pregnancy and remain high during lactation. The murine gamma-casein gene, which corresponds to the alphaS2-casein gene in ruminants, was isolated from a mouse bacterial artificial chromosome (BAC) library (strain 129SV). The gene contains 14 exons, which are distributed over 14 kb of DNA sequence. The expression pattern of the murine gamma-casein gene mimics that of the neighbouring beta-casein gene in terms of developmental induction in vivo. In cell culture, both the beta- and gamma-casein promoter are synergistically induced by prolactin and glucocorticoids. Glucocorticoid induction is critically dependent on prolactin-mediated activation of STAT5 in both promoters. Several consensus STAT5 binding sites were identified in the gamma-casein promoter, some of which may have an additive effect on prolactin induction. mRNA levels of gamma- and beta-casein are similar in lactating mammary tissue. However, promoter segments derived from the gamma-casein gene are significantly less active in cell culture than comparable fragments of the beta-casein promoter. Promoter hybrids between the gamma- and beta-casein promoters revealed that the critical sequences which are responsible for the different in vitro activity are located in a short promoter proximal region.
Collapse
Affiliation(s)
- Andreas F Kolb
- Molecular Recognition Group, Hannah Research Institute, Scotland, Ayr, UK.
| |
Collapse
|
30
|
Abstract
Extracellular hormones, growth factors or cytokines relay their effects on the transcription of genes through the recognition of specific receptors and intracellular signaling molecules. Stat (signal transducers and activators of transcription) have been recognized as crucial intracellular signaling molecules. The cytokine receptor associated Jak kinases convert the latent monomeric form of the Stat molecules to the activated dimeric form through tyrosine phosphorylation. The dimers bind to specific DNA response elements and are able to induce transcription. The transcription factor Stat5 is a central determinant of mammary gland development and function. It is activated during pregnancy by prolactin and contributes to the growth and alveolar differentiation of the epithelial cells. During lactation it governs milk protein gene expression and contributes to cell survival. Negative regulatory potential is exerted by the expression of the short form of the molecule, lacking the transactivation domain, but associating with nuclear co-repressors. This form is activated through tyrosine phosphorylation and dimerisation similarly to the full-length form, but is impeded in dephosphorylation and co-activator recruitment. Positive enhancement of Stat5 transactivation potential is provided by the glucocorticoid receptor (GR). Ligand activation of the receptor causes complex formation with Stat5 and deviation to the Stat5 DNA binding site. An additional regulatory loop is provided by the reactivation of the short form of Stat5 through GR association.
Collapse
Affiliation(s)
- Bernd Groner
- Georg Speyer Haus, Institute for Biomedical Research, Paul Ehrlich Street 42-44, D-60596 Frankfurt, Germany.
| |
Collapse
|
31
|
Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW. Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285:1-24. [PMID: 12039028 DOI: 10.1016/s0378-1119(02)00398-0] [Citation(s) in RCA: 813] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Investigation into the mechanism of cytokine signaling led to the discovery of the JAK/STAT pathway. Following the binding of cytokines to their cognate receptor, signal transducers and activators of transcription (STATs) are activated by members of the janus activated kinase (JAK) family of tyrosine kinases. Once activated, they dimerize and translocate to the nucleus and modulate the expression of target genes. During the past several years significant progress has been made in the characterization of the JAK/STAT signaling cascade, including the identification of multiple STATs and regulatory proteins. Seven STATs have been identified in mammals. The vital role these STATs play in the biological response to cytokines has been demonstrated through the generation of murine 'knockout' models. These mice will be invaluable in carefully elucidating the role STATs play in regulating the host response to various stresses. Similarly, the solution of the crystal structure of two STATs has and will continue to facilitate our understanding of how STATs function. This review will highlight these exciting developments in JAK/STAT signaling.
Collapse
Affiliation(s)
- T Kisseleva
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
32
|
Horsch K, Schaller MD, Hynes NE. The protein tyrosine phosphatase-PEST is implicated in the negative regulation of epidermal growth factor on PRL signaling in mammary epithelial cells. Mol Endocrinol 2001; 15:2182-96. [PMID: 11731619 DOI: 10.1210/mend.15.12.0743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Treatment of HC11 mammary epithelial cells with the lactogenic hormone PRL promotes differentiation and induction of milk protein gene expression via stimulation of the Janus kinase (JAK)/signal transducer and activator of transcription pathway. We have previously shown that autocrine activation of epidermal growth factor (EGF) receptor interferes with normal PRL-induced differentiation. Here we show that PRL activation of JAK2 was dramatically reduced in HC11 cells pretreated with EGF, demonstrating that the target of EGF receptor activation is JAK2 kinase. Using an in-gel protein tyrosine phosphatase (PTP) assay, we observed that the activity of a 125-kDa PTP was up-regulated in HC11 cells in response to EGF. A specific antiserum was used to demonstrate that the 125-kDa PTP was PTP-PEST and to show that EGF treatment of HC11 cells led to an increase in the level of PTP-PEST. In intact HC11 cells, PTP-PEST was constitutively associated with JAK2, and in response to EGF treatment there was an increased level of PTP-PEST in JAK2 complexes. An in vitro phosphatase assay, using PRL-activated JAK2 as the substrate and lysates from HC11 cells as the source of PTP-PEST, revealed that JAK2 could serve as a PTP-PEST substrate. However, in intact cells the regulation of JAK2 by PTP-PEST was complex, since transient overexpression of PTP-PEST had a negligible effect on PRL-induced JAK2 activation. EGF's negative influence on JAK2 activity was blocked by actinomycin D treatment of HC11 cells, suggesting that EGF induced a protein that mediated the effects of PTP-PEST on JAK2. In support of this model, PTP-PEST-containing lysates from EGF-treated HC11 cells dephosphorylated JAK2 to a greater extent than lysates prepared from control cells.
Collapse
Affiliation(s)
- K Horsch
- Friedrich Miescher Institute, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
33
|
Mertani HC, Zhu T, Goh EL, Lee KO, Morel G, Lobie PE. Autocrine human growth hormone (hGH) regulation of human mammary carcinoma cell gene expression. Identification of CHOP as a mediator of hGH-stimulated human mammary carcinoma cell survival. J Biol Chem 2001; 276:21464-75. [PMID: 11297545 DOI: 10.1074/jbc.m100437200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
By use of cDNA array technology we have screened 588 genes to determine the effect of autocrine production of human growth hormone (hGH) on gene expression in human mammary carcinoma cells. We have used a previously described cellular model to study autocrine hGH function in which the hGH gene or a translation-deficient hGH gene was stably transfected into MCF-7 cells. Fifty two of the screened genes were regulated, either positively () or negatively (), by autocrine production of hGH. We have now characterized the role of one of the up-regulated genes, chop (gadd153), in the effect of autocrine production of hGH on mammary carcinoma cell number. The effect of autocrine production of hGH on the level of CHOP mRNA was exerted at the transcriptional level as autocrine hGH increased chloramphenicol acetyltransferase production from a reporter plasmid containing a 1-kilobase pair fragment of the chop promoter. The autocrine hGH-stimulated increase in CHOP mRNA also resulted in an increase in CHOP protein. As a consequence, autocrine hGH stimulation of CHOP-mediated transcriptional activation was increased. Stable transfection of human CHOP cDNA into mammary carcinoma cells demonstrated that CHOP functioned not as a mediator of hGH-stimulated mitogenesis but rather enhanced the protection from apoptosis afforded by hGH in a p38 MAPK-dependent manner. Thus transcriptional up-regulation of chop is one mechanism by which hGH regulates mammary carcinoma cell number.
Collapse
Affiliation(s)
- H C Mertani
- Institute of Molecular and Cell Biology, 30 Medical Drive, Singapore 117609, Republic of Singapore
| | | | | | | | | | | |
Collapse
|
34
|
Raval-Pandya M, Dhawan P, Barletta F, Christakos S. YY1 Represses Vitamin D Receptor-Mediated 25-Hydroxyvitamin D3 24-Hydroxylase Transcription: Relief of Repression by CREB-Binding Protein. Mol Endocrinol 2001; 15:1035-46. [PMID: 11376120 DOI: 10.1210/mend.15.6.0651] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ying Yang transcription factor (YY1) can repress or activate transcription. 25-Hydroxyvitamin D(3)-24-hydroxylase [24(OH)ase], an enzyme involved in the catabolism of 1,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], is up-regulated at the transcriptional level by 1,25-(OH)(2)D(3) to self-induce its deactivation. Here we report that YY1 can repress 1,25-(OH)(2)D(3)-induced 24(OH)ase transcription in CV1 cells transfected with vitamin D receptor (VDR) expression vector or in LLCPK(1) cells that contain VDR endogenously. With increasing amounts of YY1 DNA transfected (500 ng to 2 microg), ligand-dependent VDR activation of 24(OH)ase transcription was steadily repressed (maximum repression was 10-fold). Thus, YY1 may be a key modulator preventing activation at times that do not require the enzyme to be expressed. Relief of YY1 repression was observed in the presence of TFIIB or CBP (CREB binding protein) suggesting that YY1 may exert repression, in part, by sequestering TFIIB/CBP. Glutathione-S-transferase (GST) pull-down assays identified regions in the N and C termini of CBP that can bind YY1. In addition, the N-terminal region of CBP that interacts with YY1 can inhibit YY1 from binding to TFIIB. Thus, CBP may alleviate YY1-mediated repression, in part, by preventing YY1 from binding to TFIIB, which is required for VDR-mediated transcription. In summary, our results suggest that YY1 represses 24(OH)ase transcription, at least in part, by sequestering activator proteins involved in VDR-mediated transcription. In addition, our findings demonstrate a role for CBP in relief of repression of VDR-mediated transcription.
Collapse
Affiliation(s)
- M Raval-Pandya
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | |
Collapse
|
35
|
Yoo J, Jeong MJ, Lee SS, Lee KI, Kwon BM, Park YM, Han MY. Negative regulation of YY1 transcription factor on the dynamin I gene promoter. Biochem Biophys Res Commun 2001; 283:340-3. [PMID: 11327704 DOI: 10.1006/bbrc.2001.4784] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dynamin I is highly expressed in brain and plays a critical role in clathrin-mediated endocytosis and synaptic vesicle recycling. To elucidate the molecular mechanism by which expression of dynamin I is tissue-specifically regulated, we previously cloned and characterized the promoter of the mouse dynamin I gene and suggested that there is a negative regulatory element in this promoter region. In the present study, we showed that YY1 binds to this negative regulatory element located at -111 to -107 by using the EMSA and supershift analyses. Cotransfection experiment using an YY1 expression vector revealed that YY1 exerts a repressive role on the dynamin I gene promoter activity. These results demonstrate that transcription factor YY1 negatively regulates dynamin I expression via binding to the negative regulatory element.
Collapse
Affiliation(s)
- J Yoo
- Cell Biology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Taejon, Yusung, 305-600, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Park EJ, Han SY, Chung IK. Regulation of mouse DNA topoisomerase IIIalpha gene expression by YY1 and USF transcription factors. Biochem Biophys Res Commun 2001; 283:384-91. [PMID: 11327713 DOI: 10.1006/bbrc.2001.4804] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To investigate the mechanisms responsible for the regulation of DNA topoisomerase IIIalpha (TOP3alpha) gene expression, the promoter region of the mouse gene has been cloned and analyzed. The promoter region is moderately high in GC content and lacks a canonical TATA box, typical for promoters of a number of housekeeping genes. Transient expression of a luciferase reporter gene under the control of serially deleted 5'-flanking sequences demonstrated that the 34-bp region from -137 to -170 upstream of the transcription initiation site contains a positive regulatory element(s) for the efficient expression of mouse TOP3alpha gene. Combined analyses by gel mobility shift and supershift assays revealed that both YY1 and USF transcription factors were capable of binding to the 34-bp region. When YY1 and USF-binding elements were selectively mutated, the luciferase activity of the resulted constructs was greatly reduced, indicating that both YY1 and USF function as transcriptional activators. Interestingly, YY1 and USF-binding elements are conserved in both human and mouse TOP3alpha promoters. This suggests that mammalian TOP3alpha genes may possess a common mechanism of transcription regulation through these elements.
Collapse
Affiliation(s)
- E J Park
- Department of Biology, College of Science, Protein Network Research Center, Yonsei University, Seoul, 120-749, Korea
| | | | | |
Collapse
|
37
|
Doppler W, Geymayer S, Weirich HG. Synergistic and antagonistic interactions of transcription factors in the regulation of milk protein gene expression. Mechanisms of cross-talk between signalling pathways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2001; 480:139-46. [PMID: 10959420 DOI: 10.1007/0-306-46832-8_17] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The stage and tissue specific expression of milk protein genes in the mammary gland is controlled by modular response regions with multiple binding sites for distinct classes of transcription factors, which either co-operate or are antagonistic. In addition, the activity of some of these factors is individually control-led by diverse extracellular signals. A well studied paradigm for a synergistic co-operation is the activation of beta-casein gene transcription by prolactin and glucocorticoids mediated by the signal transducer and activator of transcription STAT5 and the glucocorticoid receptor (GR). As an example for an antagonistic interaction we can demonstrate inhibition of prolactin signalling by TNF-alpha, which is mediated by NF-kappa B. In both cases, the interactions occur at several levels: For GR and STAT5, the synergy is discussed to be promoted by protein-protein interactions. Furthermore, we can demonstrate a co-operation between GR and STAT5 in DNA binding by a mechanism, which is dependent on the integrity of the DNA binding domain of the GR and on the existence of half-palindromic GR binding sites in the hormone response region. Indirect effects of glucocorticoids by modulation of the expression of secondary genes are also important. They might account for the observed enhancement of prolactin induced tyrosine phosphorylation of STAT5 by glucocorticoids. For NF-kappa B and STAT5, one component of the antagonism is the inhibition of STAT5 tyrosine phosphorylation by activation of NF-kappa B. Another potential mechanism is the inhibition of DNA binding of STAT5 due to overlapping binding sites for STAT5 and NF-kappa B in the beta-casein gene promoter. Thus, synergistic and antagonistic interactions between GR, NF-kappa B, and STAT5 involve (a) cross-talk mechanisms influencing the activation of STAT5 and (b) promoter-dependent interactions modulating the DNA binding activity of the transcription factors.
Collapse
Affiliation(s)
- W Doppler
- Insitut for Medical Chemistry and Biochemistry, University of Innsbruck, Austria
| | | | | |
Collapse
|
38
|
Wyszomierski SL, Rosen JM. Cooperative effects of STAT5 (signal transducer and activator of transcription 5) and C/EBPbeta (CCAAT/enhancer-binding protein-beta) on beta-casein gene transcription are mediated by the glucocorticoid receptor. Mol Endocrinol 2001; 15:228-40. [PMID: 11158330 DOI: 10.1210/mend.15.2.0597] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Beta-casein gene transcription is controlled primarily by a composite response element (CoRE) that integrates signaling from the lactogenic hormones, PRL, insulin, and hydrocortisone, in mammary epithelial cells. This CoRE contains binding sites for STAT5 (signal transducer and activator of transcription 5) and C/EBPbeta (CCAAT/enhancer-binding protein-beta) and several half-sites for glucocorticoid receptor (GR). To examine how interactions among these three transcription factors might regulate beta-casein gene transcription, a COS cell reconstitution system was employed. Cooperative transactivation was observed when all three factors were expressed, but unexpectedly was not seen between STAT5 and C/EBPbeta in the absence of full-length, transcriptionally active GR. Cooperativity required the amino-terminal transactivation domain of C/EBPbeta, and neither C/EBPalpha nor C/EBPdelta was able to substitute for C/EBPbeta when cotransfected with STAT5 and GR. Different GR determinants were needed for transcriptional cooperation between STAT5 and GR as compared with those required for all three transcription factors. These studies provide some new insights into the mechanisms responsible for high level, tissue-specific expression conferred by the beta-casein CoRE.
Collapse
Affiliation(s)
- S L Wyszomierski
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030-3498, USA
| | | |
Collapse
|
39
|
Wright RM, Riley MG, Weigel LK, Ginger LA, Costantino DA, McManaman JL. Activation of the human aldehyde oxidase (hAOX1) promoter by tandem cooperative Sp1/Sp3 binding sites: identification of complex architecture in the hAOX upstream DNA that includes a proximal promoter, distal activation sites, and a silencer element. DNA Cell Biol 2000; 19:459-74. [PMID: 10975464 DOI: 10.1089/10445490050128395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aldehyde oxidase (AOX) is a member of the molybdenum iron-sulfur flavoproteins and is of interest for its role in clinical drug metabolism and as a source of reactive oxygen species (ROS) potentially involved in human pathology. The ROS derived from AOX contribute significantly to alcohol-induced hepatotoxicity. Therefore, expression of AOX could determine both the susceptibility of certain cells and tissues to clinically important pharmacologic agents and the levels of ROS produced under certain pathophysiological conditions. Although some pharmacologic agents regulate AOX enzyme activity, very little is known about the activation or regulation of the human AOX gene (hAOX). In the present study, we sought to identify features in the upstream DNA of hAOX that could confer regulation of the gene, to locate and characterize the basal promoter apparatus activating hAOX, and to identify transcription factors that could mediate activation or regulation. We transfected promoter fusion constructs into epithelial cells from the lung and the mammary gland that express AOX in cell culture. The hAOX gene was found to possess a structurally complex region in the upstream DNA that contained sequences for a proximal promoter, enhancer sites, and silencer elements. In addition, we identified an essential role for the transcription factors Sp1 and Sp3 in the proximal promoter. Unexpectedly, hAOX was activated in lung and mammary epithelial cells by indistinguishable mechanisms. These observations reveal a potentially complex mode of hAOX gene expression in epithelial cells that is dependent on Spl and Sp3 transcription factors.
Collapse
Affiliation(s)
- R M Wright
- The Webb-Waring Institute and Department of Medicine, The University of Colorado Health Sciences Center, Denver 80262, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Bergad PL, Towle HC, Berry SA. Yin-yang 1 and glucocorticoid receptor participate in the Stat5-mediated growth hormone response of the serine protease inhibitor 2.1 gene. J Biol Chem 2000; 275:8114-20. [PMID: 10713133 DOI: 10.1074/jbc.275.11.8114] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A growth hormone-inducible nuclear factor complex (GHINF), affinity-purified using the growth hormone response element (GHRE) from the promoter of rat serine protease inhibitor 2.1, was found to contain Stat5a and -5b, as well as additional components. The ubiquitous transcription factor yin-yang 1 (YY1) is present in GHINF. An antibody to YY1 inhibited the formation of the GHINF.GHRE complex in an electrophoretic mobility shift assay. Furthermore, Stat5 was co-immunoprecipitated from rat hepatic nuclear extracts with antibodies to YY1. An examination of the GHRE shows that, in addition to two gamma-activated sites, it contains a putative YY1 binding site between the two gamma-activated sites, overlapping them both. Mutation of this putative YY1 site results in a decrease of GHINF.GHRE complex formation in an electrophoretic mobility shift assay and a corresponding decrease in growth hormone (GH) response in functional assays. The glucocorticoid receptor was also present in GHINF, and Stat5 co-immunoprecipitates with glucocorticoid receptor in hepatic nuclear extracts from rats treated with GH. GH activation of serine protease inhibitor 2.1 requires the unique sequence of the GHRE encompassing the recognition sites of several transcription factors, and the interaction of these factors enhances the assembly of the transcription complex.
Collapse
Affiliation(s)
- P L Bergad
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
41
|
Point mutations at positions 663 and 666 associated with mental disorders alter the binding site for transcription factor YY1 in the human tryptophan dioxygenase gene intron 6. Mol Biol 2000. [DOI: 10.1007/bf02759638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Cella N, Chiquet-Ehrismann R, Hynes NE. Lactogenic hormones and tenascin-C regulate C/EBPalpha and beta in mammary epithelial cells. J Cell Biochem 2000; 76:394-403. [PMID: 10649437 DOI: 10.1002/(sici)1097-4644(20000301)76:3<394::aid-jcb7>3.0.co;2-b] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Mammary epithelial cell differentiation depends on lactogenic hormones, growth factors, and cell-cell and cell-substrate interactions, all of which modulate transcription factors essential for milk protein gene expression. The CCAAT/enhancer binding protein (C/EBP) family and the signal transducer and activator of transcription 5 (Stat5) have been implicated in mammary epithelial cell growth and differentiation. We have investigated the effects of extracellular matrix components and lactogenic hormones on C/EBP and Stat5 activity. In the mammary gland, tenascin is expressed mainly during embryogenesis and carcinogenesis and in cell culture tenascin downregulates beta-casein gene expression. In HC11 mammary cells, we found that tenascin, but not laminin or fibronectin, specifically downregulated C/EBPalpha levels but had no effect on Stat5 amount or DNA binding activity. Furthermore, we found that the lactogenic hormones, glucocorticoids, prolactin, and insulin, had no effect on C/EBPalpha and C/EBPbeta protein levels but downregulated the DNA binding activity of the transcriptional repressor C/EBPbetaLIP. Thus, C/EBPalpha and beta are regulated by tenascin and lactogenic hormones in mammary epithelial cells.
Collapse
Affiliation(s)
- N Cella
- Friedrich Miescher-Institut, P.O. Box 2543, CH-4002 Basel, Switzerland
| | | | | |
Collapse
|
43
|
Schindler C, Strehlow I. Cytokines and STAT signaling. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1999; 47:113-74. [PMID: 10582086 DOI: 10.1016/s1054-3589(08)60111-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- C Schindler
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
44
|
Vasiliev GV, Merkulov VM, Kobzev VF, Merkulova TI, Ponomarenko MP, Kolchanov NA. Point mutations within 663-666 bp of intron 6 of the human TDO2 gene, associated with a number of psychiatric disorders, damage the YY-1 transcription factor binding site. FEBS Lett 1999; 462:85-8. [PMID: 10580097 DOI: 10.1016/s0014-5793(99)01513-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Single base mutations G-->A at position 663 and G-->T at position 666 of intron 6 of the human tryptophan oxygenase gene (TDO2) are associated with a variety of psychiatric disorders [Comings, D.E. et al. (1996) Pharmacogenetics 6, 307-318]. Binding of rat liver nuclear extract proteins to synthetic double-strand oligonucleotides corresponding to three allelic states of the region between 651 bp and 680 bp of human TDO2 intron 6 has been studied by gel shift assay. It has been demonstrated that to each allelic state of the region there corresponds a specific set of proteins that interacts with it. With the aid of computer analysis and using specific anti-YY-1 antibodies it has been shown that both mutations damage the YY-1 transcription factor binding site.
Collapse
Affiliation(s)
- G V Vasiliev
- Institute of Cytology and Genetics, Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
Characterization of the ability of human interferons (IFNs) to rapidly induce genes led to the identification of the first two members of the STAT (signal transducers and activators of transcription) family, Stat1 and Stat2. To study the unique role of this transcription factor in IFN signaling under more physiological conditions, murine Stat2 was isolated and found to be surprisingly divergent. This divergence was most striking in the C-terminal transcriptional activation domain. Studies on murine Stat2 indicate that it functions in IFN signaling. This includes IFN-alpha-dependent activation, nuclear translocation, DNA binding and activation of reporter genes. However, the profound divergence at the C-terminus suggests that murine Stat2 may have evolved to mediate some unique functions as well. To explore this possibility, proteins that interact with the C-termini of murine and human Stat2 were examined. These studies indicate that the murine and human C-termini interact with an overlapping, but distinct set of proteins.
Collapse
Affiliation(s)
- C Park
- Departments of Microbiology and Medicine, Columbia University, HHSC-1212, 701 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
46
|
Abstract
Studies using both transgenic mice and transfected mammary epithelial cells have established that composite response elements containing multiple binding sites for several transcription factors mediate the hormonal and developmental regulation of milk protein gene expression. Activation of signal transduction pathways by lactogenic hormones and cell-substratum interactions activate transcription factors and change chromatin structure and milk protein gene expression. The casein promoters have binding sites for signal transducers and activators of transcription 5, Yin Yang 1, CCAAT/enhancer binding protein, and the glucocorticoid receptor. The whey protein gene promoters have binding sites for nuclear factor I, as well as the glucocorticoid receptor and the signal transducers and activators of transcription 5. The functional importance of some of these factors in mammary gland development and milk protein gene expression has been elucidated by studying mice in which some of these factors have been deleted.
Collapse
Affiliation(s)
- J M Rosen
- Department of Cell Biology, Baylor College of Medicine, Houston, Texas 77030-3498, USA.
| | | | | |
Collapse
|
47
|
Abstract
Rat liver contains a growth hormone inducible nuclear factor complex, GHINF, that binds to the growth hormone response element (GHRE) of the serine protease inhibitor (Spi) 2.1 gene. GHINF contains Stat5 and binds to paired gamma-activated sites (GAS) within the GHRE, but poorly to either one alone. By analysis of the sequence of various GAS sites that bind the GHINF complex (based on the GHRE 3' GAS motif), we demonstrate that a 13 nucleotide high affinity DNA recognition sequence (haGHRE) for GHINF complex binding is (ANTTC)C/T(N)A/G(GAA)A/T(A)/T. One copy of the haGHRE will replace the requirement for two GAS elements present in the wild type promoter in supporting a GH response in primary hepatocyte culture. Mutation of the native Spi 2.1 from a paired GAS site to a single haGHRE does not appreciably change its affinity for binding to the GHINF complex, nor does it alter its sensitivity to GH concentration.
Collapse
Affiliation(s)
- P L Bergad
- Department of Pediatrics, Institute of Human Genetics, University of Minnesota, Minneapolis 55455, USA
| | | | | |
Collapse
|
48
|
Skaar TC, Prasad SC, Sharareh S, Lippman ME, Brünner N, Clarke R. Two-dimensional gel electrophoresis analyses identify nucleophosmin as an estrogen regulated protein associated with acquired estrogen-independence in human breast cancer cells. J Steroid Biochem Mol Biol 1998; 67:391-402. [PMID: 10030688 DOI: 10.1016/s0960-0760(98)00142-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
We have used two-dimensional gel electrophoresis to identify proteins associated with estrogen-induced proliferation in MCF-7 breast cancer cells and their progression to estrogen-independent proliferation. We compared the total cellular proteins from MCF-7 cells and an estrogen independent derivative of the MCF-7 cells MCF-7/LCC1 (Brünner et al. Cancer Research 1993, 53, 283-290), each grown with and without estradiol. These comparisons reveal seven estrogen-regulated proteins. Three of these proteins (HI-1: 36 kDa/pI 4.5, HI-10: 40 kDa/pI 5.5 and HI-19: 62 kDa/pI 5.0) exhibit a 'progression-like' pattern, being induced by estradiol in MCF-7 cells and constitutively present/upregulated in the MCF-7/LCC1 growing without estradiol. HI-11 (65 kDa/pI 5.5) is strongly induced by estradiol in MCF-7 cells but constitutively downregulated and unresponsive to estradiol in the MCF-7/LCC1 cells. Two proteins exhibit a suppressor pattern and are downregulated by estradiol in the estrogen-dependent MCF-7 cells (HI-3: 44 kDa/pI 4.4 and HI-4: 56 kDa/ pI 5.2) and present in MCF-7/LCC1 cells growing without estradiol at levels comparable to that seen in estrogen-treated MCF-7 cells. One protein (HI-9: 68 kDa/pI 5.5) exhibits a marked estrogen regulated pI shift, rather than changes in abundance. We purified and sequenced the HI-10 protein, which we identified as the nucleolar protein, nucleophosmin (NPM). One- and two-dimensional Western blot analyses of MCF-7/LCC1 cell lysates confirmed that HI-10 is immunoreactive with an antinucleophosmin antibody. Western blotting also confirmed the estrogenic regulation of NPM seen in the initial two-dimensional gel electrophoresis studies. Thus, NPM is induced by estradiol in the MCF-7 cells and upregulated in the MCF-7/LCC1 cells growing without estrogen, clearly associating its expression with an acquired estrogen-independent phenotype. NPM has several potentially important roles in regulating cell function and signaling. It is a substrate for phosphorylation by p34cdc2 kinase, protein kinase C and nuclear kinase II, and a repressor of the transcriptional regulating activities of both the IRF-1 tumor suppressor protein and the YY1 transcription factor. Studies are currently underway to determine which of these NPM functions may be involved in the hormonal progression of breast cancer.
Collapse
Affiliation(s)
- T C Skaar
- Vincent T. Lombardi Cancer Center, Georgetown University Medical School, Washington, DC 20007, USA
| | | | | | | | | | | |
Collapse
|
49
|
Lidberg U, Kannius-Janson M, Nilsson J, Bjursell G. Transcriptional regulation of the human carboxyl ester lipase gene in exocrine pancreas. Evidence for a unique tissue-specific enhancer. J Biol Chem 1998; 273:31417-26. [PMID: 9813053 DOI: 10.1074/jbc.273.47.31417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human carboxyl ester lipase (CEL) is an important enzyme for the intestinal absorption of dietary lipids. The gene is highly expressed in exocrine pancreas and in the mammary gland during pregnancy and lactation. In this paper, we have focused on its transcriptional regulation in exocrine pancreas. Reporter gene analysis in cell cultures reveals that a high level of tissue-specific expression is established by the proximal 839 base pairs of the 5'-flanking region. This is due to a strong enhancer, located at -672 to -637. Transfections in mammary gland-derived cells reveal that the enhancer is pancreas-specific and does not contribute to the mammary gland expression. This indicates that the expression of the CEL gene in the mammary gland and pancreas, respectively, is due to two different regulatory systems. Further characterizations of the enhancer reveal that it is composed of two closely located cis-elements. The proximal element mediates a positive effect, whereas the distal element exerts a silencing effect on the positive proximal element. The functional enhancer complex is composed of ubiquitously expressed factors, since similar interactions are achieved with nuclear extracts from cells derived from other tissues. However, no enhancer activity is achieved in such cells. Hence, the net enhancer activity is the result of a tissue-specific balance between factors interacting with the two elements. Since none of the described cis-elements show any clear homology to known cis-elements, we propose that the interacting complex is composed of yet unidentified transcription factors.
Collapse
Affiliation(s)
- U Lidberg
- Department of Molecular Biology, Göteborg 40 530, Sweden.
| | | | | | | |
Collapse
|
50
|
Klenova EM, Fagerlie S, Filippova GN, Kretzner L, Goodwin GH, Loring G, Neiman PE, Lobanenkov VV. Characterization of the chicken CTCF genomic locus, and initial study of the cell cycle-regulated promoter of the gene. J Biol Chem 1998; 273:26571-9. [PMID: 9756895 DOI: 10.1074/jbc.273.41.26571] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
CTCF is a multifunctional transcription factor encoded by a novel candidate tumor suppressor gene (Filippova, G. N., Lindblom, A., Meinke, L. J., Klenova, E. M., Neiman, P. E., Collins, S. J., Doggett, N. D., and Lobanenkov, V. V. (1998) Genes Chromosomes Cancer 22, 26-36). We characterized genomic organization of the chicken CTCF (chCTCF) gene, and studied the chCTCF promoter. Genomic locus of chCTCF contains a GC-rich untranslated exon separated from seven coding exons by a long intron. The 2-kilobase pair region upstream of the major transcription start site contains a CpG island marked by a "Not-knot" that includes sequence motifs characteristic of a TATA-less promoter of housekeeping genes. When fused upstream of a reporter chloramphenicol acetyltransferase gene, it acts as a strong transcriptional promoter in transient transfection experiments. The minimal 180-base pair chCTCF promoter region that is fully sufficient to confer high level transcriptional activity to the reporter contains high affinity binding element for the transcription factor YY1. This element is strictly conserved in chicken, mouse, and human CTCF genes. Mutations in the core nucleotides of the YY1 element reduce transcriptional activity of the minimal chCTCF promoter, indicating that the conserved YY1-binding sequence is critical for transcriptional regulation of vertebrate CTCF genes. We also noted in the chCTCF promoter several elements previously characterized in cell cycle-regulated genes, including the "cell cycle-dependent element" and "cell cycle gene homology region" motifs shown to be important for S/G2-specific up-regulation of cdc25C, cdc2, cyclin A, and Plk (polo-like kinase) gene promoters. Presence of the cell cycle-dependent element/cell cycle gene homology region element suggested that chCTCF expression may be cell cycle-regulated. We show that both levels of the endogenous chCTCF mRNA, and the activity of the stably transfected chCTCF promoter constructs, increase in S/G2 cells.
Collapse
Affiliation(s)
- E M Klenova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|