1
|
Zhao Y, Xie X, Liao W, Zhang H, Cao H, Fei R, Wang X, Wei L, Shao Q, Chen H. The transcription factor RFX5 is a transcriptional activator of the TPP1 gene in hepatocellular carcinoma. Oncol Rep 2016; 37:289-296. [DOI: 10.3892/or.2016.5240] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/31/2016] [Indexed: 11/06/2022] Open
|
2
|
Solution structure of the heterotrimeric complex between the interaction domains of RFX5 and RFXAP from the RFX gene regulatory complex. J Mol Biol 2010; 403:40-51. [PMID: 20732328 DOI: 10.1016/j.jmb.2010.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 07/16/2010] [Accepted: 08/12/2010] [Indexed: 11/20/2022]
Abstract
The mammalian immune response is mediated by a heterotetrameric transcriptional control complex, called regulatory factor X (RFX), that regulates the expression of major histocompatibility complex class II genes. RFX comprises three proteins: RFX5 (two copies), RFXAP, and RFXB, and mutations and deletions that prevent the assembly of the RFX complex have been linked to a severe immunodeficiency disorder. Two RFX5 molecules and one RFXAP molecule assemble in the cytoplasm prior to nuclear localization, a process mediated by an N-terminal "dimerization domain" of RFX5 (RFX5(N)) and a C-terminal domain of RFXAP (RFXAP(C)). We previously presented evidence that RFXAP(C) is unstructured in the absence of RFX5(N) but adopts a regular structure in the RFX5(N)(2)-RFXAP(C) complex and that the RFX5(N)(2)-RFXAP(C) complex binds RFXB with high affinity. We now report the structure of the RFX5(N)(2)-RFXAP(C) complex, determined in solution by (15)N- and (13)C-edited NMR spectroscopy. RFX5(N) consists of a long central helix flanked by two shorter helices. The central helices of the two RFX5(N) molecules form an antiparallel coiled coil, and the flanking helices pack at the ends of the long helices in a perpendicular arrangement such that the RFX5(N) dimer is shaped like a staple. RFXAP(C) consists of two α-helices that form a V-shaped structure that packs within the RFX5(N)(2) staple. Leucine residues in the leucine-rich region of RFX5(N) (62-LYLYLQL-68) that are critical for major histocompatibility complex class II gene expression in vivo contribute to both the dimer (Leu64 and Leu68) and the RFX5(N)-RFXAP(C) interfaces (Leu62 and Leu66). The clustering of hydrophobic residues from different regions of RFXAP(C) suggests a potential binding site for RFXB.
Collapse
|
3
|
Chakraborty M, Sengupta A, Bhattacharya D, Banerjee S, Chakrabarti A. DNA binding domain of RFX5: interactions with X-box DNA and RFXANK. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1804:2016-24. [PMID: 20637319 DOI: 10.1016/j.bbapap.2010.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 06/30/2010] [Accepted: 07/03/2010] [Indexed: 11/15/2022]
Abstract
Regulatory factor X (RFX) is a heterotrimeric protein complex having RFX5, RFXANK and RFXAP as its three subunits. It is involved in the regulation of the transcription of MHCII molecules in antigen presenting cells. The RFX complex binds to X-box DNA, using the DNA binding domain, present in RFX5. The DNA binding domain (DBD) of RFX5 (12kD) and intact RFXANK (35 kD) were subcloned, expressed and purified. The associations of RFX5DBD with the X-box DNA and between RFX5DBD and RFXANK were measured in this study. The interaction of RFX5DBD and X-box DNA was studied using steady state fluorescence quenching and circular dichroism. The binding dissociation constant (K(d)) of the DNA-protein complex was determined from fluorescence measurements. The van't Hoff plot was linear over the temperature range 10-25 degrees C and the binding was found to be entropy-driven and enthalpy-favorable. The effect of electrolytes in RFX5DBD-DNA association was also studied. Molecular association between RFX5DBD and RFXANK has been observed by fluorescence resonance energy transfer (FRET) measurements, changes in the ratio of the two vibronic intensities of pyrene labeled RFX5DBD in presence of RFXANK and chemical cross-linking followed by tandem mass spectrometry. Results showed that the two proteins could interact in the absence of the third subunit RFXAP, in vitro with an apparent dissociation constant (K(d)) of 128 nM.
Collapse
Affiliation(s)
- Madhumita Chakraborty
- Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | | | | | | | | |
Collapse
|
4
|
Chakraborty M, Bhattacharya D, Mukhopadhyay C, Chakrabarti A. Structure and conformational studies on dityrosine formation in the DNA binding domain of RFX5. Biophys Chem 2010; 149:92-101. [PMID: 20457484 DOI: 10.1016/j.bpc.2010.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 04/17/2010] [Accepted: 04/18/2010] [Indexed: 11/18/2022]
Abstract
The DNA binding protein RFX5 is a subunit of RFX complex involved in transcription regulation of MHCII molecules. The RFX complex binds to the X-box DNA through the DNA binding domain of RFX5. We have examined the formation of intramolecular tyrosine cross linking, dityrosine, in RFX5DBD under oxidative stress, through UV irradiation and enzymatic action of H(2)O(2)/peroxidase by fluorescence spectroscopic studies. Dityrosine (DT) was formed predominantly in alkaline condition showing its intense characteristic fluorescence emission. Homology modeling indicated Y(39) and Y(42) could be the potential tyrosine residues undergoing oxidative cross-linking. Conformational changes in RFX5DBD under oxidative stress were observed by CD measurements. The in vitro association of X-box DNA with RFX5DBD increased DT fluorescence significantly and protected RFX5DBD from UV irradiation as observed in SDS-PAGE followed by mass spectrometric analysis. Results indicate cross protection in both RFX5DBD and DNA under oxidative stress playing important role in protein modification.
Collapse
Affiliation(s)
- Madhumita Chakraborty
- Biophysics Division and Structural Genomics Section, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700064, India
| | | | | | | |
Collapse
|
5
|
Briggs L, Laird K, Boss JM, Garvie CW. Formation of the RFX gene regulatory complex induces folding of the interaction domain of RFXAP. Proteins 2009; 76:655-64. [PMID: 19274739 DOI: 10.1002/prot.22379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Major histocompatibility complex class II (MHCII) molecules have a central role in the mammalian adaptive immune response against infection. The level of the immune response is directly related to the concentration of MHCII molecules in the cell, which have a central role in initiating the immune response. MHCII molecules are therefore a potential target for the development of immunosuppressant drugs for the treatment of organ transplant rejection and autoimmune disease. The expression of MHCII molecules is regulated by a cell specific multiprotein complex. The RFX complex is the key DNA binding component of this complex. The RFX complex is composed of three proteins-RFX5, RFXAP, and RFXB-all of which are required for activation of expression of the MHCII genes. Little is currently known about the precise regions of the RFX proteins that are required for complex formation, or their structure. We have therefore identified the key regions of RFX5, RFXAP, and RFXB, which are required to form the RFX complex and have characterized the individual domains and the complexes they form using NMR and circular dichroism spectroscopy and isothermal titration calorimetry. Our results support a model for the assembly of the RFX complex in which the interaction between RFX5 and RFXAP promote folding of a poorly structured region ofRFXAP, which is required for high affinity binding of RFXB to the RFX5.RFXAP complex.
Collapse
Affiliation(s)
- LaTese Briggs
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02141, USA
| | | | | | | |
Collapse
|
6
|
Garvie CW, Boss JM. Assembly of the RFX complex on the MHCII promoter: role of RFXAP and RFXB in relieving autoinhibition of RFX5. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2008; 1779:797-804. [PMID: 18723135 DOI: 10.1016/j.bbagrm.2008.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/28/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
Abstract
The RFX complex is key component of a multi-protein complex that regulates the expression of the Major Histocompatibility Class II (MHCII) genes, whose products are essential for the initiation and development of the adaptive immune response. The RFX complex is comprised of three proteins--RFX5, RFXAP, and RFXB--all of which are required for expression of MHCII genes. We have used electrophoretic mobility shift assays to characterize the DNA binding of RFX5 and the complexes it forms with RFXB and RFXAP, to the proximal regulatory region of the MHCII promoter. DNA binding of RFX5 is inhibited by domains flanking its DNA binding domain, and both RFXAP and RFXB are required to overcome the inhibition of both domains. We provide evidence that a single RFX complex binds to the proximal regulatory region of the MHCII promoter and identify regions of the DNA that are important for high affinity binding of the RFX complex. Together, our results provide the most detailed view to date of the assembly of the RFX complex on the MHCII promoter and how its DNA binding is regulated.
Collapse
Affiliation(s)
- Colin W Garvie
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD 21250, USA.
| | | |
Collapse
|
7
|
Takamura Y, Ikeda H, Kanaseki T, Toyota M, Tokino T, Imai K, Houkin K, Sato N. Regulation of MHC class II expression in glioma cells by class II transactivator (CIITA). Glia 2004; 45:392-405. [PMID: 14966870 DOI: 10.1002/glia.10343] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We first classified 12 malignant glioma cell lines into three different groups (types 1-3) with respect to major histocompatibility complex (MHC) class II expression and analyzed each group based on the different expression status of the class II transactivator (CIITA) gene. Glioma type 1 (2 of 12) showed constitutive expression of all class II molecules that might be mediated by activation of B cell-specific CIITA promoter III. Glioma type 2 represented the major phenotype (66.7 %) of malignant glioma cell lines, and MHC class II expression was induced by interferon-gamma (IFN-gamma) in this phenotype. Analysis of glioma tissue samples revealed that CIITA promoter IV was detected in 9 of 11 patients (81.8%); however, promoter III was only in two (18.2%). Moreover, cultured glioma cells obtained from a fresh tumor sample upregulated expression of CIITA and class II molecules in the presence of IFN-gamma, strongly suggesting that glioma type 2 might be predominant in glioma tissues. Glioma type 3 (2 of 12) showed CIITA transcripts but loss of MHC class II expression even in the presence of IFN-gamma. In addition, we determined that the constitutive MHC class II expression in the glioma cell lines (type 1) was the result of transcriptional activation of the CIITA gene. This phenomenon was mediated by global histone acetylation over 6 kb upstream from the transcriptional start site of CIITA promoter III. Moreover, stable transfection of CIITA promoter IV as well as promoter III into MHC class II inducible cell lines restored the constitutive expression of all class II molecules. These studies lay the foundation to understand the molecular basis for the expression of class II molecules in gliomas.
Collapse
Affiliation(s)
- Yukio Takamura
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Xu Y, Wang L, Buttice G, Sengupta PK, Smith BD. Interferon gamma repression of collagen (COL1A2) transcription is mediated by the RFX5 complex. J Biol Chem 2003; 278:49134-44. [PMID: 12968017 DOI: 10.1074/jbc.m309003200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Interferon gamma (IFN-gamma) plays an important physiological role during inflammation by down-regulating collagen gene expression and activating major histocompatibility II (MHC-II) complex. The activation of MHC-II by IFN-gamma requires activation of a trimeric DNA binding transcriptional complex, RFX5 complex, containing RFXB (also called RFXANK or Tvl-1), RFXAP, as well as RFX5 protein. Previously, we demonstrated that RFX5 binds to the collagen transcription start site and represses collagen gene expression (Sengupta, P. K., Fargo, J., Smith, B. D. (2002) J. Biol. Chem. 277, 24926-24937). In this report, we have examined the role of RFXB and RFXAP proteins within the RFX5 complex to regulate collagen gene expression. The data show that all three RFX5 complex proteins are required for maximum repression. Expression of proteins with mutations known to be important for RFX5 complex formation does not repress collagen promoter activity. Two mutated forms of RFX5 act as dominant negative proteins activating collagen expression and reversing IFN-gamma down-regulation of collagen expression in human lung fibroblasts. IFN-gamma increases expression and nuclear translocation of RFX5. RFXB has a naturally occurring splice variant isoform (RFX SV). Interferon increases expression of the long form of RFXB and decreases expression of RFX SV with the same kinetics as collagen gene expression. Overexpression of the splice variant form reverses the IFN-gamma induced collagen repression in human lung fibroblasts. Finally, all three RFX5 complex proteins increase at the collagen transcription start site with IFN-gamma treatment using chromatin immunoprecipitation analysis. Thus, these studies suggest an important role for RFX5 complex in collagen repression.
Collapse
Affiliation(s)
- Yong Xu
- Department of Biochemistry, Boston University School of Medicine and the Veterans Affairs Boston Healthcare System, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|
9
|
Prod'homme T, Dekel B, Barbieri G, Lisowska-Grospierre B, Katz R, Charron D, Alcaide-Loridan C, Pollack S. Splicing defect in RFXANK results in a moderate combined immunodeficiency and long-duration clinical course. Immunogenetics 2003; 55:530-9. [PMID: 14574520 DOI: 10.1007/s00251-003-0609-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 08/25/2003] [Indexed: 10/26/2022]
Abstract
MHC class II deficiency provokes a severe immunodeficiency characterized by a lack of antigen-specific immune response. In the absence of bone marrow transplantation (the only curative treatment), patients affected by this genetic recessive disease die in early childhood. However, others and we have recently described cases of mild or asymptomatic immunodeficiencies with defects in either CIITA (class II transactivator) or RFX5, both proteins required for the transcription of HLA-D genes. We describe in this report the first case of moderate immunodeficiency resulting from a defect in RFXANK, another transcription factor essential for HLA-D expression. The patient did not display any detectable expression of MHC class II molecules on B lymphocytes, monocytes or activated T lymphocytes. Accordingly HLA-D transcription was altered in the corresponding B-lymphoblastoid cell line. The defect in RFXANK was observed both at the transcript and protein level. Indeed a homozygous IVS4+5G>A mutation was evidenced in RFXANK, and shown to hamper the splicing of intron 4. However, we had shown previously that a defect in intron 4 can lead to the skipping of exon 4, and that the resulting truncated protein retains the capacity to activate HLA-DR expression. Therefore, like the two cases of moderate immunodeficiencies described previously, we demonstrate that the RFXANK defect presented here is coherent with a residual activity of the mutant protein. We thus propose that the common feature displayed by mildly immunodeficient patients is the leakiness of the mutations, which might allow a local or temporal expression of MHC class II molecules.
Collapse
Affiliation(s)
- Thomas Prod'homme
- INSERM U396, Centre de Recherches Biomedicales des Cordeliers, 15 rue de l'Ecole de Medecine, 75006 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kanaseki T, Ikeda H, Takamura Y, Toyota M, Hirohashi Y, Tokino T, Himi T, Sato N. Histone deacetylation, but not hypermethylation, modifies class II transactivator and MHC class II gene expression in squamous cell carcinomas. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4980-5. [PMID: 12734341 DOI: 10.4049/jimmunol.170.10.4980] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we first categorized nine squamous cell carcinoma (SCC) cell lines into two groups in terms of the expression of HLA-DR, -DP, and -DQ molecules. Subsequently, the expression of class II transactivator (CIITA) was studied in these cell lines, because it is widely accepted that the expression of MHC class II molecules is regulated by different types of CIITA transcripts that are initiated by distinct promoters. The majority of the SCC cell lines (six of nine) expressed HLA-DR molecules and CIITA promoter IV (pIV) transcripts in the presence of IFN-gamma. In contrast, three of the nine SCC cell lines were completely negative for class II molecules and all types of CIITA, suggesting epigenetic changes in the promoter region in these cells. Previously, methylation of CIITA pIV was reported to silence CIITA gene expression. We extensively studied the methylation status of CIITA pIV using a panel of 22 SCC cell lines. Remarkably, none of the SCC cell lines demonstrated hypermethylation at the site. In contrast, treatment with a histone deacetylation inhibitor in combination with IFN-gamma clearly restored the expression of the CIITA type IV gene in the HLA-DR-negative SCC cell lines, and the acetylation status of histone H3 examined by chromatin immunoprecipitation analysis was closely associated with the gene expression. Moreover, stable transfection of the CIITA gene into an HLA-DR-negative cell line restored constitutive expression of MHC class II molecules. Therefore, histone deacetylation, but not hypermethylation, modifies CIITA DNA and class II gene expression in SCC.
Collapse
Affiliation(s)
- Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chang CH, Gourley TS, Sisk TJ. Function and regulation of class II transactivator in the immune system. Immunol Res 2002; 25:131-42. [PMID: 11999167 DOI: 10.1385/ir:25:2:131] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The class II transactivator (CIITA) is a potent and critical transcriptional regulator. It activates genes necessary for antigen presentation function. It also regulates cytokine gene expression in CD4 T cells. We recently found that CIITA prevents cell death by inhibiting Fas ligand (FasL) gene expression. Thus, CIITA regulates multiple immune responses. The activation and the repression function of CIITA are mediated by its interaction with other transcription factors. To activate the target gene, CIITA interacts with DNA binding proteins and recruits the coactivator CBP/p300 to the promoter forming an enhanceosome necessary for transcription. In addition, CIITA interacts with self. Inter- and intramolecular interactions of CIITA are essential for transactivation function. Each domain of CIITA has a distinct role and all domains are required for CIITA activity. However, the regulatory mechanisms of CIITA interaction with self and other proteins are poorly understood and remain to be investigated.
Collapse
Affiliation(s)
- Cheong-Hee Chang
- Department of Microbiology and Immunology, The University of Michigan Medical School, Ann Arbor 48109-0620, USA.
| | | | | |
Collapse
|
12
|
Stacey M, Chang GW, Sanos SL, Chittenden LR, Stubbs L, Gordon S, Lin HH. EMR4, a novel epidermal growth factor (EGF)-TM7 molecule up-regulated in activated mouse macrophages, binds to a putative cellular ligand on B lymphoma cell line A20. J Biol Chem 2002; 277:29283-93. [PMID: 12023293 DOI: 10.1074/jbc.m204306200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel member of the EGF-TM7 family, mEMR4, was identified and characterized. The full-length mouse EMR4 cDNA encodes a predicted 689-amino acid protein containing two epidermal growth factor (EGF)-like modules, a mucin-like spacer domain, and a seven-transmembrane domain with a cytoplasmic tail. Genetic mapping established that mEMR4 is localized in the distal region of mouse chromosome 17 in close proximity to another EGF-TM7 gene, F4/80 (Emr1). Similar to F4/80, mEMR4 is predominantly expressed on resident macrophages. However, a much lower expression level was also detected in thioglycollate-elicited peritoneal neutrophils and bone marrow-derived dendritic cells. The expression of mEMR4 is up-regulated following macrophage activation in Biogel and thioglycollate-elicited peritoneal macrophages. Similarly, mEMR4 is over-expressed in TNF-alpha-treated resident peritoneal macrophages, whereas interleukin-4 and -10 dramatically reduce the expression. mEMR4 was found to undergo proteolytic processing within the extracellular stalk region resulting in two protein subunits associated noncovalently as a heterodimer. The proteolytic cleavage site was identified by N-terminal amino acid sequencing and located at the conserved GPCR (G protein-coupled receptor) proteolytic site in the extracellular region. Using multivalent biotinylated mEMR4-mFc fusion proteins as a probe, a putative cell surface ligand was identified on a B lymphoma cell line, A20, in a cell-binding assay. The mEMR4-ligand interaction is Ca2+-independent and is mediated predominantly by the second EGF-like module. mEMR4 is the first EGF-TM7 receptor known to mediate the cellular interaction between myeloid cells and B cells.
Collapse
Affiliation(s)
- Martin Stacey
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
13
|
Arlotta P, Miyazaki D, Copeland NG, Gilbert DJ, Jenkins NA, Ono SJ. Murine NFX.1: isolation and characterization of its messenger RNA, mapping of its chromosomal location and assessment of its developmental expression. Immunology 2002; 106:173-81. [PMID: 12047746 PMCID: PMC1782705 DOI: 10.1046/j.1365-2567.2002.01416.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously isolated (by expression cloning) a human cDNA, termed NFX.1, encoding a nucleic acid-binding protein that interacts with the conserved X1 box cis-element first discovered in class II major histocompatibility complex (MHC) genes. Functional studies involving expression of NFX.1 and assessment of expression from class II reporter constructs and endogenous class II MHC genes indicated that the factor could repress transcription of class II MHC genes. Subsequent studies have extended the biological significance of the factor, indicating that it plays an important role in neuronal development. Indeed, the reiterated RING finger motifs in the central domain of the polypeptide strongly suggest that NF-XI is a probable E3 ubiquitin protein ligase, indicating that the protein may have multiple activities. Here we report the cloning of the mouse homologue of the human NfX.1 cDNA: m-Nfx.1. Comparison of the deduced primary sequence of mouse and human NFX.1 proteins shows very high homology and confirms that m-NFX.1 contains the conserved cysteine-rich DNA-binding motif first described in human NFX.1 (95% homology). Expression of MHC class II genes is substantially reduced following expression of m-NFX.1, which confirms that we have isolated the functional murine homologue of human NfX.1 cDNA. Further evidence comes from the mapping of m-Nfx.1 gene to the proximal region of mouse chromosome 4, a region syntenic to the location of human Nfx.1 (short arm of chromosome 9). Expression profiling shows that m-NFX.1 is expressed ubiquitously in both adult tissues and during development, supporting the hypothesis that it may have yet-undescribed roles in distinct biological processes.
Collapse
Affiliation(s)
- Paola Arlotta
- The Schepens Eye Research Institute, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
14
|
Villard J, Masternak K, Lisowska-Grospierre B, Fischer A, Reith W. MHC class II deficiency: a disease of gene regulation. Medicine (Baltimore) 2001; 80:405-18. [PMID: 11704716 DOI: 10.1097/00005792-200111000-00006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- J Villard
- Immunology and Transplant Unit, Division of Immunology and Allergology, Geneva University Hospital, Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
15
|
Wolf HM, Thon V, Gulle H, Lechleitner S, Eibl MM, Petzelbauer P. Residual expression of functional MHC class II molecules in twin brothers with MHC class II deficiency is cell type specific. Br J Haematol 2001; 115:460-71. [PMID: 11703350 DOI: 10.1046/j.1365-2141.2001.03105.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We examined major histocompatibility complex (MHC) class II expression in B cells, peripheral blood monocytes, activated T cells, epidermal Langerhans cells, monocyte-derived dendritic cells, dermal microvascular endothelial cells (DMEC) and fibroblasts of twin brothers with MHC class II deficiency. Although residual human leucocyte antigen (HLA)-DR expression was found on a subpopulation of epidermal Langerhans cells and a subset of peripheral blood monocyte-derived dendritic cells, the patients' B cells, monocytes and activated T cells were HLA-DR negative. After treatment with interferon-gamma (IFN-gamma), the patients' DMEC expressed HLA-DR but not -DP and -DQ at the protein and mRNA level, whereas IFN-gamma failed to induce HLA-DR expression on dermal fibroblasts. The patients' monocyte-derived dendritic cells were capable of processing and presenting tetanus toxoid to autologous T cells, and patient-derived DMEC induced the proliferation of allogeneic CD4(+) T cells in an MHC class II-restricted fashion, indicating that the observed residual MHC class II surface expression was functional. The findings reported show that the defect encountered in these patients is not necessarily expressed to the same extent in different cell lineages, which is relevant for the understanding of the patients' phenotype and also illustrates that only small amounts of MHC class II are needed to mount a functional cellular immune response in vivo.
Collapse
Affiliation(s)
- H M Wolf
- Immunology Outpatient Clinic, University Hospital, University of Vienna Medical School, Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
16
|
Rakoff-Nahoum S, Chen H, Kraus T, George I, Oei E, Tyorkin M, Salik E, Beuria P, Sperber K. Regulation of class II expression in monocytic cells after HIV-1 infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:2331-42. [PMID: 11490022 DOI: 10.4049/jimmunol.167.4.2331] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Human macrophage hybridoma cells were used to study HLA-DR expression after HIV-1 infection. HLA-DR surface expression was lost 2 wk after infection that was associated with decreased mRNA transcription. Transfecting HLA-DR-alpha and HLA-DR-beta cDNA driven by a nonphysiological CMV promoter restored expression, suggesting that regulatory DNA-binding proteins may be affected by HIV-1 infection. There was no protein binding to conserved class II DNA elements (W/Z/S box, X-1 and X-2 boxes, and Y box) in a HIV-1-infected human macrophage hybridoma cell line, 43(HIV), and in primary monocytes that lost HLA-DR expression after HIV-1(BaL) infection. PCR analysis of the HIV-1-infected cells that lost HLA-DR expression revealed mRNA for W/Z/S (RFX-5), X-1 (RFX-5), X-2 (hX-2BP), and one Y box DNA-binding protein (NF-YB), and CIITA, a non-DNA-binding protein necessary for class II transcription. There was no mRNA for the Y box-binding protein, NF-YA. However, HLA-DR expression could be restored by transfection with NF-YA driven by a CMV promoter, although HLA-DR failed to localize in either the late endosomes, lysosomes, or acidic compartments. This was associated with a loss of class II-associated invariant chain peptide and leupeptin-induced protein in the 43(HIV) cells. To address this further, non-HIV-1-infected 43 cells were infected with vaccinia virus containing HIV-1 gag, nef, pol, and env proteins. HLA-DR failed to localize in neither the late endosomes, lysosomes, or acidic compartments in the vaccinia-infected cells containing HIV-1 env protein. HIV-1 appears to have multiple effects on class II expression in monocytic cells that may contribute to the immune defects seen in HIV-1-infected patients.
Collapse
Affiliation(s)
- S Rakoff-Nahoum
- Division of Clinical Immunology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The bare lymphocyte syndrome (BLS) is a hereditary immunodeficiency resulting from the absence of major histocompatibility complex class II (MHCII) expression. Considering the central role of MHCII molecules in the development and activation of CD4(+) T cells, it is not surprising that the immune system of the patients is severely impaired. BLS is the prototype of a "disease of gene regulation." The affected genes encode RFXANK, RFX5, RFXAP, and CIITA, four regulatory factors that are highly specific and essential for MHCII genes. The first three are subunits of RFX, a trimeric complex that binds to all MHCII promoters. CIITA is a non-DNA-binding coactivator that functions as the master control factor for MHCII expression. The study of RFX and CIITA has made major contributions to our comprehension of the molecular mechanisms controlling MHCII genes and has made this system into a textbook model for the regulation of gene expression.
Collapse
Affiliation(s)
- W Reith
- Jeantet Laboratory of Molecular Genetics, Department of Genetics and Microbiology, University of Geneva Medical School, 1 rue Michel-Servet, Geneva 4, 1211 Switzerland.
| | | |
Collapse
|
18
|
Wiszniewski W, Fondaneche MC, Le Deist F, Kanariou M, Selz F, Brousse N, Steimle V, Barbieri G, Alcaide-Loridan C, Charron D, Fischer A, Lisowska-Grospierre B. Mutation in the class II trans-activator leading to a mild immunodeficiency. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:1787-94. [PMID: 11466404 DOI: 10.4049/jimmunol.167.3.1787] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The expression of MHC class II molecules is essential for all Ag-dependent immune functions and is regulated at the transcriptional level. Four trans-acting proteins control the coordinate expression of MHC class II molecules: class II trans-activator (CIITA), regulatory factor binding to the X box (RFX)-associated protein; RFX protein containing ankyrin repeats, and RFX5. In humans, defects in these genes result in MHC class II expression deficiency and cause combined immunodeficiency. Most patients with this deficiency suffer from severe recurrent infections that frequently lead to death during early childhood. We investigated three sisters, now ages 21, 22, and 24 years, in whom MHC-II deficiency was detected. Even though the eldest sibling was asymptomatic and the other two had only mild immunodeficiency, none of the three class II isotypes was expressed on T cell blasts, fibroblasts, EBV B cell lines, or epidermal dendritic cells. Residual HLA-II expression was detected in fresh PBMC. Somatic complementation identified the disease as CIITA deficiency. A homozygous T1524C (L469P) substitution was found in the coding region of the CIITA cDNA and was shown to be responsible for the defect in MHC-II expression. This missense mutation prevents the normal functioning of MHC-II but does not lead to the nuclear exclusion of the L469P CIITA. Transfection experiments demonstrated that the CIITA L469P mutant had residual MHC class II trans activation activity, which might explain the unusual clinical course of the patients studied. This study shows that an attenuated clinical phenotype or an asymptomatic clinical course can be observed in patients despite a profound defect in the expression of MHC class II genes. The frequency of the inherited MHC class II deficiency might thus be underestimated.
Collapse
Affiliation(s)
- W Wiszniewski
- Unité 429 and Department d'Anatomie Pathologique, Hôpital Necker, 149 rue de Sèvres, 75743 Paris Cedex 15, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Feske S, Draeger R, Peter HH, Rao A. Impaired NFAT regulation and its role in a severe combined immunodeficiency. Immunobiology 2000; 202:134-50. [PMID: 10993288 DOI: 10.1016/s0171-2985(00)80060-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Severe Combined Immunodeficiency (SCID) is a primary immunodeficiency affecting T cells, B cells, or both. Whereas the clinical symptoms are uniformly dominated by recurrent infections, the molecular causes for SCID are very heterogeneous. Mutations in cell surface receptors, signal transduction molecules and transcription factors have been described, including the common gamma chain of the IL-2 (and IL-4, IL-7, IL-9 and IL-15) receptors, the kinase JAK-3, the epsilon and gamma chains of CD3, the protein tyrosine kinase ZAP-70, as well as CIITA and RFX5 involved in MHC class II gene expression. In this work we describe two infants with SCID whose T cells display a severe defect in T cell activation and cytokine transcription due to impaired activation of the transcription factor NFAT. We show that this defect in activation is not due to mutations in the NFAT proteins expressed in T cells or the phosphatase calcineurin which regulates the activation of NFAT. However, nuclear import of NFAT in response to T cell activation was severely compromised in the patients' T cells. A modest degree of nuclear translocation of NFAT was achieved in the patients' T cells when nuclear export was inhibited using lithium chloride. This low level of nuclear NFAT in the nucleus was not sufficient to compensate for the defect in cytokine production in the patients' T cells. However, elevated levels of extracellular calcium led to an increase in cytokine gene transcription by the SCID T cells, suggesting that the underlying genetic defect in the patients involved calcium influx or the initiation of calcium signalling.
Collapse
Affiliation(s)
- S Feske
- The Center for Blood Research, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
20
|
Villard J, Reith W, Barras E, Gos A, Morris MA, Antonarakis SE, Van den Elsen PJ, Mach B. Analysis of mutations and chromosomal localisation of the gene encoding RFX5, a novel transcription factor affected in major histocompatibility complex class II deficiency. Hum Mutat 2000; 10:430-5. [PMID: 9401005 DOI: 10.1002/(sici)1098-1004(1997)10:6<430::aid-humu3>3.0.co;2-h] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
MHC class II deficiency is a severe primary immunodeficiency characterised by the absence of major histocompatibility complex class II (MHC-II) gene expression. It is genetically heterogeneous and can result from defects in at least four different trans-acting regulatory genes required for transcription of MHC-II genes. One of these genes has recently been shown to encode a novel DNA binding protein called RFX5, which is one subunit of a heteromeric protein complex (RFX) that binds to the promoters of MHC-II genes. We have characterised the mutations in all four patients known to harbour a defect in the RFX5 gene and have mapped this new human disease gene to chromosome 1 band q21, a region frequently exhibiting chromosomal aberrations in a variety of preneoplastic and neoplastic diseases.
Collapse
Affiliation(s)
- J Villard
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Masternak K, Muhlethaler-Mottet A, Villard J, Zufferey M, Steimle V, Reith W. CIITA is a transcriptional coactivator that is recruited to MHC class II promoters by multiple synergistic interactions with an enhanceosome complex. Genes Dev 2000; 14:1156-66. [PMID: 10809673 PMCID: PMC316580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
By virtue of its control over major histocompatibility complex class II (MHC-II) gene expression, CIITA represents a key molecule in the regulation of adaptive immune responses. It was first identified as a factor that is defective in MHC-II deficiency, a hereditary disease characterized by the absence of MHC-II expression. CIITA is a highly regulated transactivator that governs all spatial, temporal, and quantitative aspects of MHC-II expression. It has been proposed to act as a non-DNA-binding transcriptional coactivator, but evidence that it actually functions at the level of MHC-II promoters was lacking. By means of chromatin immunoprecipitation assays, we show here for the first time that CIITA is physically associated with MHC-II, as well as HLA-DM, Ii, MHC-I, and beta(2)m promoters in vivo. To dissect the mechanism by which CIITA is recruited to the promoter, we have developed a DNA-dependent coimmunoprecipitation assay and a pull-down assay using immobilized promoter templates. We demonstrate that CIITA recruitment depends on multiple, synergistic protein-protein interactions with DNA-bound factors constituting the MHC-II enhanceosome. CIITA therefore represents a paradigm for a novel type of regulatory and gene-specific transcriptional cofactor.
Collapse
Affiliation(s)
- K Masternak
- Department of Genetics and Microbiology, University of Geneva Medical School, 1211 Geneva, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Reith W, Muhlethaler-Mottet A, Masternak K, Villard J, Mach B. The molecular basis of MHC class II deficiency and transcriptional control of MHC class II gene expression. Microbes Infect 1999; 1:839-46. [PMID: 10614000 DOI: 10.1016/s1286-4579(99)00235-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- W Reith
- Department of Genetics and Microbiology, University of Geneva Medical School, 1, rue Michel-Servet, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
23
|
Villard J, Muhlethaler-Mottet A, Bontron S, Mach B, Reith W. CIITA-induced occupation of MHC class II promoters is independent of the cooperative stabilization of the promoter-bound multi-protein complexes. Int Immunol 1999; 11:461-9. [PMID: 10221658 DOI: 10.1093/intimm/11.3.461] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Precise regulation of MHC class II expression plays a crucial role in the control of the immune response. The transactivator CIITA behaves as a master controller of constitutive and inducible MHC class II gene activation, but its exact mechanism of action is not known. Activation of MHC class II promoters requires binding of at least three distinct multi-protein complexes (RFX, X2BP and NF-Y). It is known that the stability of this binding results from cooperative interactions between these proteins. We show here that expression of CIITA in MHC class II- cells triggers occupation of the promoters by these complexes. This observation raised the possibility that the effect of CIITA on promoter occupation is mediated by an effect on the cooperative stabilization of the DNA-bound multi-protein complexes. We show, however, that the presence of CIITA does not affect the stability of the higher-order protein complex formed on DNA by RFX, X2BP and NF-Y. This suggests other mechanisms for CIITA-induced promoter occupancy, such as an effect on chromatin structure leading to increased accessibility of MHC class II promoters. This ability of CIITA to facilitate promoter occupation is undissociable from its transactivation potential. Finally, we conclude that this effect of CIITA is cell-type specific, since expression of CIITA is not required for normal occupation of MHC class II promoters in B lymphocytes.
Collapse
Affiliation(s)
- J Villard
- Department of Genetics and Microbiology, University of Geneva Medical School, CMU, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Baráth P, Albert-Fournier B, Luciaková K, Nelson BD. Characterization of a silencer element and purification of a silencer protein that negatively regulates the human adenine nucleotide translocator 2 promoter. J Biol Chem 1999; 274:3378-84. [PMID: 9920880 DOI: 10.1074/jbc.274.6.3378] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of adenine nucleotide translocator isoform 2 (ANT2) is growth regulated. In the present study, we report the presence of a silencer region in the human ANT2 promoter and the purification of a two-component factor that recognizes a specific hexanucleotide element, GTCCTG, of the silencer. Transfection of deletion constructs shows that ANT2 silencer activity extends over a region of at least 310 nts. However, mutating the GTCCTG element completely relieves silencing activity in the context of the human ANT2 promoter. The data suggest that the GTCCTG element might be required for maintaining silencer activity of the extended silencer region. The ANT2 silencer region cloned in front of the herpes simplex virus thymidine kinase promoter confers nearly complete inhibition to the heterologous promoter. However, unlike the ANT2 promoter, mutating the GTCCTG element restores only partial activity to the herpes simplex virus thymidine kinase promoter. A protein complex consisting of two major polypeptides of 37 and 49 kDa was isolated from HeLa nuclear extracts by affinity chromatography using the GTCCTG element as the affinity resin. Cross-linking studies and Southwestern analysis indicate that p37 binds DNA. p49 appears to be loosely associated with the p37/DNA complex but is necessary for strong binding of p37. Our data implicating the GTCCTG element directly in silencing of the ANT2 promoter, together with data from the literature reporting the presence of this element within the silencer region of several additional promoters, suggest a general role of the GTCCTG element in transcriptional silencing.
Collapse
Affiliation(s)
- P Baráth
- Department of Biochemistry, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
25
|
Masternak K, Barras E, Zufferey M, Conrad B, Corthals G, Aebersold R, Sanchez JC, Hochstrasser DF, Mach B, Reith W. A gene encoding a novel RFX-associated transactivator is mutated in the majority of MHC class II deficiency patients. Nat Genet 1998; 20:273-7. [PMID: 9806546 DOI: 10.1038/3081] [Citation(s) in RCA: 208] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major histocompatibility class II (MHC-II) molecules are transmembrane proteins that have a central role in development and control of the immune system. They are encoded by a multigene family and their expression is tightly regulated. MHC-II deficiency (OMIM 209920) is an autosomal recessive immunodeficiency syndrome resulting from defects in trans-acting factors essential for transcription of MHC-II genes. There are four genetic complementation groups (A, B, C and D), reflecting the existence of four MHC-II regulators. The factors defective in groups A (CIITA), C (RFX5) and D (RFXAP) have been identified. CIITA is a non-DNA-binding co-activator that controls the cell-type specificity and inducibility of MHC-II expression. RFX5 and RFXAP are two subunits of RFX, a multi-protein complex that binds the X box motif of MHC-II promoters. Mutations in the genes encoding RFX5 (RFX5) or RFXAP (RFXAP) abolish binding of RFX (refs 7,8,12). Similar to groups C and D, group B is characterized by a defect in RFX binding, and although it accounts for the majority of patients, the factor defective in group B has remained unknown. We report here the isolation of RFX by a novel single-step DNA-affinity purification approach and the identification of RFXANK, the gene encoding a third subunit of RFX. RFXANK restores MHC-II expression in cell lines from patients in group B and is mutated in these patients. RFXANK contains a protein-protein interaction region consisting of three ankyrin repeats. Its interaction with RFX5 and RFXAP is essential for binding of the RFX complex to MHC-II promoters.
Collapse
Affiliation(s)
- K Masternak
- Louis Jeantet Laboratory of Molecular Genetics, Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Eibl MM, Wolf HM. Biologic consequences of defective major histocompatibility complex class II presentation. Curr Top Microbiol Immunol 1998; 232:217-40. [PMID: 9557400 DOI: 10.1007/978-3-642-72045-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- M M Eibl
- Institute of Immunology, University of Vienna, Austria
| | | |
Collapse
|
27
|
Drover S, Kovats S, Masewicz S, Blum JS, Nepom GT. Modulation of peptide-dependent allospecific epitopes on HLA-DR4 molecules by HLA-DM. Hum Immunol 1998; 59:77-86. [PMID: 9536430 DOI: 10.1016/s0198-8859(97)00263-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peptide binding to HLA-DR molecules in intracellular compartments is facilitated by HLA-DM molecules, present in most types of antigen-presenting cells. Allorecognition of DR specificities represents a form of T cell recognition of the MHC-peptide complex which in some cases is influenced by peptide binding. DRA and DRB*0401 (Dw4) genes were introduced into different cell types including DM-negative and DM-restored mutant cells to analyze recognition of DR4 subtypes by alloreactive T cell clones and Dw4-specific monoclonal antibodies. Distinct patterns of T cell recognition were identified: (i) deficient response to Dw4 molecules in the absence of DM expression in which T cell responses were restored by transfecting DM into the Dw4-expressing cells; and (ii) equivalent recognition of Dw4 on DM- and DM+ cells. Using several mAb to Dw4 molecules, a similar distinction was observed: a shared epitope on Dw4 and Dw14 molecules was partially DM-independent while a Dw4-specific epitope was DM-dependent and cell type-specific. Thus, a subset of both T cell and mAb allodeterminants are influenced by a DM-dependent interaction of MHC molecules with peptides, while the formation of DM-independent allodeterminants may represent direct MHC epitope recognition by the T cell receptor or an alternative peptide loading mechanism distinct from the HLA-DM pathways.
Collapse
Affiliation(s)
- S Drover
- Immunology and Diabetes Programs, Virginia Mason Research Center, Seattle, WA 98101, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
MHC class II deficiency is a severe primary immunodeficiency characterized by the absence of Major Histocompatibility Complex class II gene expression. It is genetically heterogenous and can result from defects in several different transacting regulatory factors required for transcription of MHC class II genes. Cell lines from MHC class II deficiency patients have been assigned to three complementation groups (A, B, C). An in vitro generated cell line (6.1.6) was reported to be the sole representative of a fourth group (group D). The molecular defect in 6.1.6 resides in the recently cloned RFXAP gene. Direct complementation experiments and mutation analysis were performed with cell lines from several MHC class II deficiency patients in which the affected gene had not been identified. These experiments have allowed us to define a previously unrecognized MHC class II deficiency complementation group containing patients having mutations in the RFXAP gene.
Collapse
Affiliation(s)
- J Villard
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | |
Collapse
|
29
|
Villard J, Lisowska-Grospierre B, van den Elsen P, Fischer A, Reith W, Mach B. Mutation of RFXAP, a regulator of MHC class II genes, in primary MHC class II deficiency. N Engl J Med 1997; 337:748-53. [PMID: 9287230 DOI: 10.1056/nejm199709113371104] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Major-histocompatibility-complex (MHC) class II deficiency is an autosomal recessive primary immunodeficiency disease in which MHC class II molecules are absent. It is a genetically heterogeneous disease of gene regulation resulting from defects in several transactivating genes that regulate the expression of MHC class II genes. The mutations responsible for MHC class II deficiency are classified according to complementation group (a group in which the phenotype remains uncorrected in pairwise fusions of cells). There are three known complementation groups (A, B, and C). METHODS To elucidate the genetic defect in patients with MHC class II deficiency that was not classified genetically, we performed direct complementation assays with the three genes known to regulate the expression of MHC class II genes, CIITA, RFX5, and RFXAP, and the relevant mutations were identified in each patient. RESULTS Mutations in the RFXAP gene were found in three patients from unrelated families, and the resulting defect was classified as belonging to a novel complementation group (D). Transfection with the wild-type RFXAP gene restored the expression of MHC class II molecules in the patients' cells. CONCLUSIONS Mutations in a novel MHC class II transactivating factor, RFXAP, can cause MHC class II deficiency. These mutations abolish the expression of MHC class II genes and lead to the same clinical picture of immunodeficiency as in patients with mutations in the other two MHC class II regulatory genes.
Collapse
Affiliation(s)
- J Villard
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | | | | | |
Collapse
|
30
|
Fontes JD, Jabrane-Ferrat N, Peterlin BM. Assembly of functional regulatory complexes on MHC class II promoters in vivo. J Mol Biol 1997; 270:336-45. [PMID: 9237901 DOI: 10.1006/jmbi.1997.1121] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Regulatory factors that bind to the X box 1 to 5 (RFX1 to RFX5) and p36 interact with the X box in major histocompatibility class II promoters. RFX1 and RFX5 bind to DNA as a homodimer (RFX1) and heterodimer with p36 (RFX5:p36, the RFX complex), respectively. In this study, we characterized the binding of RFX1 and the RFX complex to the X box in vivo, and evaluated contributions of other proteins that bind to flanking conserved upstream sequences (CUS: S, X, X2, and Y boxes) to these protein-DNA interactions. For this purpose, an intracellular DNA-binding assay was developed. Hybrid protein effectors between RFX1 and RFX5 and the activation domain of VP16 from the herpes simplex virus were co-expressed with plasmid targets, which contained the isolated X box, X box and selected flanking CUS, or the entire DRA promoter. Whereas RFX1 bound better to isolated X boxes, the Y box selected for the binding of the RFX complex and against the binding of RFX1 to the X box. With proper spacing, S and X boxes stabilized the binding of both RFX1 and the RFX complex. The X2 box did not contribute significantly to the binding of either RFX1 or the RFX complex to the X box. Thus, complex protein-protein and protein-DNA interactions dictate the binding of functionally relevant proteins to conserved upstream sequences which regulate class II transcription.
Collapse
Affiliation(s)
- J D Fontes
- Howard Hughes Medical Institute, Department of Medicine, University of California at San Francisco, 94143-0724, USA
| | | | | |
Collapse
|
31
|
Abstract
Genetic and biochemical analyses have identified multiple DNA-binding and non-DNA-binding proteins that functionally regulate MHC class II genes. These include RFX, X2BP, NF-Y, CIITA, OCT-2 and Bob1. One of the essential non-DNA-binding proteins, CIITA, appears to function as a limiting molecular switch that is responsible for the control of class II expression and the regulation of expression by interferon-gamma.
Collapse
Affiliation(s)
- J M Boss
- Department of Microbiology and Immunology, Emory University School of Medicine, 3131 Rollins Research Center, Atlanta, GA 30322, USA.
| |
Collapse
|
32
|
Chen S, Zack DJ. Ret 4, a positive acting rhodopsin regulatory element identified using a bovine retina in vitro transcription system. J Biol Chem 1996; 271:28549-57. [PMID: 8910484 DOI: 10.1074/jbc.271.45.28549] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Previous transgenic mouse studies demonstrated that the bovine rhodopsin sequence between -222 and +70 base pairs (bp) contains a minimal promoter, which is sufficient to direct photoreceptor cell-specific expression of a lacZ reporter gene. To more fully define the DNA regulatory elements and protein factors involved in regulating rhodopsin transcription, we have developed an in vitro transcription system derived from bovine retinal nuclear extracts. Retinal extracts, as compared to liver, HeLa, and Drosophila embryonic cell extracts, demonstrated preferential activity for the rhodopsin promoter. A template spanning the bovine rhodopsin upstream region from -590 to +15 bp showed significant activation relative to the basal activity seen with a TATA box containing -38 to +15 bp template. Deletion analysis indicated that the region between -85 and -38 bp contained significant positive regulatory activity. This activity was not observed with HeLa extracts, suggesting that it might be retina-specific. Systematic site-directed mutagenesis of the subregion from -64 to -38 bp indicated that sequences between -60 and -58 bp and between -48 and -40 bp harbor critical elements. The former sequence is part of the binding site for the retina-specific transcription factor Nrl, which has been implicated in rhodopsin regulation. Electrophoretic mobility shift assays showed that the latter sequence (-48 to -40 bp), and flanking DNA, designated Ret 4, is bound by both retina-specific and ubiquitously expressed protein factors. Shift assays with mutant oligomers further defined the putative recognition sequences for these protein factors. Together, our results suggest that multiple promoter elements and transcriptional factors are involved in regulating photoreceptor-specific rhodopsin transcription.
Collapse
Affiliation(s)
- S Chen
- Department of Ophthalmology, Wilmer Eye Institute, Baltimore, Maryland 21287-9289, USA.
| | | |
Collapse
|
33
|
Lennon A, Ottone C, Peijnenburg A, Hamon-Benais C, Colland F, Gobin S, van den Elsen P, Fellous M, Bono R, Alcaïde-Loridan C. The RAG cell line defines a new complementation group of MHC class II deficiency. Immunogenetics 1996; 43:352-9. [PMID: 8606055 DOI: 10.1007/bf02199803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We previously described RAG, a mouse adenocarcinoma cell line, as deficient for the induction of major histocompatibility (MHC) class II antigens by IFN-gamma, but responding normally for MHC class I antigen stimulation and anti-viral protection. We had established that the fusion of RAG with various human cell lines restored the induction of MHC class II antigens, whenever the human chromosome 16 was present in somatic cell hybrids. Here we show that the RAG cell line does not exhibit any induction by IFN-gamma of DMA, DMB, and the invariant chain (Ii) mRNAs, and that the induction is restored in somatic cell hybrids containing human chromosome 16. In order to define the gene (designated F16) affected in the RAG cells, we performed a complementation analysis by fusing RAG with previously described human cell lines defective for MHC class II antigen expression (e.g., BLS cell lines), and which belong to five different complementation groups. Our data show that the resulting somatic cell hybrids present an inducible expression of mouse MHC class II antigens, Ii, DMA, and DMB. Therefore, the RAG cell line represents a yet undescribed cellular mutant affected in the expression of MHC class II antigens. In addition, we demonstrate that MHC class II antigens can be constitutively expressed in the RAG cell line when transfected with the cDNA encoding human CIITA driven by the RSV LTR promoter. Since the complementation analysis assessed that F16 and CIITA are distinct, our data suggest that F16 is required for the expression of CIITA.
Collapse
Affiliation(s)
- A Lennon
- Unité d'Immunogénétique Humaine, INSERM, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mach B, Steimle V, Martinez-Soria E, Reith W. Regulation of MHC class II genes: lessons from a disease. Annu Rev Immunol 1996; 14:301-31. [PMID: 8717517 DOI: 10.1146/annurev.immunol.14.1.301] [Citation(s) in RCA: 372] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Precise regulation of major histocompatibility complex class II (MHC-II) gene expression plays a crucial role in the control of the immune response. A major breakthrough in the elucidation of the molecular mechanisms involved in MHC-II regulation has recently come from the study of patients that suffer from a primary immunodeficiency resulting from regulatory defects in MHC-II expression. A genetic complementation cloning approach has led to the isolation of CIITA and RFX5, two essential MHC-II gene transactivators. CIITA and RFX5 are mutated in these patients, and the wild-type genes are capable of correcting their defect in MHC-II expression. The identification of these regulatory factors has furthered our understanding of the molecular mechanisms that regulate MHC-II genes. CIITA was found to be a non-DNA binding transactivator that functions as a molecular switch controlling both constitutive and inducible MHC-II expression. The finding that RFX5 is a subunit of the nuclear RFX-complex has confirmed that a deficiency in the binding of this complex is indeed the molecular basis for MHC-II deficiency in the majority of patients. Furthermore, the study of RFX has demonstrated that MHC-II promoter activity is dependent on the binding of higher-order complexes that are formed by highly specific cooperative binding interactions between certain MHC-II promoter-binding proteins. Two of these proteins belong to families of which the other members, although capable of binding to the same DNA motifs, are probably not directly involved in the control of MHC-II expression. Finally, the facts that CIITA and RFX5 are both essential and highly specific for MHC-II genes make possible novel strategies designed to achieve immunomodulation via transcriptional intervention.
Collapse
Affiliation(s)
- B Mach
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | |
Collapse
|
35
|
Emery P, Durand B, Mach B, Reith W. RFX proteins, a novel family of DNA binding proteins conserved in the eukaryotic kingdom. Nucleic Acids Res 1996; 24:803-7. [PMID: 8600444 PMCID: PMC145730 DOI: 10.1093/nar/24.5.803] [Citation(s) in RCA: 162] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Until recently, the RFX family of DNA binding proteins consisted exclusively of four mammalian members (RFX1-RFX4) characterized by a novel highly conserved DNA binding domain. Strong conservation of this DNA binding domain precluded a precise definition of the motif required for DNA binding. In addition, the biological systems in which these RFX proteins are implicated remained obscure. The recent identification of four new RFX genes has now shed light on the evolutionary conservation of the RFX family, contributed greatly to a detailed characterization of the RFX DNA binding motif, and provided clear evidence for the function of some of the RFX proteins. RFX proteins have been conserved throughout evolution in a wide variety of species, including Saccharomyces cerevisiae, Schizosaccharomyces pombe, Caenorhabditis elegans, mouse and man. The characteristic RFX DNA binding motif has been recruited into otherwise very divergent regulatory factors functioning in a diverse spectrum of unrelated systems, including regulation of the mitotic cell cycle in fission yeast, the control of the immune response in mammals, and infection by human hepatitis B virus.
Collapse
Affiliation(s)
- P Emery
- Department of Genetics and Microbiology, University of Geneva Medical School, Centre Medical Universtaire, Switzerland
| | | | | | | |
Collapse
|
36
|
Steimle V, Reith W, Mach B. Major histocompatibility complex class II deficiency: a disease of gene regulation. Adv Immunol 1996; 61:327-40. [PMID: 8834499 DOI: 10.1016/s0065-2776(08)60870-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- V Steimle
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | |
Collapse
|
37
|
Reith W, Steimle V, Mach B. Molecular defects in the bare lymphocyte syndrome and regulation of MHC class II genes. IMMUNOLOGY TODAY 1995; 16:539-46. [PMID: 7495492 DOI: 10.1016/0167-5699(95)80048-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The complex pattern of expression of major histocompatibility complex (MHC) class II molecules plays an essential role in the control of the immune response. Our understanding of the molecular mechanisms controlling this expression has benefited greatly from the identification of the regulatory factors defective in two forms of a hereditary disease of MHC class II regulation: bare lymphocyte syndrome. This has also provided new tools for the experimental modulation of MHC class II expression.
Collapse
Affiliation(s)
- W Reith
- Louis Jeantet Laboratory of Molecular Genetics, Dept of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | |
Collapse
|
38
|
Steimle V, Mach B. Complementation cloning of mammalian transcriptional regulators: the example of MHC class II gene regulators. Curr Opin Genet Dev 1995; 5:646-51. [PMID: 8664553 DOI: 10.1016/0959-437x(95)80034-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cloning by complementation of mutant cell lines is a powerful way in which to identify and isolate important regulatory genes on the basis of functional assays. The recent cloning of two essential regulators of major histocompatibility complex (MHC) class II gene expression has not only advanced our understanding of the complex mechanisms controlling these genes, but also helps to illustrate the feasibility of this approach for the study of mammalian gene regulation.
Collapse
Affiliation(s)
- V Steimle
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | |
Collapse
|
39
|
Affiliation(s)
- W Reith
- Department of Genetics and Microbiology, University of Geneva Medical School, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Riley JL, Westerheide SD, Price JA, Brown JA, Boss JM. Activation of class II MHC genes requires both the X box region and the class II transactivator (CIITA). Immunity 1995; 2:533-43. [PMID: 7749984 DOI: 10.1016/1074-7613(95)90033-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
CIITA, a gene that can complement a transcriptional mutation of the major histocompatibility complex (MHC) class II genes, was tested for its ability to function as a coactivator, CIITA cDNA clones isolated showed alternative RNA splicing, but only one splice site combination was able to restore class II MHC gene expression. DNA-mediated transfection experiments showed that CIITA directs its activity through the X box element; the presence of CIITA leads to the formation of a higher order complex at the X box region; and CIITA contains a potent activation domain. These findings support the hypothesis that CIITA directly interacts with the MHC class II-specific transcription factors and is required for expression.
Collapse
Affiliation(s)
- J L Riley
- Department of Microbiology and Immunology Emory University School of Medicine Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|