1
|
Li R, Yang F, Chu B, Kong D, Hu J, Qian H. Exploring retinal degenerative diseases through CRISPR-based screening. Mol Biol Rep 2024; 51:1029. [PMID: 39349793 DOI: 10.1007/s11033-024-09969-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/23/2024] [Indexed: 02/06/2025]
Abstract
The CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas9 (CRISPR-associated protein9) system has emerged as a powerful genetic tool, gaining global recognition as a versatile and efficient gene-editing technique. Its transformation into a high-throughput research platform, CRISPR Screening, has demonstrated wide applicability across various fields such as cancer biology, virology, and drug target discovery, resulting in significant advances. However, its potential in studying retinal degenerative diseases remains largely unexplored, despite the urgent need for effective treatments arising from an incomplete understanding of disease mechanisms. This review aims to present a comprehensive overview of the evolution and current state of CRISPR tools and CRISPR screening methodologies. Noteworthy pioneering studies utilizing these technologies are discussed, alongside experimental design guidelines, including positive and negative selection strategies and delivery methods for sgRNAs (single guide RNAs) and Cas proteins. Furthermore, we explore existing in vitro models appropriate for CRISPR screening in retinal research and identify relevant research questions that could be addressed through this approach. It is anticipated that this review will stimulate innovation in retinal research, facilitating a deeper comprehension of retinal pathophysiology and paving the way for groundbreaking therapeutic interventions and enhanced patient outcomes in the management of retinal degenerative disorders.
Collapse
Affiliation(s)
- Rui Li
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Fengming Yang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Boling Chu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dehua Kong
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Hu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| | - Hao Qian
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Research Unit for Blindness Prevention, Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Wang Y, Peng Y, Zi G, Chen J, Peng B. Co-delivery of Cas9 mRNA and guide RNAs for editing of LGMN gene represses breast cancer cell metastasis. Sci Rep 2024; 14:8095. [PMID: 38582932 PMCID: PMC10998893 DOI: 10.1038/s41598-024-58765-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/03/2024] [Indexed: 04/08/2024] Open
Abstract
Legumain (or asparagine endopeptidase/AEP) is a lysosomal cysteine endopeptidase associated with increased invasive and migratory behavior in a variety of cancers. In this study, co-delivery of Cas9 mRNA and guide RNA (gRNA) by lipid nanoparticles (LNP) for editing of LGMN gene was performed. For in-vitro transcription (IVT) of gRNA, two templates were designed: linearized pUC57-T7-gRNA and T7-gRNA oligos, and the effectiveness of gRNA was verified in multiple ways. Cas9 plasmid was modified and optimized for IVT of Cas9 mRNA. The effects of LGMN gene editing on lysosomal/autophagic function and cancer cell metastasis were investigated. Co-delivery of Cas9 mRNA and gRNA resulted in impaired lysosomal/autophagic degradation, clone formation, migration, and invasion capacity of cancer cells in-vitro. Experimental lung metastasis experiment indicates co-delivery of Cas9 mRNA and gRNA by LNP reduced the migration and invasion capacity of cancer cells in-vivo. These results indicate that co-delivery of Cas9 mRNA and gRNA can enhance the efficiency of CRISPR/Cas9-mediated gene editing in-vitro and in-vivo, and suggest that Cas9 mRNA and gRNA gene editing of LGMN may be a potential treatment for breast tumor metastasis.
Collapse
Affiliation(s)
- Yue Wang
- College of Pharmacy, Dali University, 2 HongShen Road, Dali, 671003, Yunnan, China
| | - Yatu Peng
- JinCai High School, 2788 Yang Gao Middle Road, Pudong New District, Shanghai, 200135, China
| | - Guanghui Zi
- College of Pharmacy, Dali University, 2 HongShen Road, Dali, 671003, Yunnan, China
| | - Jin Chen
- College of Pharmacy, Dali University, 2 HongShen Road, Dali, 671003, Yunnan, China
| | - Baowei Peng
- College of Pharmacy, Dali University, 2 HongShen Road, Dali, 671003, Yunnan, China.
| |
Collapse
|
3
|
Nemudryi A, Nemudraia A, Nichols JE, Scherffius AM, Zahl T, Wiedenheft B. CRISPR-based engineering of RNA viruses. SCIENCE ADVANCES 2023; 9:eadj8277. [PMID: 37703376 PMCID: PMC10499312 DOI: 10.1126/sciadv.adj8277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/08/2023] [Indexed: 09/15/2023]
Abstract
CRISPR RNA-guided endonucleases have enabled precise editing of DNA. However, options for editing RNA remain limited. Here, we combine sequence-specific RNA cleavage by CRISPR ribonucleases with programmable RNA repair to make precise deletions and insertions in RNA. This work establishes a recombinant RNA technology with immediate applications for the facile engineering of RNA viruses.
Collapse
Affiliation(s)
| | | | | | - Andrew M. Scherffius
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | - Trevor Zahl
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| | | |
Collapse
|
4
|
Ebrahimi S, Khosravi MA, Raz A, Karimipoor M, Parvizi P. CRISPR-Cas Technology as a Revolutionary Genome Editing tool: Mechanisms and Biomedical Applications. IRANIAN BIOMEDICAL JOURNAL 2023; 27:219-46. [PMID: 37873636 PMCID: PMC10707817 DOI: 10.61186/ibj.27.5.219] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/14/2023] [Indexed: 12/17/2023]
Abstract
Programmable nucleases are powerful genomic tools for precise genome editing. These tools precisely recognize, remove, or change DNA at a defined site, thereby, stimulating cellular DNA repair pathways that can cause mutations or accurate replacement or deletion/insertion of a sequence. CRISPR-Cas9 system is the most potent and useful genome editing technique adapted from the defense immune system of certain bacteria and archaea against viruses and phages. In the past decade, this technology made notable progress, and at present, it has largely been used in genome manipulation to make precise gene editing in plants, animals, and human cells. In this review, we aim to explain the basic principle, mechanisms of action, and applications of this system in different areas of medicine, with emphasizing on the detection and treatment of parasitic diseases.
Collapse
Affiliation(s)
- Sahar Ebrahimi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Ali Khosravi
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Karimipoor
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
5
|
Tong C, Liang Y, Zhang Z, Wang S, Zheng X, Liu Q, Song B. Review of knockout technology approaches in bacterial drug resistance research. PeerJ 2023; 11:e15790. [PMID: 37605748 PMCID: PMC10440060 DOI: 10.7717/peerj.15790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 08/23/2023] Open
Abstract
Gene knockout is a widely used method in biology for investigating gene function. Several technologies are available for gene knockout, including zinc-finger nuclease technology (ZFN), suicide plasmid vector systems, transcription activator-like effector protein nuclease technology (TALEN), Red homologous recombination technology, CRISPR/Cas, and others. Of these, Red homologous recombination technology, CRISPR/Cas9 technology, and suicide plasmid vector systems have been the most extensively used for knocking out bacterial drug resistance genes. These three technologies have been shown to yield significant results in researching bacterial gene functions in numerous studies. This study provides an overview of current gene knockout methods that are effective for genetic drug resistance testing in bacteria. The study aims to serve as a reference for selecting appropriate techniques.
Collapse
Affiliation(s)
- Chunyu Tong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yimin Liang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Zhelin Zhang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Sen Wang
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Xiaohui Zheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Qi Liu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Bocui Song
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| |
Collapse
|
6
|
Mazloum A, Karagyaur M, Chernyshev R, van Schalkwyk A, Jun M, Qiang F, Sprygin A. Post-genomic era in agriculture and veterinary science: successful and proposed application of genetic targeting technologies. Front Vet Sci 2023; 10:1180621. [PMID: 37601766 PMCID: PMC10434572 DOI: 10.3389/fvets.2023.1180621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Gene editing tools have become an indispensable part of research into the fundamental aspects of cell biology. With a vast body of literature having been generated based on next generation sequencing technologies, keeping track of this ever-growing body of information remains challenging. This necessitates the translation of genomic data into tangible applications. In order to address this objective, the generated Next Generation Sequencing (NGS) data forms the basis for targeted genome editing strategies, employing known enzymes of various cellular machinery, in generating organisms with specifically selected phenotypes. This review focuses primarily on CRISPR/Cas9 technology in the context of its advantages over Zinc finger proteins (ZNF) and Transcription activator-like effector nucleases (TALEN) and meganucleases mutagenesis strategies, for use in agricultural and veterinary applications. This review will describe the application of CRISPR/Cas9 in creating modified organisms with custom-made properties, without the undesired non-targeted effects associated with virus vector vaccines and bioactive molecules produced in bacterial systems. Examples of the successful and unsuccessful applications of this technology to plants, animals and microorganisms are provided, as well as an in-depth look into possible future trends and applications in vaccine development, disease resistance and enhanced phenotypic traits will be discussed.
Collapse
Affiliation(s)
- Ali Mazloum
- Federal Center for Animal Health, Vladimir, Russia
| | - Maxim Karagyaur
- Institute for Regenerative Medicine, Medical Research and Education Center, Lomonosov Moscow State University, Moscow, Russia
| | | | - Antoinette van Schalkwyk
- Agricultural Research Council-Onderstepoort Veterinary Institute, Onderstepoort, South Africa
- Department of Biotechnology, University of the Western Cape, Bellville, South Africa
| | - Ma Jun
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | - Fu Qiang
- School of Life Sciences and Engineering, Foshan University, Foshan, China
| | | |
Collapse
|
7
|
Komori T, Hata S, Mabuchi A, Genova M, Harada T, Fukuyama M, Chinen T, Kitagawa D. A CRISPR-del-based pipeline for complete gene knockout in human diploid cells. J Cell Sci 2023; 136:286993. [PMID: 36762651 PMCID: PMC10038147 DOI: 10.1242/jcs.260000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
The advance of CRISPR/Cas9 technology has enabled us easily to generate gene knockout cell lines by introducing insertion-deletion mutations (indels) at the target site via the error-prone non-homologous end joining repair system. Frameshift-promoting indels can disrupt gene functions by generation of a premature stop codon. However, there is growing evidence that targeted genes are not always knocked out by the indel-based gene disruption. Here, we established a pipeline of CRISPR-del, which induces a large chromosomal deletion by cutting two different target sites, to perform 'complete' gene knockout efficiently in human diploid cells. Quantitative analyses show that the frequency of gene deletion with this approach is much higher than that of conventional CRISPR-del methods. The lengths of the deleted genomic regions demonstrated in this study are longer than those of 95% of the human protein-coding genes. Furthermore, the pipeline enabled the generation of a model cell line having a bi-allelic cancer-associated chromosomal deletion. Overall, these data lead us to propose that the CRISPR-del pipeline is an efficient and practical approach for producing 'complete' gene knockout cell lines in human diploid cells.
Collapse
Affiliation(s)
- Takuma Komori
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, 113-0033 Tokyo, Japan
| | - Shoji Hata
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, 113-0033 Tokyo, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Program, Japan Science and Technology Agency, Honcho Kawaguchi, 102-8666 Saitama, Japan
| | - Akira Mabuchi
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, 113-0033 Tokyo, Japan
| | - Mariya Genova
- Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, 69120 Heidelberg, Germany
| | - Tomoki Harada
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, 113-0033 Tokyo, Japan
| | - Masamitsu Fukuyama
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, 113-0033 Tokyo, Japan
| | - Takumi Chinen
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, 113-0033 Tokyo, Japan
| | - Daiju Kitagawa
- Department of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, 113-0033 Tokyo, Japan
| |
Collapse
|
8
|
Xu K, Yu L, Wang Z, Lin P, Zhang N, Xing Y, Yang N. Use of gene therapy for optic nerve protection: Current concepts. Front Neurosci 2023; 17:1158030. [PMID: 37090805 PMCID: PMC10117674 DOI: 10.3389/fnins.2023.1158030] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023] Open
Abstract
Gene therapy has become an essential treatment for optic nerve injury (ONI) in recent years, and great strides have been made using animal models. ONI, which is characterized by the loss of retinal ganglion cells (RGCs) and axons, can induce abnormalities in the pupil light reflex, visual field defects, and even vision loss. The eye is a natural organ to target with gene therapy because of its high accessibility and certain immune privilege. As such, numerous gene therapy trials are underway for treating eye diseases such as glaucoma. The aim of this review was to cover research progress made in gene therapy for ONI. Specifically, we focus on the potential of gene therapy to prevent the progression of neurodegenerative diseases and protect both RGCs and axons. We cover the basic information of gene therapy, including the classification of gene therapy, especially focusing on genome editing therapy, and then we introduce common editing tools and vector tools such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) -Cas9 and adeno-associated virus (AAV). We also summarize the progress made on understanding the roles of brain derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), phosphatase-tensin homolog (PTEN), suppressor of cytokine signal transduction 3 (SOCS3), histone acetyltransferases (HATs), and other important molecules in optic nerve protection. However, gene therapy still has many challenges, such as misalignment and mutations, immunogenicity of AAV, time it takes and economic cost involved, which means that these issues need to be addressed before clinical trials can be considered.
Collapse
Affiliation(s)
- Kexin Xu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Lu Yu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiyi Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Pei Lin
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Ningzhi Zhang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Ophthalmology, Aier Eye Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Yiqiao Xing,
| | - Ning Yang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Ning Yang,
| |
Collapse
|
9
|
Wani AK, Akhtar N, Singh R, Prakash A, Raza SHA, Cavalu S, Chopra C, Madkour M, Elolimy A, Hashem NM. Genome centric engineering using ZFNs, TALENs and CRISPR-Cas9 systems for trait improvement and disease control in Animals. Vet Res Commun 2023; 47:1-16. [PMID: 35781172 DOI: 10.1007/s11259-022-09967-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Livestock is an essential life commodity in modern agriculture involving breeding and maintenance. The farming practices have evolved mainly over the last century for commercial outputs, animal welfare, environment friendliness, and public health. Modifying genetic makeup of livestock has been proposed as an effective tool to create farmed animals with characteristics meeting modern farming system goals. The first technique used to produce transgenic farmed animals resulted in random transgene insertion and a low gene transfection rate. Therefore, genome manipulation technologies have been developed to enable efficient gene targeting with a higher accuracy and gene stability. Genome editing (GE) with engineered nucleases-Zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs) regulates the targeted genetic alterations to facilitate multiple genomic modifications through protein-DNA binding. The application of genome editors indicates usefulness in reproduction, animal models, transgenic animals, and cell lines. Recently, CRISPR/Cas system, an RNA-dependent genome editing tool (GET), is considered one of the most advanced and precise GE techniques for on-target modifications in the mammalian genome by mediating knock-in (KI) and knock-out (KO) of several genes. Lately, CRISPR/Cas9 tool has become the method of choice for genome alterations in livestock species due to its efficiency and specificity. The aim of this review is to discuss the evolution of engineered nucleases and GETs as a powerful tool for genome manipulation with special emphasis on its applications in improving economic traits and conferring resistance to infectious diseases of animals used for food production, by highlighting the recent trends for maintaining sustainable livestock production.
Collapse
Affiliation(s)
- Atif Khurshid Wani
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Nahid Akhtar
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Reena Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina, 120 Mason Farm Road, CB# 7260, 3093 Genetic Medicine, Chapel Hill, NC, 27599-2760, USA
| | - Sayed Haidar Abbas Raza
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P -ta 1Decembrie 10, 410073, Oradea, Romania
| | - Chirag Chopra
- School of Bioengineering and Biosciences, Lovely Professional University, Punjab, 144411, India
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed Elolimy
- Animal Production Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Nesrein M Hashem
- Department of Animal and Fish Production, Faculty of Agriculture (El-Shatby), Alexandria University, Alexandria, 21545, Egypt.
| |
Collapse
|
10
|
Hawsawi YM, Shams A, Theyab A, Siddiqui J, Barnawee M, Abdali WA, Marghalani NA, Alshelali NH, Al-Sayed R, Alzahrani O, Alqahtani A, Alsulaiman AM. The State-of-the-Art of Gene Editing and its Application to Viral Infections and Diseases Including COVID-19. Front Cell Infect Microbiol 2022; 12:869889. [PMID: 35782122 PMCID: PMC9241565 DOI: 10.3389/fcimb.2022.869889] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gene therapy delivers a promising hope to cure many diseases and defects. The discovery of gene-editing technology fueled the world with valuable tools that have been employed in various domains of science, medicine, and biotechnology. Multiple means of gene editing have been established, including CRISPR/Cas, ZFNs, and TALENs. These strategies are believed to help understand the biological mechanisms of disease progression. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been designated the causative virus for coronavirus disease 2019 (COVID-19) that emerged at the end of 2019. This viral infection is a highly pathogenic and transmissible disease that caused a public health pandemic. As gene editing tools have shown great success in multiple scientific and medical areas, they could eventually contribute to discovering novel therapeutic and diagnostic strategies to battle the COVID-19 pandemic disease. This review aims to briefly highlight the history and some of the recent advancements of gene editing technologies. After that, we will describe various biological features of the CRISPR-Cas9 system and its diverse implications in treating different infectious diseases, both viral and non-viral. Finally, we will present current and future advancements in combating COVID-19 with a potential contribution of the CRISPR system as an antiviral modality in this battle.
Collapse
Affiliation(s)
- Yousef M. Hawsawi
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Anwar Shams
- Department of Pharmacology, College of Medicine, Taif University, Mecca, Saudi Arabia
| | - Abdulrahman Theyab
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
- Department of Laboratory & Blood Bank, Security Forces Hospital, Mecca, Saudi Arabia
| | - Jumana Siddiqui
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Mawada Barnawee
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Wed A. Abdali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nada A. Marghalani
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Nada H. Alshelali
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Rawan Al-Sayed
- Research Center, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Othman Alzahrani
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Genome and Biotechnology Unit, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Alanoud Alqahtani
- Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, United Kingdom
| | | |
Collapse
|
11
|
Negi C, Vasistha NK, Singh D, Vyas P, Dhaliwal HS. Application of CRISPR-Mediated Gene Editing for Crop Improvement. Mol Biotechnol 2022; 64:1198-1217. [PMID: 35672603 DOI: 10.1007/s12033-022-00507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Plant gene editing has become an important molecular tool to revolutionize modern breeding of crops. Over the past years, remarkable advancement has been made in developing robust and efficient editing methods for plants. Despite a variety of available genome editing methods, the discovery of most recent system of clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins (CRISPR-Cas) has been one of the biggest advancement in this path, with being the most efficient approach for genome manipulation. Until recently, genetic manipulations were confined to methods, like Agrobacterium-mediated transformations, zinc-finger nucleases, and TAL effector nucleases. However this technology supersedes all other methods for genetic modification. This RNA-guided CRISPR-Cas system is being rapidly developed with enhanced functionalities for better use and greater possibilities in biological research. In this review, we discuss and sum up the application of this simple yet powerful tool of CRISPR-Cas system for crop improvement with recent advancement in this technology.
Collapse
Affiliation(s)
- Chandranandani Negi
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | - Neeraj Kumar Vasistha
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| | | | - Pritesh Vyas
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India.
| | - H S Dhaliwal
- Department of Genetics-Plant Breeding and Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, India
| |
Collapse
|
12
|
Barka GD, Lee J. Advances in S gene targeted genome-editing and its applicability to disease resistance breeding in selected Solanaceae crop plants. Bioengineered 2022; 13:14646-14666. [PMID: 35891620 PMCID: PMC9342254 DOI: 10.1080/21655979.2022.2099599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Genome-editing tools for the development of traits to tolerate abiotic and biotic adversaries are the recently devised breeding techniques revolutionizing molecular breeding by addressing the issues of rapidness and precision. To that end, disease resistance development by disrupting disease susceptibility genes (S genes) to intervene in the biological mechanism of pathogenicity has significantly improved the techniques of molecular breeding. Despite the achievements in genome-editing aimed at the intervention of the function of susceptibility determinants or gene regulatory elements, off-target effects associated with yield-related traits are still the main setbacks. The challenges are attributed to the complexity of the inheritance of traits controlled by pleiotropic genes. Therefore, a more rigorous genome-editing tool with ultra-precision and efficiency for the development of broad-spectrum and durable disease resistance applied to staple crop plants is of critical importance in molecular breeding programs. The main objective of this article is to review the most impressive progresses achieved in resistance breeding against the main diseases of three Solanaceae crops (potato, Solanum tuberosum; tomato, Solanum lycopersicum and pepper, Capsicum annuum) using genome-editing by disrupting the sequences of S genes, their promoters, or pathogen genes. In this paper, we discussed the complexity and applicability of genome-editing tools, summarized the main disease of Solanaceae crops, and compiled the recent reports on disease resistance developed by S-gene silencing and their off-target effects. Moreover, GO count and gene annotation were made for pooled S-genes from biological databases. Achievements and prospects of S-gene-based next-generation breeding technologies are also discussed. Most S genes are membrane –anchored and are involved in infection and pre-penetration process S gene-editing is less likely to cause an off-target effect Gene-editing has been considered a more acceptable engineering tool Editing S genes either from the pathogen or host ends has opened new possibilities
Collapse
Affiliation(s)
- Geleta Dugassa Barka
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju, South Korea.,Department of Applied Biology, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Jundae Lee
- Department of Horticulture, Institute of Agricultural Science & Technology, Jeonbuk National University, Jeonju, South Korea
| |
Collapse
|
13
|
Kocher T, Petkovic I, Bischof J, Koller U. Current developments in gene therapy for epidermolysis bullosa. Expert Opin Biol Ther 2022; 22:1137-1150. [PMID: 35235467 DOI: 10.1080/14712598.2022.2049229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The genodermatosis epidermolysis bullosa (EB) is a monogenetic disease, characterized by severe blister formation on the skin and mucous membranes upon minimal mechanical trauma. Causes for the disease are mutations in genes encoding proteins that are essential for skin integrity. In EB, one of these proteins is either functionally impaired or completely absent. Therefore, the development and improvement of DNA and RNA-based therapeutic approaches for this severe blistering skin disease is mandatory to achieve a treatment option for the patients. AREAS COVERED Currently, there are several forms of DNA/RNA therapies potentially feasible for EB. Whereas some of them are still at the preclinical stage, others are clinically advanced and have already been applied to patients. In particular, this is the case for a cDNA replacement approach successfully applied for a small number of patients with junctional EB. EXPERT OPINION The heterogeneity of EB justifies the development of therapeutic options with distinct modes of action at a DNA or RNA level. Besides, splicing-modulating therapies, based on RNA trans-splicing or short antisense oligonucleotides, especially designer nucleases, have steadily improved in efficiency and safety and thus likely represent the most promising gene therapy tool in the near future.
Collapse
Affiliation(s)
- Thomas Kocher
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Igor Petkovic
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
14
|
Abstract
The rapid invention of genome-editing technologies over the past decade, which has already been transformative for biomedical research, has raised the tantalizing prospect of an entirely new therapeutic modality. Whereas the treatment of chronic cardiovascular diseases has heretofore entailed the use of chronic therapies that typically must be taken repeatedly and frequently for the remainder of the lifetime, genome editing will enable the development of “one-and-done” therapies with durable effects. This Review summarizes the variety of available genome-editing approaches, including nuclease editing, base editing, epigenome editing, and prime editing; illustrates how these various approaches could be implemented as novel therapies for cardiovascular diseases; and outlines a path from technology development to preclinical studies to clinical trials. Although this Review focuses on PCSK9 as an instructive example of the various genome-editing approaches under active investigation, the lessons learned will be broadly applicable to the treatment of a variety of diseases.
Collapse
Affiliation(s)
- Kiran Musunuru
- Cardiovascular Institute.,Department of Medicine, and.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Rosanwo TO, Bauer DE. Editing outside the body: Ex vivo gene-modification for β-hemoglobinopathy cellular therapy. Mol Ther 2021; 29:3163-3178. [PMID: 34628053 PMCID: PMC8571174 DOI: 10.1016/j.ymthe.2021.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/01/2021] [Accepted: 10/02/2021] [Indexed: 12/26/2022] Open
Abstract
Genome editing produces genetic modifications in somatic cells, offering novel curative possibilities for sickle cell disease and β-thalassemia. These opportunities leverage clinical knowledge of hematopoietic stem cell transplant and gene transfer. Advantages to this mode of ex vivo therapy include locus-specific alteration of patient hematopoietic stem cell genomes, lack of allogeneic immune response, and avoidance of insertional mutagenesis. Despite exciting progress, many aspects of this approach remain to be optimized for ideal clinical implementation, including the efficiency and specificity of gene modification, delivery to hematopoietic stem cells, and robust and nontoxic engraftment of gene-modified cells. This review highlights genome editing as compared to other genetic therapies, the differences between editing strategies, and the clinical prospects and challenges of implementing genome editing as a novel treatment. As the world's most common monogenic disorders, the β-hemoglobinopathies are at the forefront of bringing genome editing to the clinic and hold promise for molecular medicine to address human disease at its root.
Collapse
Affiliation(s)
- Tolulope O Rosanwo
- Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston MA, USA; Department of Pediatrics, Boston Medical Center, Boston, MA, USA
| | - Daniel E Bauer
- Department of Pediatrics, Harvard Medical School, Boston MA, USA; Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA; Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Broad Institute, Cambridge, MA, USA.
| |
Collapse
|
16
|
Murty T, Mackall CL. Gene editing to enhance the efficacy of cancer cell therapies. Mol Ther 2021; 29:3153-3162. [PMID: 34673274 PMCID: PMC8571170 DOI: 10.1016/j.ymthe.2021.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Adoptive T cell therapies have shown impressive signals of activity, but their clinical impact could be enhanced by technologies to increase T cell potency and diminish the cost and labor involved in manufacturing these products. Gene editing platforms are under study in this arena to (1) enhance immune cell potency by knocking out molecules that inhibit immune responses; (2) deliver genetic payloads into precise genomic locations and thereby enhance safety and/or improve the gene expression profile by leveraging physiologic promoters, enhancers, and repressors; and (3) enable off-the-shelf therapies by preventing alloreactivity and immune rejection. This review discusses gene editing approaches that have been the best studied in the context of human T cells and adoptive T cell therapies, summarizing their current status and near-term potential for translation.
Collapse
Affiliation(s)
- Tara Murty
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA; Program in Biophysics, Stanford University, Stanford, CA, USA; Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
17
|
Rees HA, Minella AC, Burnett CA, Komor AC, Gaudelli NM. CRISPR-derived genome editing therapies: Progress from bench to bedside. Mol Ther 2021; 29:3125-3139. [PMID: 34619370 PMCID: PMC8572140 DOI: 10.1016/j.ymthe.2021.09.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 12/14/2022] Open
Abstract
The development of CRISPR-derived genome editing technologies has enabled the precise manipulation of DNA sequences within the human genome. In this review, we discuss the initial development and cellular mechanism of action of CRISPR nucleases and DNA base editors. We then describe factors that must be taken into consideration when developing these tools into therapeutic agents, including the potential for unintended and off-target edits when using these genome editing tools, and methods to characterize these types of edits. We finish by considering specific challenges associated with bringing a CRISPR-based therapy to the clinic, including manufacturing, regulatory oversight, and considerations for clinical trials that involve genome editing agents.
Collapse
|
18
|
Telomeric-Like Repeats Flanked by Sequences Retrotranscribed from the Telomerase RNA Inserted at DNA Double-Strand Break Sites during Vertebrate Genome Evolution. Int J Mol Sci 2021; 22:ijms222011048. [PMID: 34681704 PMCID: PMC8537989 DOI: 10.3390/ijms222011048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 01/28/2023] Open
Abstract
Interstitial telomeric sequences (ITSs) are stretches of telomeric-like repeats located at internal chromosomal sites. We previously demonstrated that ITSs have been inserted during the repair of DNA double-strand breaks in the course of evolution and that some rodent ITSs, called TERC-ITSs, are flanked by fragments retrotranscribed from the telomerase RNA component (TERC). In this work, we carried out an extensive search of TERC-ITSs in 30 vertebrate genomes and identified 41 such loci in 22 species, including in humans and other primates. The fragment retrotranscribed from the TERC RNA varies in different lineages and its sequence seems to be related to the organization of TERC. Through comparative analysis of TERC-ITSs with orthologous empty loci, we demonstrated that, at each locus, the TERC-like sequence and the ITS have been inserted in one step in the course of evolution. Our findings suggest that telomerase participated in a peculiar pathway of DNA double-strand break repair involving retrotranscription of its RNA component and that this mechanism may be active in all vertebrate species. These results add new evidence to the hypothesis that RNA-templated DNA repair mechanisms are active in vertebrate cells.
Collapse
|
19
|
Söllner JH, Mettenleiter TC, Petersen B. Genome Editing Strategies to Protect Livestock from Viral Infections. Viruses 2021; 13:1996. [PMID: 34696426 PMCID: PMC8539128 DOI: 10.3390/v13101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/26/2022] Open
Abstract
The livestock industry is constantly threatened by viral disease outbreaks, including infections with zoonotic potential. While preventive vaccination is frequently applied, disease control and eradication also depend on strict biosecurity measures. Clustered regularly interspaced palindromic repeats (CRISPR) and associated proteins (Cas) have been repurposed as genome editors to induce targeted double-strand breaks at almost any location in the genome. Thus, CRISPR/Cas genome editors can also be utilized to generate disease-resistant or resilient livestock, develop vaccines, and further understand virus-host interactions. Genes of interest in animals and viruses can be targeted to understand their functions during infection. Furthermore, transgenic animals expressing CRISPR/Cas can be generated to target the viral genome upon infection. Genetically modified livestock can thereby reduce disease outbreaks and decrease zoonotic threats.
Collapse
Affiliation(s)
- Jenny-Helena Söllner
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt am Rübenberge, Germany;
| | | | - Björn Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, 31535 Neustadt am Rübenberge, Germany;
| |
Collapse
|
20
|
Schubert MS, Thommandru B, Woodley J, Turk R, Yan S, Kurgan G, McNeill MS, Rettig GR. Optimized design parameters for CRISPR Cas9 and Cas12a homology-directed repair. Sci Rep 2021; 11:19482. [PMID: 34593942 PMCID: PMC8484621 DOI: 10.1038/s41598-021-98965-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas proteins are RNA-guided nucleases used to introduce double-stranded breaks (DSBs) at targeted genomic loci. DSBs are repaired by endogenous cellular pathways such as non-homologous end joining (NHEJ) and homology-directed repair (HDR). Providing an exogenous DNA template during repair allows for the intentional, precise incorporation of a desired mutation via the HDR pathway. However, rates of repair by HDR are often slow compared to the more rapid but less accurate NHEJ-mediated repair. Here, we describe comprehensive design considerations and optimized methods for highly efficient HDR using single-stranded oligodeoxynucleotide (ssODN) donor templates for several CRISPR-Cas systems including S.p. Cas9, S.p. Cas9 D10A nickase, and A.s. Cas12a delivered as ribonucleoprotein (RNP) complexes. Features relating to guide RNA selection, donor strand preference, and incorporation of blocking mutations in the donor template to prevent re-cleavage were investigated and were implemented in a novel online tool for HDR donor template design. These findings allow for high frequencies of precise repair utilizing HDR in multiple mammalian cell lines. Tool availability: https://www.idtdna.com/HDR.
Collapse
Affiliation(s)
- Mollie S Schubert
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Bernice Thommandru
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Jessica Woodley
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Rolf Turk
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Shuqi Yan
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Gavin Kurgan
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Matthew S McNeill
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA
| | - Garrett R Rettig
- Integrated DNA Technologies, Inc., 1710 Commercial Park, Coralville, IA, 52241, USA.
| |
Collapse
|
21
|
Abstract
The past 25 years of genomics research first revealed which genes are encoded by the human genome and then a detailed catalogue of human genome variation associated with many diseases. Despite this, the function of many genes and gene regulatory elements remains poorly characterized, which limits our ability to apply these insights to human disease. The advent of new CRISPR functional genomics tools allows for scalable and multiplexable characterization of genes and gene regulatory elements encoded by the human genome. These approaches promise to reveal mechanisms of gene function and regulation, and to enable exploration of how genes work together to modulate complex phenotypes.
Collapse
|
22
|
Zentout S, Smith R, Jacquier M, Huet S. New Methodologies to Study DNA Repair Processes in Space and Time Within Living Cells. Front Cell Dev Biol 2021; 9:730998. [PMID: 34589495 PMCID: PMC8473836 DOI: 10.3389/fcell.2021.730998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/25/2021] [Indexed: 01/02/2023] Open
Abstract
DNA repair requires a coordinated effort from an array of factors that play different roles in the DNA damage response from recognizing and signaling the presence of a break, creating a repair competent environment, and physically repairing the lesion. Due to the rapid nature of many of these events, live-cell microscopy has become an invaluable method to study this process. In this review we outline commonly used tools to induce DNA damage under the microscope and discuss spatio-temporal analysis tools that can bring added information regarding protein dynamics at sites of damage. In particular, we show how to go beyond the classical analysis of protein recruitment curves to be able to assess the dynamic association of the repair factors with the DNA lesions as well as the target-search strategies used to efficiently find these lesions. Finally, we discuss how the use of mathematical models, combined with experimental evidence, can be used to better interpret the complex dynamics of repair proteins at DNA lesions.
Collapse
Affiliation(s)
- Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Marine Jacquier
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, BIOSIT-UMS 3480, Rennes, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
23
|
Ahmad S, Tang L, Shahzad R, Mawia AM, Rao GS, Jamil S, Wei C, Sheng Z, Shao G, Wei X, Hu P, Mahfouz MM, Hu S, Tang S. CRISPR-Based Crop Improvements: A Way Forward to Achieve Zero Hunger. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8307-8323. [PMID: 34288688 DOI: 10.1021/acs.jafc.1c02653] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Zero hunger is one of the sustainable development goals set by the United Nations in 2015 to achieve global food security by 2030. The current harvest of crops is insufficient; feeding the world's population and meeting the goal of zero hunger by 2030 will require larger and more consistent crop production. Clustered regularly interspaced short palindromic repeats-associated protein (CRISPR-Cas) technology is widely used for the plant genome editing. In this review, we consider this technology as a potential tool for achieving zero hunger. We provide a comprehensive overview of CRISPR-Cas technology and its most important applications for food crops' improvement. We also conferred current and potential technological breakthroughs that will help in breeding future crops to end global hunger. The regulatory aspects of deploying this technology in commercial sectors, bioethics, and the production of transgene-free plants are also discussed. We hope that the CRISPR-Cas system will accelerate the breeding of improved crop cultivars compared with conventional breeding and pave the way toward the zero hunger goal.
Collapse
Affiliation(s)
- Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
- Maize Research Station, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Liqun Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gundra Sivakrishna Rao
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad 38000, Pakistan
| | - Chen Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Shikai Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| |
Collapse
|
24
|
Sioson VA, Kim M, Joo J. Challenges in delivery systems for CRISPR-based genome editing and opportunities of nanomedicine. Biomed Eng Lett 2021; 11:217-233. [PMID: 34350049 PMCID: PMC8316527 DOI: 10.1007/s13534-021-00199-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 12/29/2022] Open
Abstract
The CRISPR-based genome editing technology has opened extremely useful strategies in biological research and clinical therapeutics, thus attracting great attention with tremendous progress in the past decade. Despite its robust potential in personalized and precision medicine, the CRISPR-based gene editing has been limited by inefficient in vivo delivery to the target cells and by safety concerns of viral vectors for clinical setting. In this review, recent advances in tailored nanoparticles as a means of non-viral delivery vector for CRISPR/Cas systems are thoroughly discussed. Unique characteristics of the nanoparticles including controllable size, surface tunability, and low immune response lead considerable potential of CRISPR-based gene editing as a translational medicine. We will present an overall view on essential elements in CRISPR/Cas systems and the nanoparticle-based delivery carriers including advantages and challenges. Perspectives to advance the current limitations are also discussed toward bench-to-bedside translation in engineering aspects.
Collapse
Affiliation(s)
- Victor Aaron Sioson
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| | - Minjong Kim
- Department of Biological Science, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| | - Jinmyoung Joo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919 Republic of Korea
| |
Collapse
|
25
|
Gähwiler EKN, Motta SE, Martin M, Nugraha B, Hoerstrup SP, Emmert MY. Human iPSCs and Genome Editing Technologies for Precision Cardiovascular Tissue Engineering. Front Cell Dev Biol 2021; 9:639699. [PMID: 34262897 PMCID: PMC8273765 DOI: 10.3389/fcell.2021.639699] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) originate from the reprogramming of adult somatic cells using four Yamanaka transcription factors. Since their discovery, the stem cell (SC) field achieved significant milestones and opened several gateways in the area of disease modeling, drug discovery, and regenerative medicine. In parallel, the emergence of clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (CRISPR-Cas9) revolutionized the field of genome engineering, allowing the generation of genetically modified cell lines and achieving a precise genome recombination or random insertions/deletions, usefully translated for wider applications. Cardiovascular diseases represent a constantly increasing societal concern, with limited understanding of the underlying cellular and molecular mechanisms. The ability of iPSCs to differentiate into multiple cell types combined with CRISPR-Cas9 technology could enable the systematic investigation of pathophysiological mechanisms or drug screening for potential therapeutics. Furthermore, these technologies can provide a cellular platform for cardiovascular tissue engineering (TE) approaches by modulating the expression or inhibition of targeted proteins, thereby creating the possibility to engineer new cell lines and/or fine-tune biomimetic scaffolds. This review will focus on the application of iPSCs, CRISPR-Cas9, and a combination thereof to the field of cardiovascular TE. In particular, the clinical translatability of such technologies will be discussed ranging from disease modeling to drug screening and TE applications.
Collapse
Affiliation(s)
- Eric K. N. Gähwiler
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
| | - Sarah E. Motta
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Marcy Martin
- Division of Pediatric Cardiology, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford School of Medicine, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA, United States
| | - Bramasta Nugraha
- Molecular Parasitology Lab, Institute of Parasitology, University of Zurich, Zurich, Switzerland
- Bioscience Cardiovascular, Research and Early Development, Cardiovascular, Renal and Metabolism, R&D BioPharmaceuticals, AstraZeneca, Gothenburg, Sweden
| | - Simon P. Hoerstrup
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Maximilian Y. Emmert
- Institute for Regenerative Medicine (IREM), University of Zurich, Zurich, Switzerland
- Wyss Zurich, University and ETH Zurich, Zurich, Switzerland
- Department of Cardiovascular Surgery, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Berlin, Germany
| |
Collapse
|
26
|
Yeh WH, Shubina-Oleinik O, Levy JM, Pan B, Newby GA, Wornow M, Burt R, Chen JC, Holt JR, Liu DR. In vivo base editing restores sensory transduction and transiently improves auditory function in a mouse model of recessive deafness. Sci Transl Med 2021; 12:12/546/eaay9101. [PMID: 32493795 DOI: 10.1126/scitranslmed.aay9101] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 04/05/2020] [Indexed: 12/11/2022]
Abstract
Most genetic diseases arise from recessive point mutations that require correction, rather than disruption, of the pathogenic allele to benefit patients. Base editing has the potential to directly repair point mutations and provide therapeutic restoration of gene function. Mutations of transmembrane channel-like 1 gene (TMC1) can cause dominant or recessive deafness. We developed a base editing strategy to treat Baringo mice, which carry a recessive, loss-of-function point mutation (c.A545G; resulting in the substitution p.Y182C) in Tmc1 that causes deafness. Tmc1 encodes a protein that forms mechanosensitive ion channels in sensory hair cells of the inner ear and is required for normal auditory function. We found that sensory hair cells of Baringo mice have a complete loss of auditory sensory transduction. To repair the mutation, we tested several optimized cytosine base editors (CBEmax variants) and guide RNAs in Baringo mouse embryonic fibroblasts. We packaged the most promising CBE, derived from an activation-induced cytidine deaminase (AID), into dual adeno-associated viruses (AAVs) using a split-intein delivery system. The dual AID-CBEmax AAVs were injected into the inner ears of Baringo mice at postnatal day 1. Injected mice showed up to 51% reversion of the Tmc1 c.A545G point mutation to wild-type sequence (c.A545A) in Tmc1 transcripts. Repair of Tmc1 in vivo restored inner hair cell sensory transduction and hair cell morphology and transiently rescued low-frequency hearing 4 weeks after injection. These findings provide a foundation for a potential one-time treatment for recessive hearing loss and support further development of base editing to correct pathogenic point mutations.
Collapse
Affiliation(s)
- Wei-Hsi Yeh
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Shubina-Oleinik
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Jonathan M Levy
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bifeng Pan
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael Wornow
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Rachel Burt
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, VIC 3052, Australia
| | - Jonathan C Chen
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey R Holt
- Department of Otolaryngology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA. .,Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA. .,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA.,Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
27
|
CRISPR/Cas based gene editing: marking a new era in medical science. Mol Biol Rep 2021; 48:4879-4895. [PMID: 34143395 PMCID: PMC8212587 DOI: 10.1007/s11033-021-06479-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/05/2021] [Indexed: 12/14/2022]
Abstract
CRISPR/Cas9 system, a bacterial adaptive immune system developed into a genome editing technology, has emerged as a powerful tool revolutionising genome engineering in all branches of biological science including agriculture, research and medicine. Rapid evolution of CRISPR/Cas9 system from the generation of double strand breaks to more advanced applications on gene regulation has made the wide-spread use of this technology possible. Medical science has benefited greatly from CRISPR/Cas9; being both a versatile and economical tool, it has brought gene therapy closer to reality. In this review, the development of CRISPR/Cas9 system, variants thereof and its application in different walks of medical science- research, diagnostics and therapy, will be discussed.
Collapse
|
28
|
Seok H, Deng R, Cowan DB, Wang DZ. Application of CRISPR-Cas9 gene editing for congenital heart disease. Clin Exp Pediatr 2021; 64:269-279. [PMID: 33677855 PMCID: PMC8181018 DOI: 10.3345/cep.2020.02096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR-Cas9) is an ancient prokaryotic defense system that precisely cuts foreign genomic DNA under the control of a small number of guide RNAs. The CRISPR-Cas9 system facilitates efficient double-stranded DNA cleavage that has been recently adopted for genome editing to create or correct inherited genetic mutations causing disease. Congenital heart disease (CHD) is generally caused by genetic mutations such as base substitutions, deletions, and insertions, which result in diverse developmental defects and remains a leading cause of birth defects. Pediatric CHD patients exhibit a spectrum of cardiac abnormalities such as septal defects, valvular defects, and abnormal chamber development. CHD onset occurs during the prenatal period and often results in early lethality during childhood. Because CRISPR-Cas9-based genome editing technology has gained considerable attention for its potential to prevent and treat diseases, we will review the CRISPR-Cas9 system as a genome editing tool and focus on its therapeutic application for CHD.
Collapse
Affiliation(s)
- Heeyoung Seok
- Department of Life Sciences, Korea University, Seoul, Korea
| | - Rui Deng
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Douglas B Cowan
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
29
|
Zhang X, Li T, Ou J, Huang J, Liang P. Homology-based repair induced by CRISPR-Cas nucleases in mammalian embryo genome editing. Protein Cell 2021; 13:316-335. [PMID: 33945139 PMCID: PMC9008090 DOI: 10.1007/s13238-021-00838-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 03/16/2021] [Indexed: 12/26/2022] Open
Abstract
Recent advances in genome editing, especially CRISPR-Cas nucleases, have revolutionized both laboratory research and clinical therapeutics. CRISPR-Cas nucleases, together with the DNA damage repair pathway in cells, enable both genetic diversification by classical non-homologous end joining (c-NHEJ) and precise genome modification by homology-based repair (HBR). Genome editing in zygotes is a convenient way to edit the germline, paving the way for animal disease model generation, as well as human embryo genome editing therapy for some life-threatening and incurable diseases. HBR efficiency is highly dependent on the DNA donor that is utilized as a repair template. Here, we review recent progress in improving CRISPR-Cas nuclease-induced HBR in mammalian embryos by designing a suitable DNA donor. Moreover, we want to provide a guide for producing animal disease models and correcting genetic mutations through CRISPR-Cas nuclease-induced HBR in mammalian embryos. Finally, we discuss recent developments in precise genome-modification technology based on the CRISPR-Cas system.
Collapse
Affiliation(s)
- Xiya Zhang
- Center for Reproductive Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
| | - Tao Li
- Center for Reproductive Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China
| | - Jianping Ou
- Center for Reproductive Medicine, the Third Affiliated Hospital of Sun Yat-sen University, Sun Yat-sen University, Guangzhou, 510630, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Puping Liang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, the First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
30
|
Long Q, Liu Z, Gullerova M. Sweet Melody or Jazz? Transcription Around DNA Double-Strand Breaks. Front Mol Biosci 2021; 8:655786. [PMID: 33959637 PMCID: PMC8096065 DOI: 10.3389/fmolb.2021.655786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Genomic integrity is continuously threatened by thousands of endogenous and exogenous damaging factors. To preserve genome stability, cells developed comprehensive DNA damage response (DDR) pathways that mediate the recognition of damaged DNA lesions, the activation of signaling cascades, and the execution of DNA repair. Transcription has been understood to pose a threat to genome stability in the presence of DNA breaks. Interestingly, accumulating evidence in recent years shows that the transient transcriptional activation at DNA double-strand break (DSB) sites is required for efficient repair, while the rest of the genome exhibits temporary transcription silencing. This genomic shut down is a result of multiple signaling cascades involved in the maintenance of DNA/RNA homeostasis, chromatin stability, and genome fidelity. The regulation of transcription of protein-coding genes and non-coding RNAs has been extensively studied; however, the exact regulatory mechanisms of transcription at DSBs remain enigmatic. These complex processes involve many players such as transcription-associated protein complexes, including kinases, transcription factors, chromatin remodeling complexes, and helicases. The damage-derived transcripts themselves also play an essential role in DDR regulation. In this review, we summarize the current findings on the regulation of transcription at DSBs and discussed the roles of various accessory proteins in these processes and consequently in DDR.
Collapse
Affiliation(s)
| | | | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
31
|
Genome editing of polyploid crops: prospects, achievements and bottlenecks. Transgenic Res 2021; 30:337-351. [PMID: 33846956 PMCID: PMC8316217 DOI: 10.1007/s11248-021-00251-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/29/2021] [Indexed: 02/07/2023]
Abstract
Plant breeding aims to develop improved crop varieties. Many crops have a polyploid and often highly heterozygous genome, which may make breeding of polyploid crops a real challenge. The efficiency of traditional breeding based on crossing and selection has been improved by using marker-assisted selection (MAS), and MAS is also being applied in polyploid crops, which helps e.g. for introgression breeding. However, methods such as random mutation breeding are difficult to apply in polyploid crops because there are multiple homoeologous copies (alleles) of each gene. Genome editing technology has revolutionized mutagenesis as it enables precisely selecting targets. The genome editing tool CRISPR/Cas is especially valuable for targeted mutagenesis in polyploids, as all alleles and/or copies of a gene can be targeted at once. Even multiple genes, each with multiple alleles, may be targeted simultaneously. In addition to targeted mutagenesis, targeted replacement of undesirable alleles by desired ones may become a promising application of genome editing for the improvement of polyploid crops, in the near future. Several examples of the application of genome editing for targeted mutagenesis are described here for a range of polyploid crops, and achievements and bottlenecks are highlighted.
Collapse
|
32
|
Dasgupta I, Flotte TR, Keeler AM. CRISPR/Cas-Dependent and Nuclease-Free In Vivo Therapeutic Gene Editing. Hum Gene Ther 2021; 32:275-293. [PMID: 33750221 PMCID: PMC7987363 DOI: 10.1089/hum.2021.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/27/2021] [Indexed: 12/19/2022] Open
Abstract
Precise gene manipulation by gene editing approaches facilitates the potential to cure several debilitating genetic disorders. Gene modification stimulated by engineered nucleases induces a double-stranded break (DSB) in the target genomic locus, thereby activating DNA repair mechanisms. DSBs triggered by nucleases are repaired either by the nonhomologous end-joining or the homology-directed repair pathway, enabling efficient gene editing. While there are several ongoing ex vivo genome editing clinical trials, current research underscores the therapeutic potential of CRISPR/Cas-based (clustered regularly interspaced short palindrome repeats-associated Cas nuclease) in vivo gene editing. In this review, we provide an overview of the CRISPR/Cas-mediated in vivo genome therapy applications and explore their prospective clinical translatability to treat human monogenic disorders. In addition, we discuss the various challenges associated with in vivo genome editing technologies and strategies used to circumvent them. Despite the robust and precise nuclease-mediated gene editing, a promoterless, nuclease-independent gene targeting strategy has been utilized to evade the drawbacks of the nuclease-dependent system, such as off-target effects, immunogenicity, and cytotoxicity. Thus, the rapidly evolving paradigm of gene editing technologies will continue to foster the progress of gene therapy applications.
Collapse
Affiliation(s)
- Ishani Dasgupta
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Terence R. Flotte
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| | - Allison M. Keeler
- Department of Pediatrics, Horae Gene Therapy Center, University of Massachusetts, Worcester, Massachusetts, USA
| |
Collapse
|
33
|
Lubroth P, Colasante G, Lignani G. In vivo Genome Editing Therapeutic Approaches for Neurological Disorders: Where Are We in the Translational Pipeline? Front Neurosci 2021; 15:632522. [PMID: 33679313 PMCID: PMC7930815 DOI: 10.3389/fnins.2021.632522] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/29/2021] [Indexed: 01/10/2023] Open
Abstract
In vivo genome editing tools, such as those based on CRISPR, have been increasingly utilized in both basic and translational neuroscience research. There are currently nine in vivo non-CNS genome editing therapies in clinical trials, and the pre-clinical pipeline of major biotechnology companies demonstrate that this number will continue to grow. Several biotechnology companies commercializing in vivo genome editing and modification technologies are developing therapies for CNS disorders with accompanying large partnering deals. In this review, the authors discuss the current genome editing and modification therapy pipeline and those in development to treat CNS disorders. The authors also discuss the technical and commercial limitations to translation of these same therapies and potential avenues to overcome these hurdles.
Collapse
Affiliation(s)
| | - Gaia Colasante
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, Ospedale San Raffaele, Milan, Italy
| | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
34
|
Huang TP, Newby GA, Liu DR. Precision genome editing using cytosine and adenine base editors in mammalian cells. Nat Protoc 2021; 16:1089-1128. [PMID: 33462442 DOI: 10.1038/s41596-020-00450-9] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/20/2020] [Indexed: 01/29/2023]
Abstract
Genome editing has transformed the life sciences and has exciting prospects for use in treating genetic diseases. Our laboratory developed base editing to enable precise and efficient genome editing while minimizing undesired byproducts and toxicity associated with double-stranded DNA breaks. Adenine and cytosine base editors mediate targeted A•T-to-G•C or C•G-to-T•A base pair changes, respectively, which can theoretically address most human disease-associated single-nucleotide polymorphisms. Current base editors can achieve high editing efficiencies-for example, approaching 100% in cultured mammalian cells or 70% in adult mouse neurons in vivo. Since their initial description, a large set of base editor variants have been developed with different on-target and off-target editing characteristics. Here, we describe a protocol for using base editing in cultured mammalian cells. We provide guidelines for choosing target sites, appropriate base editor variants and delivery strategies to best suit a desired application. We further describe standard base-editing experiments in HEK293T cells, along with computational analysis of base-editing outcomes using CRISPResso2. Beginning with target DNA site selection, base-editing experiments in mammalian cells can typically be completed within 1-3 weeks and require only standard molecular biology techniques and readily available plasmid constructs.
Collapse
Affiliation(s)
- Tony P Huang
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, The Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
35
|
Bennett EP, Petersen BL, Johansen IE, Niu Y, Yang Z, Chamberlain CA, Met Ö, Wandall HH, Frödin M. INDEL detection, the 'Achilles heel' of precise genome editing: a survey of methods for accurate profiling of gene editing induced indels. Nucleic Acids Res 2020; 48:11958-11981. [PMID: 33170255 PMCID: PMC7708060 DOI: 10.1093/nar/gkaa975] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 10/05/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Advances in genome editing technologies have enabled manipulation of genomes at the single base level. These technologies are based on programmable nucleases (PNs) that include meganucleases, zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs) and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated 9 (Cas9) nucleases and have given researchers the ability to delete, insert or replace genomic DNA in cells, tissues and whole organisms. The great flexibility in re-designing the genomic target specificity of PNs has vastly expanded the scope of gene editing applications in life science, and shows great promise for development of the next generation gene therapies. PN technologies share the principle of inducing a DNA double-strand break (DSB) at a user-specified site in the genome, followed by cellular repair of the induced DSB. PN-elicited DSBs are mainly repaired by the non-homologous end joining (NHEJ) and the microhomology-mediated end joining (MMEJ) pathways, which can elicit a variety of small insertion or deletion (indel) mutations. If indels are elicited in a protein coding sequence and shift the reading frame, targeted gene knock out (KO) can readily be achieved using either of the available PNs. Despite the ease by which gene inactivation in principle can be achieved, in practice, successful KO is not only determined by the efficiency of NHEJ and MMEJ repair; it also depends on the design and properties of the PN utilized, delivery format chosen, the preferred indel repair outcomes at the targeted site, the chromatin state of the target site and the relative activities of the repair pathways in the edited cells. These variables preclude accurate prediction of the nature and frequency of PN induced indels. A key step of any gene KO experiment therefore becomes the detection, characterization and quantification of the indel(s) induced at the targeted genomic site in cells, tissues or whole organisms. In this survey, we briefly review naturally occurring indels and their detection. Next, we review the methods that have been developed for detection of PN-induced indels. We briefly outline the experimental steps and describe the pros and cons of the various methods to help users decide a suitable method for their editing application. We highlight recent advances that enable accurate and sensitive quantification of indel events in cells regardless of their genome complexity, turning a complex pool of different indel events into informative indel profiles. Finally, we review what has been learned about PN-elicited indel formation through the use of the new methods and how this insight is helping to further advance the genome editing field.
Collapse
Affiliation(s)
- Eric Paul Bennett
- Copenhagen Center for Glycomics, Department of Odontology and Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Ida Elisabeth Johansen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| | - Yiyuan Niu
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
- College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi, China
| | - Zhang Yang
- Copenhagen Center for Glycomics, Department of Odontology and Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | | | - Özcan Met
- Center for Cancer Immune Therapy, Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hans H Wandall
- Copenhagen Center for Glycomics, Department of Odontology and Molecular and Cellular Medicine, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Morten Frödin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
36
|
Kuscu C, Kuscu C, Bajwa A, Eason JD, Maluf D, Mas VR. Applications of CRISPR technologies in transplantation. Am J Transplant 2020; 20:3285-3293. [PMID: 32484284 PMCID: PMC8109183 DOI: 10.1111/ajt.16095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 01/25/2023]
Abstract
In transplantation, the ever-increasing number of an organ's demand and long-term graft dysfunction constitute some of the major problems. Therefore, alternative solutions to increase the quantity and quality of the organ supply for transplantation are desired. On this subject, revolutionary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology holds enormous potential for the scientific community with its expanding toolbox. In this minireview, we summarize the history and mechanism of CRISPR/Cas9 systems and explore its potential applications in cellular- and organ-level transplantation. The last part of this review includes future opportunities as well as the challenges in the transplantation field.
Collapse
Affiliation(s)
- Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - James D. Eason
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Daniel Maluf
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Valeria R. Mas
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Science Center, Memphis, TN
| |
Collapse
|
37
|
Chesner LN, Essawy M, Warner C, Campbell C. DNA-protein crosslinks are repaired via homologous recombination in mammalian mitochondria. DNA Repair (Amst) 2020; 97:103026. [PMID: 33316746 PMCID: PMC7855827 DOI: 10.1016/j.dnarep.2020.103026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/24/2020] [Accepted: 11/12/2020] [Indexed: 11/19/2022]
Abstract
While mammalian mitochondria are known to possess a robust base excision repair system, direct evidence for the existence of additional mitochondrial DNA repair pathways is elusive. Herein a PCR-based assay was employed to demonstrate that plasmids containing DNA-protein crosslinks are rapidly repaired following electroporation into isolated mammalian mitochondria. Several lines of evidence argue that this repair occurs via homologous recombination. First, DNA-protein crosslinks present on plasmid DNA homologous to the mitochondrial genome were efficiently repaired (21 % repair in three hours), whereas a DNA-protein crosslink present on DNA that lacked homology to the mitochondrial genome remained unrepaired. Second, DNA-protein crosslinks present on plasmid DNA lacking homology to the mitochondrial genome were repaired when they were co-electroporated into mitochondria with an undamaged, homologous plasmid DNA molecule. Third, no repair was observed when DNA-protein crosslink-containing plasmids were electroporated into mitochondria isolated from cells pre-treated with the Rad51 inhibitor B02. These findings suggest that mitochondria utilize homologous recombination to repair endogenous and xenobiotic-induced DNA-protein crosslinks. Consistent with this interpretation, cisplatin-induced mitochondrial DNA-protein crosslinks accumulated to higher levels in cells pre-treated with B02 than in control cisplatin-treated cells. These results represent the first evidence of how spontaneous and xenobiotic-induced DNA-protein crosslinks are removed from mitochondrial DNA.
Collapse
Affiliation(s)
- Lisa N Chesner
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Maram Essawy
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Cecilia Warner
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Colin Campbell
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
38
|
Gnügge R, Symington LS. Efficient DNA double-strand break formation at single or multiple defined sites in the Saccharomyces cerevisiae genome. Nucleic Acids Res 2020; 48:e115. [PMID: 33053188 PMCID: PMC7672422 DOI: 10.1093/nar/gkaa833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/18/2020] [Accepted: 09/28/2020] [Indexed: 01/08/2023] Open
Abstract
DNA double-strand breaks (DSBs) are common genome lesions that threaten genome stability and cell survival. Cells use sophisticated repair machineries to detect and heal DSBs. To study DSB repair pathways and associated factors, inducible site-specific endonucleases have proven to be fundamental tools. In Saccharomyces cerevisiae, galactose-inducible rare-cutting endonucleases are commonly used to create a single DSB at a unique cleavage site. Galactose induction requires cell cultivation in suboptimal growth media, which is tedious especially when working with slow growing DSB repair mutants. Moreover, endonucleases that simultaneously create DSBs in multiple defined and unique loci of the yeast genome are not available, hindering studies of DSB repair in different genomic regions and chromatin contexts. Here, we present new tools to overcome these limitations. We employ a heterologous media-independent induction system to express the yeast HO endonuclease or bacterial restriction enzymes for single or multiple DSB formation, respectively. The systems facilitate tightly controlled and efficient DSB formation at defined genomic sites and will be valuable tools to study DSB repair at a local and genome-wide scale.
Collapse
Affiliation(s)
- Robert Gnügge
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA.,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
39
|
Sontayananon N, Redwood C, Davies B, Gehmlich K. Fluorescent PSC-Derived Cardiomyocyte Reporter Lines: Generation Approaches and Their Applications in Cardiovascular Medicine. BIOLOGY 2020; 9:biology9110402. [PMID: 33207727 PMCID: PMC7697758 DOI: 10.3390/biology9110402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Recent advances have made pluripotent stem cell (PSC)-derived cardiomyocytes an attractive option to model both normal and diseased cardiac function at the single-cell level. However, in vitro differentiation yields heterogeneous populations of cardiomyocytes and other cell types, potentially confounding phenotypic analyses. Fluorescent PSC-derived cardiomyocyte reporter systems allow specific cell lineages to be labelled, facilitating cell isolation for downstream applications including drug testing, disease modelling and cardiac regeneration. In this review, the different genetic strategies used to generate such reporter lines are presented with an emphasis on their relative technical advantages and disadvantages. Next, we explore how the fluorescent reporter lines have provided insights into cardiac development and cardiomyocyte physiology. Finally, we discuss how exciting new approaches using PSC-derived cardiomyocyte reporter lines are contributing to progress in cardiac cell therapy with respect to both graft adaptation and clinical safety.
Collapse
Affiliation(s)
- Naeramit Sontayananon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK; (N.S.); (C.R.)
| | - Charles Redwood
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK; (N.S.); (C.R.)
| | - Benjamin Davies
- Wellcome Centre for Human Genetics, Roosevelt Drive, Oxford OX3 7BN, UK
- Correspondence: (B.D.); (K.G.)
| | - Katja Gehmlich
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK; (N.S.); (C.R.)
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (B.D.); (K.G.)
| |
Collapse
|
40
|
Hong H, Yao S, Zhang Y, Ye Y, Li C, Hu L, Sun Y, Huang HY, Ji H. In vivo miRNA knockout screening identifies miR-190b as a novel tumor suppressor. PLoS Genet 2020; 16:e1009168. [PMID: 33137086 PMCID: PMC7660552 DOI: 10.1371/journal.pgen.1009168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 11/12/2020] [Accepted: 10/03/2020] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) play important roles in the development of various cancers including lung cancer which is one of the devastating diseases worldwide. How miRNAs function in de novo lung tumorigenesis remains largely unknown. We here developed a CRISPR/Cas9-mediated dual guide RNA (dgRNA) system to knockout miRNAs in genetically engineered mouse model (GEMM). Through bioinformatic analyses of human lung cancer miRNA database, we identified 16 downregulated miRNAs associated with malignant progression and performed individual knockout with dgRNA system in KrasG12D/Trp53L/L (KP) mouse model. Using this in vivo knockout screening, we identified miR-30b and miR-146a, which has been previously reported as tumor suppressors and miR-190b, a new tumor-suppressive miRNA in lung cancer development. Over-expression of miR-190b in KP model as well as human lung cancer cell lines significantly suppressed malignant progression. We further found that miR-190b targeted the Hus1 gene and knockout of Hus1 in KP model dramatically suppressed lung tumorigenesis. Collectively, our study developed an in vivo miRNA knockout platform for functionally screening in GEMM and identified miR-190b as a new tumor suppressor in lung cancer.
Collapse
Affiliation(s)
- Hui Hong
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shun Yao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Zhang
- BIOPIC and School of Life Sciences, Peking University, Beijing, China
| | - Yi Ye
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Cheng Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, Peking University, Beijing, China
- Center for Statistical Science, Center for Bioinformatics, Peking University, Beijing, China
| | - Liang Hu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
| | - Yihua Sun
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hsin-Yi Huang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
| | - Hongbin Ji
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| |
Collapse
|
41
|
Abstract
BACKGROUND Development of efficient strategies has always been one of the great perspectives for biotechnologists. During the last decade, genome editing of different organisms has been a fast advancing field and therefore has received a lot of attention from various researchers comprehensively reviewing latest achievements and offering opinions on future directions. This review presents a brief history, basic principles, advantages and disadvantages, as well as various aspects of each genome editing technology including the modes, applications, and challenges that face delivery of gene editing components. MAIN BODY Genetic modification techniques cover a wide range of studies, including the generation of transgenic animals, functional analysis of genes, model development for diseases, or drug development. The delivery of certain proteins such as monoclonal antibodies, enzymes, and growth hormones has been suffering from several obstacles because of their large size. These difficulties encouraged scientists to explore alternative approaches, leading to the progress in gene editing. The distinguished efforts and enormous experimentation have now been able to introduce methodologies that can change the genetic constitution of the living cell. The genome editing strategies have evolved during the last three decades, and nowadays, four types of "programmable" nucleases are available in this field: meganucleases, zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) (CRISPR/Cas-9) system. Each group has its own characteristics necessary for researchers to select the most suitable method for gene editing tool for a range of applications. Genome engineering/editing technology will revolutionize the creation of precisely manipulated genomes of cells or organisms in order to modify a specific characteristic. Of the potential applications are those in human health and agriculture. Introducing constructs into target cells or organisms is the key step in genome engineering. CONCLUSIONS Despite the success already achieved, the genome editing techniques are still suffering certain difficulties. Challenges must be overcome before the full potential of genome editing can be realized.
Collapse
Affiliation(s)
- Ahmad M Khalil
- Department of Biological Sciences, Yarmouk University, Irbid, Jordan.
| |
Collapse
|
42
|
Geisinger JM, Stearns T. CRISPR/Cas9 treatment causes extended TP53-dependent cell cycle arrest in human cells. Nucleic Acids Res 2020; 48:9067-9081. [PMID: 32687165 PMCID: PMC7498335 DOI: 10.1093/nar/gkaa603] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/30/2022] Open
Abstract
While the mechanism of CRISPR/Cas9 cleavage is understood, the basis for the large variation in mutant recovery for a given target sequence between cell lines is much less clear. We hypothesized that this variation may be due to differences in how the DNA damage response affects cell cycle progression. We used incorporation of EdU as a marker of cell cycle progression to analyze the response of several human cell lines to CRISPR/Cas9 treatment with a single guide directed to a unique locus. Cell lines with functionally wild-type TP53 exhibited higher levels of cell cycle arrest compared to lines without. Chemical inhibition of TP53 protein combined with TP53 and RB1 transcript silencing alleviated induced arrest in TP53+/+ cells. Using dCas9, we determined this arrest is driven in part by Cas9 binding to DNA. Additionally, wild-type Cas9 induced fewer 53BP1 foci in TP53+/+ cells compared to TP53−/− cells and DD-Cas9, suggesting that differences in break sensing are responsible for cell cycle arrest variation. We conclude that CRISPR/Cas9 treatment induces a cell cycle arrest dependent on functional TP53 as well as Cas9 DNA binding and cleavage. Our findings suggest that transient inhibition of TP53 may increase genome editing recovery in primary and TP53+/+ cell lines.
Collapse
Affiliation(s)
| | - Tim Stearns
- Department of Biology, Stanford University, Stanford, CA 94305, USA.,Department of Genetics, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
43
|
Park JS, Lee KY, Han JY. Precise Genome Editing in Poultry and Its Application to Industries. Genes (Basel) 2020; 11:E1182. [PMID: 33053652 PMCID: PMC7601607 DOI: 10.3390/genes11101182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/26/2022] Open
Abstract
Poultry such as chickens are valuable model animals not only in the food industry, but also in developmental biology and biomedicine. Recently, precise genome-editing technologies mediated by the CRISPR/Cas9 system have developed rapidly, enabling the production of genome-edited poultry models with novel traits that are applicable to basic sciences, agriculture, and biomedical industry. In particular, these techniques have been combined with cultured primordial germ cells (PGCs) and viral vector systems to generate a valuable genome-edited avian model for a variety of purposes. Here, we summarize recent progress in CRISPR/Cas9-based genome-editing technology and its applications to avian species. In addition, we describe further applications of genome-edited poultry in various industries.
Collapse
Affiliation(s)
| | | | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea; (J.S.P.); (K.Y.L.)
| |
Collapse
|
44
|
Pavlovic K, Tristán-Manzano M, Maldonado-Pérez N, Cortijo-Gutierrez M, Sánchez-Hernández S, Justicia-Lirio P, Carmona MD, Herrera C, Martin F, Benabdellah K. Using Gene Editing Approaches to Fine-Tune the Immune System. Front Immunol 2020; 11:570672. [PMID: 33117361 PMCID: PMC7553077 DOI: 10.3389/fimmu.2020.570672] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Genome editing technologies not only provide unprecedented opportunities to study basic cellular system functionality but also improve the outcomes of several clinical applications. In this review, we analyze various gene editing techniques used to fine-tune immune systems from a basic research and clinical perspective. We discuss recent advances in the development of programmable nucleases, such as zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and clustered regularly interspaced short palindromic repeat (CRISPR)-Cas-associated nucleases. We also discuss the use of programmable nucleases and their derivative reagents such as base editing tools to engineer immune cells via gene disruption, insertion, and rewriting of T cells and other immune components, such natural killers (NKs) and hematopoietic stem and progenitor cells (HSPCs). In addition, with regard to chimeric antigen receptors (CARs), we describe how different gene editing tools enable healthy donor cells to be used in CAR T therapy instead of autologous cells without risking graft-versus-host disease or rejection, leading to reduced adoptive cell therapy costs and instant treatment availability for patients. We pay particular attention to the delivery of therapeutic transgenes, such as CARs, to endogenous loci which prevents collateral damage and increases therapeutic effectiveness. Finally, we review creative innovations, including immune system repurposing, that facilitate safe and efficient genome surgery within the framework of clinical cancer immunotherapies.
Collapse
Affiliation(s)
- Kristina Pavlovic
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - María Tristán-Manzano
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Noelia Maldonado-Pérez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Marina Cortijo-Gutierrez
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Sabina Sánchez-Hernández
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Pedro Justicia-Lirio
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
- LentiStem Biotech, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - M. Dolores Carmona
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), Cellular Therapy Unit, Reina Sofia University Hospital, University of Cordoba, Cordoba, Spain
- Department of Hematology, Reina Sofía University Hospital, Córdoba, Spain
| | - Francisco Martin
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| | - Karim Benabdellah
- Genomic Medicine Department, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada (Andalusian Regional Government), Health Sciences Technology Park, Granada, Spain
| |
Collapse
|
45
|
Abstract
Life science has been in pursuit of precise and efficient genome editing in living cells since the very beginning of the first restriction cloning attempt. The introduction of RNA-guided CRISPR-associated (Cas) nucleases contributed to this ultimate goal through their ability to deliver a double-strand break (DSB) to a precise target location in various species, obsoleting the preceding editing tools, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). The derivative technology, base editing, combines the catalytically inactivated Cas nuclease and nucleotide deaminase and mediates the genetic modifications at single-nucleotide precision without introducing a DSB. Moreover, the cytosine base editors (CBEs) are able to transform multiple codons into stop codons, rapidly inactivating a gene of interest and enabling loss-of-function study in some recombination-deficient species. Here, we present the CRISPR-CBEI tool kit to assist the design of sgRNAs for CBE-mediated gene inactivation. Base editing is a promising technique, allowing precise single-base mutagenesis in genomes without double-strand DNA breaks or donor templates. Cytosine base editors (CBEs) convert cytosine to thymidine. In particular, CBEs can transform four codons, CAA, CAG, CGA, and TGG, into stop codons, providing a new means to rapidly inactivate a gene of interest and enabling loss-of-function study in recombination-deficient species and the construction of gene-inactivation libraries. However, designing single guide RNAs (sgRNAs) for gene inactivation is more complicated and more restricted in applicability than using the lustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (CRISPR/Cas9) system only, especially for researchers who do not specialize in the bioinformatics skills needed to design and evaluate sgRNAs. Here, we present a new user-friendly designing tool kit, namely, CRISPR-CBEI (cytosine base editor-mediated gene inactivation), including a Web tool and a command-line tool. The Web tool is dedicated to the design of sgRNAs for CBE-mediated gene inactivation and integrates various functions, including open reading frame (ORF) identification, CBE customization, sgRNA designing, summarizing, and front-end off-target searching against user-defined unlimited-file-size local genome files without the necessity of uploading to the server. The command-line version serves the same purpose but for a larger number of coding DNA sequences (CDSs), for instance, for designing a CBE-inactivation library in a target species which provides comprehensive evaluations of CBEs and target genomes. We envision that this tool would contribute to CBE-inactivation design. IMPORTANCE Life science has been in pursuit of precise and efficient genome editing in living cells since the very beginning of the first restriction cloning attempt. The introduction of RNA-guided CRISPR-associated (Cas) nucleases contributed to this ultimate goal through their ability to deliver a double-strand break (DSB) to a precise target location in various species, obsoleting the preceding editing tools, such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). The derivative technology, base editing, combines the catalytically inactivated Cas nuclease and nucleotide deaminase and mediates the genetic modifications at single-nucleotide precision without introducing a DSB. Moreover, the cytosine base editors (CBEs) are able to transform multiple codons into stop codons, rapidly inactivating a gene of interest and enabling loss-of-function study in some recombination-deficient species. Here, we present the CRISPR-CBEI tool kit to assist the design of sgRNAs for CBE-mediated gene inactivation.
Collapse
|
46
|
Mohammadi E, Benfeitas R, Turkez H, Boren J, Nielsen J, Uhlen M, Mardinoglu A. Applications of Genome-Wide Screening and Systems Biology Approaches in Drug Repositioning. Cancers (Basel) 2020; 12:E2694. [PMID: 32967266 PMCID: PMC7563533 DOI: 10.3390/cancers12092694] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 12/24/2022] Open
Abstract
Modern drug discovery through de novo drug discovery entails high financial costs, low success rates, and lengthy trial periods. Drug repositioning presents a suitable approach for overcoming these issues by re-evaluating biological targets and modes of action of approved drugs. Coupling high-throughput technologies with genome-wide essentiality screens, network analysis, genome-scale metabolic modeling, and machine learning techniques enables the proposal of new drug-target signatures and uncovers unanticipated modes of action for available drugs. Here, we discuss the current issues associated with drug repositioning in light of curated high-throughput multi-omic databases, genome-wide screening technologies, and their application in systems biology/medicine approaches.
Collapse
Affiliation(s)
- Elyas Mohammadi
- Science for Life Laboratory, KTH–Royal Institute of Technology, SE-17121 Stockholm, Sweden; (E.M.); (M.U.)
- Department of Animal Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Rui Benfeitas
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden;
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Jan Boren
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, SE-41345 Gothenburg, Sweden;
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden;
- BioInnovation Institute, DK-2200 Copenhagen N, Denmark
| | - Mathias Uhlen
- Science for Life Laboratory, KTH–Royal Institute of Technology, SE-17121 Stockholm, Sweden; (E.M.); (M.U.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH–Royal Institute of Technology, SE-17121 Stockholm, Sweden; (E.M.); (M.U.)
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
47
|
Precise Replacement of Saccharomyces cerevisiae Proteasome Genes with Human Orthologs by an Integrative Targeting Method. G3-GENES GENOMES GENETICS 2020; 10:3189-3200. [PMID: 32680853 PMCID: PMC7466971 DOI: 10.1534/g3.120.401526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Artificial induction of a chromosomal double-strand break in Saccharomyces cerevisiae enhances the frequency of integration of homologous DNA fragments into the broken region by up to several orders of magnitude. The process of homologous repair can be exploited to integrate, in principle, any foreign DNA into a target site, provided the introduced DNA is flanked at both the 5′ and 3′ ends by sequences homologous to the region surrounding the double-strand break. I have developed tools to precisely direct double-strand breaks to chromosomal target sites with the meganuclease I-SceI and select integration events at those sites. The method is validated in two different applications. First, the introduction of site-specific single-nucleotide phosphorylation site mutations into the S. cerevisiae gene SPO12. Second, the precise chromosomal replacement of eleven S. cerevisiae proteasome genes with their human orthologs. Placing the human genes under S. cerevisiae transcriptional control allowed us to update our understanding of cross-species functional gene replacement. This experience suggests that using native promoters may be a useful general strategy for the coordinated expression of foreign genes in S. cerevisiae. I provide an integrative targeting tool set that will facilitate a variety of precision genome engineering applications.
Collapse
|
48
|
Kantor A, McClements ME, MacLaren RE. CRISPR-Cas9 DNA Base-Editing and Prime-Editing. Int J Mol Sci 2020; 21:E6240. [PMID: 32872311 PMCID: PMC7503568 DOI: 10.3390/ijms21176240] [Citation(s) in RCA: 230] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 12/15/2022] Open
Abstract
Many genetic diseases and undesirable traits are due to base-pair alterations in genomic DNA. Base-editing, the newest evolution of clustered regularly interspaced short palindromic repeats (CRISPR)-Cas-based technologies, can directly install point-mutations in cellular DNA without inducing a double-strand DNA break (DSB). Two classes of DNA base-editors have been described thus far, cytosine base-editors (CBEs) and adenine base-editors (ABEs). Recently, prime-editing (PE) has further expanded the CRISPR-base-edit toolkit to all twelve possible transition and transversion mutations, as well as small insertion or deletion mutations. Safe and efficient delivery of editing systems to target cells is one of the most paramount and challenging components for the therapeutic success of BEs. Due to its broad tropism, well-studied serotypes, and reduced immunogenicity, adeno-associated vector (AAV) has emerged as the leading platform for viral delivery of genome editing agents, including DNA-base-editors. In this review, we describe the development of various base-editors, assess their technical advantages and limitations, and discuss their therapeutic potential to treat debilitating human diseases.
Collapse
Affiliation(s)
- Ariel Kantor
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences & NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK; (M.E.M.); (R.E.M.)
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| |
Collapse
|
49
|
Yokouchi Y, Suzuki S, Ohtsuki N, Yamamoto K, Noguchi S, Soejima Y, Goto M, Ishioka K, Nakamura I, Suzuki S, Takenoshita S, Era T. Rapid repair of human disease-specific single-nucleotide variants by One-SHOT genome editing. Sci Rep 2020; 10:13927. [PMID: 32811847 PMCID: PMC7435196 DOI: 10.1038/s41598-020-70401-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 07/24/2020] [Indexed: 12/26/2022] Open
Abstract
Many human diseases ranging from cancer to hereditary disorders are caused by single-nucleotide mutations in critical genes. Repairing these mutations would significantly improve the quality of life for patients with hereditary diseases. However, current procedures for repairing deleterious single-nucleotide mutations are not straightforward, requiring multiple steps and taking several months to complete. In the current study, we aimed to repair pathogenic allele-specific single-nucleotide mutations using a single round of genome editing. Using high-fidelity, site-specific nuclease AsCas12a/Cpf1, we attempted to repair pathogenic single-nucleotide variants (SNVs) in disease-specific induced pluripotent stem cells. As a result, we achieved repair of the Met918Thr SNV in human oncogene RET with the inclusion of a single-nucleotide marker, followed by absolute markerless, scarless repair of the RET SNV with no detected off-target effects. The markerless method was then confirmed in human type VII collagen-encoding gene COL7A1. Thus, using this One-SHOT method, we successfully reduced the number of genetic manipulations required for genome repair from two consecutive events to one, resulting in allele-specific repair that can be completed within 3 weeks, with or without a single-nucleotide marker. Our findings suggest that One-SHOT can be used to repair other types of mutations, with potential beyond human medicine.
Collapse
Affiliation(s)
- Yuji Yokouchi
- Pluripotent Stem Cell Research Unit in Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan. .,Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, Fukushima, Japan.
| | - Shinichi Suzuki
- Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Noriko Ohtsuki
- Pluripotent Stem Cell Research Unit in Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan.,Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Kei Yamamoto
- Pluripotent Stem Cell Research Unit in Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan.,Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Satomi Noguchi
- Pluripotent Stem Cell Research Unit in Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan.,Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Yumi Soejima
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Mizuki Goto
- Department of Cell Modulation, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan.,Department of Dermatology, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ken Ishioka
- Department of Microbiology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Izumi Nakamura
- Pluripotent Stem Cell Research Unit in Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan.,Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Satoru Suzuki
- Office of Thyroid Ultrasound Examination Promotion, Radiation Medical Science Centre for the Fukushima Health Management Survey, Fukushima Medical University, Fukushima, Japan
| | | | - Takumi Era
- Pluripotent Stem Cell Research Unit in Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, 1 Hikariga-oka, Fukushima, 960-1295, Japan.,Department of Thyroid and Endocrinology, School of Medicine, Fukushima Medical University, Fukushima, Japan.,Department of Cell Modulation, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
50
|
Colazo JM, Evans BC, Farinas AF, Al-Kassis S, Duvall CL, Thayer WP. Applied Bioengineering in Tissue Reconstruction, Replacement, and Regeneration. TISSUE ENGINEERING PART B-REVIEWS 2020; 25:259-290. [PMID: 30896342 DOI: 10.1089/ten.teb.2018.0325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
IMPACT STATEMENT The use of autologous tissue in the reconstruction of tissue defects has been the gold standard. However, current standards still face many limitations and complications. Improving patient outcomes and quality of life by addressing these barriers remain imperative. This article provides historical perspective, covers the major limitations of current standards of care, and reviews recent advances and future prospects in applied bioengineering in the context of tissue reconstruction, replacement, and regeneration.
Collapse
Affiliation(s)
- Juan M Colazo
- 1Vanderbilt University School of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,2Medical Scientist Training Program, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Brian C Evans
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Angel F Farinas
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Salam Al-Kassis
- 4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Craig L Duvall
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Wesley P Thayer
- 3Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,4Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|