1
|
Lago S, Nadai M, Ruggiero E, Tassinari M, Marušič M, Tosoni B, Frasson I, Cernilogar FM, Pirota V, Doria F, Plavec J, Schotta G, Richter SN. The MDM2 inducible promoter folds into four-tetrad antiparallel G-quadruplexes targetable to fight malignant liposarcoma. Nucleic Acids Res 2021; 49:847-863. [PMID: 33410915 PMCID: PMC7826256 DOI: 10.1093/nar/gkaa1273] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
Well-differentiated liposarcoma (WDLPS) is a malignant neoplasia hard to diagnose and treat. Its main molecular signature is amplification of the MDM2-containing genomic region. The MDM2 oncogene is the master regulator of p53: its overexpression enhances p53 degradation and inhibits apoptosis, leading to the tumoral phenotype. Here, we show that the MDM2 inducible promoter G-rich region folds into stable G-quadruplexes both in vitro and in vivo and it is specifically recognized by cellular helicases. Cell treatment with G-quadruplex-ligands reduces MDM2 expression and p53 degradation, thus stimulating cancer cell cycle arrest and apoptosis. Structural characterization of the MDM2 G-quadruplex revealed an extraordinarily stable, unique four-tetrad antiparallel dynamic conformation, amenable to selective targeting. These data indicate the feasibility of an out-of-the-box G-quadruplex-targeting approach to defeat WDLPS and all tumours where restoration of wild-type p53 is sought. They also point to G-quadruplex-dependent genomic instability as possible cause of MDM2 expansion and WDLPS tumorigenesis.
Collapse
Affiliation(s)
- Sara Lago
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Emanuela Ruggiero
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Martina Tassinari
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Maja Marušič
- Slovenian NMR center, National Institute of Chemistry, Hajdrihova, 19, Ljubljana SI-1000, Slovenia
| | - Beatrice Tosoni
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Ilaria Frasson
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| | - Filippo M Cernilogar
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Valentina Pirota
- Department of Chemistry, University of Pavia, V. le Taramelli 10, 27100, Pavia, Italy
| | - Filippo Doria
- Department of Chemistry, University of Pavia, V. le Taramelli 10, 27100, Pavia, Italy
| | - Janez Plavec
- Slovenian NMR center, National Institute of Chemistry, Hajdrihova, 19, Ljubljana SI-1000, Slovenia
| | - Gunnar Schotta
- Division of Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Germany
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, via A. Gabelli 63, 35121 Padua, Italy
| |
Collapse
|
2
|
Shima A, Matsuoka H, Yamaoka A, Michihara A. Transcription of CLDND1 in human brain endothelial cells is regulated by the myeloid zinc finger 1. Clin Exp Pharmacol Physiol 2021; 48:260-269. [PMID: 33037622 DOI: 10.1111/1440-1681.13416] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 09/12/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
Increased permeability of endothelial cells lining the blood vessels in the brain leads to vascular oedema and, potentially, to stroke. The tight junctions (TJs), primarily responsible for the regulation of vascular permeability, are multi-protein complexes comprising the claudin family of proteins and occludin. Several studies have reported that downregulation of the claudin domain containing 1 (CLDND1) gene enhances vascular permeability, which consequently increases the risk of stroke. However, the transcriptional regulation of CLDND1 has not been studied extensively. Therefore, this study aimed to identify the transcription factors (TFs) regulating CLDND1 expression. A luciferase reporter assay identified a silencer within the first intron of CLDND1, which was identified as a potential binding site of the myeloid zinc finger 1 (MZF1) through in silico and TFBIND software analyses, and confirmed through a reporter assay using the MZF1 expression vector and chromatin immunoprecipitation (ChIP) assays. Moreover, the transient overexpression of MZF1 significantly increased the mRNA and protein expression levels of CLDND1, conversely, which were suppressed through the siRNA-mediated MZF1 knockdown. Furthermore, the permeability of FITC-dextran was observed to be increased on MZF1 knockdown as compared to that of the siGFP control. Our data revealed the underlying mechanism of the transcriptional regulation of CLDND1 by the MZF1. The findings suggest a potential role of MZF1 in TJ formation, which could be studied further and applied to prevent cerebral haemorrhage.
Collapse
Affiliation(s)
- Akiho Shima
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Hiroshi Matsuoka
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Alice Yamaoka
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| | - Akihiro Michihara
- Laboratory of Genomic Function and Pathophysiology, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, Fukuyama, Japan
| |
Collapse
|
3
|
Chebly A, Peloponese JM, Ségal-Bendirdjian E, Merlio JP, Tomb R, Chevret E. hMZF-2, the Elusive Transcription Factor. Front Genet 2021; 11:581115. [PMID: 33424921 PMCID: PMC7793725 DOI: 10.3389/fgene.2020.581115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/20/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Alain Chebly
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, Bordeaux, France.,Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Jean-Marie Peloponese
- University of Montpellier, CNRS IRIM-UMR 9004, Research Institute in Infectiology of Montpellier, Montpellier, France
| | - Evelyne Ségal-Bendirdjian
- Université de Paris, INSERM UMR-S 1124, Team: Cellular Homeostasis, Cancer and Therapies, INSERM US36/CNRS UMS 2009, BioMedTech Facilities, Paris, France
| | - Jean-Philippe Merlio
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, Bordeaux, France.,Bordeaux University Hospital Center, Tumor Bank and Tumor Biology Laboratory, Pessac, France
| | - Roland Tomb
- Medical Genetics Unit (UGM), Faculty of Medicine, Saint Joseph University, Beirut, Lebanon.,Department of Dermatology, Faculty of Medicine, Saint Joseph University, Beirut, Lebanon
| | - Edith Chevret
- Bordeaux University, INSERM U1053 Bordeaux Research in Translational Oncology (BaRITOn), Cutaneous Lymphoma Oncogenesis Team, Bordeaux, France
| |
Collapse
|
4
|
Bertuzzi M, Tang D, Calligaris R, Vlachouli C, Finaurini S, Sanges R, Goldwurm S, Catalan M, Antonutti L, Manganotti P, Pizzolato G, Pezzoli G, Persichetti F, Carninci P, Gustincich S. A human minisatellite hosts an alternative transcription start site for NPRL3 driving its expression in a repeat number-dependent manner. Hum Mutat 2020; 41:807-824. [PMID: 31898848 DOI: 10.1002/humu.23974] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 11/16/2019] [Accepted: 12/24/2019] [Indexed: 12/21/2022]
Abstract
Minisatellites, also called variable number of tandem repeats (VNTRs), are a class of repetitive elements that may affect gene expression at multiple levels and have been correlated to disease. Their identification and role as expression quantitative trait loci (eQTL) have been limited by their absence in comparative genomic hybridization and single nucleotide polymorphisms arrays. By taking advantage of cap analysis of gene expression (CAGE), we describe a new example of a minisatellite hosting a transcription start site (TSS) which expression is dependent on the repeat number. It is located in the third intron of the gene nitrogen permease regulator like protein 3 (NPRL3). NPRL3 is a component of the GAP activity toward rags 1 protein complex that inhibits mammalian target of rapamycin complex 1 (mTORC1) activity and it is found mutated in familial focal cortical dysplasia and familial focal epilepsy. CAGE tags represent an alternative TSS identifying TAGNPRL3 messenger RNAs (mRNAs). TAGNPRL3 is expressed in red blood cells both at mRNA and protein levels, it interacts with its protein partner NPRL2 and its overexpression inhibits cell proliferation. This study provides an example of a minisatellite that is both a TSS and an eQTL as well as identifies a new VNTR that may modify mTORC1 activity.
Collapse
Affiliation(s)
| | - Dave Tang
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan
| | - Raffaella Calligaris
- Area of Neuroscience, SISSA, Trieste, Italy.,Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | | | - Sara Finaurini
- Area of Neuroscience, SISSA, Trieste, Italy.,Department of Health Sciences, Università del Piemonte Orientale and IRCAD, Novara, Italy
| | - Remo Sanges
- Area of Neuroscience, SISSA, Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Mauro Catalan
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Lucia Antonutti
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Paolo Manganotti
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Gilberto Pizzolato
- Department of Medical Sciences, Neurology Unit, University of Trieste, Trieste, Italy
| | - Gianni Pezzoli
- Parkinson Institute, ASST G. Pini-CTO, ex ICP, Milan, Italy
| | - Francesca Persichetti
- Department of Health Sciences, Università del Piemonte Orientale and IRCAD, Novara, Italy
| | - Piero Carninci
- Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan.,Laboratory for Transcriptome Technology, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Stefano Gustincich
- Area of Neuroscience, SISSA, Trieste, Italy.,Central RNA Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
5
|
Brix DM, Bundgaard Clemmensen KK, Kallunki T. Zinc Finger Transcription Factor MZF1-A Specific Regulator of Cancer Invasion. Cells 2020; 9:cells9010223. [PMID: 31963147 PMCID: PMC7016646 DOI: 10.3390/cells9010223] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/08/2020] [Accepted: 01/14/2020] [Indexed: 12/11/2022] Open
Abstract
Over 90% of cancer deaths are due to cancer cells metastasizing into other organs. Invasion is a prerequisite for metastasis formation. Thus, inhibition of invasion can be an efficient way to prevent disease progression in these patients. This could be achieved by targeting the molecules regulating invasion. One of these is an oncogenic transcription factor, Myeloid Zinc Finger 1 (MZF1). Dysregulated transcription factors represent a unique, increasing group of drug targets that are responsible for aberrant gene expression in cancer and are important nodes driving cancer malignancy. Recent studies report of a central involvement of MZF1 in the invasion and metastasis of various solid cancers. In this review, we summarize the research on MZF1 in cancer including its function and role in lysosome-mediated invasion and in the expression of genes involved in epithelial to mesenchymal transition. We also discuss possible means to target it on the basis of the current knowledge of its function in cancer.
Collapse
Affiliation(s)
- Ditte Marie Brix
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
- Danish Medicines Council, Dampfærgevej 27-29, 2100 Copenhagen, Denmark
| | - Knut Kristoffer Bundgaard Clemmensen
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
| | - Tuula Kallunki
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; (D.M.B.); (K.K.B.C.)
- Department of Drug Design and Pharmacology, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-35-25-7746
| |
Collapse
|
6
|
Marín-Rosales M, Cruz A, Salazar-Camarena DC, Santillán-López E, Espinoza-García N, Muñoz-Valle JF, Ramírez-Dueñas MG, Oregón-Romero E, Orozco-Barocio G, Palafox-Sánchez CA. High BAFF expression associated with active disease in systemic lupus erythematosus and relationship with rs9514828C>T polymorphism in TNFSF13B gene. Clin Exp Med 2019; 19:183-190. [DOI: 10.1007/s10238-019-00549-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/06/2019] [Indexed: 12/16/2022]
|
7
|
Roebuck KA, Saifuddin M. Regulation of HIV-1 transcription. Gene Expr 2018; 8:67-84. [PMID: 10551796 PMCID: PMC6157391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is a highly pathogenic lentivirus that requires transcription of its provirus genome for completion of the viral life cycle and the production of progeny virions. Since the first genetic analysis of HIV-1 in 1985, much has been learned about the transcriptional regulation of the HIV-1 genome in infected cells. It has been demonstrated that HIV-1 transcription depends on a varied and complex interaction of host cell transcription factors with the viral long terminal repeat (LTR) promoter. The regulatory elements within the LTR interact with constitutive and inducible transcription factors to direct the assembly of a stable transcription complex that stimulates multiple rounds of transcription by RNA polymerase II (RNAPII). However, the majority of these transcripts terminate prematurely in the absence of the virally encoded trans-activator protein Tat, which stimulates HIV-1 transcription elongation by interacting with a stem-loop RNA element (TAR) formed at the extreme 5' end of all viral transcripts. The Tat-TAR interaction recruits a cellular kinase into the initiation-elongation complex that alters the elongation properties of RNAPII during its transit through TAR. This review summarizes our current knowledge and understanding of the regulation of HIV-1 transcription in infected cells and highlights the important contributions human lentivirus gene regulation has made to our general understanding of the transcription process.
Collapse
Affiliation(s)
- K A Roebuck
- Department of Immunology/Microbiology, Rush Presbyterian St. Luke's Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
8
|
Lee CJ, Hsu LS, Yue CH, Lin H, Chiu YW, Lin YY, Huang CY, Hung MC, Liu JY. MZF-1/Elk-1 interaction domain as therapeutic target for protein kinase Cα-based triple-negative breast cancer cells. Oncotarget 2018; 7:59845-59859. [PMID: 27542222 PMCID: PMC5312353 DOI: 10.18632/oncotarget.11337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/06/2016] [Indexed: 12/31/2022] Open
Abstract
Recent reports demonstrate that the expression of protein kinase C alpha (PKCα) in triple-negative breast cancer (TNBC) correlates with decreased survival outcomes. However, off-target effects of targeting PKCα and limited understanding of the signaling mechanisms upstream of PKCα have hampered previous efforts to manipulate this ubiquitous gene. This study shows that the expression of both myeloid zinc finger 1 (MZF-1) and Ets-like protein-1 (Elk-1) correlates with PKCα expression in TNBC. We found that the acidic domain of MZF-1 and the heparin-binding domain of Elk-1 facilitate the heterodimeric interaction between the two genes before the complex formation binds to the PKCα promoter. Blocking the formation of the heterodimer by transfection of MZF-160-72 or Elk-1145-157 peptide fragments at the MZF-1 / Elk-1 interface decreases DNA-binding activity of the MZF-1 / Elk-1 complex at the PKCα promoter. Subsequently, PKCα expression, migration, tumorigenicity, and the epithelial-mesenchymal transition potential of TNBC cells decrease. These subsequent effects are reversed by transfection with full-length PKCα, confirming that the MZF-1/Elk-1 heterodimer is a mediator of PKCα in TNBC cells. These data suggest that the next therapeutic strategy in treating PKCα-related cancer will be developed from blocking MZF-1/Elk-1 interaction through their binding domain.
Collapse
Affiliation(s)
- Chia-Jen Lee
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan
| | - Li-Sung Hsu
- Institute of Biochemistry, Microbiology and Immunology, Medical College, Chung-Shan Medical University, Taichung 40201, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Chia-Herng Yue
- Department of Surgery, Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan.,Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Ho Lin
- Department of Life Science, National Chung Hsing University, Taichung 402, Taiwan
| | - Yung-Wei Chiu
- Emergency Department and Center of Hyperbaric Oxygen Therapy, Tungs' Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Yu-Yu Lin
- Graduate Institute of Cancer Biology, China Medical University, Taichung 40402, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Chinese Medical Science, School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.,Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| | - Mien-Chie Hung
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung 40402, Taiwan.,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jer-Yuh Liu
- Center for Molecular Medicine, China Medical University Hospital, Taichung 40402, Taiwan.,Graduate Institute of Cancer Biology, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
9
|
miRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget 2018; 7:40314-40328. [PMID: 27259238 PMCID: PMC5130010 DOI: 10.18632/oncotarget.9739] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/13/2016] [Indexed: 11/25/2022] Open
Abstract
Matrix metalloproteinase 14 (MMP-14), a membrane-anchored MMP that promotes the tumorigenesis and aggressiveness, is highly expressed in gastric cancer. However, the transcriptional regulators of MMP-14 expression in gastric cancer still remain largely unknown. In this study, through mining computational algorithm programs and chromatin immunoprecipitation datasets, we identified adjacent binding sites of myeloid zinc finger 1 (MZF1) and miRNA-337-3p (miR-337-3p) within the MMP-14 promoter. We demonstrated that MZF1 directly bound to the MMP-14 promoter to facilitate its nascent transcription and expression in gastric cancer cell lines. In contrast, endogenous miR-337-3p suppressed the MMP-14 expression through recognizing its binding site within MMP-14 promoter. Mechanistically, miR-337-3p repressed the binding of MZF1 to MMP-14 promoter via recruiting Argonaute 2 and inducing repressive chromatin remodeling. Gain- and loss-of-function studies demonstrated that miR-337-3p suppressed the growth, invasion, metastasis, and angiogenesis of gastric cancer cells in vitro and in vivo through repressing MZF1-facilitated MMP-14 expression. In clinical specimens and cell lines of gastric cancer, MZF1 was highly expressed and positively correlated with MMP-14 expression. Meanwhile, miR-337-3p was under-expressed and inversely correlated with MMP-14 levels. miR-337-3p was an independent prognostic factor for favorable outcome of gastric cancer, and patients with high MZF1 or MMP-14 expression had lower survival probability. Taken together, these data indicate that miR-337-3p directly binds to the MMP-14 promoter to repress MZF1-facilitatd MMP-14 expression, thus suppressing the progression of gastric cancer.
Collapse
|
10
|
CHATTI I, WOILLARD JB, MILI A, CREVEAUX I, BEN CHARFEDDINE I, FEKI J, LANGLAIS S, BEN FATMA L, SAAD A, GRIBAA M, LIBERT F. Genetic Analysis of Mu and Kappa Opioid Receptor and COMT Enzyme in Cancer Pain Tunisian Patients Under Opioid Treatment. IRANIAN JOURNAL OF PUBLIC HEALTH 2017; 46:1704-1711. [PMID: 29259946 PMCID: PMC5734971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Pain and its opioid treatments are complex measurable traits. Responses to morphine in terms of pain control is likely to be determined by many factors, including the underlying pain sensitivity of the patient, along with nature and extent of the painful process, concomitant medications, genetic and other clinical and environmental factors. This study investigated genetic polymorphisms implicated in the inter-individual pain response variability to opioid treatment in the Tunisian population. METHODS This prospective association study investigated seven variations in the OPRM1, OPRK1 and COMT gene, which encode Mu and KAPPA opioid receptors, and Catechol-O-methyltransferase enzyme respectively, in a cohort of 129 Tunisian cancer pain patients under oral morphine treatment. Genotyping was performed by simple probe probes on Light Cyler for rs17174629, rs1799972, rs1799971, rs1051659, rs1051660 and rs4680 and by PCR assay for the indel in the promoter region of OPRK1 (rs35566036). A statistical associations study between dose (continuous), dose escalation (yes/no) and SNP or haplotypes were investigated using linear multiple regressions and logistic regressions respectively adjusted on metastases and pain covariates in the R software. RESULTS We detected significant association of the rs1051660 adjusted on metastasis and pain (P=0.02), no other association has been detected between the 7 polymorphisms screened and the dose of morphine needed for pain relief. CONCLUSION This can be explained by the strong genetic heterogeneity in the cosmopolitan areas where our patients were recruited for this study, compared to more homegenous population recruited in other studies.
Collapse
Affiliation(s)
- Imen CHATTI
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached Hospital, Sousse, Tunisia,Corresponding Author:
| | | | - Amira MILI
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached Hospital, Sousse, Tunisia
| | - Isabelle CREVEAUX
- Laboratoire de Biochimie Médicale, Faculté de Médecine, Clermont-Ferrand, France
| | - Ilhem BEN CHARFEDDINE
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached Hospital, Sousse, Tunisia
| | - Jihène FEKI
- Service d’Oncologie Médicale et Service de Chirurgie Générale, CHU Habib Bourguiba, Université de Sfax, Sfax, Tunisia
| | - Sarah LANGLAIS
- Laboratoire de Biochimie Médicale, Faculté de Médecine, Clermont-Ferrand, France
| | - Leila BEN FATMA
- Dept. of Medical Oncology, CHU Farhat Hached, Sousse, Tunisia
| | - Ali SAAD
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached Hospital, Sousse, Tunisia
| | - Moez GRIBAA
- Laboratory of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached Hospital, Sousse, Tunisia
| | - Frédéric LIBERT
- Laboratoire de Pharmacologie et Toxicologie, CHU G. Montpied, Clermont-Ferrand, France,Inserm, U1107 NEURO-DOL, Clermont Université, 63001 Clermont-Ferrand, France
| |
Collapse
|
11
|
Verma NK, Gadi A, Maurizi G, Roy UB, Mansukhani A, Basilico C. Myeloid Zinc Finger 1 and GA Binding Protein Co-Operate with Sox2 in Regulating the Expression of Yes-Associated Protein 1 in Cancer Cells. Stem Cells 2017; 35:2340-2350. [PMID: 28905448 DOI: 10.1002/stem.2705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/22/2017] [Indexed: 01/06/2023]
Abstract
The transcription factor (TF) yes-associated protein 1 (YAP1) is a major effector of the tumor suppressive Hippo signaling pathway and is also necessary to maintain pluripotency in embryonic stem cells. Elevated levels of YAP1 expression antagonize the tumor suppressive effects of the Hippo pathway that normally represses YAP1 function. High YAP1 expression is observed in several types of human cancers and is particularly prominent in cancer stem cells (CSCs). The stem cell TF Sox2, which marks and maintains CSCs in osteosarcomas (OSs), promotes YAP1 expression by binding to an intronic enhancer element and YAP1 expression is also crucial for the maintainance of OS stem cells. To further understand the regulation of YAP1 expression in OSs, we subjected the YAP1 intronic enhancer to scanning mutagenesis to identify all DNA cis-elements critical for enhancer function. Through this approach, we identified two novel TFs, GA binding protein (GABP) and myeloid zinc finger 1 (MZF1), which are essential for basal YAP1 transcription. These factors are highly expressed in OSs and bind to distinct sites in the YAP1 enhancer. Depletion of either factor leads to drastically reduced YAP1 expression and thus a reversal of stem cell properties. We also found that YAP1 can regulate the expression of Sox2 by binding to two distinct DNA binding sites upstream and downstream of the Sox2 gene. Thus, Sox2 and YAP1 reinforce each others expression to maintain stemness and tumorigenicity in OSs, but the activity of MZF1 and GABP is essential for YAP1 transcription. Stem Cells 2017;35:2340-2350.
Collapse
Affiliation(s)
| | - Abhilash Gadi
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Giulia Maurizi
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Upal Basu Roy
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Alka Mansukhani
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| | - Claudio Basilico
- Department of Microbiology, NYU School of Medicine, New York, New York, USA
| |
Collapse
|
12
|
Yesudhas D, Batool M, Anwar MA, Panneerselvam S, Choi S. Proteins Recognizing DNA: Structural Uniqueness and Versatility of DNA-Binding Domains in Stem Cell Transcription Factors. Genes (Basel) 2017; 8:genes8080192. [PMID: 28763006 PMCID: PMC5575656 DOI: 10.3390/genes8080192] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 07/22/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022] Open
Abstract
Proteins in the form of transcription factors (TFs) bind to specific DNA sites that regulate cell growth, differentiation, and cell development. The interactions between proteins and DNA are important toward maintaining and expressing genetic information. Without knowing TFs structures and DNA-binding properties, it is difficult to completely understand the mechanisms by which genetic information is transferred between DNA and proteins. The increasing availability of structural data on protein-DNA complexes and recognition mechanisms provides deeper insights into the nature of protein-DNA interactions and therefore, allows their manipulation. TFs utilize different mechanisms to recognize their cognate DNA (direct and indirect readouts). In this review, we focus on these recognition mechanisms as well as on the analysis of the DNA-binding domains of stem cell TFs, discussing the relative role of various amino acids toward facilitating such interactions. Unveiling such mechanisms will improve our understanding of the molecular pathways through which TFs are involved in repressing and activating gene expression.
Collapse
Affiliation(s)
- Dhanusha Yesudhas
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Muhammad Ayaz Anwar
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Suresh Panneerselvam
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.
| |
Collapse
|
13
|
Association of the OPRM1 and COMT genes’ polymorphisms with the efficacy of morphine in Tunisian cancer patients: Impact of the high genetic heterogeneity in Tunisia? Therapie 2016; 71:507-513. [DOI: 10.1016/j.therap.2016.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Accepted: 04/04/2016] [Indexed: 01/21/2023]
|
14
|
Broecker F, Hardt C, Herwig R, Timmermann B, Kerick M, Wunderlich A, Schweiger MR, Borsig L, Heikenwalder M, Lehrach H, Moelling K. Transcriptional signature induced by a metastasis-promoting c-Src mutant in a human breast cell line. FEBS J 2016; 283:1669-88. [PMID: 26919036 DOI: 10.1111/febs.13694] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 01/20/2016] [Accepted: 02/23/2016] [Indexed: 01/06/2023]
Abstract
UNLABELLED Deletions at the C-terminus of the proto-oncogene protein c-Src kinase are found in the viral oncogene protein v-Src as well as in some advanced human colon cancers. They are associated with increased kinase activity and cellular invasiveness. Here, we analyzed the mRNA expression signature of a constitutively active C-terminal mutant of c-Src, c-Src(mt), in comparison with its wild-type protein, c-Src(wt), in the human non-transformed breast epithelial cell line MCF-10A. We demonstrated previously that the mutant altered migratory and metastatic properties. Genome-wide transcriptome analysis revealed that c-Src(mt) de-regulated the expression levels of approximately 430 mRNAs whose gene products are mainly involved in the cellular processes of migration and adhesion, apoptosis and protein synthesis. 82.9% of these genes have previously been linked to cellular migration, while the others play roles in RNA transport and splicing processes, for instance. Consistent with the transcriptome data, cells expressing c-Src(mt), but not those expressing c-Src(wt), showed the capacity to metastasize into the lungs of mice in vivo. The mRNA expression profile of c-Src(mt)-expressing cells shows significant overlap with that of various primary human tumor samples, possibly reflecting elevated Src activity in some cancerous cells. Expression of c-Src(mt) led to elevated migratory potential. We used this model system to analyze the transcriptional changes associated with an invasive cellular phenotype. These genes and pathways de-regulated by c-Src(mt) may provide suitable biomarkers or targets of therapeutic approaches for metastatic cells. DATABASE This project was submitted to the National Center for Biotechnology Information BioProject under ID PRJNA288540. The Illumina RNA-Seq reads are available in the National Center for Biotechnology Information Sequence Read Archive under study ID SRP060008 with accession numbers SRS977414 for MCF-10A cells, SRS977717 for mock cells, SRS978053 for c-Src(wt) cells and SRS978046 for c-Src(mt) cells.
Collapse
Affiliation(s)
- Felix Broecker
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,University of Zurich, Switzerland
| | | | - Ralf Herwig
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Martin Kerick
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | | | - Lubor Borsig
- Institute of Physiology, Zurich Center for Integrative Human Physiology, University of Zurich, Switzerland
| | - Mathias Heikenwalder
- Institute of Virology, Technische Universität München, Germany.,Institute of Virology, Helmholtz Zentrum Munich, Germany.,Department Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hans Lehrach
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,Dahlem Centre for Genome Research and Medical Systems Biology, Berlin, Germany.,Alacris Theranostics GmbH, Berlin, Germany
| | - Karin Moelling
- Max Planck Institute for Molecular Genetics, Berlin, Germany.,University of Zurich, Switzerland
| |
Collapse
|
15
|
McKay GJ, Kavanagh DH, Crean JK, Maxwell AP. Bioinformatic Evaluation of Transcriptional Regulation of WNT Pathway Genes with reference to Diabetic Nephropathy. J Diabetes Res 2016; 2016:7684038. [PMID: 26697505 PMCID: PMC4677197 DOI: 10.1155/2016/7684038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 05/18/2015] [Accepted: 05/24/2015] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE WNT/β-catenin pathway members have been implicated in interstitial fibrosis and glomerular sclerosis disease processes characteristic of diabetic nephropathy (DN), processes partly controlled by transcription factors (TFs) that bind to gene promoter regions attenuating regulation. We sought to identify predicted cis-acting transcription factor binding sites (TFBSs) overrepresented within WNT pathway members. METHODS We assessed 62 TFBS motif frequencies from the JASPAR databases in 65 WNT pathway genes. P values were estimated on the hypergeometric distribution for each TF. Gene expression profiles of enriched motifs were examined in DN-related datasets to assess clinical significance. RESULTS Transcription factor AP-2 alpha (TFAP2A), myeloid zinc finger 1 (MZF1), and specificity protein 1 (SP1) were significantly enriched within WNT pathway genes (P values < 6.83 × 10(-29), 1.34 × 10(-11), and 3.01 × 10(-6), resp.). MZF1 expression was significantly increased in DN in a whole kidney dataset (fold change = 1.16; 16% increase; P = 0.03). TFAP2A expression was decreased in an independent dataset (fold change = -1.02; P = 0.03). No differential expression of SP1 was detected. CONCLUSIONS Three TFBS profiles are significantly enriched within WNT pathway genes highlighting the potential of in silico analyses for identification of pathway regulators. Modification of TF binding may possibly limit DN progression, offering potential therapeutic benefit.
Collapse
Affiliation(s)
- Gareth J. McKay
- Centre for Public Health, Queen's University Belfast, Belfast BT12 6BA, UK
- *Gareth J. McKay:
| | - David H. Kavanagh
- Centre for Public Health, Queen's University Belfast, Belfast BT12 6BA, UK
| | - John K. Crean
- Conway Institute, University College Dublin, Dublin 4, Ireland
| | | |
Collapse
|
16
|
CpG island erosion, polycomb occupancy and sequence motif enrichment at bivalent promoters in mammalian embryonic stem cells. Sci Rep 2015; 5:16791. [PMID: 26582124 PMCID: PMC4652170 DOI: 10.1038/srep16791] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/14/2015] [Indexed: 12/24/2022] Open
Abstract
In embryonic stem (ES) cells, developmental regulators have a characteristic bivalent chromatin signature marked by simultaneous presence of both activation (H3K4me3) and repression (H3K27me3) signals and are thought to be in a 'poised' state for subsequent activation or silencing during differentiation. We collected eleven pairs (H3K4me3 and H3K27me3) of ChIP sequencing datasets in human ES cells and eight pairs in murine ES cells, and predicted high-confidence (HC) bivalent promoters. Over 85% of H3K27me3 marked promoters were bivalent in human and mouse ES cells. We found that (i) HC bivalent promoters were enriched for developmental factors and were highly likely to be differentially expressed upon transcription factor perturbation; (ii) murine HC bivalent promoters were occupied by both polycomb repressive component classes (PRC1 and PRC2) and grouped into four distinct clusters with different biological functions; (iii) HC bivalent and active promoters were CpG rich while H3K27me3-only promoters lacked CpG islands. Binding enrichment of distinct sets of regulators distinguished bivalent from active promoters. Moreover, a 'TCCCC' sequence motif was specifically enriched in bivalent promoters. Finally, this analysis will serve as a resource for future studies to further understand transcriptional regulation during embryonic development.
Collapse
|
17
|
Expression of myeloid zinc finger 1 and the correlation to clinical aspects of oral squamous cell carcinoma. Tumour Biol 2015; 36:7099-105. [DOI: 10.1007/s13277-015-3419-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 03/31/2015] [Indexed: 01/14/2023] Open
|
18
|
Li Z, Gu X, Sun L, Wu S, Liang L, Cao J, Lutz BM, Bekker A, Zhang W, Tao YX. Dorsal root ganglion myeloid zinc finger protein 1 contributes to neuropathic pain after peripheral nerve trauma. Pain 2015; 156:711-721. [PMID: 25630025 PMCID: PMC4366285 DOI: 10.1097/j.pain.0000000000000103] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Peripheral nerve injury-induced changes in gene transcription and translation in primary sensory neurons of the dorsal root ganglion (DRG) are considered to contribute to neuropathic pain genesis. Transcription factors control gene expression. Peripheral nerve injury increases the expression of myeloid zinc finger protein 1 (MZF1), a transcription factor, and promotes its binding to the voltage-gated potassium 1.2 (Kv1.2) antisense (AS) RNA gene in the injured DRG. However, whether DRG MZF1 participates in neuropathic pain is still unknown. Here, we report that blocking the nerve injury-induced increase of DRG MZF1 through microinjection of MZF1 siRNA into the injured DRG attenuated the initiation and maintenance of mechanical, cold, and thermal pain hypersensitivities in rats with chronic constriction injury (CCI) of the sciatic nerve, without affecting locomotor functions and basal responses to acute mechanical, heat, and cold stimuli. Mimicking the nerve injury-induced increase of DRG MZF1 through microinjection of recombinant adeno-associated virus 5 expressing full-length MZF1 into the DRG produced significant mechanical, cold, and thermal pain hypersensitivities in naive rats. Mechanistically, MZF1 participated in CCI-induced reductions in Kv1.2 mRNA and protein and total Kv current and the CCI-induced increase in neuronal excitability through MZF1-triggered Kv1.2 AS RNA expression in the injured DRG neurons. MZF1 is likely an endogenous trigger of neuropathic pain and might serve as a potential target for preventing and treating this disorder.
Collapse
Affiliation(s)
- Zhisong Li
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Xiyao Gu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Linlin Sun
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Shaogen Wu
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Lingli Liang
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Jing Cao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Departmart of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Brianna Marie Lutz
- Rutgers Graduate School of Biomedical Sciences, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Alex Bekker
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
- Departments of Cell Biology & Molecular Medicine, Neurology & Neuroscience, and Physiology & Pharmacology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
19
|
Doppler SA, Werner A, Barz M, Lahm H, Deutsch MA, Dreßen M, Schiemann M, Voss B, Gregoire S, Kuppusamy R, Wu SM, Lange R, Krane M. Myeloid zinc finger 1 (Mzf1) differentially modulates murine cardiogenesis by interacting with an Nkx2.5 cardiac enhancer. PLoS One 2014; 9:e113775. [PMID: 25436607 PMCID: PMC4249966 DOI: 10.1371/journal.pone.0113775] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 10/28/2014] [Indexed: 02/07/2023] Open
Abstract
Vertebrate heart development is strictly regulated by temporal and spatial expression of growth and transcription factors (TFs). We analyzed nine TFs, selected by in silico analysis of an Nkx2.5 enhancer, for their ability to transactivate the respective enhancer element that drives, specifically, expression of genes in cardiac progenitor cells (CPCs). Mzf1 showed significant activity in reporter assays and bound directly to the Nkx2.5 cardiac enhancer (Nkx2.5 CE) during murine ES cell differentiation. While Mzf1 is established as a hematopoietic TF, its ability to regulate cardiogenesis is completely unknown. Mzf1 expression was significantly enriched in CPCs from in vitro differentiated ES cells and in mouse embryonic hearts. To examine the effect of Mzf1 overexpression on CPC formation, we generated a double transgenic, inducible, tetOMzf1-Nkx2.5 CE eGFP ES line. During in vitro differentiation an early and continuous Mzf1 overexpression inhibited CPC formation and cardiac gene expression. A late Mzf1 overexpression, coincident with a second physiological peak of Mzf1 expression, resulted in enhanced cardiogenesis. These findings implicate a novel, temporal-specific role of Mzf1 in embryonic heart development. Thereby we add another piece of puzzle in understanding the complex mechanisms of vertebrate cardiac development and progenitor cell differentiation. Consequently, this knowledge will be of critical importance to guide efficient cardiac regenerative strategies and to gain further insights into the molecular basis of congenital heart malformations.
Collapse
Affiliation(s)
- Stefanie A. Doppler
- Department of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich, Germany
- * E-mail:
| | - Astrid Werner
- Department of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich, Germany
| | - Melanie Barz
- Department of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich, Germany
| | - Harald Lahm
- Department of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich, Germany
| | - Marcus-André Deutsch
- Department of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich, Germany
| | - Martina Dreßen
- Department of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich, Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
- Clinical Cooperation Groups “Antigen-specific Immunotherapy” and “Immune-Monitoring”, Helmholtz Center Munich (Neuherberg), TUM, Munich, Germany
| | - Bernhard Voss
- Department of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich, Germany
| | - Serge Gregoire
- Cardiovascular Research Center, Division of Cardiology, Harvard Medical School, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Rajarajan Kuppusamy
- Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sean M. Wu
- Division of Cardiovascular Medicine, Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Rüdiger Lange
- Department of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich, Germany
- DZHK (German Center for Cardiovascular Research) – partner site Munich Heart Alliance, Munich, Germany
| | - Markus Krane
- Department of Experimental Surgery, Department of Cardiovascular Surgery, Deutsches Herzzentrum München, Technische Universität München (TUM), Munich, Germany
- DZHK (German Center for Cardiovascular Research) – partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
20
|
SA-NGUANRAKSA DOONYAPAT, KOOPTIWUT SUWATTANEE, CHUANGSUWANICH TUENJAI, PONGPRUTTIPAN TAWATCHAI, MALASIT PRIDA, O-CHAROENRAT PORNCHAI. Vascular endothelial growth factor polymorphisms affect gene expression and tumor aggressiveness in patients with breast cancer. Mol Med Rep 2014; 9:1044-8. [DOI: 10.3892/mmr.2014.1890] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 12/04/2013] [Indexed: 11/06/2022] Open
|
21
|
Wright PW, Huehn A, Cichocki F, Li H, Sharma N, Dang H, Lenvik TR, Woll P, Kaufman D, Miller JS, Anderson SK. Identification of a KIR antisense lncRNA expressed by progenitor cells. Genes Immun 2013; 14:427-33. [PMID: 23863987 PMCID: PMC3808466 DOI: 10.1038/gene.2013.36] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 06/07/2013] [Accepted: 06/11/2013] [Indexed: 01/16/2023]
Abstract
Human NK cells express cell surface class I MHC receptors (killer cell immunoglobulin-like receptor, KIR) in a probabilistic manner. Previous studies have shown that a distal promoter acts in conjunction with a proximal bidirectional promoter to control the selective activation of KIR genes. We report here the presence of an intron 2 promoter in several KIR genes that produce a spliced antisense transcript. This long noncoding RNA (lncRNA) transcript contains antisense sequence complementary to KIR-coding exons 1 and 2 as well as the proximal promoter region of the KIR genes. The antisense promoter contains myeloid zinc finger 1 (MZF-1)-binding sites, a transcription factor found in hematopoietic progenitors and myeloid precursors. The KIR antisense lncRNA was detected only in progenitor cells or pluripotent cell lines, suggesting a function that is specific for stem cells. Overexpression of MZF-1 in developing NK cells led to decreased KIR expression, consistent with a role for the KIR antisense lncRNA in silencing KIR gene expression early in development.
Collapse
Affiliation(s)
- Paul W. Wright
- Lab of Experimental Immunology, SAIC-Frederick Inc., Frederick National Lab, Frederick, MD
| | - Andrew Huehn
- Cancer and Inflammation Program, CCR, National Cancer Institute, Frederick, MD
| | - Frank Cichocki
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Hongchuan Li
- Lab of Experimental Immunology, SAIC-Frederick Inc., Frederick National Lab, Frederick, MD
| | - Neeraj Sharma
- Cancer and Inflammation Program, CCR, National Cancer Institute, Frederick, MD
| | - Hong Dang
- Cancer and Inflammation Program, CCR, National Cancer Institute, Frederick, MD
| | - Todd R. Lenvik
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Petter Woll
- Stem Cell Institute, University of Minnesota, Minneapolis, MN
| | - Dan Kaufman
- Stem Cell Institute, University of Minnesota, Minneapolis, MN
| | - Jeffrey S. Miller
- Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN
| | - Stephen K. Anderson
- Lab of Experimental Immunology, SAIC-Frederick Inc., Frederick National Lab, Frederick, MD
- Cancer and Inflammation Program, CCR, National Cancer Institute, Frederick, MD
| |
Collapse
|
22
|
Razin SV, Borunova VV, Maksimenko OG, Kantidze OL. Cys2His2 zinc finger protein family: classification, functions, and major members. BIOCHEMISTRY (MOSCOW) 2013; 77:217-26. [PMID: 22803940 DOI: 10.1134/s0006297912030017] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cys2His2 (C2H2)-type zinc fingers are widespread DNA binding motifs in eukaryotic transcription factors. Zinc fingers are short protein motifs composed of two or three β-layers and one α-helix. Two cysteine and two histidine residues located in certain positions bind zinc to stabilize the structure. Four other amino acid residues localized in specific positions in the N-terminal region of the α-helix participate in DNA binding by interacting with hydrogen donors and acceptors exposed in the DNA major groove. The number of zinc fingers in a single protein can vary over a wide range, thus enabling variability of target DNA sequences. Besides DNA binding, zinc fingers can also provide protein-protein and RNA-protein interactions. For the most part, proteins containing the C2H2-type zinc fingers are trans regulators of gene expression that play an important role in cellular processes such as development, differentiation, and suppression of malignant cell transformation (oncosuppression).
Collapse
Affiliation(s)
- S V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | | | | | | |
Collapse
|
23
|
p55PIK transcriptionally activated by MZF1 promotes colorectal cancer cell proliferation. BIOMED RESEARCH INTERNATIONAL 2012; 2013:868131. [PMID: 23509792 PMCID: PMC3591147 DOI: 10.1155/2013/868131] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/31/2012] [Indexed: 01/23/2023]
Abstract
p55PIK, regulatory subunit of class IA phosphatidylinositol 3-kinase (PI3K), plays a crucial role in cell cycle progression by interaction with tumor repressor retinoblastoma (Rb) protein. A recent study showed that Rb protein can localize to the mitochondria in proliferative cells. Aberrant p55PIK expression may contribute to mitochondrial dysfunction in cancer progression. To reveal the mechanisms of p55PIK transcriptional regulation, the p55PIK promoter characteristics were analyzed. The data show that myeloid zinc finger 1, MZF1, is necessary for p55PIK gene transcription activation. ChIP (Chromatin immuno-precipitation) assay shows that MZF1 binds to the cis-element "TGGGGA" in p55PIK promoter. In MZF1 overexpressed cells, the promoter activity, expression of p55PIK, and cell proliferation rate were observed to be significantly enhanced. Whereas in MZF1-silenced cells, the promoter activity and expression of p55PIK and cell proliferation level was statistically decreased. In CRC tissues, MZF1 and p55PIK mRNA expression were increased (P = 0.046, P = 0.047, resp.). A strong positive correlation (Rs = 0.94) between MZF1 and p55PIK mRNA expression was observed. Taken together, we concluded that p55PIK is transcriptionally activated by MZF1, resulting in increased proliferation of colorectal cancer cells.
Collapse
|
24
|
Sa-Nguanraksa D, O-Charoenrat P. The role of vascular endothelial growth factor a polymorphisms in breast cancer. Int J Mol Sci 2012. [PMID: 23203097 PMCID: PMC3509613 DOI: 10.3390/ijms131114845] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Breast cancer is the most common cancer in females and the leading cause of cancer death in women worldwide. Angiogenesis, the formation of new blood vessels, plays an important role in the development and progression of breast cancer. Vascular endothelial growth factor A (VEGFA), the key modulator of angiogenesis, is highly expressed in cancer tissue and correlates with its more aggressive features. Polymorphisms of VEGFA alter the levels of expression and subsequently influence the susceptibility and aggressiveness of breast cancer. Assessment of VEGFA polymorphisms may be used for the identification of patients suitable for anti-VEGFA therapy.
Collapse
Affiliation(s)
- Doonyapat Sa-Nguanraksa
- Division of Head-Neck and Breast Surgery, Department of Surgery, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| | | |
Collapse
|
25
|
Overexpression of myeloid zinc finger 1 suppresses matrix metalloproteinase-2 expression and reduces invasiveness of SiHa human cervical cancer cells. Biochem Biophys Res Commun 2012; 425:462-7. [PMID: 22846578 DOI: 10.1016/j.bbrc.2012.07.125] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Accepted: 07/23/2012] [Indexed: 01/29/2023]
Abstract
Myeloid zinc finger 1 (MZF1) gene belongs to the Kruppel family of zinc finger transcription factors. MZF1 has been suggested to play an important role in the tumorigenesis, invasion, and apoptosis of various tumor cells. However, the role of MZF1 in human cervical cancer remains unclear. To investigate the molecular mechanisms of MZF1 and its functional role in human cervical cancer cell migration and invasion, we experimented on stable SiHa cells overexpressing MZF1. We found that MZF1 overexpression inhibits the migratory and invasive abilities of SiHa cervical cancer cells. In addition, the overexpression of MZF1 significantly reduces MMP-2 protein and mRNA levels. Luciferase and ChIP assays suggested that MZF1 directly binds to MMP-2 gene regulatory sequences in vivo and suppresses MMP-2 promoter activity in vitro. This study shows that MZF-1 represses MMP-2 transcription and suggests that this repression may be linked to inhibition of human cervical cancer cell migration and metastasis.
Collapse
|
26
|
Wu X, Cheng Y, Li T, Wang Z, Liu JY. In vitro identification of DNA-binding motif for the new zinc finger protein AtYY1. Acta Biochim Biophys Sin (Shanghai) 2012; 44:483-9. [PMID: 22508367 DOI: 10.1093/abbs/gms020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The functional characterization of novel transcription factors identified by systematic analysis remains a major challenge due to insufficient data to interpret their specific roles in signaling networks. Here we present a DNA-binding sequence discovery method to in vitro identify a G-rich, 11-bp DNA-binding motif of a novel potential transcription factor AtYY1, a zinc finger protein in Arabidopsis, by using polymerase chain reaction-assisted in vitro selection and surface plasmon resonance analysis. Further mutational analysis of the conserved G bases of the potential motif confirmed that AtYY1 specifically bound to these conserved G sites. Additionally, genome-wide target gene analysis revealed that AtYY1 was involved in diverse cellular pathways, including glucose metabolism, photosynthesis, phototropism, and stress response.
Collapse
Affiliation(s)
- Xueping Wu
- Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
27
|
Ohsaka Y, Nishino H. Polymorphisms in the 5′-UTR of PTEN and other gene polymorphisms in normal Japanese individuals. CYTOL GENET+ 2012. [DOI: 10.3103/s0095452712020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Li R, Ackerman WE, Summerfield TL, Yu L, Gulati P, Zhang J, Huang K, Romero R, Kniss DA. Inflammatory gene regulatory networks in amnion cells following cytokine stimulation: translational systems approach to modeling human parturition. PLoS One 2011; 6:e20560. [PMID: 21655103 PMCID: PMC3107214 DOI: 10.1371/journal.pone.0020560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 05/05/2011] [Indexed: 11/18/2022] Open
Abstract
A majority of the studies examining the molecular regulation of human labor have been conducted using single gene approaches. While the technology to produce multi-dimensional datasets is readily available, the means for facile analysis of such data are limited. The objective of this study was to develop a systems approach to infer regulatory mechanisms governing global gene expression in cytokine-challenged cells in vitro, and to apply these methods to predict gene regulatory networks (GRNs) in intrauterine tissues during term parturition. To this end, microarray analysis was applied to human amnion mesenchymal cells (AMCs) stimulated with interleukin-1β, and differentially expressed transcripts were subjected to hierarchical clustering, temporal expression profiling, and motif enrichment analysis, from which a GRN was constructed. These methods were then applied to fetal membrane specimens collected in the absence or presence of spontaneous term labor. Analysis of cytokine-responsive genes in AMCs revealed a sterile immune response signature, with promoters enriched in response elements for several inflammation-associated transcription factors. In comparison to the fetal membrane dataset, there were 34 genes commonly upregulated, many of which were part of an acute inflammation gene expression signature. Binding motifs for nuclear factor-κB were prominent in the gene interaction and regulatory networks for both datasets; however, we found little evidence to support the utilization of pathogen-associated molecular pattern (PAMP) signaling. The tissue specimens were also enriched for transcripts governed by hypoxia-inducible factor. The approach presented here provides an uncomplicated means to infer global relationships among gene clusters involved in cellular responses to labor-associated signals.
Collapse
Affiliation(s)
- Ruth Li
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
| | - William E. Ackerman
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
| | - Taryn L. Summerfield
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio,
United States of America
| | - Parul Gulati
- Center for Biostatistics, The Ohio State University, Columbus, Ohio,
United States of America
| | - Jie Zhang
- Department of Biomedical Informatics, The Ohio State University,
Columbus, Ohio, United States of America
| | - Kun Huang
- Department of Biomedical Informatics, The Ohio State University,
Columbus, Ohio, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Intramural Division, Eunice Kennedy Shriver
National Institute of Child Health and Human Development, National Institutes of
Health, Department of Health and Human Services, Bethesda, Maryland, United
States of America
- Hutzel Women's Hospital, Detroit, Michigan, United States of
America
| | - Douglas A. Kniss
- Division of Maternal-Fetal Medicine and Laboratory of Perinatal Research,
Department of Obstetrics and Gynecology, The Ohio State University, Columbus,
Ohio, United States of America
- Department of Biomedical Engineering, The Ohio State University,
Columbus, Ohio, United States of America
- * E-mail:
| |
Collapse
|
29
|
Jang HJ, Choi JW, Kim YM, Shin SS, Lee K, Han JY. Reactivation of Transgene Expression by Alleviating CpG Methylation of the Rous sarcoma virus Promoter in Transgenic Quail Cells. Mol Biotechnol 2011; 49:222-8. [DOI: 10.1007/s12033-011-9393-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Jiang W, Sequeira JM, Nakayama Y, Lai SC, Quadros EV. Characterization of the promoter region of TCblR/CD320 gene, the receptor for cellular uptake of transcobalamin-bound cobalamin. Gene 2010; 466:49-55. [PMID: 20627121 DOI: 10.1016/j.gene.2010.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 06/22/2010] [Accepted: 07/07/2010] [Indexed: 11/15/2022]
Abstract
Cellular uptake of cobalamin (Cbl) is mediated by the transcobalamin receptor (TCblR) that binds and internalizes transcobalamin (TC) saturated with Cbl. These receptors are expressed in actively proliferating cells and are down-regulated in quiescent cells. The 5' region of TCblR gene was analyzed for promoter activity to determine transcriptional regulation of TCblR expression. The region -668 to -455 appears to regulate TCblR expression. We have identified transcription factors MZF-1 (myeloid zinc finger 1)/RREB-1 (Ras-responsive element binding protein 1), C/EBP (CCAAT/enhancer binding protein)/HNF-3beta (hepatocyte nuclear factor 3) and AP-1(activator protein 1) as proteins likely to be involved in this regulation with the former region primarily involved in up regulation and the latter two regions involved in suppression of TCblR expression. These transcription factors are involved in cell proliferation and differentiation. Thus the cell cycle associated expression of TCblR appears to be tightly regulated in synchrony with the proliferative phase of the cell cycle.
Collapse
Affiliation(s)
- Wenxia Jiang
- School of Graduate Studies, SUNY-Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | | | |
Collapse
|
31
|
What is the role of alternate splicing in antigen presentation by major histocompatibility complex class I molecules? Immunol Res 2010; 46:32-44. [PMID: 19830395 DOI: 10.1007/s12026-009-8123-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The expression of major histocompatibility complex (MHC) class I molecules on the cell surface is critical for recognition by cytotoxic T lymphocytes (CTL). This recognition event leads to destruction of cells displaying MHC class I-viral peptide complexes or cells displaying MHC class I-mutant peptide complexes. Before they can be transported to the cell surface, MHC class I molecules must associate with their peptide ligand in the endoplasmic reticulum (ER) of the cell. Within the ER, numerous proteins assist in the appropriate assembly and folding of MHC class I molecules. These include the heterodimeric transporter associated with antigen processing (TAP1 and TAP2), the heterodimeric chaperone-oxidoreductase complex of tapasin and ERp57 and the general ER chaperones calreticulin and calnexin. Each of these accessory proteins has a well-defined role in antigen presentation by MHC class I molecules. However, alternate splice forms of MHC class I heavy chains, TAP and tapasin, have been reported suggesting additional complexity to the picture of antigen presentation. Here, we review the importance of these different accessory proteins and the progress in our understanding of alternate splicing in antigen presentation.
Collapse
|
32
|
Perera EM, Bao Y, Kos L, Berkovitz G. Structural and functional characterization of the mouse tescalcin promoter. Gene 2010; 464:50-62. [PMID: 20540995 DOI: 10.1016/j.gene.2010.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 02/06/2023]
Abstract
Tescalcin, an EF-hand calcium binding protein that regulates the Na(+)/H(+) exchanger 1 (NHE1), is highly expressed in various mouse tissues such as heart and brain. Despite its potentially important role in cell physiology, the mechanisms that regulate tescalcin gene (Tesc) expression are unknown. In this study, we report two new Tesc mRNA variants (V2 and V3) and characterize the mouse Tesc promoter. The V2 and V3 transcripts result from alternative splicing of intron 5. Our results show that Tesc mRNA variants are expressed in various mouse tissues. Primer extension analysis located the transcription start site at 94 nucleotides upstream of the translation start codon. The DNA nucleotide sequence of the 5'-flanking region contained a CpG island spanning the promoter region from nucleotides -372 to +814, a canonical TATA box (-38/-32), and putative transcription factor binding sites for Sp1, EGR1, ZBP-89, KLF3, MZF1, AP2, ZF5, and CDF-1. Transient transfection of the Y1 and msc-1 cell lines with a series of 5'-deleted promoter constructs indicated that the minimal promoter region was between nucleotides -130 and -40. Electrophoresis mobility shift assays, supershift assays, and mutation studies demonstrated that Sp1 and Sp3 bind to the GC-rich motifs, a CACCC box and three GC boxes, located within the Tesc proximal promoter. Nonetheless, mutations that abolished interaction of Sp1 and Sp3 with the GC-rich motifs located within the minimal promoter region did not abrogate promoter activity in Y1 cells. Mithramycin A, an inhibitor of Sp1-DNA interaction, reduced Tesc promoter activity in msc-1 cells in a dose-dependent manner. Sp3 was a weaker transactivator compared to Sp1 in Drosophila D.mel-2 cells. However, when Sp1 and Sp3 were coexpressed, they transactivated the Tesc promoter in a synergistic manner. In Y1 cells, mutation analysis of a putative ZF5 motif located within the Tesc minimal promoter indicated that this motif was critical for activity of Tesc promoter. Taken together, the data demonstrated that Sp1 and Sp3 transcription factors cooperate positively in the regulation of Tesc promoter, and that the putative ZF5 motif is critical for its activation.
Collapse
Affiliation(s)
- Erasmo M Perera
- Department of Pediatrics, Endocrinology Division, University of Miami, Leonard Miller School of Medicine, Miami, FL 33136, USA.
| | | | | | | |
Collapse
|
33
|
Ichiro Ohbayashi K, Tanaka K, Kitajima K, Tamura K, Hara T. Novel role for the intraflagellar transport protein CMG-1 in regulating the transcription of cyclin-D2, E-cadherin and integrin-alpha family genes in mouse spermatocyte-derived cells. Genes Cells 2010; 15:699-710. [PMID: 20545763 DOI: 10.1111/j.1365-2443.2010.01414.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Capillary morphogenesis gene (CMG)-1 is a mammalian homologue of the intraflagellar transport protein IFT-74/72 of Chlamydomonas. CMG-1 is abundantly expressed in immature stages of male germ-line cells of the adult mouse testis and is required for the expression of cyclin-D2 in GC-2, a mouse premeiotic spermatocyte-derived cell line. In this study, we show that the knockdown of CMG-1 in GC-2 cells leads to down-regulation of E-cadherin, integrin-alpha1, alpha2, alpha10, and alpha11 expression. The ability of the CMG-1-knockdown GC-2 cells to adhere to type-I collagen-coated plates was consequently impaired. Inducible expression of an siRNA-resistant CMG-1 cDNA in these cells rescued the expression of E-cadherin and the integrin-alpha family genes and partially restored adherence to type-I collagen. CMG-1 participates in the transcriptional regulation of cyclin-D2 via a genomic DNA region between -250 and -216 of the mouse cyclin-D2 gene. Closely related sequences were found in the enhancer/promotor regions of E-cadherin and the four integrin-alpha family genes. Based on these data, we propose that CMG-1 serves as a transcriptional regulator of proliferation and adhesion-associated genes in early stage male germ-line cells in the testis.
Collapse
|
34
|
Kothinti RK, Blodgett AB, Petering DH, Tabatabai NM. Cadmium down-regulation of kidney Sp1 binding to mouse SGLT1 and SGLT2 gene promoters: possible reaction of cadmium with the zinc finger domain of Sp1. Toxicol Appl Pharmacol 2010; 244:254-62. [PMID: 20060848 DOI: 10.1016/j.taap.2009.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 12/19/2009] [Accepted: 12/21/2009] [Indexed: 02/04/2023]
Abstract
Cadmium (Cd) exposure causes glucosuria (glucose in the urine). Previously, it was shown that Cd exposure of primary cultures of mouse kidney cells (PMKC) decreased mRNA levels of the glucose transporters, SGLT1 and SGLT2 and that Sp1 from Cd-exposed cells displayed reduced binding to the GC boxes of the mouse SGLT1 promoter in vitro. Here, we identified a GC box upstream of mouse SGLT2 gene. ChIP assays on PMKC revealed that exposure to 5 microM Cd abolished Sp1 binding to SGLT1 GC box while it decreased Sp1 binding to SGLT2 GC sequence by 30% in vivo. The in vitro DNA binding assay, EMSA, demonstrated that binding of Sp1 from Cd (7.5 microM)-treated PMKC to the SGLT2 GC probe was 86% lower than in untreated cells. Sp1 is a zinc finger protein. Compared to PMKC exposed to 5 microM Cd alone, inclusion of 5 microM Zn restored SGLT1 and 2 mRNA levels by 15% and 30%, respectively. Cd (10 microM) decreased the binding of recombinant Sp1 (rhSp1) to SGLT1 and SGLT2 GC probes to 12% and 8% of untreated controls. Cd exerted no effect on GC-bound rhSp1. Co-treatment with Cd and Zn showed that added Zn significantly restored rhSp1 binding to the SGLT1 and SGLT2. Addition of Zn post Cd treatment was not stimulatory. We conclude that Cd can replace Zn in Sp1 DNA binding domain to reduce its binding to GC sites in mouse SGLT1 and SGLT2 promoters.
Collapse
Affiliation(s)
- Rajendra K Kothinti
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | | | | | | |
Collapse
|
35
|
Taniguchi M, Hayashi T, Nii M, Yamaguchi T, Fujishima-Kanaya N, Awata T, Mikawa S. Fine mapping of quantitative trait loci for meat color on Sus scrofa chromosome 6: analysis of the swine NUDT7 gene. J Anim Sci 2010; 88:23-31. [PMID: 19749013 DOI: 10.2527/jas.2009-1814] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the livestock industry, meat color has become important because consumer acceptance is subject to the appearance of the product in the marketplace. Our previous analyses of a whole genome QTL scan for various meat qualities using 2 F(2) families from Japanese wild boar (known as a red meat) x Large White and from Duroc x Chinese Jinhua suggested that a meat color (heme content) QTL is located on SSC6. The objective of this study was to fine-map this SSC6 meat color QTL and subsequently investigate positional candidate genes for polymorphisms that may cause changes in meat color. Therefore, we conducted interval mapping on SSC6 using an additional 9 gene markers through combined analyses of the 2 F(2) families of Japanese wild boar x Large White (353 progeny) and Duroc x Chinese Jinhua (204 progeny). Comparative analysis with humans, mice, and cattle suggested that there were 10 functional genes in the region. Among these genes, we suggested that a novel pig gene encoding a nudix (nucleoside diphosphate linked moiety X)-type motif 7 (NUDT7, a member of the nudix hydrolases) is a strong candidate for the QTL because the mouse Nudt7 is reported to hydrolyze succinyl-CoA, a substrate of the reaction limiting the rate of heme biosynthesis. We therefore determined the pig NUDT7 gene sequence including the 5' promoter region and explored genetic polymorphisms between Japanese wild boar and Large White. We identified 116 polymorphisms within the NUDT7 CDS or in the 5' region. None of the AA substitutions were associated with the meat color QTL; however, 3 polymorphisms were found in putative transcription factor recognition sites. We then investigated the differential expression of NUDT7 in Japanese wild boar and Large White by allele-specific quantitative real-time PCR. The expression level of the Large White type allele was greater than that of the Japanese wild-boar-type allele. Consequently, we speculated that the difference in meat color between Japanese wild boar and Large White is caused partly by differential expression of this candidate gene. Upregulation of NUDT7 expression in muscle may reduce succinyl-CoA content and thus reduce the level of heme biosynthesis.
Collapse
Affiliation(s)
- M Taniguchi
- Animal Genome Research Unit, National Institute of Agrobiological Sciences, Ibaraki 305-0901, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Quan JX, Zheng F, Li XX, Hu LL, Sun ZY, Jiao YL, Wang BL. Cloning and analysis of rat osteoclast inhibitory lectin gene promoter. J Cell Biochem 2009; 106:599-607. [PMID: 19127542 DOI: 10.1002/jcb.22036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Osteoclast inhibitory lectin (OCIL) is a novel regulator of bone remodeling, however, little is known concerning how OCIL is regulated to date. In this study, approximately 4.4 kb of the 5'-flanking sequence of rat OCIL gene was cloned into the promoter-less reporter vector pGL3-basic and transiently transfected into three different cell lines. The differences in the levels of luciferase activity paralleled well with the levels of OCIL mRNA expression in these cells, suggesting that the regulation of rat OCIL gene expression occurs mainly at the transcriptional level. Additional luciferase assays using a series of constructs containing unidirectionally deleted fragments showed that the construct-1819/pGL3 (-1819 to +118) exhibited the highest luciferase activity, suggesting the presence of functional promoter in this region. The region from -4370 to -2805 might contain negative regulatory elements, while the region from -1819 to -1336 might have important positive regulatory elements that enhance OCIL transcription. Sequence analysis of the promoter revealed the absence of both TATA and CAAT boxes. However, in the proximal promoter region (-81 to +118), several potential transcription factor binding sites that may be responsible for the basal transcriptional activity of rat OCIL promoter were observed. The promoter contains several potential Sp1 binding sites, and cotransfection of a shRNA expression plasmid that knockdowns Sp1 significantly reduced OCIL promoter activity and endogenous gene expression and moreover, overexpressing Sp7, a Sp1 family member that also binds to Sp1 binding sequence, increased OCIL promoter activity and gene expression, suggesting a role of Sp1 family proteins in regulation of OCIL transcription.
Collapse
Affiliation(s)
- Jin-Xing Quan
- Key Lab of Ministry of Health for Hormone and Development, Institute of Endocrinology, Tianjin Medical University, Tianjin, PR China
| | | | | | | | | | | | | |
Collapse
|
37
|
Saksena S, Dwivedi A, Singla A, Gill RK, Tyagi S, Borthakur A, Alrefai WA, Ramaswamy K, Dudeja PK. Characterization of the 5'-flanking region and regulation of expression of human anion exchanger SLC26A6. J Cell Biochem 2008; 105:454-66. [PMID: 18655181 PMCID: PMC2705132 DOI: 10.1002/jcb.21842] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
SLC26A6 (putative anion transporter 1, PAT1) has been shown to play an important role in mediating the luminal Cl(-)/OH(-)(HCO(3)(-)) exchange process in the intestine. Very little is known about the molecular mechanisms involved in the transcriptional regulation of intestinal SLC26A6 gene expression in the intestine. Current studies were, therefore, designed to clone and characterize the 5'-regulatory region of the human SLC26A6 gene and determine the mechanisms involved in its regulation. A 1,120 bp (p-964/+156) SLC26A6 promoter fragment cloned upstream to the luciferase reporter gene in pGL2-basic exhibited high promoter activity when transfected in Caco2 cells. Progressive deletions of the 5'-flanking region demonstrated that -214/-44 region of the promoter harbors cis-acting elements important for maximal SLC26A6 promoter activity. Since, diarrhea associated with inflammatory bowel diseases is attributed to increased secretion of pro-inflammatory cytokines, we examined the effects of IFNgamma (30 ng/ml, 24 h) on SLC26A6 function, expression and promoter activity. IFNgamma decreased both SLC26A6 mRNA and function and repressed SLC26A6 promoter activity. Deletion analysis indicated that IFNgamma response element is located between -414/-214 region and sequence analysis of this region revealed the presence of potential Interferon Stimulated Responsive Element (ISRE), a binding site (-318/-300 bp) for interferon regulatory factor-1 transcription factor (IRF-1). Mutations in the potential ISRE site abrogated the inhibitory effects of IFNgamma. These studies provided novel evidence for the involvement of IRF-1 in the regulation of SLC26A6 gene expression by IFNgamma in the human intestine.
Collapse
Affiliation(s)
- Seema Saksena
- Department of Medicine, University of Illinois at Chicago, Jesse Brown VA Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hochberg JC, Miron PM, Hay BN, Woda BA, Wang SA, Richert-Przygonska M, Aprikyan AAG, Newburger PE. Mosaic tetraploidy and transient GFI1 mutation in a patient with severe chronic neutropenia. Pediatr Blood Cancer 2008; 50:630-2. [PMID: 17096407 DOI: 10.1002/pbc.21094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This report presents the case of a 15-year-old male with severe chronic neutropenia, leukopenia, and persistent tetraploid mosaicism in the bone marrow and peripheral blood. His father had mild neutropenia and bone marrow tetraploidy. Flow cytometric analysis of DNA content peripheral blood showed tetraploidy in 20% of granulocytes and 15% of monocytes. Sequence analysis of the ELA2 gene was normal, but the GFI1 gene exhibited transient appearance of single base changes the coding region and promoter. We speculate that an underlying genetic defect, inherited in an autosomal dominant pattern, leads to both disordered mitosis and neutropenia in this kindred.
Collapse
Affiliation(s)
- Jessica C Hochberg
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Kikuta Y, Mizomoto J, Strobel HW, Ohkawa H. Expression and physiological function of CYP4F subfamily in human eosinophils. Biochim Biophys Acta Mol Cell Biol Lipids 2007; 1771:1439-45. [PMID: 17980168 DOI: 10.1016/j.bbalip.2007.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 09/13/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
We investigated expression of the CYP4F subfamily in human leukocytes by flow cytometry using anti-CYP4F3A antibody and quantitative reverse transcription-polymerase chain reaction (QRT-PCR). More than 90% of CD11b, CD13, CD14, CD33, and eosinophil marker-positive cells expressed CYP4F3A. mRNA for CYP4F3A was found in neutrophils, monocytes, and eosinophils. CYP4F12 mRNA was detected in eosinophils and neutrophils. In eosinophils, transcription of the CYP4F12 gene was started from two sites at 49 and 85 nucleotides upstream from the 3' end of exon I. Recombinant CYP4F12 expressed in yeast cell microsomes catalyzed the omega-hydroxylation of leukotriene B4 (LTB4) and 6-trans-LTB4. In contrast, the CYP4F12 did not show any activity toward eicosanoids such as lipoxin A4 and 12-HETE, which are substrates for CYP4F3A, indicating that the physiological roles of CYP4F3A and CYP4F12 in eosinophils are different.
Collapse
Affiliation(s)
- Yasushi Kikuta
- Department of Applied Biological Science, Faculty of Life Science and Biotechnology, Fukuyama University, Gakuencho-1, Fukuyama, Hiroshima 729-0292, Japan.
| | | | | | | |
Collapse
|
40
|
Inoue S, Imamura A, Okazaki Y, Yokota H, Arai M, Hayashi N, Furukawa A, Itokawa M, Oishi M. Synaptotagmin XI as a candidate gene for susceptibility to schizophrenia. Am J Med Genet B Neuropsychiatr Genet 2007; 144B:332-40. [PMID: 17192956 DOI: 10.1002/ajmg.b.30465] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Synaptotagmin XI (Syt11) is a member of the synaptotagmin family, which is localized in cells either in synaptic vesicles or the cellular membrane, and is known to act as a calcium sensor. The Syt11 gene is located on chromosome locus 1q21-q22, which was previously reported as a major susceptibility locus of familial schizophrenia. Here, we present evidence for an association between the number of 33-bp repeats in the promoter region of the Syt11 gene and schizophrenia. We found that the transcriptional activity of the gene is affected by the number of 33-bp repeats, which include an Sp1 binding site, suggesting that the excessive expression of Syt11 can be associated with schizophrenia. Another (single nucleotide) polymorphism in the Syt11 5'UTR region, where the potent transcription factor YY1 can bind, also affects the transcriptional activity of Syt11.
Collapse
Affiliation(s)
- Shinichi Inoue
- Kazusa Research Institute, Kazusa-kamatari, Kisarazu, Chiba, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hemmi K, Ma D, Miura Y, Kawaguchi M, Sasahara M, Hashimoto-Tamaoki T, Tamaoki T, Sakata N, Tsuchiya K. A homeodomain-zinc finger protein, ZFHX4, is expressed in neuronal differentiation manner and suppressed in muscle differentiation manner. Biol Pharm Bull 2006; 29:1830-5. [PMID: 16946494 DOI: 10.1248/bpb.29.1830] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human ZFHX4 has recently been shown to be a candidate gene for congenital bilateral isolated ptosis. Here, we report molecular cloning of the human ZFHX4 cDNA and genomic organization of this gene. Human ZFHX4 is about 180 kb long, containing 12 exons that encodes a 3599-amino acid protein carrying four homeodomains and 22 zinc fingers. The 11th exon is 3.2 kb in length and encodes all the four homeodomains together with four of the 22 zinc fingers. ZFHX4 is 90% homologous to mouse Zfhx4, 52% to human ATBF1A and 24% to Drosophila ZFH-2. ZFHX4 was mapped to human chromosome 8q13.3-q21.11 by fluorescence in situ hybridization using BAC clone RP11-48D4 as a probe. RT-PCR analysis showed that ZFHX4 transcripts were expressed in adult human brain, liver and muscle. This, together with the finding that Zfhx4 was expressed transiently in differentiating P19 embryonal carcinoma cells and C2C12 myoblasts, suggests that ZFHX4/Zfhx4 is involved in neural and muscle differentiation.
Collapse
Affiliation(s)
- Kazunori Hemmi
- Department of Biochemistry, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bayerer B, Stamer U, Hoeft A, Stüber F. Genomic variations and transcriptional regulation of the human mu-opioid receptor gene. Eur J Pain 2006; 11:421-7. [PMID: 16843022 DOI: 10.1016/j.ejpain.2006.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Revised: 03/26/2006] [Accepted: 06/03/2006] [Indexed: 11/25/2022]
Abstract
The mu-opioid receptor (MOR1) is a target of endogenous and exogenous opioids and plays a pivotal role for anesthesia and analgesia. Variations in the 5' flanking sequence of the mu-opioid receptor gene may influence transcriptional regulation and ultimately alter protein expression of MOR1. In the present study we investigated the influence of eight single nucleotide polymorphisms (SNP) within the mu-opioid receptor promoter on promoter activity and evaluated the frequencies of the relevant SNPs in 700 patients under opioid medication. Reporter-gene-constructs were created by means of PCR and site directed mutagenesis, testing eight SNPs previously described. The neuroblastoma cell line SHSY5Y was used for transfection and promoter activity was estimated by luciferase activity. Of the eight reporter gene constructs employed to test genomic variations, two produced a significant change in luciferase activity when compared to wild-type constructs. The G-554A variation located within a known NFkB binding element resulted in a decreased activity whereas the A/G base exchange at position -1320 showed an increased luciferase activity. This particular variant generated a myeloid zinc finger (MZF1) cis-acting element known to impact transcription. The allele frequency of the -1320G variant was 0.21% in 700 Caucasian patients under opioid medication in contrast to 9.1% reported previously in drug addicted African Americans. Because of this unexpected low frequency an association analysis to opioid requirements and effects of mu-opioid receptor agonists was not feasible. In conclusion, transcriptional regulation of MOR1 is modified by two genetic variations at positions -554 and -1320 of the mu-opioid receptor promoter. Individuals presenting these variations may have an altered level of MOR expression. A possible association of these genomic variants on efficacy and side effects of opioid treatment in different ethnic groups has to be elucidated.
Collapse
Affiliation(s)
- Bettina Bayerer
- Department of Anesthesiology and Intensive Care Medicine, University of Bonn, Sigmund-Freud-Strasse 25, 53105 Bonn, Germany
| | | | | | | |
Collapse
|
43
|
Yan QW, Reed E, Zhong XS, Thornton K, Guo Y, Yu JJ. MZF1 possesses a repressively regulatory function in ERCC1 expression. Biochem Pharmacol 2006; 71:761-71. [PMID: 16426580 DOI: 10.1016/j.bcp.2005.12.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 11/23/2005] [Accepted: 12/09/2005] [Indexed: 10/25/2022]
Abstract
ERCC1 is a critical gene within the nucleotide excision repair pathway. Overexpression of ERCC1 through promoter-mediating transcriptional regulation is associated with repair of cisplatin-induced DNA damage and clinical resistance to platinum-chemotherapy. Several transcriptional repressors and activators within the 5'-flanking region of the ERCC1 gene may be involved in the up-regulation of this gene. Minimal sequence within the promoter region required for ERCC1 transcription was analyzed by CAT assay and demonstrated that the region of -220 to -110 is essential to constitutive expression of ERCC1 gene in ovarian cancer cell line A2780/CP70. A more forward upstream region seems to be responsible for cisplatin-induced expression. Study of the functional cis-element in this region by electrophoretic mobility shift assay indicates that a MZF1-like site as well as an AP1-like site responded in a time-dependent manner to cisplatin stimulation with altered binding activities. EMSA with MZF1 ZN1-4 consensus oligonucleotides suggests that the MZF1 N-terminal domain of zinc finger cluster may bind to the MZF1-like site of the ERCC1 promoter region. MZF1 mRNA in A2780/CP70 cells decreased upon cisplatin exposure as analyzed by quantitative PCR, suggesting that MZF1 may mediate cisplatin-invoked gene expression in these cells. Overexpression of MZF1 repressed the ERCC1 promoter activity as determined in co-transfection assay, suggesting that MZF1 might be a repressor of ERCC1 transcription upon cisplatin exposure. In summary, our studies revealed a core promoter region and adjacent drug-responsible region within the ERCC1 promoter. The drug-responsible region contains cis-elements of activator, AP1 and repressor, MZF1. In response to cisplatin treatment, decreased MZF1 and increased AP1 binding activities appear to be the leading mechanism of up-regulation of ERCC1 expression. Our findings imply potential therapeutic strategies to antagonize drug resistant mechanisms in treatment of human ovarian cancer.
Collapse
Affiliation(s)
- Qing-Wu Yan
- Department of Biochemistry and Molecular Pharmacology, and Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, 1610-C Health Sciences South, Morgantown, WV 26506-9300, USA
| | | | | | | | | | | |
Collapse
|
44
|
Novak AJ, Grote DM, Ziesmer SC, Kline MP, Manske MK, Slager S, Witzig TE, Shanafelt T, Call TG, Kay NE, Jelinek DF, Cerhan JR, Gross JA, Harder B, Dillon SR, Ansell SM. Elevated serum B-lymphocyte stimulator levels in patients with familial lymphoproliferative disorders. J Clin Oncol 2006; 24:983-7. [PMID: 16432079 DOI: 10.1200/jco.2005.02.7938] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Serum B-lymphocyte stimulator (BLyS) levels have been found to be elevated in a number of immune disease models. Therefore, we sought to establish whether BLyS levels were elevated in patients with B-cell lymphoproliferative disorders and to determine whether elevated BLyS levels correlated with clinical characteristics of the disease. PATIENTS AND METHODS Specimens were collected from the peripheral blood of individuals diagnosed with B-cell chronic lymphocytic leukemia (B-CLL; n = 70) or from age- and sex-matched patients seen at the same institution (n = 41). Serum BLyS levels were determined by enzyme-linked immunosorbent assay, and sequencing of the BLyS promoter was performed by conventional methods and confirmed by restriction fragment length polymorphism analysis. RESULTS We found that elevated BLyS levels were more common in patients with familial B-CLL than individuals with sporadic B-CLL or normal controls. Because of this association, we sequenced the BLyS promoter in patients with B-CLL and normal controls and identified a polymorphic site, -871 C/T. We found that the wild-type sequence was significantly underrepresented in patients with familial B-CLL (4%) compared with patients with sporadic B-CLL (30%; P = .01) or controls (24%; P = .04). Furthermore, using a luciferase reporter under control of the BLyS promoter containing either a C or a T at position -871, we found that the reporter construct containing a T at -871 had a 2.6-fold increase in activity (P = .004). CONCLUSION Our data suggest serum BLyS levels are elevated in patients with familial B-CLL and that elevated BLyS levels correlate with the presence of a T at -871 in the BLyS promoter.
Collapse
MESH Headings
- Adult
- Aged
- B-Cell Activating Factor
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Case-Control Studies
- Enzyme-Linked Immunosorbent Assay
- Female
- HL-60 Cells
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/blood
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Lymphoma, B-Cell/blood
- Lymphoma, B-Cell/genetics
- Male
- Membrane Proteins/blood
- Membrane Proteins/genetics
- Middle Aged
- Polymorphism, Restriction Fragment Length
- Promoter Regions, Genetic
- Sequence Analysis, DNA
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- Anne J Novak
- Division of Hematology and Internal Medicine, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wong-Deyrup SW, Kim Y, Franklin SJ. Sequence preference in DNA binding: de novo designed helix–turn–helix metallopeptides recognize a family of DNA target sites. J Biol Inorg Chem 2005; 11:17-25. [PMID: 16292553 DOI: 10.1007/s00775-005-0042-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Accepted: 09/30/2005] [Indexed: 10/25/2022]
Abstract
The DNA-binding behavior and target sequences of two designed metallopeptides have been investigated with an iterative electrophoresis mobility shift assay followed by PCR amplification, and by circular dichroism spectroscopy. Peptides P3W and P5b were designed based on the structural similarity of the helix-turn-helix motif of homeodomains and the EF-hand motifs of calmodulin, as previously described for P3W. Like P3W, P5b binds both Eu(III) (K(d) = 12.6 +/- 1.9 microM) and Ca(II) (K(d) = 70 +/- 8 microM) with reasonable affinity. Binding selection from a library of randomized 8-mer DNA oligonucleotide sequences identified one target family for CaP5b [5'-pur-T-pur-G-(G/C)-3'], and two target sites for CaP3W [5'-(A/T)-G-G-G-(T/C)-3' and 5'-A-T-(G/T)-T-G-3']. Circular dichroism studies indicate that unlike EuP3W, EuP5b is poorly folded in the absence of DNA. In the presence of DNA containing target-binding sites for both peptides, both EuP3W and EuP5b increase in helical content, in the latter case significantly. These results suggest that EuP5b binding to target DNA involves an induced-fit mechanism. These small chimeric metallopeptides have been found to bind selectively to DNA targets, analogous to natural protein-DNA interactions. This corroborates our earlier conclusions (J. Am. Chem. Soc. 125:6656, 2003) that sequence-preferential DNA cleavage by Ce(IV)P3W was due to sequence recognition.
Collapse
|
46
|
Inomata M, Takahashi S, Harigae H, Kameoka J, Kaku M, Sasaki T. Inverse correlation between Flt3 and PU.1 expression in acute myeloblastic leukemias. Leuk Res 2005; 30:659-64. [PMID: 16271760 DOI: 10.1016/j.leukres.2005.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 07/27/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
Over-expression of the Flt3 is prevalent in acute myeloblastic leukemia (AML), playing a role in leukemogenesis while decreased expression of PU.1 induces AML in mice model. Therefore, we speculated that there is an inverse relationship between these two factors. To clarify this, we measured the expression level of Flt3 and PU.1 in 24 primary AML specimens. As a result, there is a significant negative correlation between Flt3 and PU.1 (r=-0.43, p<0.05). Furthermore, we revealed that flt3 gene promoter is suppressed by the over-expression of PU.1, suggesting that PU.1 is a potential suppressor of flt3 gene promoter.
Collapse
Affiliation(s)
- Mitsue Inomata
- Department of Rheumatology and Hematology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Yu X, Zhu X, Pi W, Ling J, Ko L, Takeda Y, Tuan D. The long terminal repeat (LTR) of ERV-9 human endogenous retrovirus binds to NF-Y in the assembly of an active LTR enhancer complex NF-Y/MZF1/GATA-2. J Biol Chem 2005; 280:35184-94. [PMID: 16105833 DOI: 10.1074/jbc.m508138200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The solitary ERV-9 long terminal repeat (LTR) located upstream of the HS5 site in the human beta-globin locus control region exhibits prominent enhancer activity in embryonic and erythroid cells. The LTR enhancer contains 14 tandemly repeated subunits with recurrent CCAAT, GTGGGGA, and GATA motifs. Here we showed that in erythroid K562 cells these DNA motifs bound the following three transcription factors: ubiquitous NF-Y and hematopoietic MZF1 and GATA-2. These factors and their target DNA motifs exhibited a hierarchy of DNA/protein and protein/protein binding affinities: NF-Y/CCAAT > NF-Y/GATA-2 > NF-Y/MZF1 > MZF1/GTGGGGA; GATA-2/GATA. Through protein/protein interactions, NF-Y bound at the CCAAT motif recruited MZF1 and GATA-2, but not Sp1 and GATA-1, and stabilized their binding to the neighboring GTGGGGA and GATA sites to assemble a novel LTR enhancer complex, NF-Y/MZF1/GATA-2. In the LTR-HS5-epsilonp-GFP plasmid integrated into K562 cells, mutation of the CCAAT motif in the LTR enhancer to abolish NF-Y binding inactivated the enhancer, closed down the chromatin structure of the epsilon-globin promoter, and silenced transcription of the green fluorescent protein gene. The results indicated that NF-Y bound at the CCAAT motifs assembled a robust LTR enhancer complex, which could act over the intervening DNA to remodel the chromatin structure and to stimulate the transcription of the downstream gene locus.
Collapse
Affiliation(s)
- Xiuping Yu
- Department of Biochemistry and Molecular Biology and Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Le Mée S, Fromigué O, Marie PJ. Sp1/Sp3 and the myeloid zinc finger gene MZF1 regulate the human N-cadherin promoter in osteoblasts. Exp Cell Res 2005; 302:129-42. [PMID: 15541732 DOI: 10.1016/j.yexcr.2004.08.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 08/19/2004] [Indexed: 12/31/2022]
Abstract
To determine the molecular mechanisms by which N-cadherin transcription is regulated, we cloned and sequenced a 3681-bp of the 5'-flanking region of the human N-cadherin gene. Deletion analysis of the proximal region identified a minimal 318-bp region with strong promoter activity in human osteoblasts. The cryptic promoter is characterized by high GC content and a GA-rich binding core that may bind zing finger transcription factors. Electrophoretic mobility shift assays (EMSA), competition and supershift EMSA revealed that an Sp1/Sp3 binding site acts as a basal regulatory element of the promoter in osteoblasts. Incubation of osteoblast nuclear extracts with -163/-131 wild-type probe containing the GA-rich binding core revealed another specific complex, which was not formed with a -163/-131 probe mutated in the GA repeat. EMSA identified the nuclear factor involved as myeloid zinc finger-1 (MZF1). Mutation analysis showed that Sp1/Sp3 and MZF1 binding sites contribute to basal promoter activity. Cotransfection analyses showed that Sp1 and MZF1 overexpression increases whereas Sp3 antagonizes Sp1-induced N-cadherin promoter activity in osteoblasts. RT-PCR analysis showed that human osteoblastic cells express MZF1 and that Sp1/MZF1 overexpression increased N-cadherin expression. These results indicate that Sp1/Sp3 and MZF1 are important transcription factors regulating N-cadherin promoter activity and expression in osteoblasts.
Collapse
Affiliation(s)
- S Le Mée
- Laboratory of Osteoblast Biology and Pathology, INSERM U606, Lariboisière Hospital, 75475 Cedex 10 Paris, France
| | | | | |
Collapse
|
49
|
Hamilton AT, Huntley S, Kim J, Branscomb E, Stubbs L. Lineage-specific expansion of KRAB zinc-finger transcription factor genes: implications for the evolution of vertebrate regulatory networks. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2004; 68:131-40. [PMID: 15338611 DOI: 10.1101/sqb.2003.68.131] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A T Hamilton
- Genome Biology Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | | | | | | | | |
Collapse
|
50
|
Yamashita T, Hamaguchi K, Kusuda Y, Kimura A, Sakata T, Yoshimatsu H. IKBL promoter polymorphism is strongly associated with resistance to type 1 diabetes in Japanese. ACTA ACUST UNITED AC 2004; 63:223-30. [PMID: 14989711 DOI: 10.1111/j.0001-2815.2004.00164.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Type 1 diabetes is a multifactorial disease in which the genes of the major histocompatibility complex (MHC) play a key role. Recently, non-human leukocyte antigen (non-HLA) genes in the class III region of this complex have been presumed to be associated with type 1 diabetes by linkage analyses. We investigated the possibility of the inhibitor of kappaB-like (IKBL, also known as 'NFKBIL1') gene as one of these candidates. We carried out a case-control study of 124 patients with type 1 diabetes and 330 healthy control subjects. The haplotypes of the IKBL promoter, i.e., PA (-263A, -63T), PB (-263A, -63A), PC (-263G, -63T), were assigned by the single-nucleotide polymorphisms at positions -263 and -63 from the transcription start site. The frequency of the wild-type haplotype, PA, was elevated, while that of the variant-type haplotype, PC, was lower in patients than controls. In two-locus analyses with HLA-DRB1 alleles, the PA haplotype showed linkage disequilibrium with the DRB1*0405 allele and the PC haplotype with the DRB1*1502 allele. A notable observation was that the PC haplotype was significantly associated with protection in the DRB1*1502-negative population. Our study indicates the first evidence of a possible independent association between type 1 diabetes and polymorphisms in the promoter of the IKBL gene.
Collapse
Affiliation(s)
- T Yamashita
- Department of Anatomy, Biology and Medicine (Internal Medicine I), Oita Medical University School of Medicine, Oita, Japan.
| | | | | | | | | | | |
Collapse
|