1
|
Maturation and shuttling of the yeast telomerase RNP: assembling something new using recycled parts. Curr Genet 2021; 68:3-14. [PMID: 34476547 PMCID: PMC8801399 DOI: 10.1007/s00294-021-01210-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/10/2022]
Abstract
As the limiting component of the budding yeast telomerase, the Tlc1 RNA must undergo multiple consecutive modifications and rigorous quality checks throughout its lifecycle. These steps will ensure that only correctly processed and matured molecules are assembled into telomerase complexes that subsequently act at telomeres. The complex pathway of Tlc1 RNA maturation, involving 5'- and 3'-end processing, stabilisation and assembly with the protein subunits, requires at least one nucleo-cytoplasmic passage. Furthermore, it appears that the pathway is tightly coordinated with the association of various and changing proteins, including the export factor Xpo1, the Mex67/Mtr2 complex, the Kap122 importin, the Sm7 ring and possibly the CBC and TREX-1 complexes. Although many of these maturation processes also affect other RNA species, the Tlc1 RNA exploits them in a new combination and, therefore, ultimately follows its own and unique pathway. In this review, we highlight recent new insights in maturation and subcellular shuttling of the budding yeast telomerase RNA and discuss how these events may be fine-tuned by the biochemical characteristics of the varying processing and transport factors as well as the final telomerase components. Finally, we indicate outstanding questions that we feel are important to be addressed for a complete understanding of the telomerase RNA lifecycle and that could have implications for the human telomerase as well.
Collapse
|
2
|
Norppa AJ, Frilander MJ. The integrity of the U12 snRNA 3' stem-loop is necessary for its overall stability. Nucleic Acids Res 2021; 49:2835-2847. [PMID: 33577674 PMCID: PMC7968993 DOI: 10.1093/nar/gkab048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/14/2021] [Accepted: 02/07/2021] [Indexed: 12/20/2022] Open
Abstract
Disruption of minor spliceosome functions underlies several genetic diseases with mutations in the minor spliceosome-specific small nuclear RNAs (snRNAs) and proteins. Here, we define the molecular outcome of the U12 snRNA mutation (84C>U) resulting in an early-onset form of cerebellar ataxia. To understand the molecular consequences of the U12 snRNA mutation, we created cell lines harboring the 84C>T mutation in the U12 snRNA gene (RNU12). We show that the 84C>U mutation leads to accelerated decay of the snRNA, resulting in significantly reduced steady-state U12 snRNA levels. Additionally, the mutation leads to accumulation of 3′-truncated forms of U12 snRNA, which have undergone the cytoplasmic steps of snRNP biogenesis. Our data suggests that the 84C>U-mutant snRNA is targeted for decay following reimport into the nucleus, and that the U12 snRNA fragments are decay intermediates that result from the stalling of a 3′-to-5′ exonuclease. Finally, we show that several other single-nucleotide variants in the 3′ stem-loop of U12 snRNA that are segregating in the human population are also highly destabilizing. This suggests that the 3′ stem-loop is important for the overall stability of the U12 snRNA and that additional disease-causing mutations are likely to exist in this region.
Collapse
Affiliation(s)
- Antto J Norppa
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mikko J Frilander
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 5, University of Helsinki, FI-00014 Helsinki, Finland
| |
Collapse
|
3
|
Tschudi C, Ullut E. Unconventional rules of small nuclear RNA transcription and cap modification in trypanosomatids. Gene Expr 2018; 10:3-16. [PMID: 11868986 PMCID: PMC5977529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
This review focuses on the spliced leader (SL) RNA and uridylic acid-rich small nuclear RNAs (U-snRNAs) involved in pre-mRNA processing in trypanosomatid protozoa, with particular emphasis on the mechanism of transcription and cap formation. The SL RNA plays a central role in mRNA biogenesis by providing the unique cap 4 structure to the 5' end of all mRNAs by trans-splicing. The trimethylguanosine capped U-snRNAs, on the other hand, represent an unusual example among eukaryotic snRNAs in that they are transcribed by RNA polymerase III. This implies the existence of a distinctive mechanism for capping enzyme selection by the transcriptional machinery. Furthermore, the transcription units of U-snRNA genes offer yet another example of the variety of choices that have been established during eukaryotic evolution, namely that an upstream tRNA gene or tRNA-like gene provides extragenic promoter elements for a downstream small RNA gene.
Collapse
MESH Headings
- Animals
- Dinucleoside Phosphates/metabolism
- Evolution, Molecular
- Genes
- Genes, Overlapping
- Methyltransferases/metabolism
- Promoter Regions, Genetic
- Protozoan Proteins/metabolism
- RNA Caps/metabolism
- RNA Polymerase II/metabolism
- RNA Precursors/genetics
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Splicing
- RNA, Protozoan/genetics
- RNA, Protozoan/physiology
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Spliced Leader/genetics
- RNA, Spliced Leader/physiology
- RNA, Transfer/genetics
- Regulatory Sequences, Nucleic Acid
- Ribonucleoproteins, Small Nuclear/metabolism
- Species Specificity
- Spliceosomes/metabolism
- Transcription, Genetic
- Trypanosoma brucei brucei/genetics
- Trypanosomatina/genetics
Collapse
Affiliation(s)
- Christian Tschudi
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520-8022, USA.
| | | |
Collapse
|
4
|
Jiang D, Zou X, Zhang C, Chen J, Li Z, Wang Y, Deng Z, Wang L, Chen S. Gemin5 plays a role in unassembled-U1 snRNA disposal in SMN-deficient cells. FEBS Lett 2018; 592:1400-1411. [PMID: 29537490 DOI: 10.1002/1873-3468.13031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/04/2018] [Accepted: 03/05/2018] [Indexed: 11/07/2022]
Abstract
Gemin5 acts as a U1 small nuclear RNA (snRNA)-binding protein in U1 small nuclear ribonucleic protein (snRNP) biogenesis. Here, we report a role for Gemin5 in unassembled U1 snRNP disposal under survival of motor neuron (SMN) protein-deficient conditions. We demonstrate that non-Sm protein-associated U1 snRNA and U1A are enriched in cytoplasmic granules and colocalize to P bodies in SMN-deficient cells. Immunoprecipitation assays show increased associations of the U1 snRNP component U1A with P body components and Gemin5 in SMN-deficient cells. More importantly, Gemin5 knockdown eliminates the unassembled U1 snRNP granules and rescues U1 snRNA levels in SMN-deficient cells. Taken together, our study provides direct evidence that Gemin5 is involved in unassembled-U1 snRNA disposal under conditions of SMN deficiency.
Collapse
Affiliation(s)
- Dongxu Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xuan Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Cheng Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Jincao Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Zhiqiang Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Yunfu Wang
- Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Liangrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Brain Center, Zhongnan Hospital, Wuhan University, China
| |
Collapse
|
5
|
Gruss OJ, Meduri R, Schilling M, Fischer U. UsnRNP biogenesis: mechanisms and regulation. Chromosoma 2017; 126:577-593. [PMID: 28766049 DOI: 10.1007/s00412-017-0637-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 07/14/2017] [Accepted: 07/14/2017] [Indexed: 12/24/2022]
Abstract
Macromolecular complexes composed of proteins or proteins and nucleic acids rather than individual macromolecules mediate many cellular activities. Maintenance of these activities is essential for cell viability and requires the coordinated production of the individual complex components as well as their faithful incorporation into functional entities. Failure of complex assembly may have fatal consequences and can cause severe diseases. While many macromolecular complexes can form spontaneously in vitro, they often require aid from assembly factors including assembly chaperones in the crowded cellular environment. The assembly of RNA protein complexes implicated in the maturation of pre-mRNAs (termed UsnRNPs) has proven to be a paradigm to understand the action of assembly factors and chaperones. UsnRNPs are assembled by factors united in protein arginine methyltransferase 5 (PRMT5)- and survival motor neuron (SMN)-complexes, which act sequentially in the UsnRNP production line. While the PRMT5-complex pre-arranges specific sets of proteins into stable intermediates, the SMN complex displaces assembly factors from these intermediates and unites them with UsnRNA to form the assembled RNP. Despite advanced mechanistic understanding of UsnRNP assembly, our knowledge of regulatory features of this essential and ubiquitous cellular function remains remarkably incomplete. One may argue that the process operates as a default biosynthesis pathway and does not require sophisticated regulatory cues. Simple theoretical considerations and a number of experimental data, however, indicate that regulation of UsnRNP assembly most likely happens at multiple levels. This review will not only summarize how individual components of this assembly line act mechanistically but also why, how, and when the UsnRNP workflow might be regulated by means of posttranslational modification in response to cellular signaling cues.
Collapse
Affiliation(s)
- Oliver J Gruss
- Department of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany.
| | - Rajyalakshmi Meduri
- Department of Biochemistry, University of Würzburg, Biozentrum, Am Hubland, D-97074, Würzburg, Germany
| | - Maximilian Schilling
- Department of Genetics, Rheinische Friedrich-Wilhelms-Universität Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Utz Fischer
- Department of Biochemistry, University of Würzburg, Biozentrum, Am Hubland, D-97074, Würzburg, Germany.
| |
Collapse
|
6
|
Raimer AC, Gray KM, Matera AG. SMN - A chaperone for nuclear RNP social occasions? RNA Biol 2017; 14:701-711. [PMID: 27648855 PMCID: PMC5519234 DOI: 10.1080/15476286.2016.1236168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/24/2022] Open
Abstract
Survival Motor Neuron (SMN) protein localizes to both the nucleus and the cytoplasm. Cytoplasmic SMN is diffusely localized in large oligomeric complexes with core member proteins, called Gemins. Biochemical and cell biological studies have demonstrated that the SMN complex is required for the cytoplasmic assembly and nuclear transport of Sm-class ribonucleoproteins (RNPs). Nuclear SMN accumulates with spliceosomal small nuclear (sn)RNPs in Cajal bodies, sub-domains involved in multiple facets of snRNP maturation. Thus, the SMN complex forms stable associations with both nuclear and cytoplasmic snRNPs, and plays a critical role in their biogenesis. In this review, we focus on potential functions of the nuclear SMN complex, with particular emphasis on its role within the Cajal body.
Collapse
Affiliation(s)
- Amanda C. Raimer
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kelsey M. Gray
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - A. Gregory Matera
- Curriculum in Genetics and Molecular Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Integrative Program for Biological and Genome Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
7
|
Vasianovich Y, Wellinger RJ. Life and Death of Yeast Telomerase RNA. J Mol Biol 2017; 429:3242-3254. [PMID: 28115201 DOI: 10.1016/j.jmb.2017.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/10/2017] [Accepted: 01/14/2017] [Indexed: 12/20/2022]
Abstract
Telomerase reverse transcriptase elongates telomeres to overcome their natural attrition and allow unlimited cellular proliferation, a characteristic shared by stem cells and the majority of malignant cancerous cells. The telomerase holoenzyme comprises a core RNA molecule, a catalytic protein subunit, and other accessory proteins. Malfunction of certain telomerase components can cause serious genetic disorders including dyskeratosis congenita and aplastic anaemia. A hierarchy of tightly regulated steps constitutes the process of telomerase biogenesis, which, if interrupted or misregulated, can impede the production of a functional enzyme and severely affect telomere maintenance. Here, we take a closer look at the budding yeast telomerase RNA component, TLC1, in its long lifetime journey around the cell. We review the extensive knowledge on TLC1 transcription and processing. We focus on exciting recent studies on telomerase assembly, trafficking, and nuclear dynamics, which for the first time unveil striking similarities between the yeast and human telomerase ribonucleoproteins. Finally, we identify questions yet to be answered and new directions to be followed, which, in the future, might improve our knowledge of telomerase biology and trigger the development of new therapies against cancer and other telomerase-related diseases.
Collapse
Affiliation(s)
- Yulia Vasianovich
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavillion, 3201 rue Jean-Mignault, Sherbrooke, Quebec, J1E 4K8, Canada.
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavillion, 3201 rue Jean-Mignault, Sherbrooke, Quebec, J1E 4K8, Canada.
| |
Collapse
|
8
|
Honcharenko M, Bestas B, Jezowska M, Wojtczak BA, Moreno PMD, Romanowska J, Bächle SM, Darzynkiewicz E, Jemielity J, Smith CIE, Strömberg R. Synthetic m3G-CAP attachment necessitates a minimum trinucleotide constituent to be recognised as a nuclear import signal. RSC Adv 2016. [DOI: 10.1039/c6ra09568b] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Minimal requirement for Snurportin based nuclear uptake is the inclusion of a trinucleotide sequence between the m3G-CAP and the artificial linker.
Collapse
|
9
|
Hyjek M, Wojciechowska N, Rudzka M, Kołowerzo-Lubnau A, Smoliński DJ. Spatial regulation of cytoplasmic snRNP assembly at the cellular level. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:7019-30. [PMID: 26320237 PMCID: PMC4765780 DOI: 10.1093/jxb/erv399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Small nuclear ribonucleoproteins (snRNPs) play a crucial role in pre-mRNA splicing in all eukaryotic cells. In contrast to the relatively broad knowledge on snRNP assembly within the nucleus, the spatial organization of the cytoplasmic stages of their maturation remains poorly understood. Nevertheless, sparse research indicates that, similar to the nuclear steps, the crucial processes of cytoplasmic snRNP assembly may also be strictly spatially regulated. In European larch microsporocytes, it was determined that the cytoplasmic assembly of snRNPs within a cell might occur in two distinct spatial manners, which depend on the rate of de novo snRNP formation in relation to the steady state of these particles within the nucleus. During periods of moderate expression of splicing elements, the cytoplasmic assembly of snRNPs occurred diffusely throughout the cytoplasm. Increased expression of both Sm proteins and U snRNA triggered the accumulation of these particles within distinct, non-membranous RNP-rich granules, which are referred to as snRNP-rich cytoplasmic bodies.
Collapse
Affiliation(s)
- Malwina Hyjek
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Natalia Wojciechowska
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Department of General Botany, Institute of Experimental Biology, Faculty of Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznań, Poland
| | - Magda Rudzka
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| | - Dariusz Jan Smoliński
- Department of Cell Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University, Lwowska 1, Toruń, 87-100, Poland Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń Poland
| |
Collapse
|
10
|
Hutten S, Chachami G, Winter U, Melchior F, Lamond AI. A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase II. J Cell Sci 2014; 127:1065-78. [PMID: 24413172 PMCID: PMC3937775 DOI: 10.1242/jcs.141788] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cajal bodies are nuclear structures that are involved in biogenesis of snRNPs and snoRNPs, maintenance of telomeres and processing of histone mRNA. Recently, the SUMO isopeptidase USPL1 was identified as a component of Cajal bodies that is essential for cellular growth and Cajal body integrity. However, a cellular function for USPL1 is so far unknown. Here, we use RNAi-mediated knockdown in human cells in combination with biochemical and fluorescence microscopy approaches to investigate the function of USPL1 and its link to Cajal bodies. We demonstrate that levels of snRNAs transcribed by RNA polymerase (RNAP) II are reduced upon knockdown of USPL1 and that downstream processes such as snRNP assembly and pre-mRNA splicing are compromised. Importantly, we find that USPL1 associates directly with U snRNA loci and that it interacts and colocalises with components of the Little Elongation Complex, which is involved in RNAPII-mediated snRNA transcription. Thus, our data indicate that USPL1 plays a key role in RNAPII-mediated snRNA transcription.
Collapse
Affiliation(s)
- Saskia Hutten
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | | | | |
Collapse
|
11
|
Coy S, Volanakis A, Shah S, Vasiljeva L. The Sm complex is required for the processing of non-coding RNAs by the exosome. PLoS One 2013; 8:e65606. [PMID: 23755256 PMCID: PMC3675052 DOI: 10.1371/journal.pone.0065606] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/27/2013] [Indexed: 12/25/2022] Open
Abstract
A key question in the field of RNA regulation is how some exosome substrates, such as spliceosomal snRNAs and telomerase RNA, evade degradation and are processed into stable, functional RNA molecules. Typical feature of these non-coding RNAs is presence of the Sm complex at the 3′end of the mature RNA molecule. Here, we report that in Saccharomyces cerevisiae presence of intact Sm binding site is required for the exosome-mediated processing of telomerase RNA from a polyadenylated precursor into its mature form and is essential for its function in elongating telomeres. Additionally, we demonstrate that the same pathway is involved in the maturation of snRNAs. Furthermore, the insertion of an Sm binding site into an unstable RNA that is normally completely destroyed by the exosome, leads to its partial stabilization. We also show that telomerase RNA accumulates in Schizosaccharomyces pombe exosome mutants, suggesting a conserved role for the exosome in processing and degradation of telomerase RNA. In summary, our data provide important mechanistic insight into the regulation of exosome dependent RNA processing as well as telomerase RNA biogenesis.
Collapse
Affiliation(s)
- Sarah Coy
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Adam Volanakis
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sneha Shah
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Jeang KT. Multi-Faceted Post-Transcriptional Functions of HIV-1 Rev. BIOLOGY 2012; 1:165-74. [PMID: 24832222 PMCID: PMC4009778 DOI: 10.3390/biology1020165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 12/27/2022]
Abstract
Post-transcriptional regulation of HIV-1 gene expression is largely governed by the activities of the viral Rev protein. In this minireview, the multiple post-transcriptional activities of Rev in the export of partially spliced and unspliced HIV-1 RNAs from the nucleus to the cytoplasm, in the translation of HIV-1 transcripts, and in the packaging of viral genomic RNAs are reviewed in brief.
Collapse
Affiliation(s)
- Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
13
|
Telomerase RNA biogenesis involves sequential binding by Sm and Lsm complexes. Nature 2012; 484:260-4. [PMID: 22446625 PMCID: PMC3326189 DOI: 10.1038/nature10924] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 02/07/2012] [Indexed: 12/03/2022]
Abstract
In most eukaryotes, the progressive loss of chromosome-terminal DNA sequences is counteracted by the enzyme telomerase, a reverse transcriptase that uses part of an RNA subunit as template to synthesize telomeric repeats. Many cancer cells express high telomerase activity and mutations in telomerase subunits are associated with degenerative syndromes including dyskeratosis congenita and aplastic anaemia. The therapeutic value of altering telomerase activity thus provides ample impetus to study the biogenesis and regulation of this enzyme in human cells and model systems. We have previously identified a precursor of the fission yeast telomerase RNA subunit (TER1)1 and have demonstrated that the mature 3′ end is generated by the spliceosome in a single cleavage reaction akin to the first step of splicing2. Directly upstream and partially overlapping with the spliceosomal cleavage site is a putative Sm protein binding site. Sm and Like-Sm (LSm) proteins belong to an ancient family of RNA binding proteins represented in all three domains of life3. Members of this family form ring complexes on specific sets of target RNAs and play critical roles in their biogenesis, function and turnover. We now demonstrate that the canonical Sm ring and the Lsm2-8 complex sequentially associate with fission yeast TER1. The Sm ring binds to the TER1 precursor, stimulates spliceosomal cleavage and promotes the hypermethylation of the 5′ cap by Tgs1. Sm proteins are then replaced by the Lsm2-8 complex, which promotes the association with the catalytic subunit and protects the mature 3′ end of TER1 from exonucleolytic degradation. Our findings define the sequence of events that occur during telomerase biogenesis and characterize roles for Sm and Lsm complexes as well as for the methylase Tgs1.
Collapse
|
14
|
Takata H, Nishijima H, Maeshima K, Shibahara KI. The integrator complex is required for integrity of Cajal bodies. J Cell Sci 2012; 125:166-75. [PMID: 22250197 DOI: 10.1242/jcs.090837] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleus in eukaryotic cells is a highly organized and dynamic structure containing numerous subnuclear bodies. The morphological appearance of nuclear bodies seems to be a reflection of ongoing functions, such as DNA replication, transcription, repair, RNA processing and RNA transport. The integrator complex mediates processing of small nuclear RNA (snRNA), so it might play a role in nuclear body formation. Here, we show that the integrator complex is essential for integrity of the Cajal body. Depletion of INTS4, an integrator complex subunit, abrogated 3'-end processing of snRNA. A defect in this activity caused a significant accumulation of the Cajal body marker protein coilin in nucleoli. Some fractions of coilin still formed nucleoplasmic foci; however, they were free of other Cajal body components, such as survival of motor neuron protein (SMN), Sm proteins and snRNAs. SMN and Sm proteins formed striking cytoplasmic granules. These findings demonstrate that the integrator complex is essential for snRNA maturation and Cajal body homeostasis.
Collapse
Affiliation(s)
- Hideaki Takata
- Department of Integrated Genetics, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Japan.
| | | | | | | |
Collapse
|
15
|
Chemical approaches for structure and function of RNA in postgenomic era. J Nucleic Acids 2012; 2012:369058. [PMID: 22347623 PMCID: PMC3278928 DOI: 10.1155/2012/369058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 06/21/2011] [Accepted: 07/05/2011] [Indexed: 01/11/2023] Open
Abstract
In the study of cellular RNA chemistry, a major thrust of research focused upon sequence determinations for decades. Structures of snRNAs (4.5S RNA I (Alu), U1, U2, U3, U4, U5, and U6) were determined at Baylor College of Medicine, Houston, Tex, in an earlier time of pregenomic era. They show novel modifications including base methylation, sugar methylation, 5′-cap structures (types 0–III) and sequence heterogeneity. This work offered an exciting problem of posttranscriptional modification and underwent numerous significant advances through technological revolutions during pregenomic, genomic, and postgenomic eras. Presently, snRNA research is making progresses involved in enzymology of snRNA modifications, molecular evolution, mechanism of spliceosome assembly, chemical mechanism of intron removal, high-order structure of snRNA in spliceosome, and pathology of splicing. These works are destined to reach final pathway of work “Function and Structure of Spliceosome” in addition to exciting new exploitation of other noncoding RNAs in all aspects of regulatory functions.
Collapse
|
16
|
Fischer U, Englbrecht C, Chari A. Biogenesis of spliceosomal small nuclear ribonucleoproteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:718-31. [PMID: 21823231 DOI: 10.1002/wrna.87] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Virtually, all eukaryotic mRNAs are synthesized as precursor molecules that need to be extensively processed in order to serve as a blueprint for proteins. The three most prevalent processing steps are the capping reaction at the 5'-end, the removal of intervening sequences by splicing, and the formation of poly (A)-tails at the 3'-end of the message by polyadenylation. A large number of proteins and small nuclear ribonucleoprotein complexes (snRNPs) interact with the mRNA and enable the different maturation steps. This chapter focuses on the biogenesis of snRNPs, the major components of the pre-mRNA splicing machinery (spliceosome). A large body of evidence has revealed an intricate and segmented pathway for the formation of snRNPs that involves nucleo-cytoplasmic transport events and elaborates assembly strategies. We summarize the knowledge about the different steps with an emphasis on trans-acting factors of snRNP maturation of higher eukaryotes. WIREs RNA 2011 2 718-731 DOI: 10.1002/wrna.87 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Utz Fischer
- Department of Biochemistry, University of Wuerzburg, Germany.
| | | | | |
Collapse
|
17
|
Abstract
The post-transcriptional export of spliced and unspliced HIV-1 (human immunodeficiency virus type 1) RNAs from the nucleus to the cytoplasm is a complex process. Part of the complexity arises from the fact that eukaryotic cells normally retain unspliced RNAs in the nucleus preventing their exit into the cytoplasm. HIV-1 has evolved a protein, Rev, that participates in the export of unspliced / partially spliced viral RNAs from the nucleus. It has been documented that several cellular factors cooperate in trans with Rev, and certain cis-RNA motifs / features are important for transcripts to be recognized by Rev and its co-factors. Here, the post-transcriptional activities of Rev are discussed in the context of a recent finding that an RNA cap methyltransferase contributes to the expression of unspliced / partially spliced HIV-1 transcripts.
Collapse
Affiliation(s)
- Venkat S R K Yedavalli
- Molecular Virology Section, Laboratory of Molecular Microbiology, National Institutes of Allergy and Infectious Diseases, the National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
18
|
Chari A, Fischer U. Cellular strategies for the assembly of molecular machines. Trends Biochem Sci 2010; 35:676-83. [PMID: 20727772 DOI: 10.1016/j.tibs.2010.07.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/20/2010] [Accepted: 07/21/2010] [Indexed: 01/13/2023]
Abstract
Molecular machines are supramolecular assemblies of biomolecules (proteins, RNA and/or DNA) that facilitate a diversity of biological tasks in the cells of all organisms. How these complex structures are built within the crowded cellular environment is, therefore, a central question in the biological sciences. Recent studies on spliceosomal uridine-rich small nuclear ribonucleoproteins (snRNPs) have unveiled cellular assembly strategies for RNA-protein complexes. snRNPs form in vivo by the coordinated action of an elaborate assembly line consisting of assembly chaperones, scaffolding proteins and catalysts. These newly discovered strategies exhibit similarities to those employed by protein complexes such as ribulose-1,5-bisphosphate-carboxylase (Rubisco) and allow the elucidation of general rules for how molecular machines are formed in vivo.
Collapse
Affiliation(s)
- Ashwin Chari
- Department of Biochemistry, Theodor-Boveri Institute, University of Wurzburg, Am Hubland, D-97074 Wurzburg, Germany.
| | | |
Collapse
|
19
|
Chang J, Schwer B, Shuman S. Mutational analyses of trimethylguanosine synthase (Tgs1) and Mud2: proteins implicated in pre-mRNA splicing. RNA (NEW YORK, N.Y.) 2010; 16:1018-31. [PMID: 20360394 PMCID: PMC2856874 DOI: 10.1261/rna.2082610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Yeast and human Tgs1 are orthologous RNA cap (guanine-N2) methyltransferases that convert m(7)G caps into the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal snRNAs. TMG caps are dispensable for vegetative yeast growth, but are essential in the absence of Mud2, the putative yeast homolog of human splicing factor U2AF. Here we exploited the synthetic lethal interactions of tgs1Delta and mud2Delta mutations to identify essential structural features of the Tgs1 and Mud2 proteins. Thirty-two new mutations were introduced into human Tgs1 and surveyed for their effects on function in vivo in yeast and on the two sequential guanine-N2 methylation reactions in vitro. The structure-function data highlight a strictly essential pi-cation interaction between Trp766 and the m(7)G base and a network of important enzymic contacts to the cap triphosphate via Lys646, Tyr771, Arg807, and Lys836. Mud2 is a 527-amino acid polypeptide composed of a hydrophilic N-terminal domain and a C-terminal RRM domain. We found that the RRM domain is necessary but not sufficient for Mud2 function in complementing growth of tgs1Delta mud2Delta and mud1Delta mud2Delta strains. Other changes in Mud2 elicited distinct phenotypes in tgs1Delta versus mud1Delta backgrounds. mud2Delta also caused a severe growth defect in cells lacking the Tgs1-binding protein encoded by the nonessential gene YNR004w (now renamed SWM2, synthetic with mud2Delta). Mud2 mutational effects in the swm2Delta background paralleled those for mud1Delta. The requirements for Mud2 function are apparently more stringent when yeast cells lack TMG caps than when they lack Mud1 or Swm2.
Collapse
Affiliation(s)
- Jonathan Chang
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10065, USA
| | | | | |
Collapse
|
20
|
Monecke T, Dickmanns A, Ficner R. Structural basis for m7G-cap hypermethylation of small nuclear, small nucleolar and telomerase RNA by the dimethyltransferase TGS1. Nucleic Acids Res 2009; 37:3865-77. [PMID: 19386620 PMCID: PMC2709555 DOI: 10.1093/nar/gkp249] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The 5′-cap of spliceosomal small nuclear RNAs, some small nucleolar RNAs and of telomerase RNA was found to be hypermethylated in vivo. The Trimethylguanosine Synthase 1 (TGS1) mediates this conversion of the 7-methylguanosine-cap to the 2,2,7-trimethylguanosine (m3G)-cap during maturation of the RNPs. For mammalian UsnRNAs the generated m2,2,7G-cap is one part of a bipartite import signal mediating the transport of the UsnRNP-core complex into the nucleus. In order to understand the structural organization of human TGS1 as well as substrate binding and recognition we solved the crystal structure of the active TGS1 methyltransferase domain containing both, the minimal substrate m7GTP and the reaction product S-adenosyl-l-homocysteine (AdoHcy). The methyltransferase of human TGS1 harbors the canonical class 1 methyltransferase fold as well as an unique N-terminal, α-helical domain of 40 amino acids, which is essential for m7G-cap binding and catalysis. The crystal structure of the substrate bound methyltransferase domain as well as mutagenesis studies provide insight into the catalytic mechanism of TGS1.
Collapse
Affiliation(s)
- Thomas Monecke
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, 37077 Göttingen, Germany
| | | | | |
Collapse
|
21
|
Moreno PMD, Wenska M, Lundin KE, Wrange O, Strömberg R, Smith CIE. A synthetic snRNA m3G-CAP enhances nuclear delivery of exogenous proteins and nucleic acids. Nucleic Acids Res 2009; 37:1925-35. [PMID: 19208638 PMCID: PMC2665231 DOI: 10.1093/nar/gkp048] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Accessing the nucleus through the surrounding membrane poses one of the major obstacles for therapeutic molecules large enough to be excluded due to nuclear pore size limits. In some therapeutic applications the large size of some nucleic acids, like plasmid DNA, hampers their access to the nuclear compartment. However, also for small oligonucleotides, achieving higher nuclear concentrations could be of great benefit. We report on the synthesis and possible applications of a natural RNA 5′-end nuclear localization signal composed of a 2,2,7-trimethylguanosine cap (m3G-CAP). The cap is found in the small nuclear RNAs that are constitutive part of the small nuclear ribonucleoprotein complexes involved in nuclear splicing. We demonstrate the use of the m3G signal as an adaptor that can be attached to different oligonucleotides, thereby conferring nuclear targeting capabilities with capacity to transport large-size cargo molecules. The synthetic capping of oligos interfering with splicing may have immediate clinical applications.
Collapse
Affiliation(s)
- Pedro M D Moreno
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institutet, Karolinska University Hospital, SE-141 86 Huddinge, Sweden.
| | | | | | | | | | | |
Collapse
|
22
|
Simoes-Barbosa A, Louly C, Franco OL, Rubio MA, Alfonzo JD, Johnson PJ. The divergent eukaryote Trichomonas vaginalis has an m7G cap methyltransferase capable of a single N2 methylation. Nucleic Acids Res 2008; 36:6848-58. [PMID: 18957443 PMCID: PMC2588526 DOI: 10.1093/nar/gkn706] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Eukaryotic RNAs typically contain 5' cap structures that have been primarily studied in yeast and metazoa. The only known RNA cap structure in unicellular protists is the unusual Cap4 on Trypanosoma brucei mRNAs. We have found that T. vaginalis mRNAs are protected by a 5' cap structure, however, contrary to that typical for eukaryotes, T. vaginalis spliceosomal snRNAs lack a cap and may contain 5' monophophates. The distinctive 2,2,7-trimethylguanosine (TMG) cap structure usually found on snRNAs and snoRNAs is produced by hypermethylation of an m(7)G cap catalyzed by the enzyme trimethylguanosine synthase (Tgs). Here, we biochemically characterize the single T. vaginalis Tgs (TvTgs) encoded in its genome and demonstrate that TvTgs exhibits substrate specificity and amino acid requirements typical of an RNA cap-specific, m(7)G-dependent N2 methyltransferase. However, recombinant TvTgs is capable of catalysing only a single round of N2 methylation forming a 2,7-dimethylguanosine cap (DMG) as observed previously for Giardia lamblia. In contrast, recombinant Entamoeba histolytica and Trypanosoma brucei Tgs are capable of catalysing the formation of a TMG cap. These data suggest the presence of RNAs with a distinctive 5' DMG cap in Trichomonas and Giardia lineages that are absent in other protist lineages.
Collapse
Affiliation(s)
- Augusto Simoes-Barbosa
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | |
Collapse
|
23
|
Patel SB, Bellini M. The assembly of a spliceosomal small nuclear ribonucleoprotein particle. Nucleic Acids Res 2008; 36:6482-93. [PMID: 18854356 PMCID: PMC2582628 DOI: 10.1093/nar/gkn658] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The U1, U2, U4, U5 and U6 small nuclear ribonucleoprotein particles (snRNPs) are essential elements of the spliceosome, the enzyme that catalyzes the excision of introns and the ligation of exons to form a mature mRNA. Since their discovery over a quarter century ago, the structure, assembly and function of spliceosomal snRNPs have been extensively studied. Accordingly, the functions of splicing snRNPs and the role of various nuclear organelles, such as Cajal bodies (CBs), in their nuclear maturation phase have already been excellently reviewed elsewhere. The aim of this review is, then, to briefly outline the structure of snRNPs and to synthesize new and exciting developments in the snRNP biogenesis pathways.
Collapse
Affiliation(s)
- Snehal Bhikhu Patel
- Biochemistry and College of Medicine and Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | |
Collapse
|
24
|
Bertrand E, Bordonné R. Assembly and Traffic of Small Nuclear RNPs. RNA TRAFFICKING AND NUCLEAR STRUCTURE DYNAMICS 2008; 35:79-97. [PMID: 15113080 DOI: 10.1007/978-3-540-74266-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR 5535-IFR 122, 1919 route de Mende, 34293, Montpellier Cedex 5, France.
| | | |
Collapse
|
25
|
Ruan JP, Ullu E, Tschudi C. Characterization of the Trypanosoma brucei cap hypermethylase Tgs1. Mol Biochem Parasitol 2007; 155:66-9. [PMID: 17610965 PMCID: PMC2075351 DOI: 10.1016/j.molbiopara.2007.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Revised: 05/04/2007] [Accepted: 05/17/2007] [Indexed: 10/23/2022]
Abstract
Many U-snRNAs contain a hypermodified 2,2,7-trimethylguanosine (TMG) cap structure, which is formed by post-transcriptional methylation of an m(7)G cap. At present, little is known about the maturation of U-snRNAs in trypanosomes. The current evidence is consistent with the primary transcript containing an m(7)G moiety, but it is not clear whether the conversion of m(7)G to TMG takes place in the cytoplasm or in the nucleus. To address this issue, we characterized the Trypanosoma brucei homologue of the trimethylguanosine synthase (TbTgs1), a 28kDa protein, which is mainly composed of the conserved catalytic domain and lacks a large N-terminal domain present in higher eukaryotes. A GFP fusion with TbTgs1 revealed that this protein localizes throughout the nucleoplasm, as well as in one or two dots outside the nucleolus and RNAi-mediated downregulation of TbTgs1 suggests that this protein is responsible for hypermethylation of the m(7)G cap of both snRNAs and snoRNAs.
Collapse
Affiliation(s)
- Jia-peng Ruan
- Department of Epidemiology and Public Health, Yale University Medical School, 295 Congress Avenue, New Haven, CT 06536-0812, USA
| | | | | |
Collapse
|
26
|
Lemm I, Girard C, Kuhn AN, Watkins NJ, Schneider M, Bordonné R, Lührmann R. Ongoing U snRNP biogenesis is required for the integrity of Cajal bodies. Mol Biol Cell 2006; 17:3221-31. [PMID: 16687569 PMCID: PMC1483051 DOI: 10.1091/mbc.e06-03-0247] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cajal bodies (CBs) have been implicated in the nuclear phase of the biogenesis of spliceosomal U small nuclear ribonucleoproteins (U snRNPs). Here, we have investigated the distribution of the CB marker protein coilin, U snRNPs, and proteins present in C/D box small nucleolar (sno)RNPs in cells depleted of hTGS1, SMN, or PHAX. Knockdown of any of these three proteins by RNAi interferes with U snRNP maturation before the reentry of U snRNA Sm cores into the nucleus. Strikingly, CBs are lost in the absence of hTGS1, SMN, or PHAX and coilin is dispersed in the nucleoplasm into numerous small foci. This indicates that the integrity of canonical CBs is dependent on ongoing U snRNP biogenesis. Spliceosomal U snRNPs show no detectable concentration in nuclear foci and do not colocalize with coilin in cells lacking hTGS1, SMN, or PHAX. In contrast, C/D box snoRNP components concentrate into nuclear foci that partially colocalize with coilin after inhibition of U snRNP maturation. We demonstrate by siRNA-mediated depletion that coilin is required for the condensation of U snRNPs, but not C/D box snoRNP components, into nucleoplasmic foci, and also for merging these factors into canonical CBs. Altogether, our data suggest that CBs have a modular structure with distinct domains for spliceosomal U snRNPs and snoRNPs.
Collapse
Affiliation(s)
- Ira Lemm
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Cyrille Girard
- Institut de Génétique Moléculaire, UMR5535 CNRS, Montpellier, France; and
| | - Andreas N. Kuhn
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Nicholas J. Watkins
- Institute for Cell and Molecular Biosciences, University of Newcastle, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Marc Schneider
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Rémy Bordonné
- Institut de Génétique Moléculaire, UMR5535 CNRS, Montpellier, France; and
| | - Reinhard Lührmann
- *Department of Cellular Biochemistry, Max-Planck-Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| |
Collapse
|
27
|
Battle DJ, Kasim M, Yong J, Lotti F, Lau CK, Mouaikel J, Zhang Z, Han K, Wan L, Dreyfuss G. The SMN complex: an assembly machine for RNPs. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 71:313-20. [PMID: 17381311 DOI: 10.1101/sqb.2006.71.001] [Citation(s) in RCA: 150] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
In eukaryotic cells, the biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and likely other RNPs is mediated by an assemblyosome, the survival of motor neurons (SMN) complex. The SMN complex, composed of SMN and the Gemins (2-7), binds to the Sm proteins and to snRNAs and constructs the heptameric rings, the common cores of Sm proteins, on the Sm site (AU(56)G) of the snRNAs. We have determined the specific sequence and structural features of snRNAs for binding to the SMN complex and Sm core assembly. The minimal SMN complex-binding domain in snRNAs (except U1) is composed of an Sm site and a closely adjacent 3'stem-loop. Remarkably, the specific sequence of the stemloop is not important for SMN complex binding, but it must be located within a short distance of the 3'end of the RNA for an Sm core to assemble. This minimal snRNA-defining "snRNP code" is recognized by the SMN complex, which binds to it directly and with high affinity and assembles the Sm core. The recognition of the snRNAs is provided by Gemin5, a component of the SMN complex that directly binds the snRNP code. Gemin5 is a novel RNA-binding protein that is critical for snRNP biogenesis. Thus, the SMN complex is the identifier, as well as assembler, of the abundant class of snRNAs in cells. The function of the SMN complex, previously unanticipated because RNP biogenesis was believed to occur by self-assembly, confers stringent specificity on otherwise potentially illicit RNA-protein interactions.
Collapse
Affiliation(s)
- D J Battle
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Grimmler M, Otter S, Peter C, Müller F, Chari A, Fischer U. Unrip, a factor implicated in cap-independent translation, associates with the cytosolic SMN complex and influences its intracellular localization. Hum Mol Genet 2005; 14:3099-111. [PMID: 16159890 DOI: 10.1093/hmg/ddi343] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Spliceosomal Uridine-rich small ribonucleo protein (U snRNP) assembly is an active process mediated by the macromolecular survival motor neuron (SMN) complex. This complex contains the SMN protein and six additional proteins, named Gemin2-7, according to their localization to nuclear structures termed gems. Here, we provide biochemical evidence for the existence of another, yet atypical, SMN complex component, termed unr-interacting protein (unrip). This abundant factor has been previously shown to form a complex with unr, a protein implicated in cap-independent translation of cellular and viral mRNA. We show that unrip is integrated into a complex with unr or with the SMN complex in vivo in a mutually exclusive manner. In the latter case, unrip is recruited to the active SMN complex via a stable interaction with Gemin7. However, unlike SMN and Gemins, unrip localizes predominantly to the cytoplasm and is absent from gems/Cajal bodies. Interestingly, RNAi-induced reduction of unrip protein levels leads to enhanced accumulation of SMN in the nucleus as evident by the increased formation of nuclear gems/Cajal bodies. Our data identify unrip as the first component of the U snRNP assembly machinery that associates with the SMN complex in a compartment-specific way. We speculate that unrip plays a crucial role in the intracellular distribution of the SMN complex.
Collapse
Affiliation(s)
- Matthias Grimmler
- Department of Biochemistry, Theodor Boveri Institute, University of Würzburg, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Tgs1 is the enzyme responsible for converting 7-methylguanosine RNA caps to the 2,2,7-trimethylguanosine cap structures of small nuclear and small nucleolar RNAs. Whereas budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe encode a single Tgs1 protein, the primitive eukaryote Giardia lamblia encodes two paralogs, Tgs1 and Tgs2. Here we show that purified Tgs2 is a monomeric enzyme that catalyzes methyl transfer from AdoMet (K(m) of 6 microm) to m(7)GDP (K(m) of 65 microm; k(cat) of 14 min(-1)) to form m(2,7)GDP. Tgs2 also methylates m(7)GTP (K(m) of 30 microm; k(cat) of 13 min(-1)) and m(7)GpppA (K(m) of 7 microm; k(cat)) of 14 min(-1) but is unreactive with GDP, GTP, GpppA, ATP, CTP, or UTP. We find that the conserved residues Asp-68, Glu-91, and Trp-143 are essential for Tgs2 methyltransferase activity in vitro. The m(2,7)GDP product formed by Tgs2 can be converted to m(2,2,7)GDP by S. pombe Tgs1 in the presence of excess AdoMet. However, Giardia Tgs2 itself is apparently unable to add a second methyl group at guanine-N2. This result implies that 2,2,7-trimethylguanosine caps in Giardia are either synthesized by Tgs1 alone or by the sequential action of Tgs2 and Tgs1. The specificity of Tgs2 raises the prospect that some Giardia mRNAs might contain dimethylguanosine caps.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Molecular Biology Program, Sloan-Kettering Institute, New York, New York 10021, USA
| | | |
Collapse
|
30
|
Strasser A, Dickmanns A, Lührmann R, Ficner R. Structural basis for m3G-cap-mediated nuclear import of spliceosomal UsnRNPs by snurportin1. EMBO J 2005; 24:2235-43. [PMID: 15920472 PMCID: PMC1173142 DOI: 10.1038/sj.emboj.7600701] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Accepted: 05/09/2005] [Indexed: 11/08/2022] Open
Abstract
In higher eukaryotes the biogenesis of spliceosomal UsnRNPs involves a nucleocytoplasmic shuttling cycle. After the m7G-cap-dependent export of the snRNAs U1, U2, U4 and U5 to the cytoplasm, each of these snRNAs associates with seven Sm proteins. Subsequently, the m7G-cap is hypermethylated to the 2,2,7-trimethylguanosine (m3G)-cap. The import adaptor snurportin1 recognises the m3G-cap and facilitates the nuclear import of the UsnRNPs by binding to importin-beta. Here we report the crystal structure of the m3G-cap-binding domain of snurportin1 with bound m3GpppG at 2.4 A resolution, revealing a structural similarity to the mRNA-guanyly-transferase. Snurportin1 binds both the hypermethylated cap and the first nucleotide of the RNA in a stacked conformation. This binding mode differs significantly from that of the m7G-cap-binding proteins Cap-binding protein 20 (CBP20), eukaryotic initiation factor 4E (eIF4E) and viral protein 39 (VP39). The specificity of the m3G-cap recognition by snurportin1 was evaluated by fluorescence spectroscopy, demonstrating the importance of a highly solvent exposed tryptophan for the discrimination of m7G-capped RNAs. The critical role of this tryptophan and as well of a tryptophan continuing the RNA base stack was confirmed by nuclear import assays and cap-binding activity tests using several snurportin1 mutants.
Collapse
Affiliation(s)
- Anja Strasser
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, University Göttingen, Germany
| | - Achim Dickmanns
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, University Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max-Planck-Institute of Biophysical Chemistry, Göttingen, Germany
| | - Ralf Ficner
- Department of Molecular Structural Biology, Institute for Microbiology and Genetics, University Göttingen, Germany
- Abt. Molekular Strukturbiologie, Institut für Mikrobiologie und Genetik, Universität Göttingen, Justus-von Liebig Weg 11, 37077 Göttingen, Germany. Tel.: +49 551 39 14071; Fax: +49 551 39 14082; E-mail:
| |
Collapse
|
31
|
Dickmanns A, Ficner R. Role of the 5’-cap in the biogenesis of spliceosomal snRNPs. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106799] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
32
|
Yong J, Wan L, Dreyfuss G. Why do cells need an assembly machine for RNA-protein complexes? Trends Cell Biol 2004; 14:226-32. [PMID: 15130578 DOI: 10.1016/j.tcb.2004.03.010] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small nuclear ribonucleoproteins (snRNPs) are crucial for pre-mRNA processing to mRNAs. Each snRNP contains a small nuclear RNA (snRNA) and an extremely stable core of seven Sm proteins. The snRNP biogenesis pathway is complex, involving nuclear export of snRNA, Sm-core assembly in the cytoplasm and re-import of the mature snRNP. Although in vitro Sm cores assemble readily on uridine-rich RNAs, the assembly in cells is carried out by the survival of motor neurons (SMN) complex. The SMN complex stringently scrutinizes RNAs for specific features that define them as snRNAs and identifies the RNA-binding Sm proteins. We discuss how this surveillance capacity of the SMN complex might ensure assembly of Sm cores only on the correct RNAs and prevent illicit, potentially deleterious assembly of Sm cores on random RNAs.
Collapse
Affiliation(s)
- Jeongsik Yong
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | |
Collapse
|
33
|
Miranda TB, Khusial P, Cook JR, Lee JH, Gunderson SI, Pestka S, Zieve GW, Clarke S. Spliceosome Sm proteins D1, D3, and B/B′ are asymmetrically dimethylated at arginine residues in the nucleus. Biochem Biophys Res Commun 2004; 323:382-7. [PMID: 15369763 DOI: 10.1016/j.bbrc.2004.08.107] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Indexed: 10/26/2022]
Abstract
We report a novel modification of spliceosome proteins Sm D1, Sm D3, and Sm B/B'. L292 mouse fibroblasts were labeled in vivo with [3H]methionine. Sm D1, Sm D3, and Sm B/B' were purified from either nuclear extracts, cytosolic extracts or a cytosolic 6S complex by immunoprecipitation of the Sm protein-containing complexes and then separation by electrophoresis on a polyacrylamide gel containing urea. The isolated Sm D1, Sm D3 or Sm B/B' proteins were hydrolyzed to amino acids and the products were analyzed by high-resolution cation exchange chromatography. Sm D1, Sm D3, and Sm B/B' isolated from nuclear fractions were all found to contain omega-NG-monomethylarginine and symmetric omega-NG,NG'-dimethylarginine, modifications that have been previously described. In addition, Sm D1, Sm D3, and Sm B/B' were also found to contain asymmetric omega-NG,NG-dimethylarginine in these nuclear fractions. Analysis of Sm B/B' from cytosolic fractions and Sm B/B' and Sm D1 from cytosolic 6S complexes showed only the presence of omega-NG-monomethylarginine and symmetric omega-NG,NG'-dimethylarginine. These results indicate that Sm D1, Sm D3, and Sm B/B' are asymmetrically dimethylated and that these modified proteins are located in the nucleus. In reactions in which Sm D1 or Sm D3 was methylated in vitro with a hemagglutinin-tagged PRMT5 purified from HeLa cells, we detected both symmetric omega-NG,NG'-dimethylarginine and asymmetric omega-NG,NG-dimethylarginine when reactions were done in a Tris/HCl buffer, but only detected symmetric omega-NG,NG'-dimethylarginine when a sodium phosphate buffer was used. These results suggest that the activity responsible for the formation of asymmetric dimethylated arginine residues in Sm proteins is either PRMT5 or a protein associated with it in the immunoprecipitated complex.
Collapse
Affiliation(s)
- Tina Branscombe Miranda
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Girard C, Mouaikel J, Neel H, Bertrand E, Bordonné R. Nuclear localization properties of a conserved protuberance in the Sm core complex. Exp Cell Res 2004; 299:199-208. [PMID: 15302587 DOI: 10.1016/j.yexcr.2004.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2003] [Revised: 04/22/2004] [Indexed: 10/26/2022]
Abstract
The nuclear import signal of snRNPs is composed of two essential components, the m(3)G cap structure of the snRNA and the Sm core NLS carried by the Sm protein core complex. We have previously proposed that, in yeast, this last determinant is represented by a basic-rich protuberance formed by the C-terminal extensions of Sm proteins. In mammals, as well as in other organisms, this component has not yet been precisely defined. Using GFP-Sm fusion constructs and immunolocalization as well as biochemical experiments, we show here that the C-terminal domains of human SmD1 and SmD3 proteins possess nuclear localization properties. Deletions of these domains increase cytoplasmic fluorescence and cytoplasmic localization of GFP-Sm mutant fusion alleles. Our results are consistent with a model in which the Sm core NLS is evolutionarily conserved and composed of a basic-rich protuberance formed by C-terminal domains of different Sm subtypes.
Collapse
Affiliation(s)
- Cyrille Girard
- Institut de Génétique Moléculaire, IFR122, CNRS UMR 5535, Montpellier, France
| | | | | | | | | |
Collapse
|
35
|
Enünlü I, Pápai G, Cserpán I, Udvardy A, Jeang KT, Boros I. Different isoforms of PRIP-interacting protein with methyltransferase domain/trimethylguanosine synthase localizes to the cytoplasm and nucleus. Biochem Biophys Res Commun 2003; 309:44-51. [PMID: 12943661 DOI: 10.1016/s0006-291x(03)01514-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A protein family including the recently identified PIMT/Tgs1 (PRIP-interacting protein with methyltransferase domain/trimethylguanosine synthase) was identified by searching databases for homologues of a newly identified Drosophila protein with RNA-binding activity and methyltransferase domain. Antibodies raised against a short peptide of the mammalian homologue show a 90-kDa isoform expressed specifically in rat brain and testis and a 55-kDa form expressed ubiquitously. In HeLa cells, the larger isoform of the protein is nuclear and associated with a 600-kDa complex, while the smaller isoform is mainly cytoplasmic and co-localizes to the tubulin network. Inhibition of PIMT/Tgs1 expression by siRNA in HeLa cells resulted in an increase in the percentage of cells in G2/M phases. In yeast two-hybrid and in vitro GST pull down experiments, the conserved C-terminal region of PIMT/Tgs1 interacted with the WD domain containing EED/WAIT-1 that acts as a polycomb-type repressor in the nucleus and also binds to integrins in the cytoplasm. Our experiments, together with earlier data, indicate that isoforms of the PIMT/Tgs1 protein with an RNA methyltransferase domain function both in the nucleus and in the cytoplasm and associate with both elements of the cytoskeletal network and nuclear factors known to be involved in gene regulation.
Collapse
|
36
|
Mouaikel J, Narayanan U, Verheggen C, Matera AG, Bertrand E, Tazi J, Bordonné R. Interaction between the small-nuclear-RNA cap hypermethylase and the spinal muscular atrophy protein, survival of motor neuron. EMBO Rep 2003; 4:616-22. [PMID: 12776181 PMCID: PMC1319203 DOI: 10.1038/sj.embor.embor863] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 04/14/2003] [Accepted: 04/16/2003] [Indexed: 11/09/2022] Open
Abstract
The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) requires the cytoplasmic assembly of the Sm-core complex, followed by the hypermethylation of the small nuclear RNA (snRNA) 5' cap. Both the Sm-core complex and the snRNA trimethylguanosine cap are required for the efficient nuclear import of snRNPs. Here, we show that trimethylguanosine synthase 1 (TGS1), the human homologue of the yeast snRNA cap hypermethylase, interacts directly with the survival of motor neuron (SMN) protein. Both proteins are similarly distributed, localizing in the cytoplasm and in nuclear Cajal bodies. The interaction between TGS1 and SMN is disrupted by a mutation in SMN that mimics the predominant isoform of the protein that is expressed in patients with the neurodegenerative disease, spinal muscular atrophy. These data indicate that, in addition to its function in cytoplasmic Sm-core assembly, the SMN protein also functions in the recruitment of the snRNA cap hypermethylase.
Collapse
Affiliation(s)
- John Mouaikel
- Institut de Génétique Moléculaire, IFR122-CNRS-UMR 5535, 1919 Route de Mende, 34000 Montpellier, France
| | - Usha Narayanan
- Department of Genetics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4955, USA
| | - Céline Verheggen
- Institut de Génétique Moléculaire, IFR122-CNRS-UMR 5535, 1919 Route de Mende, 34000 Montpellier, France
| | - A. Gregory Matera
- Department of Genetics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106-4955, USA
| | - Edouard Bertrand
- Institut de Génétique Moléculaire, IFR122-CNRS-UMR 5535, 1919 Route de Mende, 34000 Montpellier, France
| | - Jamal Tazi
- Institut de Génétique Moléculaire, IFR122-CNRS-UMR 5535, 1919 Route de Mende, 34000 Montpellier, France
| | - Rémy Bordonné
- Institut de Génétique Moléculaire, IFR122-CNRS-UMR 5535, 1919 Route de Mende, 34000 Montpellier, France
- Tel: +33 4 67 61 36 47; Fax: +33 4 67 04 02 31;
| |
Collapse
|
37
|
Mouaikel J, Verheggen C, Bertrand E, Tazi J, Bordonné R. Hypermethylation of the cap structure of both yeast snRNAs and snoRNAs requires a conserved methyltransferase that is localized to the nucleolus. Mol Cell 2002; 9:891-901. [PMID: 11983179 DOI: 10.1016/s1097-2765(02)00484-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The m(7)G caps of most spliceosomal snRNAs and certain snoRNAs are converted posttranscriptionally to 2,2,7-trimethylguanosine (m(3)G) cap structures. Here, we show that yeast Tgs1p, an evolutionarily conserved protein carrying a signature of S-AdoMet methyltransferase, is essential for hypermethylation of the m(7)G caps of both snRNAs and snoRNAs. Deletion of the yeast TGS1 gene abolishes the conversion of the m(7)G to m(3)G caps and produces a cold-sensitive splicing defect that correlates with the retention of U1 snRNA in the nucleolus. Consistently, Tgs1p is also localized in the nucleolus. Our results suggest a trafficking pathway in which yeast snRNAs and snoRNAs cycle through the nucleolus to undergo m(7)G cap hypermethylation.
Collapse
Affiliation(s)
- John Mouaikel
- Institut de Génétique Moléculaire, IFR 24-CNRS UMR 5535, 1919 route de Mende, 34000 Montpellier, France
| | | | | | | | | |
Collapse
|
38
|
Huber J, Dickmanns A, Lührmann R. The importin-beta binding domain of snurportin1 is responsible for the Ran- and energy-independent nuclear import of spliceosomal U snRNPs in vitro. J Cell Biol 2002; 156:467-79. [PMID: 11815630 PMCID: PMC2173342 DOI: 10.1083/jcb.200108114] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The nuclear localization signal (NLS) of spliceosomal U snRNPs is composed of the U snRNA's 2,2,7-trimethyl-guanosine (m3G)-cap and the Sm core domain. The m3G-cap is specifically bound by snurportin1, which contains an NH2-terminal importin-beta binding (IBB) domain and a COOH-terminal m3G-cap--binding region that bears no structural similarity to known import adaptors like importin-alpha (impalpha). Here, we show that recombinant snurportin1 and importin-beta (impbeta) are not only necessary, but also sufficient for U1 snRNP transport to the nuclei of digitonin-permeabilized HeLa cells. In contrast to impalpha-dependent import, single rounds of U1 snRNP import, mediated by the nuclear import receptor complex snurportin1-impbeta, did not require Ran and energy. The same Ran- and energy-independent import was even observed for U5 snRNP, which has a molecular weight of more than one million. Interestingly, in the presence of impbeta and a snurportin1 mutant containing an impalpha IBB domain (IBBimpalpha), nuclear U1 snRNP import was Ran dependent. Furthermore, beta-galactosidase (betaGal) containing a snurportin1 IBB domain, but not IBBimpalpha-betaGal, was imported into the nucleus in a Ran-independent manner. Our results suggest that the nature of the IBB domain modulates the strength and/or site of interaction of impbeta with nucleoporins of the nuclear pore complex, and thus whether or not Ran is required to dissociate these interactions.
Collapse
Affiliation(s)
- Jochen Huber
- Department of Cellular Biochemistry, Max Planck Institute of Biophysical Chemistry, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
39
|
Brahms H, Meheus L, de Brabandere V, Fischer U, Lührmann R. Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B' and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA (NEW YORK, N.Y.) 2001; 7:1531-42. [PMID: 11720283 PMCID: PMC1370196 DOI: 10.1017/s135583820101442x] [Citation(s) in RCA: 289] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Arginine residues in RG-rich proteins are frequently dimethylated posttranslationally by protein arginine methyltransferases (PRMTs). The most common methylation pattern is asymmetrical dimethylation, a modification important for protein shuttling and signal transduction. Symmetrically dimethylated arginines (sDMA) have until now been confined to the myelin basic protein MBP and the Sm proteins D1 and D3. We show here by mass spectrometry and protein sequencing that also the human Sm protein B/B' and, for the first time, one of the Sm-like proteins, LSm4, contain sDMA in vivo. The symmetrical dimethylation of B/B', LSm4, D1, and D3 decisively influences their binding to the Tudor domain of the "survival of motor neurons" protein (SMN): inhibition of dimethylation by S-adenosylhomocysteine (SAH) abolished the binding of D1, D3, B/B', and LSm4 to this domain. A synthetic peptide containing nine sDMA-glycine dipeptides, but not asymmetrically modified or nonmodified peptides, specifically inhibited the interaction of D1, D3, B/B', LSm4, and UsnRNPs with SMN-Tudor. Recombinant D1 and a synthetic peptide could be methylated in vitro by both HeLa cytosolic S100 extract and nuclear extract; however, only the cytosolic extract produced symmetrical dimethylarginines. Thus, the Sm-modifying PRMT is cytoplasmic, and symmetrical dimethylation of B/B', D1, and D3 is a prerequisite for the SMN-dependent cytoplasmic core-UsnRNP assembly. Our demonstration of sDMAs in LSm4 suggests additional functions of sDMAs in tri-UsnRNP biogenesis and mRNA decay. Our findings also have interesting implications for the understanding of the aetiology of spinal muscular atrophy (SMA).
Collapse
Affiliation(s)
- H Brahms
- Max Planck Institute of Biophysical Chemistry, Department of Cellular Biochemistry, Göttingen, Germany
| | | | | | | | | |
Collapse
|
40
|
Walke S, Bragado-Nilsson E, Séraphin B, Nagai K. Stoichiometry of the Sm proteins in yeast spliceosomal snRNPs supports the heptamer ring model of the core domain. J Mol Biol 2001; 308:49-58. [PMID: 11302706 DOI: 10.1006/jmbi.2001.4549] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Seven Sm proteins (B/B', D1, D2, D3, E, F and G proteins) containing a common sequence motif form a globular core domain within the U1, U2, U5 and U4/U6 spliceosomal snRNPs. Based on the crystal structure of two Sm protein dimers we have previously proposed a model of the snRNP core domain consisting of a ring of seven Sm proteins. This model postulates that there is only a single copy of each Sm protein in the core domain. In order to test this model we have determined the stoichiometry of the Sm proteins in yeast spliceosomal snRNPs. We have constructed seven different yeast strains each of which produces one of the Sm proteins tagged with a calmodulin-binding peptide (CBP). Further, each of these strains was transformed with one of seven different plasmids coding for one of the seven Sm proteins tagged with protein A. When one Sm protein is expressed as a CBP-tagged protein from the chromosome and a second protein was produced with a protein A-tag from the plasmid, the protein A-tag was detected strongly in the fraction bound to calmodulin beads, demonstrating that two different tagged Sm proteins can be assembled into functional snRNPs. In contrast when the CBP and protein A-tagged forms of the same Sm protein were co-expressed, no protein A-tag was detectable in the fraction bound to calmodulin. These results indicate that there is only a single copy of each Sm protein in the spliceosomal snRNP core domain and therefore strongly support the heptamer ring model of the spliceosomal snRNP core domain.
Collapse
MESH Headings
- Amino Acid Motifs
- Blotting, Western
- Calmodulin/metabolism
- Calmodulin-Binding Proteins/genetics
- Calmodulin-Binding Proteins/metabolism
- Fungal Proteins/chemistry
- Fungal Proteins/genetics
- Fungal Proteins/metabolism
- Gene Dosage
- Models, Molecular
- Plasmids/genetics
- Protein Binding
- Protein Structure, Quaternary
- Protein Structure, Tertiary
- Protein Subunits
- RNA, Fungal/analysis
- RNA, Fungal/genetics
- RNA, Small Nuclear/analysis
- RNA, Small Nuclear/genetics
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae/chemistry
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Spliceosomes/chemistry
- Spliceosomes/genetics
- Spliceosomes/metabolism
- Staphylococcal Protein A/genetics
- Staphylococcal Protein A/metabolism
- Transformation, Genetic
Collapse
Affiliation(s)
- S Walke
- Laboratory of Molecular Biology, MRC, Hills Road, Cambridge, CB2 2QH, UK
| | | | | | | |
Collapse
|
41
|
Kwan S, Gerlach VL, Brow DA. Disruption of the 5' stem-loop of yeast U6 RNA induces trimethylguanosine capping of this RNA polymerase III transcript in vivo. RNA (NEW YORK, N.Y.) 2000; 6:1859-69. [PMID: 11142384 PMCID: PMC1370054 DOI: 10.1017/s1355838200991325] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Primary transcripts made by RNA polymerase II (Pol II), but not Pol I or Pol III, are modified by addition of a 7-methylguanosine (m7G) residue to the triphosphate 5' end shortly after it emerges from the polymerase. The m7G "caps" of small nuclear and small nucleolar RNAs, but not messenger RNAs, are subsequently hypermethylated to a 2,2,7-trimethylguanosine (TMG) residue. U6 RNA, the only small nuclear RNA synthesized by Pol III in most eukaryotes, does not receive a methylguanosine cap. However, human U6 RNA is O-methylated on the 5'-terminal (gamma) phosphate by an enzyme that recognizes the 5' stem-loop of U6. Here we show that variant yeast U6 RNAs truncated or substituted within the 5' stem-loop are TMG capped in vivo. Accumulation of the most efficiently TMG-capped U6 RNA variant is strongly inhibited by a conditional mutation in the largest subunit of Pol III, confirming that it is indeed synthesized by Pol III. Thus, methylguanosine capping and cap hypermethylation are not exclusive to Pol II transcripts in yeast. We propose that TMG capping of variant U6 RNAs occurs posttranscriptionally due to exposure of the 5' triphosphate by disruption of protein binding and/or gamma-methyl phosphate capping. 5' truncation and TMG capping of U6 RNA does not appear to affect its normal function in splicing, suggesting that assembly and action of the spliceosome is not very sensitive to the 5' end structure of U6 RNA.
Collapse
Affiliation(s)
- S Kwan
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706-1532, USA
| | | | | |
Collapse
|
42
|
Brahms H, Raymackers J, Union A, de Keyser F, Meheus L, Lührmann R. The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem 2000; 275:17122-9. [PMID: 10747894 DOI: 10.1074/jbc.m000300200] [Citation(s) in RCA: 235] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Sm proteins B/B', D1, D2, D3, E, F, and G are components of the small nuclear ribonucleoproteins U1, U2, U4/U6, and U5 that are essential for the splicing of pre-mRNAs in eukaryotes. D1 and D3 are among the most common antigens recognized by anti-Sm autoantibodies, an autoantibody population found exclusively in patients afflicted with systemic lupus erythematosus. Here we demonstrate by protein sequencing and mass spectrometry that all arginines in the C-terminal arginine-glycine (RG) dipeptide repeats of the human Sm proteins D1 and D3, isolated from HeLa small nuclear ribonucleoproteins, contain symmetrical dimethylarginines (sDMAs), a posttranslational modification thus far only identified in the myelin basic protein. The further finding that human D1 individually overexpressed in baculovirus-infected insect cells contains asymmetrical dimethylarginines suggests that the symmetrical dimethylation of the RG repeats in D1 and D3 is dependent on the assembly status of D1 and D3. In antibody binding studies, 10 of 11 anti-Sm patient sera tested, as well as the monoclonal antibody Y12, reacted with a chemically synthesized C-terminal peptide of D1 containing sDMA, but not with peptides containing asymmetrically modified or nonmodified arginines. These results thus demonstrate that the sDMA-modified C terminus of D1 forms a major linear epitope for anti-Sm autoantibodies and Y12 and further suggest that posttranslational modifications of Sm proteins play a role in the etiology of systemic lupus erythematosus.
Collapse
Affiliation(s)
- H Brahms
- Institut für Molekularbiologie und Tumorforschung, Emil-Mannkopff-Str. 2, D-35037 Marburg, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The compartmentation of eukaryotic cells requires all nuclear proteins to be imported from the cytoplasm, whereas, for example, transfer RNAs, messenger RNAs, and ribosomes are made in the nucleus and need to be exported to the cytoplasm. Nuclear import and export proceed through nuclear pore complexes and can occur along a great number of distinct pathways, many of which are mediated by importin beta-related nuclear transport receptors. These receptors shuttle between nucleus and cytoplasm, and they bind transport substrates either directly or via adapter molecules. They all cooperate with the RanGTPase system to regulate the interactions with their cargoes. Another focus of our review is nuclear export of messenger RNA, which apparently largely relies on export mediators distinct from importin beta-related factors. We discuss mechanistic aspects and the energetics of transport receptor function and describe a number of pathways in detail.
Collapse
Affiliation(s)
- D Görlich
- Zentrum für Molekulare Biologie, Universität Heidelberg, Federal Republic of Germany.
| | | |
Collapse
|
44
|
Paraskeva E, Izaurralde E, Bischoff FR, Huber J, Kutay U, Hartmann E, Lührmann R, Görlich D. CRM1-mediated recycling of snurportin 1 to the cytoplasm. J Cell Biol 1999; 145:255-64. [PMID: 10209022 PMCID: PMC2133107 DOI: 10.1083/jcb.145.2.255] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/1998] [Revised: 03/05/1999] [Indexed: 11/22/2022] Open
Abstract
Importin beta is a major mediator of import into the cell nucleus. Importin beta binds cargo molecules either directly or via two types of adapter molecules, importin alpha, for import of proteins with a classical nuclear localization signal (NLS), or snurportin 1, for import of m3G-capped U snRNPs. Both adapters have an NH2-terminal importin beta-binding domain for binding to, and import by, importin beta, and both need to be returned to the cytoplasm after having delivered their cargoes to the nucleus. We have shown previously that CAS mediates export of importin alpha. Here we show that snurportin 1 is exported by CRM1, the receptor for leucine-rich nuclear export signals (NESs). However, the interaction of CRM1 with snurportin 1 differs from that with previously characterized NESs. First, CRM1 binds snurportin 1 50-fold stronger than the Rev protein and 5,000-fold stronger than the minimum Rev activation domain. Second, snurportin 1 interacts with CRM1 not through a short peptide but rather via a large domain that allows regulation of affinity. Strikingly, snurportin 1 has a low affinity for CRM1 when bound to its m3G-capped import substrate, and a high affinity when substrate-free. This mechanism appears crucial for productive import cycles as it can ensure that CRM1 only exports snurportin 1 that has already released its import substrate in the nucleus.
Collapse
Affiliation(s)
- E Paraskeva
- Zentrum für Molekulare Biologie der Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Kambach C, Walke S, Young R, Avis JM, de la Fortelle E, Raker VA, Lührmann R, Li J, Nagai K. Crystal structures of two Sm protein complexes and their implications for the assembly of the spliceosomal snRNPs. Cell 1999; 96:375-87. [PMID: 10025403 DOI: 10.1016/s0092-8674(00)80550-4] [Citation(s) in RCA: 348] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) involved in pre-mRNA splicing contain seven Sm proteins (B/B', D1, D2, D3, E, F, and G) in common, which assemble around the Sm site present in four of the major spliceosomal small nuclear RNAs (snRNAs). These proteins share a common sequence motif in two segments, Sm1 and Sm2, separated by a short variable linker. Crystal structures of two Sm protein complexes, D3B and D1D2, show that these proteins have a common fold containing an N-terminal helix followed by a strongly bent five-stranded antiparallel beta sheet, and the D1D2 and D3B dimers superpose closely in their core regions, including the dimer interfaces. The crystal structures suggest that the seven Sm proteins could form a closed ring and the snRNAs may be bound in the positively charged central hole.
Collapse
Affiliation(s)
- C Kambach
- MRC Laboratory of Molecular Biology, Cambridge, England, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Hartmuth K, Raker VA, Huber J, Branlant C, Lührmann R. An unusual chemical reactivity of Sm site adenosines strongly correlates with proper assembly of core U snRNP particles. J Mol Biol 1999; 285:133-47. [PMID: 9878394 DOI: 10.1006/jmbi.1998.2300] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The small nuclear ribonucleoprotein particles (snRNP) U1, U2, U4, and U5 contain a common set of eight Sm proteins that bind to the conserved single-stranded 5'-PuAU3-6GPu-3' (Sm binding site) region of their constituent U snRNA (small nuclear RNA), forming the Sm core RNP. Using native and in vitro reconstituted U1 snRNPs, accessibility of the RNA within the Sm core RNP to chemical structure probes was analyzed. Hydroxyl radical footprinting of in vitro reconstituted U1 snRNP demonstrated that riboses within a large continuous RNA region, including the Sm binding site, were protected. This protection was dependent on the binding of the Sm proteins. In contrast with the riboses, the phosphate groups within the Sm core site were accessible to modifying reagents. The invariant adenosine residue at the 5' end, as well as an adenosine two nucleotides downstream of the Sm binding site, showed an unexpected reactivity with dimethyl sulfate. This novel reactivity could be attributed to N7-methylation of the adenosine and was not observed in naked RNA, indicating that it is an intrinsic property of the RNA- protein interactions within the Sm core RNP. Further, this reactivity was observed concomitantly with formation of the Sm subcore intermediate during Sm core RNP assembly. As the Sm subcore can be viewed as the commitment complex in this assembly pathway, these results suggest that the peculiar reactivity of the Sm site adenosine bases may be diagnostic for proper assembly of the Sm core RNP. Consistent with this idea, a strong correlation was found between the unusual N7-A methylation sensitivity of the Sm core RNP and its ability to be imported into the nucleus of Xenopus laevis oocytes.
Collapse
Affiliation(s)
- K Hartmuth
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität, Emil-Mankopff-Strasse 2, Marburg, D-35037, Germany
| | | | | | | | | |
Collapse
|
47
|
Abstract
Immuno-detection by 'Midwestern' blotting provides a simple way to identify trimethylguanosine (TMG) capped RNAs. With this technique, over 20 bands are observed when total cellular RNA from Saccharomyces cerevisiae is transferred to a nylon membrane and probed with anti-TMG antibodies. Most, if not all, species known to contain a TMG cap are detected by this method. Only TMG-capped RNAs are detected on Midwestern blots unlike anti-TMG immunoprecipitates. Midwestern blotting is a useful alternative to immunoprecipitation and Northern analysis and may prove to be a better method for determining the relative abundance of capped RNAs. The blots can be reprobed multiple times with labeled antisense oligonucleotides to determine the identity of any TMG-capped species for which the primary sequence or a clone is available. This dual detection capability provides a powerful tool for the analysis of TMG-capped snRNAs and snoRNAs.
Collapse
Affiliation(s)
- T P Rasmussen
- Laboratories of Genetics and Molecular Biology, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
48
|
Abstract
Removal of introns from pre-messenger RNA (pre-mRNA) requires small nuclear RNAs (snRNAs) packaged into stable small ribonucleoprotein particles (snRNP). These snRNPs contain specific and common proteins also called Sm proteins. Correct assembly of the snRNAs with the common proteins is an essential step for the biogenesis of snRNP particles. We have identified a new Saccharomyces serevisiae gene, SME1 whose product shows 45% identity with the E core protein of human snRNP. The Sme1p contains the evolutionary conserved residues found in all Sm proteins. Combining genetic and biochemical experiments, we show that SME1 is an essential gene required for pre-mRNA splicing, cap modification and U1, U2, U4 and U5 snRNA stability. We show also that the human E core protein complements a yeast SME1 disruption demonstrating the functional equivalence of Sme1p and the human E core protein.
Collapse
Affiliation(s)
- R Bordonné
- UPR 9005, Mécanismes Moléculaires de la Division Cellulaire et du Développement, IBMC, Strasbourg, France.
| | | |
Collapse
|
49
|
Noble SM, Guthrie C. Transcriptional pulse-chase analysis reveals a role for a novel snRNP-associated protein in the manufacture of spliceosomal snRNPs. EMBO J 1996; 15:4368-79. [PMID: 8861964 PMCID: PMC452161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Vertebrate spliceosomal snRNAs associate with a conserved set of proteins, the Sm proteins, via a conserved RNA sequence, the Sm site. Assembly of this complex is required for the accumulation of stable snRNPs, hypermethylation of the 5' cap structure and nuclear import of the resultant particles. The function of individual core snRNP proteins is poorly understood, in part because of the difficulty of selectively inactivating individual polypeptides in vivo. Using a transcriptional pulse-chase method we have defined for the first time the steps of snRNP biogenesis in Saccharomyces cerevisiae. We describe a novel component of spliceosomal snRNPs, Brr1, which is distinct in sequence from Sm core proteins and yet which shares many of their properties, as well as a genetic interaction with the yeast homolog of Sm D1 core protein. Through a kinetic analysis of snRNP formation in wild-type and brr1 mutant cells we demonstrate specific defects in a subset of steps in the brr1 mutant: newly synthesized snRNAs are destabilized and 3'-end processing is slowed, whereas the cap hypermethylation reaction is unaffected. Notably, the stability of mature particles, as measured by promoter shut-off experiments, is normal in the absence of the Brr1 snRNP protein.
Collapse
MESH Headings
- Amino Acid Sequence
- Cold Temperature
- Fungal Proteins/genetics
- Fungal Proteins/isolation & purification
- Fungal Proteins/physiology
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA, Fungal/biosynthesis
- RNA, Fungal/genetics
- RNA, Small Nuclear/biosynthesis
- RNA, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/biosynthesis
- Ribonucleoproteins, Small Nuclear/genetics
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins
- Spliceosomes/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- S M Noble
- Department of Biochemistry and Biophysics, University of California, San Francisco 94143, USA
| | | |
Collapse
|
50
|
Raker VA, Plessel G, Lührmann R. The snRNP core assembly pathway: identification of stable core protein heteromeric complexes and an snRNP subcore particle in vitro. EMBO J 1996; 15:2256-69. [PMID: 8641291 PMCID: PMC450151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Stable association of the eight common Sm proteins with U1, U2, U4 or U5 snRNA to produce a spliceosomal snRNP core structure is required for snRNP biogenesis, including cap hypermethylation and nuclear transport. Here, the assembly of snRNP core particles was investigated in vitro using both native HeLa and in vitro generated Sm proteins. Several RNA-free, heteromeric protein complexes were identified, including E.F.G, B/B'.D3 and D1.D2.E.F.G. While the E.F.G complex alone did not stably bind to U1 snRNA, these proteins together with D1 and D2 were necessary and sufficient to form a stable U1 snRNP subcore particle. The subcore could be chased into a core particle by the subsequent addition of the B/B'.D3 protein complex even in the presence of free competitor U1 snRNA. Trimethylation of U1 snRNA's 5' cap, while not observed for the subcore, occurred in the stepwise-assembled U1 snRNP core particle, providing evidence for the involvement of the B/B' and D3 proteins in the hypermethylation reaction. Taken together, these results suggest that the various protein heterooligomers, as well as the snRNP subcore particle, are functional intermediates in the snRNP core assembly pathway.
Collapse
Affiliation(s)
- V A Raker
- Institut für Molekularbiologie und Tumorforschung, Philipps-Universität Marburg, Germany
| | | | | |
Collapse
|