1
|
Chaterji S, Lam CH, Ho DS, Proske DC, Baker AB. Syndecan-1 regulates vascular smooth muscle cell phenotype. PLoS One 2014; 9:e89824. [PMID: 24587062 PMCID: PMC3934950 DOI: 10.1371/journal.pone.0089824] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 01/24/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE We examined the role of syndecan-1 in modulating the phenotype of vascular smooth muscle cells in the context of endogenous inflammatory factors and altered microenvironments that occur in disease or injury-induced vascular remodeling. METHODS AND RESULTS Vascular smooth muscle cells (vSMCs) display a continuum of phenotypes that can be altered during vascular remodeling. While the syndecans have emerged as powerful and complex regulators of cell function, their role in controlling vSMC phenotype is unknown. Here, we isolated vSMCs from wild type (WT) and syndecan-1 knockout (S1KO) mice. Gene expression and western blotting studies indicated decreased levels of α-smooth muscle actin (α-SMA), calponin, and other vSMC-specific differentiation markers in S1KO relative to WT cells. The spread area of the S1KO cells was found to be greater than WT cells, with a corresponding increase in focal adhesion formation, Src phosphorylation, and alterations in actin cytoskeletal arrangement. In addition, S1KO led to increased S6RP phosphorylation and decreased AKT and PKC-α phosphorylation. To examine whether these changes were present in vivo, isolated aortae from aged WT and S1KO mice were stained for calponin. Consistent with our in-vitro findings, the WT mice aortae stained higher for calponin relative to S1KO. When exposed to the inflammatory cytokine TNF-α, WT vSMCs had an 80% reduction in syndecan-1 expression. Further, with TNF-α, S1KO vSMCs produced increased pro-inflammatory cytokines relative to WT. Finally, inhibition of interactions between syndecan-1 and integrins αvβ3 and αvβ5 using the inhibitory peptide synstatin appeared to have similar effects on vSMCs as knocking out syndecan-1, with decreased expression of vSMC differentiation markers and increased expression of inflammatory cytokines, receptors, and osteopontin. CONCLUSIONS Taken together, our results support that syndecan-1 promotes vSMC differentiation and quiescence. Thus, the presence of syndecan-1 would have a protective effect against vSMC dedifferentiation and this activity is linked to interactions with integrins αvβ3 and αvβ5.
Collapse
Affiliation(s)
- Somali Chaterji
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Christoffer H. Lam
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Derek S. Ho
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Daniel C. Proske
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| | - Aaron B. Baker
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
2
|
Rhoads RP, Fernyhough ME, Liu X, McFarland DC, Velleman SG, Hausman GJ, Dodson MV. Extrinsic regulation of domestic animal-derived myogenic satellite cells II. Domest Anim Endocrinol 2009; 36:111-26. [PMID: 19261429 DOI: 10.1016/j.domaniend.2008.12.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 12/18/2008] [Accepted: 12/19/2008] [Indexed: 12/12/2022]
Abstract
The existence of myogenic satellite cells was reported some 47 years ago, and, since that time, satellite cell research has flourished. So much new information is generated (daily) on these cells that it can be difficult for individuals to keep abreast of important issues related to their activation and proliferation, the modulation of the activity of other cell types, the differentiation of the cells to facilitate normal skeletal muscle growth and development, or to the repair of damaged myofibers. The intent of this review is to summarize new information about the extrinsic regulation of myogenic satellite cells and to provide specific mechanisms involved in altering satellite cell physiology. Where possible, examples from agriculturally important animals are used for illustrative purposes.
Collapse
Affiliation(s)
- R P Rhoads
- Department of Animal Sciences, University of Arizona, Tucson, AZ 85719, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Yoshiko Y, Hirao K, Maeda N. Differentiation in C(2)C(12) myoblasts depends on the expression of endogenous IGFs and not serum depletion. Am J Physiol Cell Physiol 2002; 283:C1278-86. [PMID: 12225990 DOI: 10.1152/ajpcell.00168.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myogenic differentiation in vitro has been usually viewed as being negatively controlled by serum mitogens. A depletion of critical serum components from medium has been considered to be essential for permanent withdrawal from the cell cycle and terminal differentiation of myoblasts. Removal of serum mitogens induces the expression of insulin-like growth factors (IGFs), whereas it inhibits that of basic fibroblast growth factor (bFGF) and transforming growth factor (TGF)-beta in myoblasts. These responses of growth factors to medium conditioning seem to be well matched to their functions in proliferation/differentiation. In the present study, we showed that C(2)C(12) myoblasts differentiated actively, even in mitogen-rich medium, and that this medium offered an advantage over mitogen-poor medium in terms of increasing differentiation. Our attention focused on endogenous growth factors, as described above, especially IGFs in mitogen-rich medium. During differentiation, IGF-I and IGF-II mRNA levels increased, but bFGF and TGF-beta(1) mRNAs decreased. Differentiation was commensurable with IGF mRNA levels and suppressed by antisense oligodeoxynucleotides and neutralizing monoclonal antibodies against IGFs. These results suggest that an autocrine/paracrine loop of IGFs, bFGF, and TGF-beta(1) is active in proliferating and differentiating C(2)C(12) cells without a depletion of serum and that endogenous IGFs actively override the negative control of differentiation by serum mitogens.
Collapse
Affiliation(s)
- Yuji Yoshiko
- Department of Oral Growth and Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, Minami-ku, Hiroshima 734-8553, Japan
| | | | | |
Collapse
|
4
|
Kocamis H, McFarland DC, Killefer J. Temporal expression of growth factor genes during myogenesis of satellite cells derived from the biceps femoris and pectoralis major muscles of the chicken. J Cell Physiol 2001; 186:146-52. [PMID: 11147809 DOI: 10.1002/1097-4652(200101)186:1<146::aid-jcp1014>3.0.co;2-q] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The expression of mRNAs for transforming growth factors (TGF-beta2, myostatin, activin-B, and follistatin), insulin-like growth factors (IGF-I and -II), and fibroblast growth factor (basic, bFGF) was investigated in satellite cells derived from chicken pectoralis major (PM) and biceps femoris (BF) muscles in the stages from initiation of proliferation to fusion. These growth factor gene cDNAs were synthesized by reverse transcriptase polymerase chain reaction (RT-PCR). No myostatin, activin-B, follistatin or bFGF expression was detected in either cell culture at 0 h. TGF-beta2 mRNA level increased at 48 h (P < 0.01) and remained constant through 144 h in both PM and BF satellite cell cultures. The ontogeny of myostatin gene expression with the exception of a sharp increase in BF culture at 72 h (P < 0.01), was nearly identical in both cell cultures. Activin-B mRNA level in PM satellite cells was higher than that in BF satellite cells at 72 h and 120 h (P < 0.01). Follistatin mRNA in PM satellite cells was higher than that in BF satellite cells at 24, 96, and 120 h culture (P < 0.01). No IGF-I gene expression was detected in cell cultures at any time point. IGF-II gene expression in BF satellite cells declined at 96 h (P < 0.01) and remained reduced until 144 h. bFGF mRNA in both satellite cell cultures increased at 24 h (P < 0.05) and remained at this level in BF satellite cells through 144 h.
Collapse
Affiliation(s)
- H Kocamis
- Division of Animal and Veterinary Sciences, West Virginia University, Morgantown 26506-6108, USA
| | | | | |
Collapse
|
5
|
Constantin B, Cronier L. Involvement of gap junctional communication in myogenesis. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 196:1-65. [PMID: 10730212 DOI: 10.1016/s0074-7696(00)96001-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-to-cell communication plays important roles in development and in tissue morphogenesis. Gap junctional intercellular communication (GJIC) has been implicated in embryonic development of various tissues and provides a pathway to exchange ions, secondary messengers, and metabolites through the intercellular gap junction channels. Although GJIC is absent in adult skeletal muscles, the formation of skeletal muscles involves a sequence of complex events including cell-cell interaction processes where myogenic cells closely adhere to each other. Much experimental evidence has shown that myogenic precursors and developing muscle fibers can directly communicate through junctional channels. This review summarizes current knowledge on the GJIC and developmental events involved in the formation of skeletal muscle fibers and describes recent progress in the investigation of the role of GJIC in myogenesis: evidence of gap junctions in somitic and myotomal tissue as well as in developing muscle fibers in situ, GJIC between perfusion myoblasts in culture, and involvement of GJIC in cytodifferentiation of skeletal muscle cells and in myoblast fusion. A model of intercellular signaling is proposed where GJIC participates to coordinate a multicellular population of interacting myogenic precursors to allow commitment to the skeletal muscle fate.
Collapse
Affiliation(s)
- B Constantin
- Laboratoire de Physiologie Générale, CNRS UMR 6558, University of Poitiers, France.
| | | |
Collapse
|
6
|
Flanagan-Steet H, Hannon K, McAvoy MJ, Hullinger R, Olwin BB. Loss of FGF receptor 1 signaling reduces skeletal muscle mass and disrupts myofiber organization in the developing limb. Dev Biol 2000; 218:21-37. [PMID: 10644408 DOI: 10.1006/dbio.1999.9535] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identities of extracellular growth factors that regulate skeletal muscle development in vivo are largely unknown. We asked if FGFs, which act as repressors of myogenesis in culture, play a similar role in vivo by ectopically expressing in the developing limb a truncated FGF receptor 1 (dnFGFR1) that acts as a dominant negative mutant. Hind limbs and the adjacent somites of Hamburger and Hamilton (HH) stage 17 chickens were infected with a replication-competent RCAS virus encoding dnFGFR1. By ED5, the virus had spread extensively within the limb and the adjacent somites with little rostral or caudal expansion of the infection along the axial midline. Viral infection and mutant receptor expression were coincident as revealed by the distribution of a viral coat protein and an HA epitope tag present on the carboxy terminus of dnFGFR1. Within 48 h following injection of dnFGFR1, we could detect no obvious changes in skeletal muscle precursor cell migration into the hind limb as compared to control limbs infected with an empty RCAN virus. However, by 3 days following infection of RCAS-dnFGFR1 virus, the level of skeletal muscle-specific myosin heavy chain was decreased and the expression pattern altered, suggesting disruption of skeletal muscle development. Two striking muscular phenotypes were observed in dnFGFR1-expressing limbs, including an average loss of 30% in skeletal muscle wet weight and a 50% decrease in myofiber density. At all ages examined the loss of skeletal muscle mass was accompanied by a loss of myoblasts and an unexpected concomitant loss of fibroblasts. Consistent with these observations, explants of infected cells revealed a reduction in the number of myonuclei in myotubes. Although the myofiber density per unit area was decreased over 50% compared to controls there were no detectable effects on myofiber diameter. The loss in myofiber density was, however, accompanied by an increase in the space surrounding individual myofibers and a generalized loss of myofiber integrity. It is noteworthy that long-bone development was unaffected by RCAS-dnFGFR1 infection, suggesting that FGFR2 and FGFR3 signaling was not disrupted. Our data provide conclusive evidence that FGFR1 signaling is necessary to maintain myoblast number and plays a role in myofiber organization.
Collapse
Affiliation(s)
- H Flanagan-Steet
- Department of Molecular Biology, University of Colorado, Boulder, Colorado, 80309, USA
| | | | | | | | | |
Collapse
|
7
|
Adi S, Cheng ZQ, Zhang PL, Wu NY, Mellon SH, Rosenthal SM. Opposing early inhibitory and late stimulatory effects of insulin-like growth factor-I on myogenin gene transcription. J Cell Biochem 2000. [DOI: 10.1002/1097-4644(20000915)78:4<617::aid-jcb11>3.0.co;2-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Abstract
Fibroblast growth factors (FGFs) and their receptors are critical participants in embryonic development, including the genesis of skeletal, cardiac, and smooth muscle. FGF signaling is mediated through interactions between multiple FGF ligands and transmembrane tyrosine kinase receptors, resulting in activation of a number of signal transduction pathways. Skeletal myocytes express FGF ligands and receptors in a coordinated fashion, suggesting that these molecules participate in autocrine signaling in the myocyte. Endogenously produced FGF has been shown to inhibit myogenesis, but the role of FGF receptor availability in directing myocyte proliferation and differentiation has not been established. To determine the contribution of receptor availability to the regulation of myogenesis, receptor availability was either increased by expressing a full-length FGF receptor-1 or decreased by expressing a truncated FGF receptor-1 in cultured skeletal myocytes. Constitutive expression of a full-length FGF receptor-1 increased myocyte proliferation and delayed differentiation. Conversely, a reduction in functional FGF receptor signaling by expression of a truncated FGF receptor-1 decreased proliferation and enhanced differentiation of myocytes. These data demonstrate that FGF receptor availability plays a critical regulatory role in skeletal myogenesis.
Collapse
Affiliation(s)
- K A Scata
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | | | | | | |
Collapse
|
9
|
Uruno T, Oki J, Ozawa K, Miyakawa K, Ueno H, Imamura T. Distinct regulation of myoblast differentiation by intracellular and extracellular fibroblast growth factor-1. Growth Factors 1999; 17:93-113. [PMID: 10595310 DOI: 10.3109/08977199909103519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We studied the role of fibroblast growth factor (FGF)-1 in the physiology of myoblast differentiation. We found that, while endogenous FGF-1 in L6-10 rat myoblasts did not suppress the progress of differentiation, the addition of FGF-1 to the culture medium suppressed it. Moreover, L6-10 cells stably transfected with full length FGF-1 undergo enhanced differentiation. The latter was well correlated with myogenin expression and myotube formation. Constitutive expression of a mutant FGF-1 (FGF-1U) that lacked a nuclear localization signal, promoted the differentiation of the myoblasts even more strongly. Furthermore, the expression of FGF-1U in an inducible expression system enhanced myogenin expression promptly. In L6-10 transfectants expressing a dominant-negative mutant of FGF receptor, stable transfection of FGF-1 promoted differentiation as it did in parent cells. Studies with FGF receptors and MAP kinase suggest that both are involved in the effect of FGF-1 when it is supplemented to culture medium but not during the effect of endogenous FGF-1 synthesized in cells. We conclude that intracellular (endogenous) and extracellular (exogenous) FGF-1 have differential effects on the regulation of myogenic differentiation of L6-10 cells.
Collapse
Affiliation(s)
- T Uruno
- Biosignaling Department, National Institute of Bioscience and Human Technology, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
10
|
Leconte I, Fox JC, Baldwin HS, Buck CA, Swain JL. Adenoviral-mediated expression of antisense RNA to fibroblast growth factors disrupts murine vascular development. Dev Dyn 1998; 213:421-30. [PMID: 9853963 DOI: 10.1002/(sici)1097-0177(199812)213:4<421::aid-aja7>3.0.co;2-b] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Fibroblast growth factors (FGFs) are expressed in the developing embryo and are postulated to regulate embryonic and vascular growth. The goal of this study was to elucidate the role of basic fibroblast growth factor (FGF-2) in early murine embryonic cardiovascular development in the mouse embryo. Gestation day 7.5 embryos were harvested and placed in culture, and 12 hr later replication-defective adenovirus (0.5 x 10(6) plaque forming units) encoding either beta-galactosidase or antisense FGF-2 RNA was injected into the sinus venosus of the cultured embryos. Embryos receiving only replication-defective adenovirus expressing the beta-galactosidase gene continued to develop normally over the next 12 hr. In contrast, those receiving adenovirus encoding antisense FGF-2 RNA displayed marked morphogenetic abnormalities, including cessation of growth and abnormal yolk sac vascular development, even though the embryonic hearts continued to beat. Abnormal development of the yolk sac vasculature was confirmed by microangiography and by histologic examination. Coinjection of virus carrying FGF-2 cDNA in the sense orientation reversed the effects of antisense FGF-2 RNA expression. These results confirm the efficacy of the replication-defective adenovirus for targeting gene expression to the developing vasculature and provide evidence for a critical role of FGF in the normal vascular assembly in the early embryo. Cessation of embryonic growth on expression of antisense FGF-2 RNA was most likely attributable to failure of efficient circulation of the early embryonic blood cells from the yolk sac into the embryo.
Collapse
Affiliation(s)
- I Leconte
- Department of Medicine, University of Pennsylvania Health System, Philadelphia, USA
| | | | | | | | | |
Collapse
|
11
|
Zalecki P, Radzikowski C, Olsnes S, Wiedłocha A. Modulation by interleukin-2 of cellular response to fibroblast growth factor-1 in F69-3 fibrosarcoma cells. Exp Cell Res 1998; 244:61-70. [PMID: 9770349 DOI: 10.1006/excr.1998.4187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
FGF-1 stimulated DNA synthesis and induced expression of IL-2 receptors in the murine fibrosarcoma cell line, F69-3. Concomitant treatment with IL-2 abolished the stimulation of DNA synthesis, but not binding of FGF-1 to the FGF-receptors or subsequent endocytosis of the bound growth factor. Also, it did not inhibit activation of the FGF-receptor tyrosine kinase or stimulation of the downstream effector, MAP kinase. Treatment with IL-2 prevented transport of FGF-1 to the nuclear fraction in a time- and dose-dependent manner that parallelled the inhibition of FGF-1 stimulated DNA synthesis. The data support our earlier finding that transport of FGF-1 to the nucleus is an important event in the mechanism of stimulation of DNA synthesis induced by the growth factor, and they demonstrate that treatment with a cytokine can modulate the cellular response to FGF-1.
Collapse
Affiliation(s)
- P Zalecki
- Institute for Cancer Research, The Norwegian Radium Hospital, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
12
|
Yamane A, Bringas P, Mayo ML, Amano O, Takahashi K, Vo H, Shum L, Slavkin HC. Transforming growth factor alpha up-regulates desmin expression during embryonic mouse tongue myogenesis. Dev Dyn 1998; 213:71-81. [PMID: 9733102 DOI: 10.1002/(sici)1097-0177(199809)213:1<71::aid-aja7>3.0.co;2-v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Myogenesis is determined by a set of myogenic differentiation factors that are, in turn, regulated by a number of peptide growth factors. During embryonic mouse tongue formation, transforming growth factor alpha (TGF alpha), epidermal growth factor (EGF), and their cognate receptor (EGFR) are co-expressed spatially and temporally with desmin, a muscle-specific structural protein. This investigation tested the hypothesis that TGF alpha directly regulates the myogenic program in developing tongue myoblasts. Mandibular processes from the first branchial arch of embryonic day 10.5 (E10.5) mouse embryos were microdissected and explanted into an organ culture system using serumless chemically defined medium. Exogenous TGF alpha at 10 and 20 ng/ml specifically increased the amount of desmin expression and the number of desmin-positive cells without affecting the general growth and development of the mandibles. This inductive response was detected as early as 2 days after treatment and sustained up to 9 days in culture. EGFR antisense oligonucleotides (30 microM) as well as tyrphostin (80 microM) were able to negate TGF alpha-induced up-regulation of desmin expression. These data indicate that autocrine and/or paracrine action of TGF alpha promotes tongue myogenesis, and that this action is mediated through functional kinase activity of the EGFR. We speculate that the myogenic program in the developing mouse tongue is dependent upon growth factor mediated cell-cell communication of mesenchymal cells originating from the occipital somites and ectomesenchymal cells originating from the cranial neural crest.
Collapse
Affiliation(s)
- A Yamane
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Kato S, Muraishi A, Miyamoto T, Fox JC. Basic fibroblast growth factor regulates extracellular matrix and contractile protein expression independent of proliferation in vascular smooth muscle cells. In Vitro Cell Dev Biol Anim 1998; 34:341-6. [PMID: 9590508 DOI: 10.1007/s11626-998-0011-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Basic fibroblast growth factor (bFGF) can influence proliferation and differentiation in vascular smooth muscle cells. Basic FGF promotes some features of the synthetic phenotype (proliferation) but is known to inhibit others (collagen synthesis). Whether bFGF availability influences smooth muscle cell phenotype independent of proliferation is not known. The purpose of this study was to determine if the effects of bFGF on extracellular matrix and contractile protein expression are dependent on changes in proliferation. Basic FGF availability was manipulated by adding bFGF to cultured cells or by inhibiting bFGF expression using antisense RNA, and adjusting culture conditions such that proliferation was held constant. Compared to cells cultured in serum alone, smooth muscle alpha-actin and myosin heavy chain expression was markedly reduced by added bFGF, but was not influenced by antisense inhibition of bFGF expression. Under the same conditions, collagen synthesis was inhibited by added bFGF, and was stimulated by reduced bFGF expression. These consequences of altering bFGF availability were not associated with changes in FGF receptor expression. These findings demonstrate that alterations in bFGF availability can regulate smooth muscle cell phenotype independent of proliferation, which may be related to the regulation of smooth muscle cell phenotype in vivo.
Collapse
Affiliation(s)
- S Kato
- Department of Medicine, University of Pennsylvania, Philadelphia 19104-6069, USA
| | | | | | | |
Collapse
|
14
|
Yablonka-Reuveni Z, Rivera AJ. Proliferative Dynamics and the Role of FGF2 During Myogenesis of Rat Satellite Cells on Isolated Fibers. BASIC AND APPLIED MYOLOGY : BAM 1997; 7:189-202. [PMID: 26052220 PMCID: PMC4457462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Myogenic precursors in adult skeletal muscle (satellite cells) are mitotically quiescent but can proliferate in response to a variety of stresses including muscle injury. To gain further understanding of adult myoblasts, we are analyzing myogenesis of satellite cells on fibers isolated from adult rat muscle. In this culture model, satellite cells are maintained in their in situ position underneath the fiber basement membrane. Employing two different approaches to monitor proliferation of satellite cells on isolated fibers (autoradiography following 3H-thymidine incorporation and immunofluorescence of cells positive for proliferating cell nuclear antigen (PCNA)), we show in the present study that satellite cells initiate cell proliferation at 12 to 24 hours following fiber culture establishment and that cell proliferation is reduced to minimal levels by 60 to 72 hours in culture. Maximal number of proliferating cells is seen at 36 to 48 hours in culture. These PCNA+ satellite cells transit into the differentiated, myogenin+ state following about 24 hours in the proliferative state. Continuous exposure of the fiber culture to FGF2 (basic FGF; added at the time of culture establishment) leads to a 2 fold increase in the number of PCNA+ cells by 48 hours in culture but the overall schedule of proliferation and transition into the myogenin+ state is not affected. Delaying the addition of FGF2 until 15 to 18 hours following the initiation of the fiber culture does not reduce its effect. However, the addition of FGF2 at 24 hours or later results in a progressive reduction in the number of proliferating satellite cells. Exposure of fiber cultures to transforming growth factor β (TGFβ1) leads to a reduction in the number of proliferating cells in both the absence or presence of FGF2. We propose that FGF2 enhances the number of proliferating cells by facilitating the recruitment of additional satellite cells from the quiescent state. However, satellite cells on isolated fibers conform to a highly coordinated program and rapidly transit from proliferation to differentiation regardless of the presence of FGF. The identification of agents that can prolong the proliferative state of satellite cells when the cells undergo myogenesis in their native position by the intact myofiber might be useful in improving myoblast transplantation into skeletal muscle for cell-mediated gene therapy.
Collapse
Affiliation(s)
- Zipora Yablonka-Reuveni
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, USA
| | - Anthony J Rivera
- Department of Biological Structure, School of Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
15
|
Yoshiko Y, Hirao K, Sakabe K, Seiki K, Takezawa J, Maeda N. Autonomous control of expression of genes for insulin-like growth factors during the proliferation and differentiation of C2C12 mouse myoblasts in serum-free culture. Life Sci 1996; 59:1961-8. [PMID: 8950295 DOI: 10.1016/s0024-3205(96)00547-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The proliferation and differentiation of skeletal muscle cells in culture are usually controlled by serum components, and the differentiation can be induced by a reduction in the serum concentration. Insulin-like growth factors (IGFs) play a critical role in stimulating myoblast differentiation, and the expression of their genes is controlled by serum factors. We have found that C2C12 myoblasts are capable of proliferation and differentiation even in serum-free medium that does not contain peptide mitogens. During these processes in serum-free medium, the accumulation of mRNAs for IGFs in the cells was observed; and their levels increased with concomitant increases in creatine kinase activity and myotube formation and a decrease in DNA synthesis. Thus, the present results suggest that proliferation and differentiation of C2C12 cells are autonomously controlled and that the increase in the expression of the IGFs may be independent of exogenous components.
Collapse
Affiliation(s)
- Y Yoshiko
- Department of Oral Anatomy, Hiroshima University School of Dentistry, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
Gene therapy techniques are under development for many areas of medicine, including cardiovascular disease. Identifying appropriate gene targets will require more detailed knowledge of the molecular pathophysiology of these disorders, and choosing appropriate vectors and delivery systems will contribute significantly to the challenge of developing this approach for clinical use. The concepts of toxicology and therapeutic drug monitoring will need to be broadened to account for the unique chemical, biological, and genetic characteristics of gene therapeutic agents. This review will provide an overview of strategy development, currently available vectors, and examples of their application to cardiovascular gene transfer. Considerations of the potential toxicities associated with particular vectors and delivery systems, as well as the types of genetic modifications possible, will provide some guidelines regarding appropriate monitoring of their clinical application.
Collapse
Affiliation(s)
- J C Fox
- Department of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
17
|
Fox JC, Shanley JR. Antisense inhibition of basic fibroblast growth factor induces apoptosis in vascular smooth muscle cells. J Biol Chem 1996; 271:12578-84. [PMID: 8647868 DOI: 10.1074/jbc.271.21.12578] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Basic fibroblast growth factor (bFGF), a potent mitogen for many cell types, is expressed by vascular smooth muscle cells and plays a prominent role in the proliferative response to vascular injury. Basic FGF has also been implicated as a survival factor for a variety of quiescent or terminally differentiated cells. Autocrine mechanisms could potentially mediate both proliferation and cell survival. To probe such autocrine pathways, endogenous bFGF production was inhibited in cultured rat vascular smooth muscle cells by the expression of antisense bFGF RNA. Inhibition of endogenous bFGF production induced apoptosis in these cells independent of proliferation, and apoptosis could be prevented by exogenous bFGF but not serum or epidermal growth factor. The induction of apoptosis was associated with an inappropriate entry into S phase. These data demonstrate that interruption of autocrine bFGF signaling results in apoptosis of vascular smooth muscle cells, and that the mechanism involves disruption of normal cell cycle regulation.
Collapse
Affiliation(s)
- J C Fox
- Department of Medicine, University of Pennsylvania, Philadelphia 19104, USA.
| | | |
Collapse
|
18
|
Junttila T, Rechardt L, Cao Y, Hökfelt T, Pelto-Huikko M. Distribution of acidic fibroblast growth factor-like immunoreactivity in rat skeletal muscle fibers. Brain Res 1996; 707:81-7. [PMID: 8866716 DOI: 10.1016/0006-8993(95)01227-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Acidic fibroblast growth factor (aFGF) is a mitogenic, angiogenic and neurotrophic growth factor which promotes proliferation, but delays differentiation of cultured myoblasts. Its mRNA is expressed in the skeletal muscle, however, the distribution of aFGF in the postnatal skeletal muscle is poorly characterized. In the present study, the distribution of aFGF-like immunoreactivity (LI) was examined in developing and adult rat skeletal muscle fibers. In addition, the effect of the transection of the sciatic nerve on aFGF-LI in calf muscle fibers was examined. From the first postnatal day on, aFGF-immunoreactive (IR) muscle fibers were observed in different calf muscles. From the 7th postnatal day on a large number of muscle fibers exhibited aFGF-LI in the soleus muscle, some in plantaris and only few in gastrocnemius and extraocular muscles. Double-labelling with fast-myosin antibody showed that aFGF-LI was restricted to the slow oxidative muscle fibers. aFGF-IR intrafusal muscle fibers were seen in developing and mature muscle spindles. In addition, aFGF-IR nerve fibers and myoneural junctions were observed in different muscles. Transection of the sciatic nerve did not noticeably alter the expression pattern of aFGF-LI in calf muscles during two-week period. The present study demonstrates aFGF-LI in the rat slow oxidative muscle fibers where it may have fiber-type specific functions in addition to its known trophic effects.
Collapse
Affiliation(s)
- T Junttila
- Department of Anatomy, University of Tampere, Finland
| | | | | | | | | |
Collapse
|
19
|
Chen X, Raab G, Deutsch U, Zhang J, Ezzell RM, Klagsbrun M. Induction of heparin-binding EGF-like growth factor expression during myogenesis. Activation of the gene by MyoD and localization of the transmembrane form of the protein on the myotube surface. J Biol Chem 1995; 270:18285-94. [PMID: 7629148 DOI: 10.1074/jbc.270.31.18285] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) gene expression and protein localization were analyzed during the process of myogenic differentiation. The mouse HB-EGF gene was isolated, and a 1.8-kilobase genomic fragment flanking the 5' end of the cDNA was cloned. This fragment contains two sequences which match the consensus CANNTG sequence for E-boxes, binding sites for the MyoD family of DNA-binding transcription factors that regulate myogenesis. Accordingly, HB-EGF synthesis was analyzed in 10T1/2 cells and C2C12 cells which are used commonly for the study of myogenesis. HB-EGF gene expression was upregulated in both cell types during myogenesis. In 10T1/2 cells, direct activation of HB-EGF gene expression by MyoD was shown in that: i) transient transfection of these cells with a plasmid expressing MyoD resulted in a 10-20-fold increase in endogenous HB-EGF mRNA levels; ii) co-transfection of MyoD and an HB-EGF promoter-reporter plasmid resulted in a 5-10-fold increase in reporter activity, an increase that was abrogated by deletion of a putative HB-EGF proximal E-box sequence; and iii) incubation of MyoD protein with a 25-base pair double-stranded oligonucleotide corresponding to the HB-EGF proximal E-box sequence resulted in retarded electrophoretic mobility of the oligonucleotide. In C2C12 cells, differentiation of myoblasts into myotubes resulted in a 40-50-fold increase in HB-EGF promoter activity. In addition, immunostaining and laser confocal microscopy detected HB-EGF protein in C2C12 myotubes but not in myoblasts. The HB-EGF produced was in its transmembrane form and localized to the myotube surface. Taken together, it was concluded that during skeletal muscle cell differentiation, MyoD plays a direct role in activating HB-EGF gene expression and that HB-EGF protein is expressed preferentially in myotubes and in its membrane-anchored form.
Collapse
Affiliation(s)
- X Chen
- Department of Surgery, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
20
|
Bosche WJ, Ewton DZ, Florini JR. Transforming growth factor-beta isoform expression in insulin-like growth factor stimulated myogenesis. J Cell Physiol 1995; 164:324-33. [PMID: 7542663 DOI: 10.1002/jcp.1041640213] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Transforming growth factor betas (TGF-beta s) are the defining members of a super-family of small proteins that are involved in the regulation of development and morphogenesis in a wide array of systems. Previous studies have demonstrated that TGF-beta s both inhibit and, under specialized conditions, induce the differentiation of myoblasts. TGF-beta have been shown to be secreted by mouse C2C12 myoblast cultures undergoing differentiation. Insulin-like growth factors (IGFs) have also been shown to be secreted by myoblasts and to induce myogenesis. This study characterizes the effect of IGF treatment on the expression and secretion of TGF-beta s in the IGF-sensitive L6A1 myoblast line. IGF downregulated the expression of TGF-beta 3 in a concentration-dependent manner at 24 and 48 hours; TGF-beta 1 was not sensitive to IGF treatment at 24 hours but was downregulated by IGFs at 48 hours. This downregulation was mediated by the type 1 IGF receptor and modulated by IGF binding proteins secreted by the myoblasts. Some reexpression of TGF-beta 1 and TGF-beta 3 mRNAs was observed after extensive morphological differentiation had occurred. These results support the hypothesis that IGFs act through the IGF type I receptor as part of a concerted mechanism to modulate expression of the TGF-beta genes, as part of a coordinated set of changes associated with terminal myogenic differentiation.
Collapse
Affiliation(s)
- W J Bosche
- Biology Department, Syracuse University, New York 13244, USA
| | | | | |
Collapse
|