1
|
Matrullo G, Filomeni G, Rizza S. Redox regulation of focal adhesions. Redox Biol 2025; 80:103514. [PMID: 39879736 PMCID: PMC11810850 DOI: 10.1016/j.redox.2025.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/07/2025] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
Focal adhesions (FAs), multi-protein complexes that link the extracellular matrix to the intracellular cytoskeleton, are key mediators of cell adhesion, migration, and proliferation. These dynamic structures act as mechanical sensors, transmitting stimuli from the extracellular to intracellular environment activating in this way signaling pathways and enabling cells to adapt to environmental changes. As such, FAs are critical for tissue organization and serve as hubs governing cell spatial arrangement within the organism. The assembly, reactivity, and functional regulation of FAs are tightly controlled by post-translational modifications, including redox modulation by reactive oxygen and nitrogen species. Increasing evidence suggests that redox signaling plays a pivotal role in both the physiological and pathological functions of FAs and their downstream processes. Redox regulation affects various components of the FA complex, including integrins, focal adhesion kinase 1 (FAK1), SRC, adapter proteins, and cytoskeletal elements. In this review, we provide an updated overview of the complex interplay between redox signaling and post-translational modifications in FAs. We explore how redox reactions influence the structure, dynamics, and function of FAs, shedding light on their broader implications in health and disease.
Collapse
Affiliation(s)
- Gianmarco Matrullo
- Department of Biology, University of Rome "Tor Vergata", 00100, Rome, Italy
| | - Giuseppe Filomeni
- Department of Biology, University of Rome "Tor Vergata", 00100, Rome, Italy; Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark
| | - Salvatore Rizza
- Redox Biology Group, Danish Cancer Institute, 2100, Copenhagen, Denmark.
| |
Collapse
|
2
|
Brock K, Alpha KM, Brennan G, De Jong EP, Luke E, Turner CE. A comparative analysis of paxillin and Hic-5 proximity interactomes. Cytoskeleton (Hoboken) 2025; 82:12-31. [PMID: 38801098 PMCID: PMC11599474 DOI: 10.1002/cm.21878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/18/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Focal adhesions serve as structural and signaling hubs, facilitating bidirectional communication at the cell-extracellular matrix interface. Paxillin and the related Hic-5 (TGFβ1i1) are adaptor/scaffold proteins that recruit numerous structural and regulatory proteins to focal adhesions, where they perform both overlapping and discrete functions. In this study, paxillin and Hic-5 were expressed in U2OS osteosarcoma cells as biotin ligase (BioID2) fusion proteins and used as bait proteins for proximity-dependent biotinylation in order to directly compare their respective interactomes. The fusion proteins localized to both focal adhesions and the centrosome, resulting in biotinylation of components of each of these structures. Biotinylated proteins were purified and analyzed by mass spectrometry. The list of proximity interactors for paxillin and Hic-5 comprised numerous shared core focal adhesion proteins that likely contribute to their similar functions in cell adhesion and migration, as well as proteins unique to paxillin and Hic-5 that have been previously localized to focal adhesions, the centrosome, or the nucleus. Western blotting confirmed biotinylation and enrichment of FAK and vinculin, known interactors of Hic-5 and paxillin, as well as several potentially unique proximity interactors of Hic-5 and paxillin, including septin 7 and ponsin, respectively. Further investigation into the functional relationship between the unique interactors and Hic-5 or paxillin may yield novel insights into their distinct roles in cell migration.
Collapse
Affiliation(s)
- Katia Brock
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Kyle M. Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Grant Brennan
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Ebbing P. De Jong
- Proteomics Core facility, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Elizabeth Luke
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| | - Christopher E. Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210, USA
| |
Collapse
|
3
|
Fierro Morales JC, Redfearn C, Titus MA, Roh-Johnson M. Reduced PaxillinB localization to cell-substrate adhesions promotes cell migration in Dictyostelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.19.585764. [PMID: 38562712 PMCID: PMC10983970 DOI: 10.1101/2024.03.19.585764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Many cells adhere to extracellular matrix for efficient cell migration. This adhesion is mediated by focal adhesions, a protein complex linking the extracellular matrix to the intracellular cytoskeleton. Focal adhesions have been studied extensively in mesenchymal cells, but recent research in physiological contexts and amoeboid cells suggest focal adhesion regulation differs from the mesenchymal focal adhesion paradigm. We used Dictyostelium discoideum to uncover new mechanisms of focal adhesion regulation, as Dictyostelium are amoeboid cells that form focal adhesion-like structures for migration. We show that PaxillinB, the Dictyostelium homologue of Paxillin, localizes to dynamic focal adhesion-like structures during Dictyostelium migration. Unexpectedly, reduced PaxillinB recruitment to these structures increases Dictyostelium cell migration. Quantitative analysis of focal adhesion size and dynamics show that lack of PaxillinB recruitment to focal adhesions does not alter focal adhesion size, but rather increases focal adhesion turnover. These findings are in direct contrast to Paxillin function at focal adhesions during mesenchymal migration, challenging the established focal adhesion model.
Collapse
Affiliation(s)
| | - Chandler Redfearn
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Margaret A Titus
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah, Salt Lake City, UT, 84112, USA
- Department of Kinesiology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
4
|
Solomatina ES, Kovaleva AV, Tvorogova AV, Vorobjev IA, Saidova AA. Effect of Focal Adhesion Kinase and Vinculin Expression on Migration Parameters of Normal and Tumor Epitheliocytes. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:474-486. [PMID: 38648767 DOI: 10.1134/s0006297924030088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 04/25/2024]
Abstract
Focal adhesions (FAs) are mechanosensory structures that transform physical stimuli into chemical signals guiding cell migration. Comprehensive studies postulate correlation between the FA parameters and cell motility metrics for individual migrating cells. However, which properties of the FAs are critical for epithelial cell motility in a monolayer remains poorly elucidated. We used high-throughput microscopy to describe relationship between the FA parameters and cell migration in immortalized epithelial keratinocytes (HaCaT) and lung carcinoma cells (A549) with depleted or inhibited vinculin and focal adhesion kinase (FAK) FA proteins. To evaluate relationship between the FA morphology and cell migration, we used substrates with varying stiffness in the model of wound healing. Cells cultivated on fibronectin had the highest FA area values, migration rate, and upregulated expression of FAK and vinculin mRNAs, while the smallest FA area and slower migration rate to the wound were specific to cells cultivated on glass. Suppression of vinculin expression in both normal and tumor cells caused decrease of the FA size and fluorescence intensity but did not affect cell migration into the wound. In contrast, downregulation or inactivation of FAK did not affect the FA size but significantly slowed down the wound closure rate by both HaCaT and A549 cell lines. We also showed that the FAK knockdown results in the FA lifetime decrease for the cells cultivated both on glass and fibronectin. Our data indicate that the FA lifetime is the most important parameter defining migration of epithelial cells in a monolayer. The observed change in the cell migration rate in a monolayer caused by changes in expression/activation of FAK kinase makes FAK a promising target for anticancer therapy of lung carcinoma.
Collapse
Affiliation(s)
- Evgenia S Solomatina
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anastasia V Kovaleva
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Anna V Tvorogova
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
- Belozersky Research Institute of Physico-Chemical Biology, Moscow, 119991, Russia
| | - Ivan A Vorobjev
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia
| | - Aleena A Saidova
- Lomonosov Moscow State University, Department of Biology, Moscow, 119991, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| |
Collapse
|
5
|
Jühlen R, Grauer L, Martinelli V, Rencurel C, Fahrenkrog B. Alteration of actin cytoskeletal organisation in fetal akinesia deformation sequence. Sci Rep 2024; 14:1742. [PMID: 38242956 PMCID: PMC10799014 DOI: 10.1038/s41598-023-50615-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024] Open
Abstract
Fetal akinesia deformation sequence (FADS) represents the severest form of congenital myasthenic syndrome (CMS), a diverse group of inherited disorders characterised by impaired neuromuscular transmission. Most CMS originate from defects in the muscle nicotinic acetylcholine receptor, but the underlying molecular pathogenesis is only poorly understood. Here we show that RNAi-mediated silencing of FADS-related proteins rapsyn and NUP88 in foetal fibroblasts alters organisation of the actin cytoskeleton. We show that fibroblasts from two independent FADS individuals have enhanced and shorter actin stress fibre bundles, alongside with an increased number and size of focal adhesions, with an otherwise normal overall connectivity and integrity of the actin-myosin cytoskeleton network. By proximity ligation assays and bimolecular fluorescence complementation, we show that rapsyn and NUP88 localise nearby adhesion plaques and that they interact with the focal adhesion protein paxillin. Based on these findings we propose that a respective deficiency in rapsyn and NUP88 in FADS alters the regulation of actin dynamics at focal adhesions, and thereby may also plausibly dictate myofibril contraction in skeletal muscle of FADS individuals.
Collapse
Affiliation(s)
- Ramona Jühlen
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany.
| | - Lukas Grauer
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, 52074, Aachen, Germany
| | - Valérie Martinelli
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
- Laboratory of Neurovascular Signaling, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium
| | | | - Birthe Fahrenkrog
- Laboratory Biology of the Cell Nucleus, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
- Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
6
|
Wang X, Istvanffy R, Ye L, Teller S, Laschinger M, Diakopoulos KN, Görgülü K, Li Q, Ren L, Jäger C, Steiger K, Muckenhuber A, Vilne B, Çifcibaşı K, Reyes CM, Yurteri Ü, Kießler M, Gürçınar IH, Sugden M, Yıldızhan SE, Sezerman OU, Çilingir S, Süyen G, Reichert M, Schmid RM, Bärthel S, Oellinger R, Krüger A, Rad R, Saur D, Algül H, Friess H, Lesina M, Ceyhan GO, Demir IE. Phenotype screens of murine pancreatic cancer identify a Tgf-α-Ccl2-paxillin axis driving human-like neural invasion. J Clin Invest 2023; 133:e166333. [PMID: 37607005 PMCID: PMC10617783 DOI: 10.1172/jci166333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Solid cancers like pancreatic ductal adenocarcinoma (PDAC), a type of pancreatic cancer, frequently exploit nerves for rapid dissemination. This neural invasion (NI) is an independent prognostic factor in PDAC, but insufficiently modeled in genetically engineered mouse models (GEMM) of PDAC. Here, we systematically screened for human-like NI in Europe's largest repository of GEMM of PDAC, comprising 295 different genotypes. This phenotype screen uncovered 2 GEMMs of PDAC with human-like NI, which are both characterized by pancreas-specific overexpression of transforming growth factor α (TGF-α) and conditional depletion of p53. Mechanistically, cancer-cell-derived TGF-α upregulated CCL2 secretion from sensory neurons, which induced hyperphosphorylation of the cytoskeletal protein paxillin via CCR4 on cancer cells. This activated the cancer migration machinery and filopodia formation toward neurons. Disrupting CCR4 or paxillin activity limited NI and dampened tumor size and tumor innervation. In human PDAC, phospho-paxillin and TGF-α-expression constituted strong prognostic factors. Therefore, we believe that the TGF-α-CCL2-CCR4-p-paxillin axis is a clinically actionable target for constraining NI and tumor progression in PDAC.
Collapse
Affiliation(s)
- Xiaobo Wang
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of General Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Rouzanna Istvanffy
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium
| | - Linhan Ye
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Pain Clinic, Department of Anesthesiology, First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei, China
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Melanie Laschinger
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Kalliope N. Diakopoulos
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Klinikum rechts der Isar, Technical University of Munich, Munich, Bavaria, Germany
| | - Kıvanç Görgülü
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Klinikum rechts der Isar, Technical University of Munich, Munich, Bavaria, Germany
| | - Qiaolin Li
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lei Ren
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carsten Jäger
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Comparative Experimental Pathology and Institute of Pathology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Alexander Muckenhuber
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Comparative Experimental Pathology and Institute of Pathology, Technical University of Munich, School of Medicine, Munich, Germany
| | - Baiba Vilne
- Bioinformatics laboratory, Riga Stradins University, Riga, Latvia
| | - Kaan Çifcibaşı
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium
| | - Ümmügülsüm Yurteri
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maximilian Kießler
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ibrahim Halil Gürçınar
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maya Sugden
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | | | - Sümeyye Çilingir
- Department of Physiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Güldal Süyen
- Department of Physiology, Acibadem Mehmet Ali Aydinlar University, School of Medicine, Istanbul, Turkey
| | - Maximilian Reichert
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Roland M. Schmid
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
| | - Stefanie Bärthel
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Translational Cancer Research (TranslaTUM) and Experimental Cancer Therapy
| | - Rupert Oellinger
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics
| | - Achim Krüger
- Institute of Experimental Oncology and Therapy Research, School of Medicine, Technical University Munich, Munich, Germany
| | - Roland Rad
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Molecular Oncology and Functional Genomics
| | - Dieter Saur
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Institute of Translational Cancer Research (TranslaTUM) and Experimental Cancer Therapy
| | - Hana Algül
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Klinikum rechts der Isar, Technical University of Munich, Munich, Bavaria, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Marina Lesina
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Comprehensive Cancer Center München, Chair for Tumor Metabolism, Klinikum rechts der Isar, Technical University of Munich, Munich, Bavaria, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Güralp Onur Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany
- CRC 1321 Modelling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Neural Influences in Cancer (NIC) International Research Consortium
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- Else Kröner Clinician Scientist Professor for Translational Pancreatic Surgery, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Sun Z, Zhou Y, Li L, Zhou C, Jia W, Liu Y, Cao X, Su S, Zhao Z, Zhen M, Wang C. Inhibiting redox-mediated endothelial migration by gadofullerenes for inducing tumor vascular normalization and improving chemotherapy. Sci Bull (Beijing) 2023; 68:1651-1661. [PMID: 37453828 DOI: 10.1016/j.scib.2023.06.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Tumor vascular normalization (TVN) reverses abnormal tumor vasculatures, which could boost anti-cancer efficiency and especially increase drug intratumoral delivery. Endothelial cells play a vital role in angiogenesis, yet continuous modulating endothelial cell migration to improve TVN is ingenious but challenging. Here we propose a potential strategy for TVN based on inhibiting endothelial migration using antioxidative fullerene nanoparticles (FNPs). We demonstrate that FNPs inhibit cell migration upon their anti-oxidation effects in vitro. The optimized alanine-modified gadofullerene (GFA) exhibits superior TVN ability and inhibits tumor growth in vivo. Mechanically, facilitated with the protein microarray, we confirm that GFA could suppress the focal adhesion pathway to restrain endothelial migration. Subsequently, remarkable anti-tumor efficacy of chemotherapy synergy was obtained, which benefited from a more normalized vascular network by GFA. Together, our study introduces the potential of FNPs as promising TVN boosters to consider in cancer nanomedicine design.
Collapse
Affiliation(s)
- Zihao Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wang Jia
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran Cao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shenge Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpu Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Zhen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chunru Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Sun Y, Isaji T, Oyama Y, Xu X, Liu J, Hanamatsu H, Yokota I, Miura N, Furukawa JI, Fukuda T, Gu J. Focal-adhesion kinase regulates the sialylation of N-glycans via the PI4KIIα-PI4P pathway. J Biol Chem 2023; 299:105051. [PMID: 37451482 PMCID: PMC10406863 DOI: 10.1016/j.jbc.2023.105051] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3β1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear. This study investigated how sialylation is affected by focal adhesion kinase (FAK), which is a critical downstream signal molecule of integrin β1. We established a stable FAK knockout (KO) cell line using the CRISPR/Cas9 system in HeLa cells. The results obtained from lectin blot, flow cytometric analysis, and MS showed that the sialylation levels were significantly decreased in the KO cells compared with that in wild-type (WT) cells. Moreover, phosphatidylinositol 4-phosphate (PI4P) expression levels were also reduced in the KO cells due to a decrease in the stability of phosphatidylinositol 4-kinase-IIα (PI4KIIα). Notably, the decreased levels of sialylation, PI4P, and the complex formation between GOLPH3 and ST3GAL4 or ST6GAL1, which are the main sialyltransferases for modification of N-glycans, were significantly restored by the re-expression of FAK. Furthermore, the decreased sialylation and phosphorylation of Akt and cell migration caused by FAK deficiency all were restored by overexpressing PI4KIIα, which suggests that PI4KIIα is one of the downstream molecules of FAK. These findings indicate that FAK regulates sialylation via the PI4P synthesis pathway and a novel mechanism is suggested for the integrin-FAK-PI4KIIα-GOLPH3-ST axis modulation of sialylation in N-glycans.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| | - Yoshiyuki Oyama
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianwei Liu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Hisatoshi Hanamatsu
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Ikuko Yokota
- Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Nobuaki Miura
- Division of Bioinformatics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun-Ichi Furukawa
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Division of Glyco-Systems Biology, Institute for Glyco-Core Research, Tokai National Higher Education and Research System, Nagoya, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
9
|
Luz Y, Rebouças A, Bernardes CPOS, Rossi EA, Machado TS, Souza BSF, Brodskyn CI, Veras PST, dos Santos WLC, de Menezes JPB. Leishmania infection alters macrophage and dendritic cell migration in a three-dimensional environment. Front Cell Dev Biol 2023; 11:1206049. [PMID: 37576604 PMCID: PMC10416637 DOI: 10.3389/fcell.2023.1206049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Background: Leishmaniasis results in a wide spectrum of clinical manifestations, ranging from skin lesions at the site of infection to disseminated lesions in internal organs, such as the spleen and liver. While the ability of Leishmania-infected host cells to migrate may be important to lesion distribution and parasite dissemination, the underlying mechanisms and the accompanying role of host cells remain poorly understood. Previously published work has shown that Leishmania infection inhibits macrophage migration in a 2-dimensional (2D) environment by altering actin dynamics and impairing the expression of proteins involved in plasma membrane-extracellular matrix interactions. Although it was shown that L. infantum induces the 2D migration of dendritic cells, in vivo cell migration primarily occurs in 3-dimensional (3D) environments. The present study aimed to investigate the migration of macrophages and dendritic cells infected by Leishmania using a 3-dimensional environment, as well as shed light on the mechanisms involved in this process. Methods: Following the infection of murine bone marrow-derived macrophages (BMDM), human macrophages and human dendritic cells by L. amazonensis, L. braziliensis, or L. infantum, cellular migration, the formation of adhesion complexes and actin polymerization were evaluated. Results: Our results indicate that Leishmania infection inhibited 3D migration in both BMDM and human macrophages. Reduced expression of proteins involved in adhesion complex formation and alterations in actin dynamics were also observed in Leishmania-infected macrophages. By contrast, increased human dendritic cell migration in a 3D environment was found to be associated with enhanced adhesion complex formation and increased actin dynamics. Conclusion: Taken together, our results show that Leishmania infection inhibits macrophage 3D migration, while enhancing dendritic 3D migration by altering actin dynamics and the expression of proteins involved in plasma membrane extracellular matrix interactions, suggesting a potential association between dendritic cells and disease visceralization.
Collapse
Affiliation(s)
- Yasmin Luz
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Amanda Rebouças
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | | | - Erik A. Rossi
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
| | - Taíse S. Machado
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Bruno S. F. Souza
- Center for Biotechnology and Cell Therapy, São Rafael Hospital, Salvador, Brazil
- D’Or Institute for Research and Education, Salvador, Brazil
- Laboratory of Tissue Engineering and Immunopharmacology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Claudia Ida Brodskyn
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | - Patricia S. T. Veras
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| | | | - Juliana P. B. de Menezes
- Laboratory of Host—Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Salvador, Brazil
| |
Collapse
|
10
|
Norris EG, Pan XS, Hocking DC. Receptor-binding domain of SARS-CoV-2 is a functional αv-integrin agonist. J Biol Chem 2023; 299:102922. [PMID: 36669646 PMCID: PMC9846890 DOI: 10.1016/j.jbc.2023.102922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Among the novel mutations distinguishing SARS-CoV-2 from similar coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. Here, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared with RGD-containing, integrin-binding fragments of fibronectin. We determined that S1-RBD supported adhesion of fibronectin-null mouse embryonic fibroblasts as well as primary human small airway epithelial cells, while RBD-coated microparticles attached to epithelial monolayers in a cation-dependent manner. Cell adhesion to S1-RBD was RGD dependent and inhibited by blocking antibodies against αv and β3 but not α5 or β1 integrins. Similarly, we observed direct binding of S1-RBD to recombinant human αvβ3 and αvβ6 integrins, but not α5β1 integrins, using surface plasmon resonance. S1-RBD adhesion initiated cell spreading, focal adhesion formation, and actin stress fiber organization to a similar extent as fibronectin. Moreover, S1-RBD stimulated tyrosine phosphorylation of the adhesion mediators FAK, Src, and paxillin; triggered Akt activation; and supported cell proliferation. Thus, the RGD sequence of S1-RBD can function as an αv-selective integrin agonist. This study provides evidence that cell surface αv-containing integrins can respond functionally to spike protein and raises the possibility that S1-mediated dysregulation of extracellular matrix dynamics may contribute to the pathogenesis and/or post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Emma G Norris
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Xuan Sabrina Pan
- Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Denise C Hocking
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
11
|
Xue Q, Varady SR, Waddell TQA, Roman MR, Carrington J, Roh-Johnson M. Lack of Paxillin phosphorylation promotes single-cell migration in vivo. J Cell Biol 2023; 222:213850. [PMID: 36723624 PMCID: PMC9929932 DOI: 10.1083/jcb.202206078] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/30/2022] [Accepted: 01/11/2023] [Indexed: 02/02/2023] Open
Abstract
Focal adhesions are structures that physically link the cell to the extracellular matrix for cell migration. Although cell culture studies have provided a wealth of information regarding focal adhesion biology, it is critical to understand how focal adhesions are dynamically regulated in their native environment. We developed a zebrafish system to visualize focal adhesion structures during single-cell migration in vivo. We find that a key site of phosphoregulation (Y118) on Paxillin exhibits reduced phosphorylation in migrating cells in vivo compared to in vitro. Furthermore, expression of a non-phosphorylatable version of Y118-Paxillin increases focal adhesion disassembly and promotes cell migration in vivo, despite inhibiting cell migration in vitro. Using a mouse model, we further find that the upstream kinase, focal adhesion kinase, is downregulated in cells in vivo, and cells expressing non-phosphorylatable Y118-Paxillin exhibit increased activation of the CRKII-DOCK180/RacGEF pathway. Our findings provide significant new insight into the intrinsic regulation of focal adhesions in cells migrating in their native environment.
Collapse
Affiliation(s)
- Qian Xue
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Sophia R.S. Varady
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | | | - Mackenzie R. Roman
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - James Carrington
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA,School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Minna Roh-Johnson
- https://ror.org/03r0ha626Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Fortner A, Chera A, Tanca A, Bucur O. Apoptosis regulation by the tyrosine-protein kinase CSK. Front Cell Dev Biol 2022; 10:1078180. [PMID: 36578781 PMCID: PMC9792154 DOI: 10.3389/fcell.2022.1078180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
C-terminal Src kinase (CSK) is a cytosolic tyrosine-protein kinase with an important role in regulating critical cellular decisions, such as cellular apoptosis, survival, proliferation, cytoskeletal organization and many others. Current knowledge on the CSK mechanisms of action, regulation and functions is still at an early stage, most of CSK's known actions and functions being mediated by the negative regulation of the SRC family of tyrosine kinases (SFKs) through phosphorylation. As SFKs play a vital role in apoptosis, cell proliferation and survival regulation, SFK inhibition by CSK has a pro-apoptotic effect, which is mediated by the inhibition of cellular signaling cascades controlled by SFKs, such as the MAPK/ERK, STAT3 and PI3K/AKT signaling pathways. Abnormal functioning of CSK and SFK activation can lead to diseases such as cancer, cardiovascular and neurological manifestations. This review describes apoptosis regulation by CSK, CSK inhibition of the SFKs and further explores the clinical relevance of CSK in important pathologies, such as cancer, autoimmune, autoinflammatory, neurologic diseases, hypertension and HIV/AIDS.
Collapse
Affiliation(s)
- Andra Fortner
- Victor Babes National Institute of Pathology, Bucharest, Romania,Medical School, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
| | - Alexandra Chera
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Antoanela Tanca
- Victor Babes National Institute of Pathology, Bucharest, Romania,Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| | - Octavian Bucur
- Victor Babes National Institute of Pathology, Bucharest, Romania,Viron Molecular Medicine Institute, Boston, MA, United States,*Correspondence: Octavian Bucur, ; Antoanela Tanca,
| |
Collapse
|
13
|
The TLK1-MK5 Axis Regulates Motility, Invasion, and Metastasis of Prostate Cancer Cells. Cancers (Basel) 2022; 14:cancers14235728. [PMID: 36497211 PMCID: PMC9736944 DOI: 10.3390/cancers14235728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Metastatic dissemination of prostate cancer (PCa) accounts for the majority of PCa-related deaths. However, the exact mechanism of PCa cell spread is still unknown. We uncovered a novel interaction between two unrelated promotility factors, tousled-like kinase 1 (TLK1) and MAPK-activated protein kinase 5 (MK5), that initiates a signaling cascade promoting metastasis. In PCa, TLK1−MK5 signaling might be crucial, as androgen deprivation therapy (ADT) leads to increased expression of both TLK1 and MK5 in metastatic patients, but in this work, we directly investigated the motility, invasive, and metastatic capacity of PCa cells following impairment of the TLK1 > MK5 axis. Results: We conducted scratch wound repair and transwell invasion assays with LNCaP and PC3 cells to determine if TLK1 and MK5 can regulate motility and invasion. Both genetic depletion and pharmacologic inhibition of TLK1 and MK5 resulted in reduced migration and invasion through a Matrigel plug. We further elucidated the potential mechanisms underlying these effects and found that this is likely due to the reorganization of the actin fibers at lamellipodia and the focal adhesions network, in conjunction with increased expression of some MMPs that can affect penetration through the ECM. PC3, a highly metastatic cell line when assayed in xenografts, was further tested in a tail-vein injection/lung metastasis model, and we showed that, following inoculation, treatment with GLPG0259 (MK5 specific inhibitor) or J54 (TLK1 inhibitor) resulted in the lung tumor nodules being greatly diminished in number, and for J54, also in size. Conclusion: Our data support that the TLK1−MK5 axis is functionally involved in driving PCa cell metastasis and clinical aggressiveness; hence, disruption of this axis may inhibit the metastatic capacity of PCa.
Collapse
|
14
|
Vasavda C, Semenza ER, Liew J, Kothari R, Dhindsa RS, Shanmukha S, Lin A, Tokhunts R, Ricco C, Snowman AM, Albacarys L, Pastore F, Ripoli C, Grassi C, Barone E, Kornberg MD, Dong X, Paul BD, Snyder SH. Biliverdin reductase bridges focal adhesion kinase to Src to modulate synaptic signaling. Sci Signal 2022; 15:eabh3066. [PMID: 35536885 PMCID: PMC9281001 DOI: 10.1126/scisignal.abh3066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Synapses connect discrete neurons into vast networks that send, receive, and encode diverse forms of information. Synaptic function and plasticity, the neuronal process of adapting to diverse and variable inputs, depend on the dynamic nature of synaptic molecular components, which is mediated in part by cell adhesion signaling pathways. Here, we found that the enzyme biliverdin reductase (BVR) physically links together key focal adhesion signaling molecules at the synapse. BVR-null (BVR-/-) mice exhibited substantial deficits in learning and memory on neurocognitive tests, and hippocampal slices in which BVR was postsynaptically depleted showed deficits in electrophysiological responses to stimuli. RNA sequencing, biochemistry, and pathway analyses suggested that these deficits were mediated through the loss of focal adhesion signaling at both the transcriptional and biochemical level in the hippocampus. Independently of its catalytic function, BVR acted as a bridge between the primary focal adhesion signaling kinases FAK and Pyk2 and the effector kinase Src. Without BVR, FAK and Pyk2 did not bind to and stimulate Src, which then did not phosphorylate the N-methyl-d-aspartate (NMDA) receptor, a critical posttranslational modification for synaptic plasticity. Src itself is a molecular hub on which many signaling pathways converge to stimulate NMDAR-mediated neurotransmission, thus positioning BVR at a prominent intersection of synaptic signaling.
Collapse
Affiliation(s)
- Chirag Vasavda
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Evan R. Semenza
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA 94143, USA
| | - Jason Liew
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ruchita Kothari
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ryan S. Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77030, USA
| | - Shruthi Shanmukha
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anthony Lin
- Department of Medicine, University of California, San Francisco, CA 94143, USA
| | - Robert Tokhunts
- Department of Anesthesiology, Dartmouth–Hitchcock Medical Center, Lebanon, NH 03766, USA
| | - Cristina Ricco
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 08901, USA
| | - Adele M. Snowman
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Albacarys
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Francesco Pastore
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Preclinical Neuroscience Lab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Preclinical Neuroscience Lab, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Eugenio Barone
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome 00185, Italy
| | - Michael D. Kornberg
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
15
|
Norris EG, Pan XS, Hocking DC. Receptor binding domain of SARS-CoV-2 is a functional αv-integrin agonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.04.11.487882. [PMID: 35441172 PMCID: PMC9016641 DOI: 10.1101/2022.04.11.487882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Among the novel mutations distinguishing SARS-CoV-2 from similar respiratory coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2 (ACE2)-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. In the present study, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared to RGD-containing, integrin-binding fragments of fibronectin. S1-RBD supported adhesion of both fibronectin-null mouse embryonic fibroblasts as well as primary human small airway epithelial cells. Cell adhesion to S1-RBD was cation- and RGD-dependent, and was inhibited by blocking antibodies against α v and β 3 , but not α 5 or β 1 , integrins. Similarly, direct binding of S1-RBD to recombinant human α v β 3 and α v β 6 integrins, but not α 5 β 1 integrins, was observed by surface plasmon resonance. Adhesion to S1-RBD initiated cell spreading, focal adhesion formation, and actin stress fiber organization to a similar extent as fibronectin. Moreover, S1-RBD stimulated tyrosine phosphorylation of the adhesion mediators FAK, Src, and paxillin, Akt activation, and supported cell proliferation. Together, these data demonstrate that the RGD sequence within S1-RBD can function as an α v -selective integrin agonist. This study provides evidence that cell surface α v -containing integrins can respond functionally to spike protein and raise the possibility that S1-mediated dysregulation of ECM dynamics may contribute to the pathogenesis and/or post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Emma G. Norris
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Xuan Sabrina Pan
- Department of Biomedical Engineering University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| | - Denise C. Hocking
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
- Department of Biomedical Engineering University of Rochester School of Medicine and Dentistry, Rochester, NY 14642
| |
Collapse
|
16
|
Bachmann M, Skripka A, Weißenbruch K, Wehrle-Haller B, Bastmeyer M. Phosphorylated paxillin and phosphorylated FAK constitute subregions within focal adhesions. J Cell Sci 2022; 135:275040. [PMID: 35343568 DOI: 10.1242/jcs.258764] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 03/17/2022] [Indexed: 11/20/2022] Open
Abstract
Integrin-mediated adhesions are convergence points of multiple signaling pathways. Their inner structure and their diverse functions can be studied with super-resolution microscopy. Here, we examined the spatial organization within focal adhesion by analyzing several adhesion proteins with structured illumination microscopy (SIM). We found that phosphorylated paxillin (pPax) and phosphorylated focal adhesion kinase (pFAK) form spot-like, spatially defined clusters within adhesions in several cell lines and confirmed these findings with additional super-resolution techniques. These clusters showed a more regular separation from each other compared to more randomly distributed labels of general FAK or paxillin. Mutational analysis indicated that the active (open) FAK conformation is a prerequisite for the pattern formation of pFAK. Live-cell super-resolution imaging revealed that organization in clusters is preserved over time for FAK constructs; however, distance between clusters is dynamic for FAK, while paxillin is more stable. Combined, these data introduce spatial clusters of pPax and pFAK as substructures in adhesions and highlight the relevance of paxillin-FAK binding for establishing a regular substructure in focal adhesions.
Collapse
Affiliation(s)
- Michael Bachmann
- Department for Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland.,Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Artiom Skripka
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Kai Weißenbruch
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Bernhard Wehrle-Haller
- Department for Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Martin Bastmeyer
- Zoological Institute, Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.,Institute for Biological and Chemical Systems - Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
17
|
Legerstee K, Houtsmuller AB. A Layered View on Focal Adhesions. BIOLOGY 2021; 10:biology10111189. [PMID: 34827182 PMCID: PMC8614905 DOI: 10.3390/biology10111189] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary The cytoskeleton is a network of protein fibres within cells that provide structure and support intracellular transport. Focal adhesions are protein complexes associated with the outer cell membrane that are found at the ends of specialised actin fibres of this cytoskeleton. They mediate cell adhesion by connecting the cytoskeleton to the extracellular matrix, a protein and sugar network that surrounds cells in tissues. Focal adhesions also translate forces on actin fibres into forces contributing to cell migration. Cell adhesion and migration are crucial to diverse biological processes such as embryonic development, proper functioning of the immune system or the metastasis of cancer cells. Advances in fluorescence microscopy and data analysis methods provided a more detailed understanding of the dynamic ways in which proteins bind and dissociate from focal adhesions and how they are organised within these protein complexes. In this review, we provide an overview of the advances in the current scientific understanding of focal adhesions and summarize relevant imaging techniques. One of the key insights is that focal adhesion proteins are organised into three layers parallel to the cell membrane. We discuss the relevance of this layered nature for the functioning of focal adhesion. Abstract The cytoskeleton provides structure to cells and supports intracellular transport. Actin fibres are crucial to both functions. Focal Adhesions (FAs) are large macromolecular multiprotein assemblies at the ends of specialised actin fibres linking these to the extracellular matrix. FAs translate forces on actin fibres into forces contributing to cell migration. This review will discuss recent insights into FA protein dynamics and their organisation within FAs, made possible by advances in fluorescence imaging techniques and data analysis methods. Over the last decade, evidence has accumulated that FAs are composed of three layers parallel to the plasma membrane. We focus on some of the most frequently investigated proteins, two from each layer, paxillin and FAK (bottom, integrin signalling layer), vinculin and talin (middle, force transduction layer) and zyxin and VASP (top, actin regulatory layer). Finally, we discuss the potential impact of this layered nature on different aspects of FA behaviour.
Collapse
|
18
|
Pietras P, Leśniczak-Staszak M, Kasprzak A, Andrzejewska M, Jopek K, Sowiński M, Rucinski M, Lyons SM, Ivanov P, Szaflarski W. MVP Expression Facilitates Tumor Cell Proliferation and Migration Supporting the Metastasis of Colorectal Cancer Cells. Int J Mol Sci 2021; 22:ijms222212121. [PMID: 34829999 PMCID: PMC8623820 DOI: 10.3390/ijms222212121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 01/22/2023] Open
Abstract
Cancer cells show significant dysregulation of genes expression, which may favor their survival in the tumor environment. In this study, the cellular vault's components MVP (major vault protein), TEP1 (telomerase-associated protein 1) and vPARP (vault poly(ADP-ribose) polymerase) were transiently or completely inhibited in U2OS cells (human bone osteosarcoma epithelial cells) to evaluate their impact on the cell proliferative and migratory capacity as well as on the development of their resistance to the drug vinorelbine. Comparative analysis of MVP protein expression level in normal colon tissue, primary colorectal tumor, and metastasis showed that the expression of this protein does not increase significantly in the primary tumor, but its expression increases in metastatic cells. Further comparative molecular analysis using the whole transcriptome microarrays for MVP-positive and MVP-negative cells showed that MVP is involved in regulating proliferation and migration of cancer cells. MVP may facilitate metastasis of colon cancer due to its impact on cell migration. Moreover, two vault proteins, MVP and TEP1, contribute the resistance to vinorelbine, while vPARP does not.
Collapse
Affiliation(s)
- Paulina Pietras
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Marta Leśniczak-Staszak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Aldona Kasprzak
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Małgorzata Andrzejewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Mateusz Sowiński
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
| | - Shawn M. Lyons
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA;
- The Genome Science Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Harvard Medical School, Boston, MA 02115, USA
- The Broad Institute of Harvard and M.I.T., Cambridge, MA 02142, USA
- Correspondence: (P.I.); (W.S.)
| | - Witold Szaflarski
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-701 Poznań, Poland; (P.P.); (M.L.-S.); (A.K.); (M.A.); (K.J.); (M.S.); (M.R.)
- Correspondence: (P.I.); (W.S.)
| |
Collapse
|
19
|
González Wusener AE, González Á, Perez Collado ME, Maza MR, General IJ, Arregui CO. Protein tyrosine phosphatase 1B targets focal adhesion kinase and paxillin in cell-matrix adhesions. J Cell Sci 2021; 134:272564. [PMID: 34553765 DOI: 10.1242/jcs.258769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B, also known as PTPN1) is an established regulator of cell-matrix adhesion and motility. However, the nature of substrate targets at adhesion sites remains to be validated. Here, we used bimolecular fluorescence complementation assays, in combination with a substrate trapping mutant of PTP1B, to directly examine whether relevant phosphotyrosines on paxillin and focal adhesion kinase (FAK, also known as PTK2) are substrates of the phosphatase in the context of cell-matrix adhesion sites. We found that the formation of catalytic complexes at cell-matrix adhesions requires intact tyrosine residues Y31 and Y118 on paxillin, and the localization of FAK at adhesion sites. Additionally, we found that PTP1B specifically targets Y925 on the focal adhesion targeting (FAT) domain of FAK at adhesion sites. Electrostatic analysis indicated that dephosphorylation of this residue promotes the closed conformation of the FAT 4-helix bundle and its interaction with paxillin at adhesion sites.
Collapse
Affiliation(s)
- Ana E González Wusener
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Ángela González
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - María E Perez Collado
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| | - Melina R Maza
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martin, Instituto de Ciencias Físicas and CONICET, San Martin, Buenos Aires 1650, Argentina
| | - Ignacio J General
- Escuela de Ciencia y Tecnología, Universidad Nacional de San Martin, Instituto de Ciencias Físicas and CONICET, San Martin, Buenos Aires 1650, Argentina
| | - Carlos O Arregui
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires 1650, Argentina
| |
Collapse
|
20
|
Steenkiste EM, Berndt JD, Pilling C, Simpkins C, Cooper JA. A Cas-BCAR3 co-regulatory circuit controls lamellipodia dynamics. eLife 2021; 10:67078. [PMID: 34169835 PMCID: PMC8266394 DOI: 10.7554/elife.67078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Integrin adhesion complexes regulate cytoskeletal dynamics during cell migration. Adhesion activates phosphorylation of integrin-associated signaling proteins, including Cas (p130Cas, BCAR1), by Src-family kinases. Cas regulates leading-edge protrusion and migration in cooperation with its binding partner, BCAR3. However, it has been unclear how Cas and BCAR3 cooperate. Here, using normal epithelial cells, we find that BCAR3 localization to integrin adhesions requires Cas. In return, Cas phosphorylation, as well as lamellipodia dynamics and cell migration, requires BCAR3. These functions require the BCAR3 SH2 domain and a specific phosphorylation site, Tyr 117, that is also required for BCAR3 downregulation by the ubiquitin-proteasome system. These findings place BCAR3 in a co-regulatory positive-feedback circuit with Cas, with BCAR3 requiring Cas for localization and Cas requiring BCAR3 for activation and downstream signaling. The use of a single phosphorylation site in BCAR3 for activation and degradation ensures reliable negative feedback by the ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Elizabeth M Steenkiste
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Jason D Berndt
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Carissa Pilling
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| | - Christopher Simpkins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Jonathan A Cooper
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States.,Molecular and Cellular Biology Program, University of Washington, Seattle, United States
| |
Collapse
|
21
|
Sawant M, Hinz B, Schönborn K, Zeinert I, Eckes B, Krieg T, Schuster R. A story of fibers and stress: Matrix-embedded signals for fibroblast activation in the skin. Wound Repair Regen 2021; 29:515-530. [PMID: 34081361 DOI: 10.1111/wrr.12950] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022]
Abstract
Our skin is continuously exposed to mechanical challenge, including shear, stretch, and compression. The extracellular matrix of the dermis is perfectly suited to resist these challenges and maintain integrity of normal skin even upon large strains. Fibroblasts are the key cells that interpret mechanical and chemical cues in their environment to turnover matrix and maintain homeostasis in the skin of healthy adults. Upon tissue injury, fibroblasts and an exclusive selection of other cells become activated into myofibroblasts with the task to restore skin integrity by forming structurally imperfect but mechanically stable scar tissue. Failure of myofibroblasts to terminate their actions after successful repair or upon chronic inflammation results in dysregulated myofibroblast activities which can lead to hypertrophic scarring and/or skin fibrosis. After providing an overview on the major fibrillar matrix components in normal skin, we will interrogate the various origins of fibroblasts and myofibroblasts in the skin. We then examine the role of the matrix as signaling hub and how fibroblasts respond to mechanical matrix cues to restore order in the confusing environment of a healing wound.
Collapse
Affiliation(s)
- Mugdha Sawant
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Katrin Schönborn
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Isabel Zeinert
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Beate Eckes
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Thomas Krieg
- Translational Matrix Biology, University of Cologne, Medical Faculty, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Ronen Schuster
- Laboratory of Tissue Repair and Regeneration, Faculty of Dentistry, University of Toronto, Toronto, Canada.,PhenomicAI, MaRS Centre, 661 University Avenue, Toronto, Canada
| |
Collapse
|
22
|
A Novel Low-Risk Germline Variant in the SH2 Domain of the SRC Gene Affects Multiple Pathways in Familial Colorectal Cancer. J Pers Med 2021; 11:jpm11040262. [PMID: 33916261 PMCID: PMC8066297 DOI: 10.3390/jpm11040262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/16/2022] Open
Abstract
Colorectal cancer (CRC) shows one of the largest proportions of familial cases among different malignancies, but only 5-10% of all CRC cases are linked to mutations in established predisposition genes. Thus, familial CRC constitutes a promising target for the identification of novel, high- to moderate-penetrance germline variants underlying cancer susceptibility by next generation sequencing. In this study, we performed whole genome sequencing on three members of a family with CRC aggregation. Subsequent integrative in silico analysis using our in-house developed variant prioritization pipeline resulted in the identification of a novel germline missense variant in the SRC gene (V177M), a proto-oncogene highly upregulated in CRC. Functional validation experiments in HT-29 cells showed that introduction of SRCV177M resulted in increased cell proliferation and enhanced protein expression of phospho-SRC (Y419), a potential marker for SRC activity. Upregulation of paxillin, β-Catenin, and STAT3 mRNA levels, increased levels of phospho-ERK, CREB, and CCND1 proteins and downregulation of the tumor suppressor p53 further proposed the activation of several pathways due to the SRCV177M variant. The findings of our pedigree-based study contribute to the exploration of the genetic background of familial CRC and bring insights into the molecular basis of upregulated SRC activity and downstream pathways in colorectal carcinogenesis.
Collapse
|
23
|
Paxillin Is Required for Proper Spinal Motor Axon Growth into the Limb. J Neurosci 2021; 41:3808-3821. [PMID: 33727334 DOI: 10.1523/jneurosci.2863-20.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 11/21/2022] Open
Abstract
To assemble the functional circuits of the nervous system, the neuronal axonal growth cones must be precisely guided to their proper targets, which can be achieved through cell-surface guidance receptor activation by ligand binding in the periphery. We investigated the function of paxillin, a focal adhesion protein, as an essential growth cone guidance intermediary in the context of spinal lateral motor column (LMC) motor axon trajectory selection in the limb mesenchyme. Using in situ mRNA detection, we first show paxillin expression in LMC neurons of chick and mouse embryos at the time of spinal motor axon extension into the limb. Paxillin loss-of-function and gain-of-function using in ovo electroporation in chick LMC neurons, of either sex, perturbed LMC axon trajectory selection, demonstrating an essential role of paxillin in motor axon guidance. In addition, a neuron-specific paxillin deletion in mice led to LMC axon trajectory selection errors. We also show that knocking down paxillin attenuates the growth preference of LMC neurites against ephrins in vitro, and erythropoietin-producing human hepatocellular (Eph)-mediated retargeting of LMC axons in vivo, suggesting paxillin involvement in Eph-mediated LMC motor axon guidance. Finally, both paxillin knockdown and ectopic expression of a nonphosphorylable paxillin mutant attenuated the retargeting of LMC axons caused by Src overexpression, implicating paxillin as a Src target in Eph signal relay in this context. In summary, our findings demonstrate that paxillin is required for motor axon guidance and suggest its essential role in the ephrin-Eph signaling pathway resulting in motor axon trajectory selection.SIGNIFICANCE STATEMENT During the development of neural circuits, precise connections need to be established among neurons or between neurons and their muscle targets. A protein family found in neurons, Eph, is essential at different stages of neural circuit formation, including nerve outgrowth and pathfinding, and is proposed to mediate the onset and progression of several neurodegenerative diseases, such as Alzheimer's disease. To investigate how Ephs relay their signals to mediate nerve growth, we investigated the function of a molecule called paxillin and found it important for the development of spinal nerve growth toward their muscle targets, suggesting its role as an effector of Eph signals. Our work could thus provide new information on how neuromuscular connectivity is properly established during embryonic development.
Collapse
|
24
|
Kim MK, Hwang WC, Min DS. Pleckstrin homology domain of phospholipase D2 is a negative regulator of focal adhesion kinase. BMB Rep 2021. [PMID: 32843133 PMCID: PMC7907743 DOI: 10.5483/bmbrep.2021.54.2.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase D2 (PLD2) has been implicated in the tyrosine kinase-mediated signaling pathways, but the regulation events are yet to be identified. Herein, we demonstrate that pleckstrin homology (PH) domain of PLD2 (PLD2-PH) exerts an antitumorigenic effect via the suppression of PLD2 and focal adhesion kinase (FAK). The kinase domain of FAK interacts with PLD2-PH and induces tyrosine phosphorylation and activation of PLD2. Furthermore, PLD2 increased tyrosine phosphorylation of FAK. However, ectopic expression of the PLD2-PH competes for binding to FAK and reduces the interaction between PLD2 and FAK, thereby suppressing FAK-induced PLD activation and tyrosine phosphorylation of FAK. The PLD2-PH suppressed the migration and invasion of glioblastoma cells, as well as tumor formation in a xenograft mouse model. This study uncovers a novel role of PLD2-PH as a negative regulator of PLD2 and FAK.
Collapse
Affiliation(s)
- Mi Kyoung Kim
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
| | - Won Chan Hwang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
- College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon 21983, Korea
| |
Collapse
|
25
|
Wang W, Hu D, Feng Y, Wu C, Song Y, Liu W, Li A, Wang Y, Chen K, Tian M, Xiao F, Zhang Q, Chen W, Pan P, Wan P, Liu Y, Lan H, Wu K, Wu J. Paxillin mediates ATP-induced activation of P2X7 receptor and NLRP3 inflammasome. BMC Biol 2020; 18:182. [PMID: 33243234 PMCID: PMC7694937 DOI: 10.1186/s12915-020-00918-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/05/2020] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular adenosine triphosphate (ATP), a key danger-associated molecular pattern (DAMP) molecule, is released to the extracellular medium during inflammation by injured parenchymal cells, dying leukocytes, and activated platelets. ATP directly activates the plasma membrane channel P2X7 receptor (P2X7R), leading to an intracellular influx of K+, a key trigger inducing NLRP3 inflammasome activation. However, the mechanism underlying P2X7R-mediated activation of NLRP3 inflammasome is poorly understood, and additional molecular mediators have not been identified. Here, we demonstrate that Paxillin is the molecule connecting the P2X7 receptor and NLRP3 inflammasome through protein interactions. Results We show a distinct mechanism by which Paxillin promotes ATP-induced activation of the P2X7 receptor and NLRP3 inflammasome. Extracellular ATP induces Paxillin phosphorylation and then facilitates Paxillin-NLRP3 interaction. Interestingly, Paxillin enhances NLRP3 deubiquitination and activates NLRP3 inflammasome upon ATP treatment and K+ efflux. Moreover, we demonstrated that USP13 is a key enzyme for Paxillin-mediated NLRP3 deubiquitination upon ATP treatment. Notably, extracellular ATP promotes Paxillin and NLRP3 migration from the cytosol to the plasma membrane and facilitates P2X7R-Paxillin interaction and PaxillinNLRP3 association, resulting in the formation of the P2X7R-Paxillin-NLRP3 complex. Functionally, Paxillin is essential for ATP-induced NLRP3 inflammasome activation in mouse BMDMs and BMDCs as well as in human PBMCs and THP-1-differentiated macrophages. Conclusions We have identified paxillin as a mediator of NLRP3 inflammasome activation. Paxillin plays key roles in ATP-induced activation of the P2X7 receptor and NLRP3 inflammasome by facilitating the formation of the P2X7R-Paxillin-NLRP3 complex. Supplementary information The online version contains supplementary material available at 10.1186/s12915-020-00918-w.
Collapse
Affiliation(s)
- Wenbiao Wang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.,Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Dingwen Hu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuqian Feng
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Caifeng Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Yunting Song
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weiyong Liu
- Department of Clinical Laboratory, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aixin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yingchong Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Keli Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Feng Xiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Weijie Chen
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Pan Pan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Pin Wan
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Yingle Liu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Huiyao Lan
- Department of Medicine & Therapeutics, Li Ka Shing Institute of Health Sciences, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China.
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China. .,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
26
|
Actin polymerization downstream of integrins: signaling pathways and mechanotransduction. Biochem J 2020; 477:1-21. [PMID: 31913455 DOI: 10.1042/bcj20170719] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/17/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
A cell constantly adapts to its environment. Cell decisions to survive, to proliferate or to migrate are dictated not only by soluble growth factors, but also through the direct interaction of the cell with the surrounding extracellular matrix (ECM). Integrins and their connections to the actin cytoskeleton are crucial for monitoring cell attachment and the physical properties of the substratum. Cell adhesion dynamics are modulated in complex ways by the polymerization of branched and linear actin arrays, which in turn reinforce ECM-cytoskeleton connection. This review describes the major actin regulators, Ena/VASP proteins, formins and Arp2/3 complexes, in the context of signaling pathways downstream of integrins. We focus on the specific signaling pathways that transduce the rigidity of the substrate and which control durotaxis, i.e. directed migration of cells towards increased ECM rigidity. By doing so, we highlight several recent findings on mechanotransduction and put them into a broad integrative perspective that is the result of decades of intense research on the actin cytoskeleton and its regulation.
Collapse
|
27
|
Miller AE, Hu P, Barker TH. Feeling Things Out: Bidirectional Signaling of the Cell-ECM Interface, Implications in the Mechanobiology of Cell Spreading, Migration, Proliferation, and Differentiation. Adv Healthc Mater 2020; 9:e1901445. [PMID: 32037719 PMCID: PMC7274903 DOI: 10.1002/adhm.201901445] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Indexed: 12/16/2022]
Abstract
Biophysical cues stemming from the extracellular environment are rapidly transduced into discernible chemical messages (mechanotransduction) that direct cellular activities-placing the extracellular matrix (ECM) as a potent regulator of cell behavior. Dynamic reciprocity between the cell and its associated matrix is essential to the maintenance of tissue homeostasis and dysregulation of both ECM mechanical signaling, via pathological ECM turnover, and internal mechanotransduction pathways contribute to disease progression. This review covers the current understandings of the key modes of signaling used by both the cell and ECM to coregulate one another. By taking an outside-in approach, the inherent complexities and regulatory processes at each level of signaling (ECM, plasma membrane, focal adhesion, and cytoplasm) are captured to give a comprehensive picture of the internal and external mechanoregulatory environment. Specific emphasis is placed on the focal adhesion complex which acts as a central hub of mechanical signaling, regulating cell spreading, migration, proliferation, and differentiation. In addition, a wealth of available knowledge on mechanotransduction is curated to generate an integrated signaling network encompassing the central components of the focal adhesion, cytoplasm and nucleus that act in concert to promote durotaxis, proliferation, and differentiation in a stiffness-dependent manner.
Collapse
Affiliation(s)
- Andrew E Miller
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Ping Hu
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| | - Thomas H Barker
- Department of Biomedical Engineering, University of Virginia, 415 Lane Rd. MR5 1225, Charlottesville, VA, 22903, USA
| |
Collapse
|
28
|
Franke FC, Slusarenko BO, Engleitner T, Johannes W, Laschinger M, Rad R, Nitsche U, Janssen KP. Novel role for CRK adaptor proteins as essential components of SRC/FAK signaling for epithelial-mesenchymal transition and colorectal cancer aggressiveness. Int J Cancer 2020; 147:1715-1731. [PMID: 32147820 DOI: 10.1002/ijc.32955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/08/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is a cell plasticity process required for metastasis and chemoresistance of carcinoma cells. We report a crucial role of the signal adaptor proteins CRK and CRKL in promoting EMT and tumor aggressiveness, as well as resistance against chemotherapy in colorectal and pancreatic carcinoma. Genetic loss of either CRKL or CRK partially counteracted EMT in three independent cancer cell lines. Strikingly, complete loss of the CRK family shifted cells strongly toward the epithelial phenotype. Cells exhibited greatly increased E-cadherin and grew as large, densely packed clusters, completely lacked invasiveness and the ability to undergo EMT induced by cytokines or genetic activation of SRC. Furthermore, CRK family-deficiency significantly reduced cell survival, proliferation and chemoresistance, as well as ERK1/2 phosphorylation and c-MYC protein levels. In accordance, MYC-target gene expression was identified as novel hallmark process positively regulated by CRK family proteins. Mechanistically, CRK proteins were identified as pivotal amplifiers of SRC/FAK signaling at focal adhesions, mediated through a novel positive feedback loop depending on RAP1. Expression of the CRK family and the EMT regulator ZEB1 was significantly correlated in samples from colorectal cancer patients, especially in invasive regions. Further, high expression of CRK family genes was significantly associated with reduced survival in locally advanced colorectal cancer, as well as in pan-cancer datasets from the TCGA project. Thus, CRK family adaptor proteins are promising therapeutic targets to counteract EMT, chemoresistance, metastasis formation and minimal residual disease. As proof of concept, CRK family-mediated oncogenic signaling was successfully inhibited by a peptide-based inhibitor.
Collapse
Affiliation(s)
- Fabian C Franke
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benjamin O Slusarenko
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Engleitner
- Department of Medicine II, School of Medicine, Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, TranslaTUM Cancer Center, Munich, Germany
| | - Widya Johannes
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Melanie Laschinger
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Rad
- Department of Medicine II, School of Medicine, Institute of Molecular Oncology and Functional Genomics, Technical University of Munich, TranslaTUM Cancer Center, Munich, Germany
| | - Ulrich Nitsche
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, School of Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
29
|
Tilve S, Iweka CA, Bao J, Hawken N, Mencio CP, Geller HM. Phospholipid phosphatase related 1 (PLPPR1) increases cell adhesion through modulation of Rac1 activity. Exp Cell Res 2020; 389:111911. [PMID: 32061832 DOI: 10.1016/j.yexcr.2020.111911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
Abstract
Phospholipid Phosphatase-Related Protein Type 1 (PLPPR1) is a six-transmembrane protein that belongs to the family of plasticity-related gene proteins, which is a novel brain-specific subclass of the lipid phosphate phosphatase superfamily. PLPPR1-5 have prominent roles in synapse formation and axonal pathfinding. We found that PLPPR1 overexpression in the mouse neuroblastoma cell line (Neuro2a) results in increase in cell adhesion and reduced cell migration. During migration, these cells leave behind long fibrous looking extensions of the plasma membrane causing a peculiar phenotype. Cells expressing PLPPR1 showed decreased actin turnover and decreased disassembly of focal adhesions. PLPPR1 also reduced active Rac1, and expressing dominant negative Rac1 produced a similar phenotype to overexpression of PLPPR1. The PLPPR1-induced phenotype of long fibers was reversed by introducing constitutively active Rac1. In summary, we show that PLPPR1 decreases active Rac1 levels that leads to cascade of events which increases cell adhesion.
Collapse
Affiliation(s)
- Sharada Tilve
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Chinyere Agbaegbu Iweka
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA; Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, USA
| | - Jonathan Bao
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Natalie Hawken
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Caitlin P Mencio
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA
| | - Herbert M Geller
- Laboratory of Developmental Neurobiology, National Heart Lung and Blood Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Lin YC, Ke ZY, Liao PH, Tseng CY, Kong KV. Reversible detection of phosphorylation and dephosphorylation by tip-enhanced Raman spectroscopy using a cyclopentadienyl ruthenium nanotag functionalized tip. Chem Commun (Camb) 2020; 56:936-939. [PMID: 31850409 DOI: 10.1039/c9cc08269g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The detection of cancer invasion is crucial for diagnosis. In this report, we employed a TERS tip and SERS nanotags to create a cell signaling based nano-sensing system. This system is capable of creating a reversible phosphorylation/de-phosphorylation cycle for TERS measurement. The reversible TERS sensing is then paired with a downstream binding domain, Src homology region 2 (SH2), which is associated with the cell signaling for cancer cell invasion. Such a system offers the advantages of convenient detection of nanotags and high sensitivity as validated in a cell model.
Collapse
Affiliation(s)
- Yi-Cheng Lin
- Department of Chemistry, National Taiwan University, No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.
| | | | | | | | | |
Collapse
|
31
|
Seo Y, Park J, Choi W, Ju Son D, Sung Kim Y, Kim MK, Yoon BE, Pyee J, Tae Hong J, Go YM, Park H. Antiatherogenic Effect of Resveratrol Attributed to Decreased Expression of ICAM-1 (Intercellular Adhesion Molecule-1). Arterioscler Thromb Vasc Biol 2020; 39:675-684. [PMID: 30786743 DOI: 10.1161/atvbaha.118.312201] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Objective- Increasing evidence shows that resveratrol has antiatherogenic effects, but its underlying mechanisms are unknown. Thus, we evaluated the molecular mechanisms underlying the antiatherogenic effect of resveratrol. Approach and Results- Using the previously established mouse atherosclerosis model of partial ligation of the left carotid artery, we evaluated the role of resveratrol in antiatherosclerosis. We attempted to determine the mechanisms associated with focal adhesions using vascular endothelial cells. The results showed that resveratrol stimulated focal adhesion kinase cleavage via resveratrol-increased expression of lactoferrin in endothelial cells. Furthermore, we found that an N-terminal focal adhesion kinase fragment cleaved by resveratrol contained the FERM (band 4.1, ezrin, radixin, and moesin)-kinase domain. Furthermore, resveratrol inhibited lipopolysaccharide-stimulated adhesion of THP-1 human monocytes by decreased expression of ICAM-1 (intercellular adhesion molecule-1). A decreased ICAM-1 level was also observed in the left carotid artery of mice treated with resveratrol. To understand the relationship between resveratrol-induced antiinflammation and focal adhesion disruption, endothelial cells were transfected with FERM-kinase. Ectopically expressed FERM-kinase, the resveratrol-cleaved focal adhesion kinase fragment, was found in the nuclear fraction and inhibited the transcription level of icam-1 via the Nrf2 (nuclear factor erythroid 2-related factor 2)-antioxidant response element complex. Finally, ectopically expressed FERM-kinase blocked tumor necrosis factor-α- or IL- (interleukin) stimulated monocytic binding to endothelial cells. Conclusions- Our results show that resveratrol inhibits the expression of ICAM-1 via transcriptional regulation of the FERM-kinase and Nrf2 interaction, thereby blocking monocyte adhesion. These suppressive effects on the inflammatory mechanism suggest that resveratrol delayed the onset of atherosclerosis.
Collapse
Affiliation(s)
- Youngsik Seo
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Jinsun Park
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Woosoung Choi
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, South Korea (D.J.S., J.T.H.)
| | - Yoo Sung Kim
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Min-Kyun Kim
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Bo-Eun Yoon
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Jaeho Pyee
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, South Korea (D.J.S., J.T.H.)
| | - Young-Mi Go
- Pulmonary Medicine, Department of Medicine, Emory University, Atlanta, GA (Y.-M.G.)
| | - Heonyong Park
- From the Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University, Chungnam, South Korea (Y.S., J. Park, W.C., Y.S.K., M.-K.K., B.-E.Y., J. Pyee, H.P.)
| |
Collapse
|
32
|
Paxillin S273 Phosphorylation Regulates Adhesion Dynamics and Cell Migration through a Common Protein Complex with PAK1 and βPIX. Sci Rep 2019; 9:11430. [PMID: 31391572 PMCID: PMC6686007 DOI: 10.1038/s41598-019-47722-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/23/2019] [Indexed: 02/07/2023] Open
Abstract
Cell migration is an important biological phenomenon involved in many homeostatic and aberrant physiological processes. Phosphorylation of the focal adhesion adaptor protein, paxillin, on serine 273 (S273) has been implicated as a key regulator of cell migration. Here, it is shown that phosphorylation on paxillin S273 leads to highly migratory cells with small dynamic adhesions. Adhesions at protrusive edges of the cell were more dynamic than adhesions at retracting edges. Temporal image correlation microscopy revealed that these dynamic adhesions undergo rapid binding of paxillin, PAK1 and βPIX. We identified membrane proximal adhesion subdomains in protrusive regions of the cell that show rapid protein binding that is dependent on paxillin S273 phosphorylation, PAK1 kinase activity and phosphatases. These dynamic adhesion subdomains corresponded to regions of the adhesion that also show co-binding of paxillin/PAK1 and paxillin/βPIX complexes. It is likely that parts of individual adhesions are more dynamic while others are less dynamic due to their association with the actin cytoskeleton. Variable adhesion and binding dynamics are regulated via differential paxillin S273 phosphorylation across the cell and within adhesions and are required for regulated cell migration. Dysregulation through phosphomutants, PAK1-KD or βPIX mutants resulted in large stable adhesions, long protein binding times and slow cell migration. Dysregulation through phosphomimics or PAK1-CA led to small dynamic adhesions and rapid cell migration reminiscent of highly migratory cancer cells. Thus, phosphorylation of paxillin S273 is a key regulator of cell migration through recruitment of βPIX and PAK1 to sites of adhesion.
Collapse
|
33
|
Zhou J, Yi Q, Tang L. The roles of nuclear focal adhesion kinase (FAK) on Cancer: a focused review. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:250. [PMID: 31186061 PMCID: PMC6560741 DOI: 10.1186/s13046-019-1265-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/03/2019] [Indexed: 12/15/2022]
Abstract
FAK is a tyrosine kinase overexpressed in cancer cells and plays an important role in the progression of tumors to a malignant phenotype. Except for its typical role as a cytoplasmic kinase downstream of integrin and growth factor receptor signaling, related studies have shown new aspects of the roles of FAK in the nucleus. FAK can promote p53 degradation through ubiquitination, leading to cancer cell growth and proliferation. FAK can also regulate GATA4 and IL-33 expression, resulting in reduced inflammatory responses and immune escape. These findings establish a new model of FAK from the cytoplasm to the nucleus. Activated FAK binds to transcription factors and regulates gene expression. Inactive FAK synergizes with different E3 ligases to promote the turnover of transcription factors by enhancing ubiquitination. In the tumor microenvironment, nuclear FAK can regulate the formation of new blood vessels, affecting the tumor blood supply. This article reviews the roles of nuclear FAK in regulating gene expression. In addition, the use of FAK inhibitors to target nuclear FAK functions will also be emphasized.
Collapse
Affiliation(s)
- Jin Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Qian Yi
- Department of Physiology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
34
|
Kelly GT, Faraj R, Zhang Y, Maltepe E, Fineman JR, Black SM, Wang T. Pulmonary Endothelial Mechanical Sensing and Signaling, a Story of Focal Adhesions and Integrins in Ventilator Induced Lung Injury. Front Physiol 2019; 10:511. [PMID: 31105595 PMCID: PMC6498899 DOI: 10.3389/fphys.2019.00511] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Patients with critical illness such as acute lung injury often undergo mechanical ventilation in the intensive care unit. Though lifesaving in many instances, mechanical ventilation often results in ventilator induced lung injury (VILI), characterized by overdistension of lung tissue leading to release of edemagenic agents, which further damage the lung and contribute to the mortality and progression of pulmonary inflammation. The endothelium is particularly sensitive, as VILI associated mechanical stress results in endothelial cytoskeletal rearrangement, stress fiber formation, and integrity loss. At the heart of these changes are integrin tethered focal adhesions (FAs) which participate in mechanosensing, structure, and signaling. Here, we present the known roles of FA proteins including c-Src, talin, FAK, paxillin, vinculin, and integrins in the sensing and response to cyclic stretch and VILI associated stress. Attention is given to how stretch is propagated from the extracellular matrix through integrins to talin and other FA proteins, as well as signaling cascades that include FA proteins, leading to stress fiber formation and other cellular responses. This unifying picture of FAs aids our understanding in an effort to prevent and treat VILI.
Collapse
Affiliation(s)
- Gabriel T Kelly
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Reem Faraj
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Yao Zhang
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Emin Maltepe
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Jeffrey R Fineman
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| | - Stephen M Black
- Department of Medicine, College of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Ting Wang
- Department of Internal Medicine, College of Medicine Phoenix, The University of Arizona, Phoenix, AZ, United States
| |
Collapse
|
35
|
Sai C, Yunhan J, Zhao J, Yu Z, Yun Z, Zhezhe C, Fuqin T, Yingbin X, Ruiyan M. Cyclin Dependent Kinase 1 (CDK1) Activates Cardiac Fibroblasts via Directly Phosphorylating Paxillin at Ser244. Int Heart J 2019; 60:374-383. [PMID: 30745530 DOI: 10.1536/ihj.18-073] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atrial fibrillation has caused severe burden for people worldwide. Differentiation of fibroblasts into myofibroblasts, and consequent progress in atrial structural remodeling have been considered the basis for persistent atrial fibrillation, yet little is known about the molecular mechanisms underlying the process. Here, we show that cyclin-dependent kinase 1 (CDK1) is activated in atrial fibroblasts from patients with atrial fibrillation (AFPAF) and in platelet derived growth factor BB (PDGF-BB)-treated atrial fibroblasts from patients with sinus rhythm (AFPSR). We also demonstrate that inhibition of CDK1 suppresses fibroblast differentiation and focal adhesion (FA) complex formation. The FA protein paxillin is phosphorylated directly at Ser244 by CDK1. Importantly, transfection of a paxillin construct harboring a Ser to Ala mutation causes FA complex disassembly and greatly inhibits fibroblast activation. AFPSRs applied with a lentiviral vector carrying the shRNA sequence of paxillin dramatically prevents PDGF-BB induced functional activation. Taken together, all these results suggest that phosphorylation of paxillin at Ser244 by CDK1 is a key mechanism in fibroblast differentiation and could eventually assist atrial fibrosis.
Collapse
Affiliation(s)
- Chen Sai
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Jiang Yunhan
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Jian Zhao
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Zhu Yu
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Zhu Yun
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Cao Zhezhe
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Tang Fuqin
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Xiao Yingbin
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| | - Ma Ruiyan
- Department of Cardiovascular Surgery, Xinqiao Hospital, Third Military Medical University
| |
Collapse
|
36
|
Nah AS, Chay KO. Roles of paxillin phosphorylation in IL-3 withdrawal-induced Ba/F3 cell apoptosis. Genes Genomics 2019; 41:241-248. [PMID: 30604146 DOI: 10.1007/s13258-018-00779-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/19/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Ba/F3, a mouse pro-B cell line, is dependent on IL-3 for its survival and proliferation. IL-3 withdrawal causes cells to round, stop in G1 phase, then undergo apoptosis. Additionally, IL-3 is known to induce tyrosine phosphorylation of paxillin, a scaffold and signaling protein. We previously determined that overexpression of paxillin prohibited Ba/F3 cell apoptosis induced by IL-3 withdrawal. OBJECTIVE Address whether phosphorylation is essential for the anti-apoptotic effect of overexpressed paxillin. METHODS Mutations were introduced into paxillin cDNA at five phosphorylation sites-Y31F, Y40F, Y118F, Y181F, S273A, or S273D. After overexpression of paxillin mutants in Ba/F3 cells, the apoptotic proportions of cell populations were measured by an annexin V conjugation assay while cells were undergoing IL-3 withdrawal. RESULTS The anti-apoptotic effect of paxillin overexpression was abolished by site-directed mutagenesis replacing Y31, Y40, Y118, and Y181 with phenylalanine, and S273 with aspartic acid. In contrast, the mutation replacing S273 with alanine had no effect on the anti-apoptotic effect. CONCLUSION The above results suggest that paxillin-mediated phosphorylation at Y31, Y40, Y118, and Y181 is essential for the anti-apoptotic effect of paxillin overexpression in Ba/F3 cells and contributes to the cell survival signaling pathway triggered by IL-3. Conversely, phosphorylation at S273 is involved in the negative regulation of the anti-apoptotic action of overexpressed paxillin.
Collapse
Affiliation(s)
- Ae Sun Nah
- Department of Biochemistry, Medical School, Chonnam National University, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, Republic of Korea
| | - Kee Oh Chay
- Department of Biochemistry, Medical School, Chonnam National University, 264, Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do, Republic of Korea.
| |
Collapse
|
37
|
Targeting Focal Adhesion Kinase Using Inhibitors of Protein-Protein Interactions. Cancers (Basel) 2018; 10:cancers10090278. [PMID: 30134553 PMCID: PMC6162372 DOI: 10.3390/cancers10090278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/08/2018] [Accepted: 08/14/2018] [Indexed: 12/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic non-receptor protein tyrosine kinase that is overexpressed and activated in many human cancers. FAK transmits signals to a wide range of targets through both kinase-dependant and independent mechanism thereby playing essential roles in cell survival, proliferation, migration and invasion. In the past years, small molecules that inhibit FAK kinase function have been developed and show reduced cancer progression and metastasis in several preclinical models. Clinical trials have been conducted and these molecules display limited adverse effect in patients. FAK contain multiple functional domains and thus exhibit both important scaffolding functions. In this review, we describe the major FAK interactions relevant in cancer signalling and discuss how such knowledge provide rational for the development of Protein-Protein Interactions (PPI) inhibitors.
Collapse
|
38
|
Chang CH, Bijian K, Qiu D, Su J, Saad A, Dahabieh MS, Miller WH, Alaoui-Jamali MA. Endosomal sorting and c-Cbl targeting of paxillin to autophagosomes regulate cell-matrix adhesion turnover in human breast cancer cells. Oncotarget 2018; 8:31199-31214. [PMID: 28415719 PMCID: PMC5458201 DOI: 10.18632/oncotarget.16105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/01/2017] [Indexed: 11/30/2022] Open
Abstract
Post-translational mechanisms regulating cell-matrix adhesion turnover during cell locomotion are not fully elucidated. In this study, we uncovered an essential role of Y118 site-specific tyrosine phosphorylation of paxillin, an adapter protein of focal adhesion complexes, in paxillin recruitment to autophagosomes to trigger turnover of peripheral focal adhesions in human breast cancer cells. We demonstrate that the Rab-7 GTPase is a key upstream regulator of late endosomal sorting of tyrosine118-phosphorylated paxillin, which is subsequently recruited to autophagosomes via the cargo receptor c-Cbl. Essentially, this recruitment involves a direct and selective interaction between Y118-phospho-paxillin, c-Cbl, and LC3 and is independent from c-Cbl E3 ubiquitin ligase activity. Interference with the Rab7-paxillin-autophagy regulatory network using genetic and pharmacological approaches greatly impacted focal adhesion stability, cell locomotion and progression to metastasis using a panel of human breast cancer cells. Together, these results provide novel insights into the requirement of phospho-site specific post-translational mechanism of paxillin for autophagy targeting to regulate cell-matrix adhesion turnover and cell locomotion in breast cancer cells.
Collapse
Affiliation(s)
- Chia-Hao Chang
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Krikor Bijian
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Dinghong Qiu
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Jie Su
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Amine Saad
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Michael S Dahabieh
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Wilson H Miller
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Moulay A Alaoui-Jamali
- Lady Davis Institute for Medical Research and Segal Cancer Center, SMBD Jewish General Hospital, Departments of Medicine and Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
39
|
Duran CL, Howell DW, Dave JM, Smith RL, Torrie ME, Essner JJ, Bayless KJ. Molecular Regulation of Sprouting Angiogenesis. Compr Physiol 2017; 8:153-235. [PMID: 29357127 DOI: 10.1002/cphy.c160048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The term angiogenesis arose in the 18th century. Several studies over the next 100 years laid the groundwork for initial studies performed by the Folkman laboratory, which were at first met with some opposition. Once overcome, the angiogenesis field has flourished due to studies on tumor angiogenesis and various developmental models that can be genetically manipulated, including mice and zebrafish. In addition, new discoveries have been aided by the ability to isolate primary endothelial cells, which has allowed dissection of various steps within angiogenesis. This review will summarize the molecular events that control angiogenesis downstream of biochemical factors such as growth factors, cytokines, chemokines, hypoxia-inducible factors (HIFs), and lipids. These and other stimuli have been linked to regulation of junctional molecules and cell surface receptors. In addition, the contribution of cytoskeletal elements and regulatory proteins has revealed an intricate role for mobilization of actin, microtubules, and intermediate filaments in response to cues that activate the endothelium. Activating stimuli also affect various focal adhesion proteins, scaffold proteins, intracellular kinases, and second messengers. Finally, metalloproteinases, which facilitate matrix degradation and the formation of new blood vessels, are discussed, along with our knowledge of crosstalk between the various subclasses of these molecules throughout the text. Compr Physiol 8:153-235, 2018.
Collapse
Affiliation(s)
- Camille L Duran
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - David W Howell
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Jui M Dave
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Rebecca L Smith
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Melanie E Torrie
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Kayla J Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| |
Collapse
|
40
|
Reinhard NR, Mastop M, Yin T, Wu Y, Bosma EK, Gadella TWJ, Goedhart J, Hordijk PL. The balance between Gα i-Cdc42/Rac and Gα 12/ 13-RhoA pathways determines endothelial barrier regulation by sphingosine-1-phosphate. Mol Biol Cell 2017; 28:3371-3382. [PMID: 28954861 PMCID: PMC5687037 DOI: 10.1091/mbc.e17-03-0136] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 09/14/2017] [Accepted: 09/19/2017] [Indexed: 01/18/2023] Open
Abstract
The bioactive sphingosine-1-phosphatephosphate (S1P) is present in plasma, bound to carrier proteins, and involved in many physiological processes, including angiogenesis, inflammatory responses, and vascular stabilization. S1P can bind to several G-protein-coupled receptors (GPCRs) activating a number of different signaling networks. At present, the dynamics and relative importance of signaling events activated immediately downstream of GPCR activation are unclear. To examine these, we used a set of fluorescence resonance energy transfer-based biosensors for different RhoGTPases (Rac1, RhoA/B/C, and Cdc42) as well as for heterotrimeric G-proteins in a series of live-cell imaging experiments in primary human endothelial cells. These experiments were accompanied by biochemical GTPase activity assays and transendothelial resistance measurements. We show that S1P promotes cell spreading and endothelial barrier function through S1PR1-Gαi-Rac1 and S1PR1-Gαi-Cdc42 pathways. In parallel, a S1PR2-Gα12/13-RhoA pathway is activated that can induce cell contraction and loss of barrier function, but only if Gαi-mediated signaling is suppressed. Our results suggest that Gαq activity is not involved in S1P-mediated regulation of barrier integrity. Moreover, we show that early activation of RhoA by S1P inactivates Rac1 but not Cdc42, and vice versa. Together, our data show that the rapid S1P-induced increase in endothelial integrity is mediated by a S1PR1-Gαi-Cdc42 pathway.
Collapse
Affiliation(s)
- Nathalie R Reinhard
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
- Molecular Cell Biology and
- University of Amsterdam Academic Medical Centre-Landsteiner Laboratory, Sanquin Research, 1066 CX Amsterdam, Netherlands
| | - Marieke Mastop
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Taofei Yin
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Yi Wu
- Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030
| | - Esmeralda K Bosma
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Theodorus W J Gadella
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Joachim Goedhart
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Peter L Hordijk
- van Leeuwenhoek Centre for Advanced Microscopy, Molecular Cytology, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
- Molecular Cell Biology and
- University of Amsterdam Academic Medical Centre-Landsteiner Laboratory, Sanquin Research, 1066 CX Amsterdam, Netherlands
- Department of Physiology, Free University Medical Center, 1081 HZ Amsterdam, Netherlands
| |
Collapse
|
41
|
Jessen TN, Jessen JR. VANGL2 interacts with integrin αv to regulate matrix metalloproteinase activity and cell adhesion to the extracellular matrix. Exp Cell Res 2017; 361:265-276. [PMID: 29097183 DOI: 10.1016/j.yexcr.2017.10.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Planar cell polarity (PCP) proteins are implicated in a variety of morphogenetic processes including embryonic cell migration and potentially cancer progression. During zebrafish gastrulation, the transmembrane protein Vang-like 2 (VANGL2) is required for PCP and directed cell migration. These cell behaviors occur in the context of a fibrillar extracellular matrix (ECM). While it is thought that interactions with the ECM regulate cell migration, it is unclear how PCP proteins such as VANGL2 influence these events. Using an in vitro cell culture model system, we previously showed that human VANGL2 negatively regulates membrane type-1 matrix metalloproteinase (MMP14) and activation of secreted matrix metalloproteinase 2 (MMP2). Here, we investigated the functional relationship between VANGL2, integrin αvβ3, and MMP2 activation. We provide evidence that VANGL2 regulates cell surface integrin αvβ3 expression and adhesion to fibronectin, laminin, and vitronectin. Inhibition of MMP14/MMP2 activity suppressed the cell adhesion defect in VANGL2 knockdown cells. Furthermore, our data show that MMP14 and integrin αv are required for increased proteolysis by VANGL2 knockdown cells. Lastly, we have identified integrin αvβ3 as a novel VANGL2 binding partner. Together, these findings begin to dissect the molecular underpinnings of how VANGL2 regulates MMP activity and cell adhesion to the ECM.
Collapse
Affiliation(s)
- Tammy N Jessen
- Department of Biology, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN 37132, USA
| | - Jason R Jessen
- Department of Biology, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, TN 37132, USA.
| |
Collapse
|
42
|
Rashid M, Belmont J, Carpenter D, Turner CE, Olson EC. Neural-specific deletion of the focal adhesion adaptor protein paxillin slows migration speed and delays cortical layer formation. Development 2017; 144:4002-4014. [PMID: 28935710 DOI: 10.1242/dev.147934] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 09/11/2017] [Indexed: 11/20/2022]
Abstract
Paxillin and Hic-5 are homologous focal adhesion adaptor proteins that coordinate cytoskeletal rearrangements in response to integrin signaling, but their role(s) in cortical development are unknown. Here, we find that Hic-5-deficient mice are postnatal viable with normal cortical layering. Mice with a neural-specific deletion of paxillin are also postnatal viable, but show evidence of a cortical neuron migration delay that is evident pre- and perinatally, but is not detected at postnatal day 35 (P35). This phenotype is not modified by Hic-5 deficiency (double knockout). Specific deletion of paxillin in postmitotic neurons using Nex-Cre-mediated recombination as well as in utero electroporation of a Cre-expression construct identified a cell-autonomous requirement for paxillin in migrating neurons. Paxillin-deficient neurons have shorter leading processes that exhibited multiple swellings in comparison with control. Multiphoton imaging revealed that paxillin-deficient neurons migrate ∼30% slower than control neurons. This phenotype is similar to that produced by deletion of focal adhesion kinase (FAK), a signaling partner of paxillin, and suggests that paxillin and FAK function cell-autonomously to control migrating neuron morphology and speed during cortical development.
Collapse
Affiliation(s)
- Mamunur Rashid
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, USA
| | - Judson Belmont
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, USA
| | - David Carpenter
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 750 E Adams Street, Syracuse, NY 13210, USA
| | - Eric C Olson
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, 505 Irving Avenue, Syracuse, NY 13210, USA
| |
Collapse
|
43
|
C-reactive protein binds to integrin α2 and Fcγ receptor I, leading to breast cell adhesion and breast cancer progression. Oncogene 2017; 37:28-38. [PMID: 28846105 DOI: 10.1038/onc.2017.298] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/19/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
Abstract
C-reactive protein (CRP) is an acute phase protein synthesized upon the inflammatory responses, associated with breast cancer. The process of tumor cell invasion and metastasis involves the adherence of cells to the extracellular matrix via integrin as a receptor for matrix molecules. The present study investigated the role of CRP in the adhesive phenotype of breast cells and the underlying mechanisms. Here, we first showed that CRP induces adhesion of MCF10A human breast epithelial cells through the activation of integrin α2 signaling. Expression of integrin α2 was induced by CRP in which transcription factors c-fos and SP1 may be involved. Binding of CRP with integrin α2 leads to the activation of focal adhesion kinase (FAK), paxillin and ERKs. CRP also binds to an Fcγ receptor Fcγ receptor I (FcγRI), and induces activation of paxillin, FAK and ERKs. Integrin α2 and FAK have crucial roles in the adhesive and invasive phenotypes as well as MMP-9 upregulation induced by CRP in MCF10A cells. Treatment with an inflammatory lipid sphingosine-1-phosphate induced CRP, which may be secreted and exert an autocrine effect by binding to FcγRI and integrin α2. Involvement of CRP in adhesion, invasion, anchorage-independent growth and upregulation of integrin α2, paxillin and FAK was observed in MDA-MB-231 triple-negative human breast cancer (TNBC) cells. Using an in vivo invasion model and an orthotopic mouse tumor model with MDA-MB-231 cells, we showed that CRP has an important role in intravasation and tumor growth in vivo, demonstrating the in vivo relevance of our in vitro results. The present study elucidates a critical molecular basis between CRP, integrin α2 and FcγRI pathways in MCF10A breast cells and MDA-MB-231 TNBC cells, thereby providing useful information on CRP-induced aggressiveness of breast cells in the inflammatory microenvironment.
Collapse
|
44
|
Durand N, Bastea LI, Döppler H, Eiseler T, Storz P. Src-mediated tyrosine phosphorylation of Protein Kinase D2 at focal adhesions regulates cell adhesion. Sci Rep 2017; 7:9524. [PMID: 28842658 PMCID: PMC5573332 DOI: 10.1038/s41598-017-10210-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/07/2017] [Indexed: 01/09/2023] Open
Abstract
Dependent on their cellular localization, Protein Kinase D (PKD) enzymes regulate different processes including Golgi transport, cell signaling and response to oxidative stress. The localization of PKD within cells is mediated by interaction with different lipid or protein binding partners. With the example of PKD2, we here show that phosphorylation events can also contribute to localization of subcellular pools of this kinase. Specifically, in the present study, we show that tyrosine phosphorylation of PKD2 at residue Y87 defines its localization to the focal adhesions and leads to activation. This phosphorylation occurs downstream of RhoA signaling and is mediated via Src. Moreover, mutation of this residue blocks PKD2's interaction with Focal Adhesion Kinase (FAK). The presence and regulation of PKD2 at focal adhesions identifies a novel function for this kinase as a modulator of cell adhesion and migration.
Collapse
Affiliation(s)
- Nisha Durand
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Ligia I Bastea
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Heike Döppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, D-89081, Ulm, Germany
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, 32224, USA.
| |
Collapse
|
45
|
Hailat MM, Ebrahim HY, Mohyeldin MM, Goda AA, Siddique AB, El Sayed KA. The tobacco cembranoid (1S,2E,4S,7E,11E)-2,7,11-cembratriene-4,6-diol as a novel angiogenesis inhibitory lead for the control of breast malignancies. Bioorg Med Chem 2017; 25:3911-3921. [PMID: 28583806 DOI: 10.1016/j.bmc.2017.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/09/2017] [Accepted: 05/12/2017] [Indexed: 12/01/2022]
Abstract
(1S,2E,4S,6R,7E,11E)-2,7,11-cembratriene-4,6-diol (1) and its 4-epi-analog (2) are diterpene precursors of the key flavor components in most Nicotiana (tobacco) species that purposely degraded during commercial tobacco fermentation. Angiogenesis, recruitment of new blood vessels, is important for tumor growth, survival and metastasis that can be targeted to control cancer. This study shows evidences and potential of the cembranoid 1 as a potent angiogenesis modulator through targeting VEGFR2. In silico study suggested favorable docking scores and binding affinity of 1 at the ATP binding pocket of VEGFR2. The binding mode of 1 was parallel to the standard FDA-approved antiangiogenic drug sunitinib (4). In vitro, cembranoid 1 significantly reduced the activated VEGFR2 levels in multiple breast cancer cell lines. Intraperitoneal 40mg/kg, 3X/week treatment of 1 significantly reduced the MDA-MB-231 cells breast tumor size in mice. Immunohistochemistry and Western blotting analysis of the treated mice tumors showed significant downregulation of the vasculogenesis marker CD31 and suppressed activated VEGFR2-paxillin-FAK pathway. Matrigel study in Swiss albino mice showed similar trend. The tobacco cembranoid 1 is a potential antiangiogenic lead useful for future use to control breast malignancies.
Collapse
Affiliation(s)
- Mohammad M Hailat
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Hassan Y Ebrahim
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Mohamed M Mohyeldin
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Amira A Goda
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Abu Bakar Siddique
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA
| | - Khalid A El Sayed
- Department of Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201, USA.
| |
Collapse
|
46
|
Setyawati MI, Leong DT. Mesoporous Silica Nanoparticles as an Antitumoral-Angiogenesis Strategy. ACS APPLIED MATERIALS & INTERFACES 2017; 9:6690-6703. [PMID: 28150492 DOI: 10.1021/acsami.6b12524] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tumors depend heavily on angiogenesis for nutrient derivation and their subsequent metastasis. Targeting tumor induced angiogenesis per se can address both tumor growth and progression simultaneously. Here, we show that we could elegantly restrict the endothelial cells angiogenic behavior through digital size control of mesoporous silica nanoparticle (MSN). This antiangiogenesis effect was derived from the particle size dependent uptake and production of intracellular reactive oxygen species (ROS) that directly interfered with p53 tumor suppressor pathway. The resulting signaling cascade wrestled back the tumoral control of endothelial cells' migration, invasion, and proliferation. Overall, a mere control over the size of a highly oxidative reactive surfaced nanoparticle could provide an alternative strategy to curb the tumor induced angiogenesis process in a conventional drug-free manner.
Collapse
Affiliation(s)
- Magdiel I Setyawati
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| | - David T Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore , 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
47
|
López-Colomé AM, Lee-Rivera I, Benavides-Hidalgo R, López E. Paxillin: a crossroad in pathological cell migration. J Hematol Oncol 2017; 10:50. [PMID: 28214467 PMCID: PMC5316197 DOI: 10.1186/s13045-017-0418-y] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 02/08/2017] [Indexed: 02/08/2023] Open
Abstract
Paxilllin is a multifunctional and multidomain focal adhesion adapter protein which serves an important scaffolding role at focal adhesions by recruiting structural and signaling molecules involved in cell movement and migration, when phosphorylated on specific Tyr and Ser residues. Upon integrin engagement with extracellular matrix, paxillin is phosphorylated at Tyr31, Tyr118, Ser188, and Ser190, activating numerous signaling cascades which promote cell migration, indicating that the regulation of adhesion dynamics is under the control of a complex display of signaling mechanisms. Among them, paxillin disassembly from focal adhesions induced by extracellular regulated kinase (ERK)-mediated phosphorylation of serines 106, 231, and 290 as well as the binding of the phosphatase PEST to paxillin have been shown to play a key role in cell migration. Paxillin also coordinates the spatiotemporal activation of signaling molecules, including Cdc42, Rac1, and RhoA GTPases, by recruiting GEFs, GAPs, and GITs to focal adhesions. As a major participant in the regulation of cell movement, paxillin plays distinct roles in specific tissues and developmental stages and is involved in immune response, epithelial morphogenesis, and embryonic development. Importantly, paxillin is also an essential player in pathological conditions including oxidative stress, inflammation, endothelial cell barrier dysfunction, and cancer development and metastasis.
Collapse
Affiliation(s)
- Ana María López-Colomé
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico.
| | - Irene Lee-Rivera
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| | - Regina Benavides-Hidalgo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| | - Edith López
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-253, Ciudad Universitaria, México, 04510, D.F., Mexico
| |
Collapse
|
48
|
Goicoechea SM, Zinn A, Awadia SS, Snyder K, Garcia-Mata R. A RhoG-mediated signaling pathway that modulates invadopodia dynamics in breast cancer cells. J Cell Sci 2017; 130:1064-1077. [PMID: 28202690 DOI: 10.1242/jcs.195552] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 01/14/2017] [Indexed: 01/11/2023] Open
Abstract
One of the hallmarks of cancer is the ability of tumor cells to invade surrounding tissues and metastasize. During metastasis, cancer cells degrade the extracellular matrix, which acts as a physical barrier, by developing specialized actin-rich membrane protrusion structures called invadopodia. The formation of invadopodia is regulated by Rho GTPases, a family of proteins that regulates the actin cytoskeleton. Here, we describe a novel role for RhoG in the regulation of invadopodia disassembly in human breast cancer cells. Our results show that RhoG and Rac1 have independent and opposite roles in the regulation of invadopodia dynamics. We also show that SGEF (also known as ARHGEF26) is the exchange factor responsible for the activation of RhoG during invadopodia disassembly. When the expression of either RhoG or SGEF is silenced, invadopodia are more stable and have a longer lifetime than in control cells. Our findings also demonstrate that RhoG and SGEF modulate the phosphorylation of paxillin, which plays a key role during invadopodia disassembly. In summary, we have identified a novel signaling pathway involving SGEF, RhoG and paxillin phosphorylation, which functions in the regulation of invadopodia disassembly in breast cancer cells.
Collapse
Affiliation(s)
- Silvia M Goicoechea
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Ashtyn Zinn
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sahezeel S Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Kyle Snyder
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
49
|
Shen X, Jia Z, D'Alonzo D, Wang X, Bruder E, Emch FH, De Geyter C, Zhang H. HECTD1 controls the protein level of IQGAP1 to regulate the dynamics of adhesive structures. Cell Commun Signal 2017; 15:2. [PMID: 28073378 PMCID: PMC5225595 DOI: 10.1186/s12964-016-0156-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/06/2016] [Indexed: 12/21/2022] Open
Abstract
Background Cell migration including collective cell movement and individual cell migration are crucial factors in embryogenesis. During the spreading/migration of cells, several types of adhesive structures physically interacting with the extracellular matrix (ECM) or with another cell have been described and the formation and maturation of adhesion structures are coordinated, however the molecular pathways involved are still not fully understood. Results We generated a mouse embryonic fibroblast line (MEF) from homozygous mutant (Hectd1R/R, Hectd1Gt(RRC200)) mouse of the E3 ubiquitin ligase for inhibin B receptor (Hectd1). Detailed examination of cell motion on MEF cells demonstrated that loss of Hectd1 resulted in accelerated cell spreading and migration but impaired directionality of migration. In Hectd1R/R cells paxillin and zyxin were largely mis-localized, whereas their expression levels were unchanged. In addition the formation of focal adhesions (FAs) was impaired and the focal complexes (FXs) were increased. We further identified HECTD1 as a key regulator of IQGAP1. IQGAP1 co-localized together with HECTD1 in the leading edge of cells. HECTD1 interacted with IQGAP1 and regulated its degradation through ubiquitination. Over-expression of IQGAP1 in control MEF phenocopied the spreading and migration defects of Hectd1R/R cells. In contrast, siRNA-mediated knockdown of IQGAP1 rescued the defects in cellular movement of Hectd1R/R cells. Conclusions The E3 ligase activity of Hectd1 regulates the protein level of IQGAP1 through ubiquitination and therefore mediates the dynamics of FXs including the recruitment of paxillin and actinin. IQGAP1 is one of the effectors of HECTD1. Electronic supplementary material The online version of this article (doi:10.1186/s12964-016-0156-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiaoli Shen
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Present Address: Chongqing Reproductive and Genetics Institute, 64 Jing Tang ST, Yu Zhong District, Chongqing, 400013, China
| | - Zanhui Jia
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Present Address: 2nd hospital of Jilin University, Changchun, China
| | - Donato D'Alonzo
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Xinggang Wang
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| | - Elisabeth Bruder
- Pathologie, Universitätsspital Basel, Schönbeinstrasse 40, CH-4031, Basel, Switzerland
| | - Fabienne Hélène Emch
- Clinic of Gynecological Endocrinology and Reproductive Medicine, University Hospital, University of Basel, Basel, Switzerland
| | - Christian De Geyter
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland.,Clinic of Gynecological Endocrinology and Reproductive Medicine, University Hospital, University of Basel, Basel, Switzerland
| | - Hong Zhang
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland. .,Department of Biomedicine, University of Basel, Hebelstra. 20, CH-4031, Basel, Switzerland.
| |
Collapse
|
50
|
Robertson J, Humphries JD, Paul NR, Warwood S, Knight D, Byron A, Humphries MJ. Characterization of the Phospho-Adhesome by Mass Spectrometry-Based Proteomics. Methods Mol Biol 2017; 1636:235-251. [PMID: 28730483 DOI: 10.1007/978-1-4939-7154-1_15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Integrin adhesion receptors engage with their extracellular matrix (ECM) ligands, initiating intracellular signaling pathways that regulate a range of fundamental cell functions. Protein kinases and phosphatases play an integral role in integrin adhesion-mediated signaling. However, until recently, knowledge of the phosphorylation sites regulated downstream of integrin ligation was limited to candidate-based approaches and did not support a system-level understanding of the molecular mechanisms through which ECM engagement influences cell behavior. Here, we describe a mass spectrometry (MS)-based phosphoproteomic protocol that enables the global characterization of phosphorylation-based signaling networks activated by integrin-mediated adhesion. To analyze specifically integrin-proximal signaling, the phosphoproteomic workflow involves the affinity-based isolation and analysis of integrin-associated complexes (IACs) rather than proteins solubilized from whole-cell lysates , which are typically used for global phosphoproteomic studies. The detection of phosphorylation sites from IAC proteins was optimized at various stages of the workflow, including IAC isolation, proteolytic digestion, and MS-based data acquisition strategies. The protocol permits the identification and quantification of IAC components by both Western blotting and MS. Notably, compared to phosphoproteomic analyses of cell lysates, the workflow described here enables an improved detection of phosphorylation sites from well-defined IAC proteins, including many known components of the signaling pathways activated by adhesion to the ECM.
Collapse
Affiliation(s)
- Joseph Robertson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- Department of Molecular Microbiology, Oslo University Hospital, 0027, Oslo, Norway
| | - Jonathan D Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | - Nikki R Paul
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- CRUK Beatson Institute, Glasgow, G61 1BD, UK
| | - Stacey Warwood
- Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - David Knight
- Biological Mass Spectrometry Core Facility, Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Adam Byron
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, EH4 2XR, UK
| | - Martin J Humphries
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|