1
|
Kim HR, Lee SY, You GE, Park CW, Kim HO, Chung BY. Exosomes released by environmental pollutant-stimulated Keratinocytes/PBMCs can trigger psoriatic inflammation in recipient cells via the AhR signaling pathway. Front Mol Biosci 2024; 10:1324692. [PMID: 38288335 PMCID: PMC10822922 DOI: 10.3389/fmolb.2023.1324692] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/29/2023] [Indexed: 01/31/2024] Open
Abstract
Introduction: Exosomes, pivotal in intercellular communication during skin disease pathogenesis, have garnered substantial attention. However, the impact of environmental pollutants, such as benzo[a]pyrene (BaP) and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD), on exosome release amid inflammatory skin diseases remains unexplored. This study addresses this gap by examining the influence of BaP and TCDD on exosome function, specifically focusing on immune-related pathway alterations in normal recipient keratinocytes and peripheral blood mononuclear cells (PBMCs). Methods: HaCaT cells were treated with exosomes from BaP- or TCDD-treated keratinocytes. Proinflammatory cytokines and chemokines, including TNF-α, IL-1β, IL-6, IL-8, CXCL1, and CXCL5, were assessed. The involvement of the p65NF-κB/p38MAPK/ERK signaling pathway in recipient keratinocytes was investigated. Aryl hydrocarbon receptor (AhR) silencing was employed to elucidate its role in mediating the proinflammatory response induced by exosomes from BaP- or TCDD-treated keratinocytes. Results and discussion: Treatment with exosomes from BaP- or TCDD-treated keratinocytes induced a significant increase in proinflammatory cytokines and chemokines in HaCaT cells. The upregulation implicated the p65NF-κB/p38MAPK/ERK signaling pathway. AhR silencing attenuated this response, suggesting a role for AhR in mediating this response. In PBMCs from healthy controls, exosomes from BaP-stimulated PBMCs of psoriatic patients led to increased expression of proinflammatory cytokines and modulation of Th1/Th17 cell distribution via AhR activation. These findings unveil a novel dimension in the interplay between environmental xenobiotic agents (BaP and TCDD) and exosomal functions. The study establishes their influence on psoriatic inflammatory responses, shedding light on the underlying mechanisms mediated through the AhR signaling pathway in recipient keratinocytes and PBMCs.
Collapse
Affiliation(s)
- Hye Ran Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Lee
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Ga Eun You
- Research and Development Institute, Biosolution, Seoul, Republic of Korea
| | - Chun Wook Park
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Hye One Kim
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| | - Bo Young Chung
- Department of Dermatology, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
2
|
Fernández-Gallego N, Sánchez-Madrid F, Cibrian D. Role of AHR Ligands in Skin Homeostasis and Cutaneous Inflammation. Cells 2021; 10:cells10113176. [PMID: 34831399 PMCID: PMC8622815 DOI: 10.3390/cells10113176] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is an important regulator of skin barrier function. It also controls immune-mediated skin responses. The AHR modulates various physiological functions by acting as a sensor that mediates environment–cell interactions, particularly during immune and inflammatory responses. Diverse experimental systems have been used to assess the AHR’s role in skin inflammation, including in vitro assays of keratinocyte stimulation and murine models of psoriasis and atopic dermatitis. Similar approaches have addressed the role of AHR ligands, e.g., TCDD, FICZ, and microbiota-derived metabolites, in skin homeostasis and pathology. Tapinarof is a novel AHR-modulating agent that inhibits skin inflammation and enhances skin barrier function. The topical application of tapinarof is being evaluated in clinical trials to treat psoriasis and atopic dermatitis. In the present review, we summarize the effects of natural and synthetic AHR ligands in keratinocytes and inflammatory cells, and their relevance in normal skin homeostasis and cutaneous inflammatory diseases.
Collapse
Affiliation(s)
- Nieves Fernández-Gallego
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.S.-M.); (D.C.)
| | - Danay Cibrian
- Immunology Service, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid (UAM), Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IIS-IP), 28006 Madrid, Spain;
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.S.-M.); (D.C.)
| |
Collapse
|
3
|
Sahebnasagh A, Hashemi J, Khoshi A, Saghafi F, Avan R, Faramarzi F, Azimi S, Habtemariam S, Sureda A, Khayatkashani M, Safdari M, Rezai Ghaleno H, Soltani H, Khayat Kashani HR. Aromatic hydrocarbon receptors in mitochondrial biogenesis and function. Mitochondrion 2021; 61:85-101. [PMID: 34600156 DOI: 10.1016/j.mito.2021.09.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are ubiquitous membrane-bound organelles that not only play a key role in maintaining cellular energy homeostasis and metabolism but also in signaling and apoptosis. Aryl hydrocarbons receptors (AhRs) are ligand-activated transcription factors that recognize a wide variety of xenobiotics, including polyaromatic hydrocarbons and dioxins, and activate diverse detoxification pathways. These receptors are also activated by natural dietary compounds and endogenous metabolites. In addition, AhRs can modulate the expression of a diverse array of genes related to mitochondrial biogenesis and function. The aim of the present review is to analyze scientific data available on the AhR signaling pathway and its interaction with the intracellular signaling pathways involved in mitochondrial functions, especially those related to cell cycle progression and apoptosis. Various evidence have reported the crosstalk between the AhR signaling pathway and the nuclear factor κB (NF-κB), tyrosine kinase receptor signaling and mitogen-activated protein kinases (MAPKs). The AhR signaling pathway seems to promote cell cycle progression in the absence of exogenous ligands, whereas the presence of exogenous ligands induces cell cycle arrest. However, its effects on apoptosis are controversial since activation or overexpression of AhR has been observed to induce or inhibit apoptosis depending on the cell type. Regarding the mitochondria, although activation by endogenous ligands is related to mitochondrial dysfunction, the effects of endogenous ligands are not well understood but point towards antiapoptotic effects and inducers of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Adeleh Sahebnasagh
- Clinical Research Center, Department of Internal Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Javad Hashemi
- Department of Pathobiology and Laboratory Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhosein Khoshi
- Department of Clinical Biochemistry, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fatemeh Saghafi
- Department of Clinical Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Razieh Avan
- Assistant Professor of Clinical Pharmacy, Department of Clinical Pharmacy, Medical Toxicology and Drug Abuse Research Center (MTDRC), Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Fatemeh Faramarzi
- Clinical Pharmacy Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Azimi
- Student Research Committee, Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories and Herbal Analysis Services, School of Science, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands and Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Maryam Khayatkashani
- School of Iranian Traditional Medicine, Tehran University of Medical Sciences, 14155-6559 Tehran, Iran
| | - Mohammadreza Safdari
- Department of Orthopedic Surgery, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hassan Rezai Ghaleno
- Department of Surgery, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hosseinali Soltani
- Department of General Surgery, Imam Ali Hospital, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hamid Reza Khayat Kashani
- Department of Neurosurgery, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Avilla MN, Malecki KMC, Hahn ME, Wilson RH, Bradfield CA. The Ah Receptor: Adaptive Metabolism, Ligand Diversity, and the Xenokine Model. Chem Res Toxicol 2020; 33:860-879. [PMID: 32259433 PMCID: PMC7175458 DOI: 10.1021/acs.chemrestox.9b00476] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Indexed: 12/12/2022]
Abstract
The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins ("dioxins"), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.
Collapse
Affiliation(s)
- Mele N. Avilla
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Kristen M. C. Malecki
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Mark E. Hahn
- Biology
Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543-1050, United States
| | - Rachel H. Wilson
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
| | - Christopher A. Bradfield
- Molecular and Environmental Toxicology
Center, Department of Population Health
Sciences, University of Wisconsin School
of Medicine and Public Health, Madison, Wisconsin 53726-2379, United States
- McArdle
Laboratory for Cancer Research, University of Wisconsin School of Medicine
and Public Health, Madison, Wisconsin 53705-227, United States
| |
Collapse
|
5
|
Tischkau SA. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. Eur J Neurosci 2019; 51:379-395. [DOI: 10.1111/ejn.14361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Shelley A. Tischkau
- Department of PharmacologySouthern Illinois University School of Medicine Springfield Illinois
| |
Collapse
|
6
|
Akishina AA, Vorontsova JE, Cherezov RO, Slezinger MS, Simonova OB, Kuzin BA. NAP Family CG5017 Chaperone Pleiotropically Regulates Human AHR Target Genes Expression in Drosophila Testis. Int J Mol Sci 2018; 20:ijms20010118. [PMID: 30597983 PMCID: PMC6337364 DOI: 10.3390/ijms20010118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/11/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
To study the regulatory mechanism of the Aryl hydrocarbon receptor (AHR), target genes of transcription are necessary for understanding the normal developmental and pathological processes. Here, we examined the effects of human AHR ligands on male fecundity. To induce ectopic human AhR gene expression, we used Drosophilamelanogaster transformed with human AhR under the control of a yeast UAS promoter element capable of activation in the two-component UAS-GAL4 system. We found that exogenous AHR ligands decrease the number of Drosophila gonadal Tj-positive cells. We also found both an increase and decrease of AHR target gene expression, including in genes that control homeostasis and testis development. This suggests that gonadal AHR activation may affect the expression of gene networks that control sperm production and could be critical for fertility not just in Drosophila but also in humans. Finally, we found that the activation of the expression for some AHR target genes depends on the expression of testis-specific chaperone CG5017 in gonadal cells. Since CG5017 belongs to the nucleosome assembly protein (NAP) family and may participate in epigenetic regulation, we propose that this nucleotropic chaperone is essential to provide the human AHR with access to only the defined set of its target genes during spermatogenesis.
Collapse
Affiliation(s)
- Angelina A Akishina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Julia E Vorontsova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Roman O Cherezov
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Mikhail S Slezinger
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Olga B Simonova
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| | - Boris A Kuzin
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Vavilova str. 26, Moscow 119991, Russia.
| |
Collapse
|
7
|
Giuliani C, Biggs D, Nguyen TT, Marasco E, De Fanti S, Garagnani P, Le Phan MT, Nguyen VN, Luiselli D, Romeo G. First evidence of association between past environmental exposure to dioxin and DNA methylation of CYP1A1 and IGF2 genes in present day Vietnamese population. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:976-985. [PMID: 30373043 DOI: 10.1016/j.envpol.2018.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 06/08/2023]
Abstract
During the Vietnam War, the United States military sprayed over 74 million litres of Agent Orange (AO) to destroy forest cover as a counterinsurgency tactic in Vietnam, Laos and Cambodia. The main ingredient was contaminated by 2,3,7,8-tetrachlorodibenzo-paradioxin (TCDD). DNA methylation (DNAm) differences are potential biomarker of environmental toxicants exposure. The aim of this study was to perform a preliminary investigation of the DNAm levels from peripheral blood of the present-day Vietnamese population, including individuals whose parents, according to historical data, were exposed to AO/TCDD during the war. 94 individuals from heavily sprayed areas (cases) and 94 individuals from non-sprayed areas (controls) were studied, and historical data on alleged exposure of parents collected. 94 cases were analysed considering those whose father/parents participated in the war (N = 29) and considering the place of residence of both parents (64 living in sprayed areas versus 30 in non-contaminated areas). DNAm levels in CYP1A1 and IGF2 genes were measured (MALDI-TOF technology). The analyses showed that: 1) one CpG site in the CYP1A1 and one in the IGF2 gene showed significant differences in DNAm levels between cases and controls; 2) the CYP1A1 region resulted to be hypomethylated (in 9 out of 16 sites/units; p-val<0.01) in 29 individuals whose father/parents participated in the war in the spray zones; 3) we showed that the place of residence of both parents influenced methylation levels of the CYP1A1 and IGF2 genes (p-val<0.05). In conclusion this study indicates that past environmental exposure to dioxin (AO/TCDD) shapes the DNAm profile of CYP1A1 and that the place of living for parents in former spray zones influences DNAm of CYP1A1 and IGF2 genes. These results open the way to new applications of DNAm as potential biomarker(s) of past human exposure to dioxin.
Collapse
Affiliation(s)
- Cristina Giuliani
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy; School of Anthropology and Museum Ethnography, University of Oxford, UK.
| | - David Biggs
- Department of History and School of Public Policy, University of California, Riverside, USA
| | | | - Elena Marasco
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Sara De Fanti
- Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology, University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Applied Biomedical Research Center (CRBA), S. Orsola-Malpighi Polyclinic, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, S-141 86 Stockholm, Sweden
| | | | | | - Donata Luiselli
- Department for the Cultural Heritage (DBC), Campus of Ravenna, University of Bologna, Bologna, Italy
| | - Giovanni Romeo
- Medical Genetics Unit, S. Orsola Hospital, University of Bologna, Italy and European School of Genetic Medicine, Italy
| |
Collapse
|
8
|
Kumar MB, Perdew GH. Nuclear receptor coactivator SRC-1 interacts with the Q-rich subdomain of the AhR and modulates its transactivation potential. Gene Expr 2018; 8:273-86. [PMID: 10947077 PMCID: PMC6157383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The aryl hydrocarbon receptor (AhR), a soluble cytosolic protein, mediates many of the toxic effects of TCDD and related chemicals. The toxic effects are largely cell, tissue, and promoter context dependent. Although many details of the overall dioxin signal transduction have been elucidated, the transcriptional regulation of dioxin-induced genes like cyp1A1 is not yet completely understood. Previously, we have shown that the co-regulator RIP140 is a potential AhR coactivator. In this report, the role of coactivator, SRC-1, in AhR-mediated transcriptional regulation was examined. SRC-1 increased AhR-mediated, TCDD-dependent reporter gene activity three-fold in Hepa-1 and COS-1 cells. In in vitro interaction assays, SRC-1 was found to interact with AhR but not with ARNT. SRC-1 interacted weakly with AhR in the absence of TCDD and the addition of ligand further increased SRC-1 binding to AhR. Deletional mapping studies of the AhR revealed that SRC-1 binds to the AhR transactivation domain. Finer mapping of the SRC-1-interacting subdomains in the AhR transactivation domain suggested that the Q-rich subdomain was necessary and sufficient for interaction, similar to that seen with RIP140. Using GFP-tagged constructs, SRC-1 was shown to interact with AhR in cells. Unlike RIP140, LXXLL motifs in SRC-1 were necessary for interaction with AhR in vitro and for coactivation in Hepa-1 cells. The recruitment of certain coactivators by a variety of receptors suggests possible common coactivator pools and competition among receptors for limiting coactivators. Examination of the role of SRC-1 in AhR/ARNT transactivation in ARNT-deficient mutant Hepa-1 c4 cells demonstrates that the AhR transactivation domain is sufficient for enhanced coactivation mediated by SRC-1 in the presence of a transactivation domain deleted ARNT protein.
Collapse
Affiliation(s)
- Mohan B. Kumar
- *Graduate Program in Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Gary H. Perdew
- *Graduate Program in Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
- †Center for Molecular Toxicology and the Department of Veterinary Science, The Pennsylvania State University, University Park, PA 16802
- Address correspondence to Gary H. Perdew, Department of Veterinary Science, 115 Henning Building, University Park, PA 16802. Tel: (814) 865-0400; (814) 863-6140; E-mail:
| |
Collapse
|
9
|
Ghazi Eid B, Hanafy A, Hasan A. Aryl Hydrocarbon Receptor Is Expressed in the Prostate Gland of Lean and Obese Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2018.992.1000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Akishina AA, Vorontsova JE, Cherezov RO, Mertsalov IB, Zatsepina OG, Slezinger MS, Panin VM, Petruk S, Enikolopov GN, Mazo A, Simonova OB, Kuzin BA. Xenobiotic-induced activation of human aryl hydrocarbon receptor target genes in Drosophila is mediated by the epigenetic chromatin modifiers. Oncotarget 2017; 8:102934-102947. [PMID: 29262535 PMCID: PMC5732701 DOI: 10.18632/oncotarget.22173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/13/2017] [Indexed: 01/07/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is the key transcription factor that controls animal development and various adaptive processes. The AHR’s target genes are involved in biodegradation of endogenous and exogenous toxins, regulation of immune response, organogenesis, and neurogenesis. Ligand binding is important for the activation of the AHR signaling pathway. Invertebrate AHR homologs are activated by endogenous ligands whereas vertebrate AHR can be activated by both endogenous and exogenous ligands (xenobiotics). Several studies using mammalian cultured cells have demonstrated that transcription of the AHR target genes can be activated by exogenous AHR ligands, but little is known about the effects of AHR in a living organism. Here, we examined the effects of human AHR and its ligands using transgenic Drosophila lines with an inducible human AhR gene. We found that exogenous AHR ligands can increase as well as decrease the transcription levels of the AHR target genes, including genes that control proliferation, motility, polarization, and programmed cell death. This suggests that AHR activation may affect the expression of gene networks that could be critical for cancer progression and metastasis. Importantly, we found that AHR target genes are also controlled by the enzymes that modify chromatin structure, in particular components of the epigenetic Polycomb Repressive complexes 1 and 2. Since exogenous AHR ligands (alternatively – xenobiotics) and small molecule inhibitors of epigenetic modifiers are often used as pharmaceutical anticancer drugs, our findings may have significant implications in designing new combinations of therapeutic treatments for oncological diseases.
Collapse
Affiliation(s)
- Angelina A Akishina
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Julia E Vorontsova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Roman O Cherezov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Il'ya B Mertsalov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga G Zatsepina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail S Slezinger
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Vladislav M Panin
- Department of Biochemistry and Biophysics, Texas A and M University, College Station, TX, USA
| | - Svetlana Petruk
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Grigori N Enikolopov
- Center for Developmental Genetics, Department of Anesthesiology, Stony Brook University, Stony Brook, NY, USA
| | - Alexander Mazo
- Department of Biochemistry and Molecular Biology and Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Olga B Simonova
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris A Kuzin
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Jaeger C, Khazaal AQ, Xu C, Sun M, Krager SL, Tischkau SA. Aryl Hydrocarbon Receptor Deficiency Alters Circadian and Metabolic Rhythmicity. J Biol Rhythms 2017; 32:109-120. [PMID: 28347186 DOI: 10.1177/0748730417696786] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
PAS domain-containing proteins can act as environmental sensors that capture external stimuli to allow coordination of organismal physiology with the outside world. These proteins permit diverse ligand binding and heterodimeric partnership, allowing for varied combinations of PAS-dependent protein-protein interactions and promoting crosstalk among signaling pathways. Previous studies report crosstalk between circadian clock proteins and the aryl hydrocarbon receptor (AhR). Activated AhR forms a heterodimer with the circadian clock protein Bmal1 and thereby functionally inhibits CLOCK/Bmal1 activity. If physiological activation of AhR through naturally occurring, endogenous ligands inhibits clock function, it seems plausible to hypothesize that decreased AhR expression releases AhR-induced inhibition of circadian rhythms. Because both AhR and the clock are important regulators of glucose metabolism, it follows that decreased AhR will also alter metabolic function. To test this hypothesis, rhythms of behavior, metabolic outputs, and circadian and metabolic gene expression were measured in AhR-deficient mice. Genetic depletion of AhR enhanced behavioral responses to changes in the light-dark cycle, increased rhythmic amplitude of circadian clock genes in the liver, and altered rhythms of glucose and insulin. This study provides evidence of AhR-induced inhibition that influences circadian rhythm amplitude.
Collapse
Affiliation(s)
- Cassie Jaeger
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Ali Q Khazaal
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Biotechnology Department, College of Science, Baghdad University, Baghdad, Iraq
| | - Canxin Xu
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Mingwei Sun
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Stacey L Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Shelley A Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
12
|
Fiorito F, Santamaria R, Irace C, De Martino L, Iovane G. 2,3,7,8-tetrachlorodibenzo-p-dioxin and the viral infection. ENVIRONMENTAL RESEARCH 2017; 153:27-34. [PMID: 27883971 DOI: 10.1016/j.envres.2016.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Revised: 10/13/2016] [Accepted: 11/09/2016] [Indexed: 06/06/2023]
Abstract
Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a widespread highly toxic environmental contaminant, suppresses immune response and leads to an increased susceptibility to infectious agents. In particular, several studies have provided evidence that TCDD decreases resistance to numerous viruses. Indeed, in vivo and in vitro investigations showed that the presence of TCDD is able to interfere with the replication of both human and animal viruses, such as influenza A viruses, coxsackie virus B3, immunodeficiency virus type-1 (HIV-1), cytomegalovirus (CMV), herpes simplex II, and bovine herpesvirus 1. Moreover, TCDD could induce an exacerbation of latent infection produced by HIV-1, CMV or Epstein-Barr virus. In this review, we first describe the general effects of TCDD exposure on mammalian cells, then we focus on its influence on the viral infections. Overall, the available data support the concept that TCDD exposure may act as an additional risk factor in promoting of viral diseases.
Collapse
Affiliation(s)
- Filomena Fiorito
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy; Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055 Naples, Italy.
| | - Rita Santamaria
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Carlo Irace
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy.
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| |
Collapse
|
13
|
Jaeger C, Xu C, Sun M, Krager S, Tischkau SA. Aryl hydrocarbon receptor-deficient mice are protected from high fat diet-induced changes in metabolic rhythms. Chronobiol Int 2017; 34:318-336. [PMID: 28102700 DOI: 10.1080/07420528.2016.1256298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High fat diet (HFD) consumption alters the synchronized circadian timing system resulting in harmful loss, gain or shift of transcriptional oscillations. The aryl hydrocarbon receptor (AhR) shares structural homology to clock genes, containing both PAS domains and basic helix-loop helix structural motifs, allowing for interaction with components of the primary circadian feedback loop. Activation of AhR alters circadian rhythmicity, primarily through inhibition of Clock/Bmal1-mediated regulation of Per1. AhR-deficient mice are protected from diet-induced metabolic dysfunction, exhibiting enhanced insulin sensitivity and glucose tolerance. This study examined whether AhR haploinsufficiency can also protect against diet-induced alterations in rhythm. After feeding AhR+/+ and AhR+/- mice an HFD (60% fat) for 15 weeks, samples were collected every 4 hours over a 24-hour period. HFD altered the rhythm of serum glucose and the metabolic transcriptome, including hepatic nuclear receptors Rev-erbα and PPARγ in wild-type c57bl6/j mice. AhR reduction provided protection against diet-induced transcriptional oscillation changes; serum glucose and metabolic gene rhythms were protected from the disruption caused by HFD feeding. These data highlight the critical role of AhR signaling in the regulation of metabolism and provide a potential therapeutic target for diseases characterized by rhythmic desynchrony.
Collapse
Affiliation(s)
- Cassie Jaeger
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Canxin Xu
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Mingwei Sun
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Stacey Krager
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Shelley A Tischkau
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| |
Collapse
|
14
|
Plant lignan secoisolariciresinol suppresses pericardial edema caused by dioxin-like compounds in developing zebrafish: Implications for suppression of morphological abnormalities. Food Chem Toxicol 2016; 96:160-6. [DOI: 10.1016/j.fct.2016.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 07/10/2016] [Accepted: 07/12/2016] [Indexed: 11/30/2022]
|
15
|
Regulations and Advisories. Toxicol Ind Health 2016. [DOI: 10.1177/074823370001600312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Jaeger C, Tischkau SA. Role of Aryl Hydrocarbon Receptor in Circadian Clock Disruption and Metabolic Dysfunction. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:133-141. [PMID: 27559298 PMCID: PMC4990151 DOI: 10.4137/ehi.s38343] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 06/01/2023]
Abstract
The prevalence of metabolic syndrome, a clustering of three or more risk factors that include abdominal obesity, increased blood pressure, and high levels of glucose, triglycerides, and high-density lipoproteins, has reached dangerous and costly levels worldwide. Increases in morbidity and mortality result from a combination of factors that promote altered glucose metabolism, insulin resistance, and metabolic dysfunction. Although diet and exercise are commonly touted as important determinants in the development of metabolic dysfunction, other environmental factors, including circadian clock disruption and activation of the aryl hydrocarbon receptor (AhR) by dietary or other environmental sources, must also be considered. AhR binds a range of ligands, which prompts protein-protein interactions with other Per-Arnt-Sim (PAS)-domain-containing proteins and subsequent transcriptional activity. This review focuses on the reciprocal crosstalk between the activated AhR and the molecular circadian clock. AhR exhibits a rhythmic expression and time-dependent sensitivity to activation by AhR agonists. Conversely, AhR activation influences the amplitude and phase of expression of circadian clock genes, hormones, and the behavioral responses of the clock system to changes in environmental illumination. Both the clock and AhR status and activation play significant and underappreciated roles in metabolic homeostasis. This review highlights the state of knowledge regarding how AhR may act together with the circadian clock to influence energy metabolism. Understanding the variety of AhR-dependent mechanisms, including its interactions with the circadian timing system that promote metabolic dysfunction, reveals new targets of interest for maintenance of healthy metabolism.
Collapse
|
17
|
Hayes MD, Ovcinnikovs V, Smith AG, Kimber I, Dearman RJ. The aryl hydrocarbon receptor: differential contribution to T helper 17 and T cytotoxic 17 cell development. PLoS One 2014; 9:e106955. [PMID: 25203682 PMCID: PMC4159274 DOI: 10.1371/journal.pone.0106955] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 08/11/2014] [Indexed: 12/30/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) has been shown to be required for optimal Thelper (Th) 17 cell activation. Th17 cells provide immunity against extracellular pathogens and are implicated in autoimmune diseases. Herein, the role of the AhR in cytokine production by Th17, and by the analogous population of T cytotoxic (Tc)17 cells, has been examined. Lymph node Tc (CD8(+)) and Th (CD4(+)) cells were isolated by negative selection from naive AhR(+/-) and AhR(-/-) mice and polarised to Tc1/Th1 or Tc17/Th17 phenotypes with appropriate cytokines. Cell differentiation was assessed as a function of mRNA and protein (ELISA and flow cytometry) expression for interferon (IFN)-γ and for key Th17 cytokines. In AhR(+/-) mice, Th17 cells displayed an exclusive IL-17 profile, which was markedly inhibited by a selective AhR antagonist to levels observed in AhR knockout mice. Addition of the natural AhR agonist 6-formylindolo[3,2-b]carbazole (FICZ) markedly enhanced Th17 cell activity in the heterozygotes. In contrast, Tc17 cells polarised into 3 distinct subsets: producing either IL-17 or IFN-γ alone, or both cytokines. Blocking AhR was also detrimental to Tc17 development, with reduced responses recorded in AhR(-/-) mice and antagonist-mediated reduction of IL-17 expression in the heterozygotes. However, Tc17 cells were largely refractory to exogenous FICZ, presumably because Tc17 cells express baseline AhR mRNA, but unlike Th17 cells, there is no marked up-regulation during polarisation. Thus, Th17 cell development is more dependent upon AhR activation than is Tc17 cell development, suggesting that endogenous AhR ligands play a much greater role in driving Th17 cell responses.
Collapse
Affiliation(s)
- Mark D. Hayes
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Vitalijs Ovcinnikovs
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Andrew G. Smith
- MRC Toxicology Unit, The University of Leicester, Leicester, United Kingdom
| | - Ian Kimber
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| | - Rebecca J. Dearman
- Faculty of Life Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Inhibition of P-Glycoprotein Enhances the Suppressive Effect of Kaempferol on Transformation of the Aryl Hydrocarbon Receptor. Biosci Biotechnol Biochem 2014; 73:1635-9. [DOI: 10.1271/bbb.90145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Hiura Y, Satsu H, Hamada M, Shimizu M. Analysis of flavonoids regulating the expression of UGT1A1 via xenobiotic receptors in intestinal epithelial cells. Biofactors 2014; 40:336-45. [PMID: 24375494 DOI: 10.1002/biof.1153] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/11/2013] [Indexed: 12/23/2022]
Abstract
UDP-glucuronosyltransferase (UGT) 1A1 is one of the major metabolic enzymes for the detoxification of harmful xenobiotics in intestines, and its expression is regulated by transcription factors like the aryl hydrocarbon receptor (AhR) and the pregnane X receptor (PXR). A screening assay using real-time PCR showed that baicalein and 3-hydroxyflavone induced human UGT1A1 mRNA expression in LS180 cells. Experimental results confirmed that these flavonoids increased UGT1A protein expression as well as its enzymatic activity. The results indicated that baicalein and 3-hydroxyflavone increased the transcriptional activity of UGT1A1 via AhR and PXR, respectively. Observation via immunofluorescence microscopy suggested that baicalein and 3-hydroxyflavone further induced nuclear translocation of AhR and PXR, respectively. In addition, direct interaction between baicalein and AhR or 3-hydroxyflavone and PXR were observed using the quartz crystal microbalance method. These results elucidate the molecular mechanism of flavonoid-induced UGT1A1 gene expression via xenobiotic receptors in the intestines.
Collapse
Affiliation(s)
- Yuto Hiura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | | | | | | |
Collapse
|
20
|
Functional analysis of the dioxin response elements (DREs) of the murine CYP1A1 gene promoter: beyond the core DRE sequence. Int J Mol Sci 2014; 15:6475-87. [PMID: 24743890 PMCID: PMC4013641 DOI: 10.3390/ijms15046475] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/01/2014] [Accepted: 02/07/2014] [Indexed: 11/17/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the biological and toxicological effects of halogenated aromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). When activated by dioxin, the cytosolic AhR protein complex translocates into the nucleus and dimerizes with the ARNT (Ah receptor nuclear translocator) protein. The heteromeric ligand:AhR/Arnt complex then recognizes and binds to its specific DNA recognition site, the dioxin response element (DRE). DREs are located upstream of cytochrome P4501A1 (CYP1A1) and other AhR-responsive genes, and binding of the AhR complex stimulates their transcription. Although CYP1A1 expression has been used as the model system to define the biochemical and molecular mechanism of AhR action, there is still limited knowledge about the roles of each of the seven DREs located in the CYP1A1 promoter. These seven DREs are conserved in mouse, human and rat. Deletion analysis showed that a single DRE at −488 was enough to activate the transcription. Truncation analysis demonstrated that the DRE at site −981 has the highest transcriptional efficiency in response to TCDD. This result was verified by mutation analysis, suggesting that the conserved DRE at site −981 could represent a significant and universal AhR regulatory element for CYP1A1. The reversed substituted intolerant core sequence (5′-GCGTG-3′ or 5′-CACGC-3′) of seven DREs reduced the transcriptional efficiency, which illustrated that the adjacent sequences of DRE played a vital role in activating transcription. The core DRE sequence (5′-TNGCGTG-3′) tends to show a higher transcriptional level than that of the core DRE sequence (5′-CACGCNA-3′) triggered by TCDD. Furthermore, in the core DRE (5′-TNGCGTG-3′) sequence, when “N” is thymine or cytosine (T or C), the transcription efficiency was stronger compared with that of the other nucleotides. The effects of DRE orientation, DRE adjacent sequences and the nucleotide “N” in the core DRE (5′-TNGCGTG-3′) sequence on the AhR-regulated CYP1A1 transcription in response to TCDD were studied systematically, and our study laid a good foundation for further investigation into the AhR-dependent transcriptional regulation triggered by dioxin and dioxin-like compounds.
Collapse
|
21
|
Lee HY, Choi K, Oh H, Park YK, Park H. HIF-1-dependent induction of Jumonji domain-containing protein (JMJD) 3 under hypoxic conditions. Mol Cells 2014; 37:43-50. [PMID: 24552709 PMCID: PMC3907005 DOI: 10.14348/molcells.2014.2250] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 01/20/2023] Open
Abstract
Jumonji domain-containing proteins (JMJD) catalyze the oxidative demethylation of a methylated lysine residue of histones by using O2, α-ketoglutarate, vitamin C, and Fe(II). Several JMJDs are induced by hypoxic stress to compensate their presumed reduction in catalytic activity under hypoxia. In this study, we showed that an H3K27me3 specific histone demethylase, JMJD3 was induced by hypoxia-inducible factor (HIF)-1α/β under hypoxia and that treatment with Clioquinol, a HIF-1α activator, increased JMJD3 expression even under normoxia. Chromatin immunoprecipitation (ChIP) analyses showed that both HIF-1α and its dimerization partner HIF-1β/Arnt occupied the first intron region of the mouse JMJD3 gene, whereas the HIF-1α/β heterodimer bound to the upstream region of the human JMJD3, indicating that human and mouse JMJD3 have hypoxia-responsive regulatory regions in different locations. This study shows that both mouse and human JMJD3 are induced by HIF-1.
Collapse
Affiliation(s)
- Ho-Youl Lee
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Kang Choi
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Hookeun Oh
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Young-Kwon Park
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| | - Hyunsung Park
- Department of Life Science, University of Seoul, Seoul 130-743,
Korea
| |
Collapse
|
22
|
Burns KA, Zorrilla LM, Hamilton KJ, Reed CE, Birnbaum LS, Korach KS. A single gestational exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin disrupts the adult uterine response to estradiol in mice. Toxicol Sci 2013; 136:514-26. [PMID: 24052564 DOI: 10.1093/toxsci/kft208] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) given as a cotreatment with estrogen exhibits antiestrogenic properties on the rodent adult uterus, but less is understood regarding hormonal responsiveness of the adult uterus from animals having been exposed to TCDD during critical periods of development. We characterized the inhibitory effects of TCDD (T) exposure at gestational day 15 (GD15), 4 weeks, and 9 weeks of age (TTT) on the adult uterus following hormone treatment. TTT-exposed mice in response to hormone treatment exhibited a blunted weight increase, had fewer uterine glands, displayed morphological anomalies, and had marked decreases in the hormonal regulation of genes involved in fluid transport (Aqp3 and Aqp5), cytoarchitectural (Dsc2 and Sprr2A), and immune (Lcn2 and Ltf) regulation. To determine if the 9-week exposure was responsible for the blunted uterine response, due to the 7- to 11-day half-life of TCDD in mice, a second set of experiments was performed to examine exposure to TCDD given at GD15, GD15 only (cross-fostered at birth), only during lactation (cross-fostered at birth), or at GD15 and 4 weeks of age. Our studies demonstrate that a single developmental TCDD exposure at GD15 is sufficient to elicit a blunted adult uterine response to estradiol and is due in part to fewer gland numbers and the reduced expression of forkhead box A2 (FoxA2), a gene involved in gland development. Together, these results provide insight regarding the critical nature of in utero exposure and the potential impact on ensuing uterine biology and reproductive health later in life.
Collapse
Affiliation(s)
- Katherine A Burns
- * Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | | | | | | | | | | |
Collapse
|
23
|
Kim RO, Kim BM, Hwang DS, Au DWT, Jung JH, Shim WJ, Leung KMY, Wu RSS, Rhee JS, Lee JS. Evaluation of biomarker potential of cytochrome P450 1A (CYP1A) gene in the marine medaka, Oryzias melastigma exposed to water-accommodated fractions (WAFs) of Iranian crude oil. Comp Biochem Physiol C Toxicol Pharmacol 2013. [PMID: 23178197 DOI: 10.1016/j.cbpc.2012.11.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
CYP1A is involved in the metabolism of diverse chemicals, including polycyclic aromatic hydrocarbons and alkylated-PAHs, as a first line of detoxification mechanism. First, we identified and characterized the CYP1A gene from the marine medaka, Oryzias melastigma. O. melastigma CYP1A (Om-CYP1A) showed a high similarity of motifs/domains compared to those of vertebrates in their amino acid sequences. To check whether the Om-CYP1A would be inducible, we tested two strong CYP1A inducers, β-naphthoflavone (β-NF) and benzo[α]pyrene (B[α]P), and observed concentration-dependent transient expression on transcripts of Om-CYP1A for 96 h over a wide range of concentrations. Om-CYP1A mRNA level was significantly increased in exposure to different concentrations of β-NF and B[α]P, and its expression was highly transcribed within 12 h upon the exposure to low concentrations of both chemicals. Inducible transcript profiles revealed that Om-CYP1A would be associated with the toxicant metabolism via AhREs/DREs/XREs in its promoter region. To uncover the effects of the water-accommodated fraction (WAF) of crude oil on transcripts of Om-CYP1A, we measured mRNA expression of Om-CYP1A towards different concentrations of WAF for 24h. As a result, WAF exposure significantly increased Om-CYP1A transcripts at all concentrations as well as during time-course experiments for 96 h. In this paper, we demonstrated that WAF would trigger up-regulation of the CYP1A gene that would be associated with the initiation of the cellular defense systems. This finding provides a better understanding of the molecular mechanism of cellular protection particularly that involved in the WAF-mediated cellular response in O. melastigma.
Collapse
Affiliation(s)
- Ryeo-Ok Kim
- Department of Chemistry, College of Natural Sciences, Hanyang University, Seoul 133-791, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Natsume Y, Satsu H, Hamada M, Kitamura K, Okamoto N, Shimizu M. In vitro System for Assessing Dioxin Absorption by Intestinal Epithelial Cells and for Preventing this Absorption by Food Substances. Cytotechnology 2011; 47:79-88. [PMID: 19003047 DOI: 10.1007/s10616-005-3753-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 11/26/2004] [Indexed: 01/12/2023] Open
Abstract
A system for assessing intestinal dioxin absorption was established by applying a Caco-2 cell monolayer and stable dioxin-responsive cell line. The stable dioxin-responsive cell line was established by introducing a plasmid incorporating the human CYP1A1 promoter into human hepatic HepG2 genomic DNA upstream of the luciferase gene. 2,3,7,8-Tetrachlorodibenzodioxin (TCDD) was added to the apical side of differentiated human intestinal epithelial Caco-2 cell monolayers that had been cultured on a semipermeable membrane. The basal medium was taken after an appropriate incubation time and added to the dioxin-responsive cells, the TCDD content then being analyzed by a luciferase assay. The amount of TCDD in the basal medium increased in a dose- and time-dependent manner, the results being sufficiently sensitive and reproducible. The inhibition of TCDD permeability to the Caco-2 cell monolayer by such food substances as chlorophyll, insoluble corn fiber and tea dregs were observed by this in vitro assessment system. The system will therefore be useful to identify food substances having a preventive effect on the intestinal absorption of dioxins.
Collapse
Affiliation(s)
- Yayoi Natsume
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, 113-8657, Tokyo, Bunkyo-ku, Japan,
| | | | | | | | | | | |
Collapse
|
25
|
Coactivators necessary for transcriptional output of the hypoxia inducible factor, HIF, are directly recruited by ARNT PAS-B. Proc Natl Acad Sci U S A 2011; 108:7739-44. [PMID: 21512126 DOI: 10.1073/pnas.1101357108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypoxia-inducible factor (HIF) is the key transcriptional effector of the hypoxia response in eukaryotes, coordinating the expression of genes involved in oxygen transport, glycolysis, and angiogenesis to promote adaptation to low oxygen levels. HIF is a basic helix-loop-helix (bHLH)-PAS (PER-ARNT-SIM) heterodimer composed of an oxygen-labile HIF-α subunit and a constitutively expressed aryl hydrocarbon receptor nuclear translocator (ARNT) subunit, which dimerize via basic helix-loop-helix and PAS domains, and recruit coactivators via HIF-α C-terminal transactivation domains. Here we demonstrate that the ARNT PAS-B domain provides an additional recruitment site by binding the coactivator transforming acidic coiled-coil 3 (TACC3) in a step necessary for transcriptional responses to hypoxia. Structural insights from NMR spectroscopy illustrate how this PAS domain simultaneously mediates interactions with HIF-α and TACC3. Finally, mutations on ARNT PAS-B modulate coactivator selectivity and target gene induction by HIF in vivo, demonstrating a bifunctional role for transcriptional regulation by PAS domains within bHLH-PAS transcription factors.
Collapse
|
26
|
Wang X, Hawkins BT, Miller DS. Aryl hydrocarbon receptor-mediated up-regulation of ATP-driven xenobiotic efflux transporters at the blood-brain barrier. FASEB J 2010; 25:644-52. [PMID: 21048045 DOI: 10.1096/fj.10-169227] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Many widespread and persistent organic pollutants, e.g., 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), activate the aryl hydrocarbon receptor (AhR), causing it to translocate to the cell nucleus, where it transactivates target genes. AhR's ability to target the blood-brain barrier is essentially unexplored. We show here that exposing isolated rat brain capillaries to 0.05-0.5 nM TCDD roughly doubled transport activity and protein expression of P-glycoprotein, an ATP-driven drug efflux pump and a critical determinant of drug entry into the CNS. These effects were abolished by actinomycin D or cycloheximide or by the AhR antagonists resveratrol and α-naphthoflavone. Brain capillaries from TCDD-dosed rats (1-5 μg/kg, i.p.) exhibited increased transport activity and protein expression of 3 xenobiotic efflux pumps, P-glycoprotein, multidrug resistance-associated protein 2, and breast cancer resistance polypeptide, as well as expression of Cyp1a1 and Cyp1b1, both AhR target genes. Consistent with increased P-glycoprotein expression in capillaries from TCDD-dosed rats, in situ brain perfusion indicated significantly reduced brain accumulation of verapamil, a P-glycoprotein substrate. These findings suggest a new paradigm for the field of environmental toxicology: toxicants acting through AhR to target xenobiotic efflux transporters at the blood-brain barrier and thus reduce brain accumulation of CNS-acting therapeutic drugs.
Collapse
Affiliation(s)
- Xueqian Wang
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
27
|
Shimazu S, Kawabata Y, Inayoshi A, Inui H, Ashida H, Ohkawa H. Recombinant human AhR-mediated GUS reporter gene assays for PCB congeners in transgenic tobacco plants in comparison with recombinant mouse and guinea pig AhRs. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2010; 45:741-9. [PMID: 20936562 DOI: 10.1080/03601234.2010.515164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Four expression plasmids for recombinant human aryl hydrocarbon receptor (hAhR) consisting of a ligand binding domain of hAhR, a DNA-binding domain of LexA and a transactivation domain of VP16 as well as β-glucuronidase (GUS) reporter genes were constructed. All the expression plasmids were transformed into tobacco plants. The selected transgenic tobacco plants were used to assay. PCB congeners showed GUS activity in a TEF-dependent manner. The selected transgenic tobacco plant XhD4V17 was compared with the transgenic tobacco plants XmD4V26 and XgD2V23 containing recombinant mouse (m) AhR-mediated GUS reporter gene expression cassette and recombinant guinea pig (g) AhR-mediated GUS reporter gene expression cassette for PCB congener-inducible GUS activity. The data revealed that the tobacco plant XgD2V23 was the most active in PCB congener-inducible GUS activity. In a 1:1 mixture of PCB126 and PCB80 a reduced PCB126-induced GUS activity was observed in plant XgD2V23, which could possibly be due to interaction between PCB126 and PCB80.
Collapse
Affiliation(s)
- Sayuri Shimazu
- Research Center for Green Science, Fukuyama University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Azkargorta M, Fullaondo A, Laresgoiti U, Aloria K, Infante A, Arizmendi JM, Zubiaga AM. Differential proteomics analysis reveals a role for E2F2 in the regulation of the Ahr pathway in T lymphocytes. Mol Cell Proteomics 2010; 9:2184-94. [PMID: 20573986 DOI: 10.1074/mcp.m110.001263] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
E2F transcription factors (E2F1-8) are best known for their role in cell proliferation, although it is clear that they regulate many other biological processes through the transcriptional modulation of distinct target genes. However, the specific set of genes regulated by each E2F remains to be characterized. To gain insight into the molecular pathways regulated by E2F2, we have analyzed the proteome of antigen receptor-activated T cells lacking E2F2. We report that loss of E2F2 results in a deregulated Aryl-hydrocarbon-receptor pathway. Proliferating E2F2(-/-) T lymphocytes expressed significantly higher levels of Aip, Ahr, and Arnt relative to wild-type (WT)(1) controls. The mechanism for increased levels of Aip appears straightforward, involving direct regulation of the Aip gene promoter by E2F2. Although the Ahr and Arnt promoters also bind E2F2, their regulation appears to be more complex. Nevertheless, exposure to the environmental xenobiotic 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a well-known exogenous ligand of the Ahr pathway, led to overexpression of the Ahr target gene Cyp1a1, and to increased sensitivity to TCDD-triggered apoptosis in E2F2(-/-) T cells compared with WT controls. These results suggest that E2F2 modulates cellular sensitivity to xenobiotic signals through the negative regulation of the Ahr pathway.
Collapse
Affiliation(s)
- Mikel Azkargorta
- Department of Biochemistry and Molecular Biology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Differential regulation of the dioxin-induced Cyp1a1 and Cyp1b1 genes in mouse hepatoma and fibroblast cell lines. Toxicol Lett 2010; 194:26-33. [PMID: 20116417 DOI: 10.1016/j.toxlet.2010.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 01/20/2010] [Accepted: 01/21/2010] [Indexed: 11/20/2022]
Abstract
The xenobiotic metabolizing enzymes Cyp1a1 and Cyp1b1 can be induced by the environmental contaminant 2,3,7,8-tetrachlorodibenzo-rho-dioxin (dioxin) via the aryl hydrocarbon receptor (AhR). These genes are differentially induced by dioxin in different mouse cell lines. In the mouse hepatoma cell line Hepa1c1c7 (Hepa-1), the Cyp1a1 gene is induced to very high levels by dioxin, but the levels of Cyp1b1 mRNA are extremely low and are not inducible by dioxin. The reverse is the case for the mouse embryonic fibroblast cell line C3H10T1/2, in which Cyp1b1 is induced to very high levels by dioxin, but the levels of Cyp1a1 mRNA are extremely low and not inducible by dioxin. However, dioxin treatment leads to the recruitment of AhR to the enhancer regions of both genes in both cell lines. Somatic cell hybrid clones generated between the two cell lines display high levels of induction of both genes in response to dioxin. Strong reactivation of the Cyp1a1 gene was also observed in C3H10T1/2 cell line after treatment with the DNA methyl transferase inhibitor, 5-aza-2'-deoxycytidine (5-AzadC) and the histone deacetylase inhibitor, trichostatin-A (TSA). However, only modest reactivation of Cyp1b1 was observed in Hepa-1 cells after 5-AzadC or TSA treatment. These data demonstrate that the presence or absence of binding of AhR to regulatory regions is not responsible for determining the differences in levels of induction of the two genes in these cell lines and indicate that DNA methylation plays a major role in silencing of Cyp1a1 gene expression in C3H10T1/2 cells, but appears to play only a minor role in silencing Cyp1b1 gene expression in Hepa-1 cells, which likely occurs principally because Hepa-1 cells lack a factor required for high levels of induction of this gene.
Collapse
|
30
|
Park YK, Park H. Prevention of CCAAT/enhancer-binding protein beta DNA binding by hypoxia during adipogenesis. J Biol Chem 2009; 285:3289-99. [PMID: 19940121 DOI: 10.1074/jbc.m109.059212] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Upon exposure to adipogenesis-inducing hormones, confluent 3T3-L1 preadipocytes express C/EBPbeta (CCAAT/enhancer binding protein beta). Early induced C/EBPbeta is inactive but, after a lag period, acquires its DNA-binding capability by sequential phosphorylation. During this period, preadipocytes pass the G(1)/S checkpoint synchronously. Thr(188) of C/EBPbeta is phosphorylated initially to prime the factor for subsequent phosphorylation at Ser(184) or Thr(179) by GSK3beta, which translocates into the nuclei during the G(1)/S transition. Many events take place during the G(1)/S transition, including reduction in p27(Kip1) protein levels, retinoblastoma (Rb) phosphorylation, GSK3beta nuclear translocation, and C/EBPbeta binding to target promoters. During hypoxia, hypoxia-inducible factor-1alpha (HIF-1alpha) is stabilized, thus maintaining expression of p27(Kip1), which inhibits Rb phosphorylation. Even under normoxic conditions, constitutive expression of p27(Kip1) blocks the nuclear translocation of GSK3beta and DNA binding capability of C/EBPbeta. Hypoxia also blocks nuclear translocation of GSK3beta and DNA binding capability of C/EBPbeta in HIF-1alpha knockdown 3T3-L1 cells that fail to induce p27(Kip1). Nonetheless, under hypoxia, these cells can block Rb phosphorylation and the G(1)/S transition. Altogether, these findings suggest that hypoxia prevents the nuclear translocation of GSK3beta and the DNA binding capability of C/EBPbeta by blocking the G(1)/S transition through HIF-1alpha-dependent induction of p27(Kip1) and an HIF-1alpha/p27-independent mechanism.
Collapse
Affiliation(s)
- Young-Kwon Park
- Department of Life Science, University of Seoul, Siripdae-gil 13, Dongdaemun-gu, Seoul 130-743, Republic of Korea
| | | |
Collapse
|
31
|
Wang L, Liang XF, Zhang WB, Mai KS, Huang Y, Shen D. Amnesic shellfish poisoning toxin stimulates the transcription of CYP1A possibly through AHR and ARNT in the liver of red sea bream Pagrus major. MARINE POLLUTION BULLETIN 2009; 58:1643-1648. [PMID: 19665739 DOI: 10.1016/j.marpolbul.2009.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 07/02/2009] [Accepted: 07/03/2009] [Indexed: 05/28/2023]
Abstract
To investigate the role of detoxification-related liver genes in amnesic shellfish poisoning toxin metabolism, red sea bream Pagrus major were exposed to domoic acid (DA, 2mugg(-1) wet weight) for 24h. Hepatic mRNA expression levels of AHR, ARNT, CYP1 and GSTs were determined by semi-quantitative RT-PCR. The cytosolic factors aryl hydrocarbon receptor (AHR) and aryl hydrocarbon receptor nuclear translocator (ARNT) mRNA levels of DA exposure group were substantially enhanced by 113.3% and 90.9%, respectively. Consistent with this result, the phase I xenobiotic metabolizing enzyme (XME) cytochrome P-450 1A (CYP1A) was significantly induced. In contrast, the transcriptions of three major phase II XME glutathione S-transferases as well as heat shock protein 70 were not significantly affected by DA exposure. These results suggest a possible role of CYP1A after DA exposure in the toxin metabolism of marine fish, possibly through the AHR/ARNT signaling pathway.
Collapse
Affiliation(s)
- Lin Wang
- College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | |
Collapse
|
32
|
Monostory K, Pascussi JM, Kóbori L, Dvorak Z. Hormonal regulation of CYP1A expression. Drug Metab Rev 2009; 41:547-72. [DOI: 10.1080/03602530903112284] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Partch CL, Card PB, Amezcua CA, Gardner KH. Molecular basis of coiled coil coactivator recruitment by the aryl hydrocarbon receptor nuclear translocator (ARNT). J Biol Chem 2009; 284:15184-92. [PMID: 19324882 DOI: 10.1074/jbc.m808479200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) serves as the obligate heterodimeric partner for bHLH-PAS proteins involved in sensing and coordinating transcriptional responses to xenobiotics, hypoxia, and developmental pathways. Although its C-terminal transactivation domain is dispensable for transcriptional activation in vivo, ARNT has recently been shown to use its N-terminal bHLH and/or PAS domains to interact with several transcriptional coactivators that are required for transcriptional initiation after xenobiotic or hypoxic cues. Here we show that ARNT uses a single PAS domain to interact with two coiled coil coactivators, TRIP230 and CoCoA. Both coactivators interact with the same interface on the ARNT PAS-B domain, located on the opposite side of the domain used to associate with the analogous PAS domain on its heterodimeric bHLH-PAS partner HIF-2alpha. Using NMR and biochemical studies, we identified the ARNT-interacting motif of one coactivator, TRIP230 as an LXXLL-like nuclear receptor box. Mutation of this motif and proximal sequences disrupts the interaction with ARNT PAS-B. Identification of this ARNT-coactivator interface illustrates how ARNT PAS-B is used to form critical interactions with both bHLH-PAS partners and coactivators that are required for transcriptional responses.
Collapse
Affiliation(s)
- Carrie L Partch
- Department of Biochemistry, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
34
|
Kodama S, Okada K, Akimoto K, Inui H, Ohkawa H. Recombinant aryl hydrocarbon receptors for bioassay of aryl hydrocarbon receptor ligands in transgenic tobacco plants. PLANT BIOTECHNOLOGY JOURNAL 2009; 7:119-28. [PMID: 19055610 DOI: 10.1111/j.1467-7652.2008.00378.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Dioxin residues widely contaminate soil and agricultural products at low concentrations and may accumulate in organisms at the top of food chains owing to their physicochemical properties. In this study, we have developed novel, dioxin-inducible, reporter gene expression systems regulated by recombinant aryl hydrocarbon receptors (AhRs). The recombinant AhRs, referred to as XDVs, consist of the DNA-binding domain of the bacterial repressor protein LexA, a 90-kDa heat shock protein- and ligand-binding regulatory domain from mouse AhR, and the transactivation domain of herpes simplex virus regulatory protein VP16. Transgenic tobacco plants carrying XDVs absorb various AhR ligands, including 3-methylcholanthrene, beta-naphthoflavone and indigo from solid medium and vermiculite, and show dose- and time-dependent expression of the beta-glucuronidase reporter gene. The results clearly suggest that XDVs are functional transcription factors that respond to AhR ligands, and that the XDV-mediated reporter gene expression system is applicable to bioassays for dioxin residues in the environment.
Collapse
Affiliation(s)
- Susumu Kodama
- Graduate School of Science and Technology, Kobe University, Rokkodai-cho 1-1, Nada-ku, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
35
|
Degner SC, Papoutsis AJ, Selmin O, Romagnolo DF. Targeting of aryl hydrocarbon receptor-mediated activation of cyclooxygenase-2 expression by the indole-3-carbinol metabolite 3,3'-diindolylmethane in breast cancer cells. J Nutr 2009; 139:26-32. [PMID: 19056653 PMCID: PMC2646210 DOI: 10.3945/jn.108.099259] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ligands of the aryl hydrocarbon receptor (AhR) include the environmental xenobiotic 2,3,7,8 tetrachlorodibenzo(p)dioxin (TCDD), polycyclic aryl hydrocarbons, and the dietary compounds 3, 3'-diindolylmethane (DIM), a condensation product of indol-3-carbinol found in Brassica vegetables, and the phytoalexin resveratrol (RES). The AhR and its cofactors regulate the expression of target genes at pentameric (GCGTG) xenobiotic responsive elements (XRE). Because the activation of cyclooxygenase-2 (COX-2) expression by AhR ligands may contribute to inflammation and tumorigenesis, we investigated the epigenetic regulation of the COX-2 gene by TCDD and the reversal effects of DIM in MCF-7 breast cancer cells. Results of DNA binding and chromatin immunoprecipitation (ChIP) studies documented that the treatment with TCDD induced the association of the AhR to XRE harbored in the COX-2 promoter and control CYP1A1 promoter oligonucleotides. The TCDD-induced binding of the AhR was reduced by small-interfering RNA for the AhR or the cotreatment with synthetic (3-methoxy-4-naphthoflavone) or dietary AhR antagonists (DIM, RES). In time course ChIP studies, TCDD induced the rapid (15 min) occupancy by the AhR, the histone acetyl transferase p300, and acetylated histone H4 (AcH4) at the COX-2 promoter. Conversely, the cotreatment of MCF-7 cells with DIM (10 micromol/L) abrogated the TCDD-induced recruitment of the AhR and AcH4 to the COX-2 promoter and the induction of COX-2 mRNA and protein levels. Taken together, these data suggest that naturally occurring modulators of the AhR such as DIM may be effective agents for dietary strategies against epigenetic activation of COX-2 expression by AhR agonists.
Collapse
Affiliation(s)
- Stephanie C. Degner
- Departments of Nutritional Sciences and Veterinary Science and Microbiology, University of Arizona, Tucson, AZ 85721
| | - Andreas J. Papoutsis
- Departments of Nutritional Sciences and Veterinary Science and Microbiology, University of Arizona, Tucson, AZ 85721
| | - Ornella Selmin
- Departments of Nutritional Sciences and Veterinary Science and Microbiology, University of Arizona, Tucson, AZ 85721
| | - Donato F. Romagnolo
- Departments of Nutritional Sciences and Veterinary Science and Microbiology, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
36
|
Choi SM, Oh H, Park H. Microarray analyses of hypoxia-regulated genes in an aryl hydrocarbon receptor nuclear translocator (Arnt)-dependent manner. FEBS J 2008; 275:5618-34. [PMID: 18959748 DOI: 10.1111/j.1742-4658.2008.06686.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We investigated hypoxia-inducible factor (HIF)-dependent changes in the expression of 5592 genes in response to hypoxia (0.1% O(2), 16 h) by performing cDNA microarray analyses of mouse hepa1c1c7 and BpRc1 cells. BpRc1 cells are a hepa1c1c7 variant defective in HIF-beta/aryl hydrocarbon receptor nuclear translocator (Arnt), and are therefore unable to induce HIF target genes in response to hypoxia. By comparing hepa1c1c7 cells with BpRc1 cells, we were able to investigate hypoxia-regulated gene expression as well as the role played by HIF in regulating the hypoxic-dependent response of gene expression. This study identified 50 hypoxia-induced genes and 36 hypoxia-repressed genes. Quantitative PCR analysis of nine genes confirmed our ability to accurately analyze changes in hypoxia-induced gene expression by microarray analysis. By comparing quantitative PCR analyses of these nine genes in BpRc1 and hepa1c1c7 cells, we determined that eight of the nine hypoxia-induced genes are Arnt dependent. Additional quantitative PCR analyses of eight hypoxia-repressed genes confirmed, with a 50% probability, that microarray analysis was able to predict hypoxia-repressed gene expression. Only two of the four confirmed genes were found to be repressed in an Arnt-dependent manner. Collectively, six of these 13 genes (46.2% probability) showed a pattern of expression consistent with the microarray analysis with regard to Arnt dependence. Finally, we investigated the HIF-1alpha dependence of these 13 genes by quantitative PCR analysis in HIF-1alpha knockdown 3T3-L1 cells. These analyses identified novel hypoxia-regulated genes and confirmed the role of Arnt and HIF-1alpha in regulating their expression. These results identify additional HIF target genes and provide a more complete understanding of hypoxia signaling.
Collapse
Affiliation(s)
- Su Mi Choi
- Department of Life Science, University of Seoul, South Korea
| | | | | |
Collapse
|
37
|
Mukai R, Fukuda I, Nishiumi S, Natsume M, Osakabe N, Yoshida KI, Ashida H. Cacao polyphenol extract suppresses transformation of an aryl hydrocarbon receptor in C57BL/6 mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2008; 56:10399-10405. [PMID: 18928297 DOI: 10.1021/jf802453t] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Dioxins enter the body through the diet and cause various toxicological effects through transformation of an aryl hydrocarbon receptor (AhR). Plant extracts and phytochemicals including flavonoids are reported to suppress this transformation. This paper investigates the suppression by a cacao polyphenol extract (CPE) of AhR transformation in vivo. The CPE was administered orally to C57BL/6 mice at 100 mg/kg of body weight, followed 1 h later by 3-methylcholanthrene (MC), an AhR agonist, injected intraperitoneally at 10 mg/kg of body weight. CPE suppressed the MC-induced transformation to the control level by inhibiting the formation of a heterodimer between AhR and an aryl hydrocarbon receptor nuclear translocator in the liver at 3 h postadministration. It also suppressed MC-induced cytochrome P4501A1 expression and NAD(P)H:quinone-oxidoreductase activity, whereas it increased glutathione S-transferase activity at 25 h. CPE constituents and their metabolites might contribute, at least in part, to the suppression of AhR transformation. The results indicate that the intake of CPE suppressed the toxicological effects of dioxins in the body.
Collapse
Affiliation(s)
- Rie Mukai
- Department of Agrobioscienec, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Choi SM, Cho HJ, Cho H, Kim KH, Kim JB, Park H. Stra13/DEC1 and DEC2 inhibit sterol regulatory element binding protein-1c in a hypoxia-inducible factor-dependent mechanism. Nucleic Acids Res 2008; 36:6372-85. [PMID: 18838394 PMCID: PMC2582599 DOI: 10.1093/nar/gkn620] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Sterol regulatory element binding protein-1c (SREBP-1c) is a basic helix–loop–helix (bHLH) homodimeric transactivator, which induces itself and several lipogenic enzymes, notably fatty acid synthase (FAS). We demonstrated that hypoxia-inducible factor (HIF) represses the SREBP-1c gene by inducing Stimulated with retinoic acid (Stra)13/Differentiated embryo chondrocyte 1(DEC1) and its isoform, DEC2. Stra13/DEC1 and DEC2 are bHLH homodimeric transcription repressors. We found that both Stra13 and DEC2 inhibit SREBP-1c-induced transcription by competing with SREBP-1c for binding to the E-box in the SREBP-1c promoter and/or by interacting with SREBP-1c protein. DEC2 is instantly and temporarily induced in acute hypoxia, while Stra13 is induced in prolonged hypoxia. This expression profile reflects the finding that Stra13 represses DEC2, thus maintains low level of DEC2 in prolonged hypoxia. DEC2-siRNA restores the hypoxic repression but Stra13-siRNA fails to do so, suggesting that DEC2 is the major initiator of hypoxic repression of SREBP-1c, whereas Stra13 substitutes for DEC2 in prolonged hypoxia. Our findings imply that Stra13 and DEC2 are the mediators to repress SREBP-1c gene in response to hypoxia. By doing so, HIF and its targets, Stra13 and DEC2 reduce the ATP consuming anabolic lipogenesis prior to the actual decrease of ATP acting as a feed-forward mechanism.
Collapse
Affiliation(s)
- Su Mi Choi
- Department of Life Science, University of Seoul, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Morales JL, Krzeminski J, Amin S, Perdew GH. Characterization of the antiallergic drugs 3-[2-(2-phenylethyl) benzoimidazole-4-yl]-3-hydroxypropanoic acid and ethyl 3-hydroxy-3-[2-(2-phenylethyl)benzoimidazol-4-yl]propanoate as full aryl hydrocarbon receptor agonists. Chem Res Toxicol 2008; 21:472-82. [PMID: 18179178 PMCID: PMC2599926 DOI: 10.1021/tx700350v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates most of the toxic effects of numerous chlorinated (e.g., TCDD) and nonchlorinated polycyclic aromatic compounds (e.g., benzo[ a]pyrene). Studies in AhR null mice suggested that this receptor may also play a role in the modulation of immune responses. Recently, two drugs, namely, M50354 and M50367 (ethyl ester derivative of M50354), were described as AhR ligands with high efficacy toward reducing atopic allergic symptoms in an AhR-dependent manner by skewing T helper cell differentiation toward a T H1 phenotype [Negishi et al. (2005) J. Immunol. 175 (11), 7348-7356]. Surprisingly, these drugs were shown to have minimal activity toward inducing classical dioxin responsive element-driven AhR-mediated CYP1A1 transcription. We synthesized and reevaluated the ability of these drugs to regulate AhR activity. In contrast to previously published data, both M50354 and M50367 were found to be potent inducers of several AhR target genes, namely, CYP1A1, CYP1B1, and UGT1A2. M50367 was a more effective agonist than M50354, perhaps accounting for its higher bioavailability in vivo. However, M50354 was capable of displacing an AhR-specific radioligand more effectively than M50367. This is consistent with M50354 being the active metabolite of M50367. In conclusion, two selective inhibitors of TH2 differentiation are full AhR agonists.
Collapse
Affiliation(s)
| | | | | | - Gary H. Perdew
- To whom correspondence should be addressed. Tel: 814-865-0400. Fax: 814-863-1696. E-mail:
| |
Collapse
|
40
|
Levitsky VG, Ignatieva EV, Ananko EA, Turnaev II, Merkulova TI, Kolchanov NA, Hodgman TC. Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions. BMC Bioinformatics 2007; 8:481. [PMID: 18093302 PMCID: PMC2265442 DOI: 10.1186/1471-2105-8-481] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Accepted: 12/19/2007] [Indexed: 12/22/2022] Open
Abstract
Background Reliable transcription factor binding site (TFBS) prediction methods are essential for computer annotation of large amount of genome sequence data. However, current methods to predict TFBSs are hampered by the high false-positive rates that occur when only sequence conservation at the core binding-sites is considered. Results To improve this situation, we have quantified the performance of several Position Weight Matrix (PWM) algorithms, using exhaustive approaches to find their optimal length and position. We applied these approaches to bio-medically important TFBSs involved in the regulation of cell growth and proliferation as well as in inflammatory, immune, and antiviral responses (NF-κB, ISGF3, IRF1, STAT1), obesity and lipid metabolism (PPAR, SREBP, HNF4), regulation of the steroidogenic (SF-1) and cell cycle (E2F) genes expression. We have also gained extra specificity using a method, entitled SiteGA, which takes into account structural interactions within TFBS core and flanking regions, using a genetic algorithm (GA) with a discriminant function of locally positioned dinucleotide (LPD) frequencies. To ensure a higher confidence in our approach, we applied resampling-jackknife and bootstrap tests for the comparison, it appears that, optimized PWM and SiteGA have shown similar recognition performances. Then we applied SiteGA and optimized PWMs (both separately and together) to sequences in the Eukaryotic Promoter Database (EPD). The resulting SiteGA recognition models can now be used to search sequences for BSs using the web tool, SiteGA. Analysis of dependencies between close and distant LPDs revealed by SiteGA models has shown that the most significant correlations are between close LPDs, and are generally located in the core (footprint) region. A greater number of less significant correlations are mainly between distant LPDs, which spanned both core and flanking regions. When SiteGA and optimized PWM models were applied together, this substantially reduced false positives at least at higher stringencies. Conclusion Based on this analysis, SiteGA adds substantial specificity even to optimized PWMs and may be considered for large-scale genome analysis. It adds to the range of techniques available for TFBS prediction, and EPD analysis has led to a list of genes which appear to be regulated by the above TFs.
Collapse
Affiliation(s)
- Victor G Levitsky
- Institute of Cytology and Genetics SB RAS, Novosibirsk, 630090, Russia.
| | | | | | | | | | | | | |
Collapse
|
41
|
Kodama S, Okada K, Inui H, Ohkawa H. Aryl hydrocarbon receptor (AhR)-mediated reporter gene expression systems in transgenic tobacco plants. PLANTA 2007; 227:37-45. [PMID: 17879099 DOI: 10.1007/s00425-007-0592-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/16/2007] [Indexed: 05/17/2023]
Abstract
In mammals, the aryl hydrocarbon receptor (AhR) mediates expression of certain genes, including CYP1A1, in response to exposure to dioxins and related compounds. We have constructed a mouse AhR-mediated gene expression systems for a beta-glucuronidase (GUS) reporter gene consisting of an AhR, an AhR nuclear translocator (Arnt), and a xenobiotic response element (XRE)-driven promoter in transgenic tobacco plants. On treatment with the AhR ligands 3-methylcholanthrene (MC), beta-naphthoflavone (betaNF), and indigo, the transgenic tobacco plants exhibited enhanced GUS activity, presumably by inducible expression of the reporter gene. The recombinant AhR (AhRV), with the activation domain replaced by that of the Herpes simplex virus protein VP16, induced GUS activity much more than the wild-type AhR in the transgenic tobacco plants. Plants carrying AhRV expressed the GUS reporter gene in a dose- and time-dependent manner when treated with MC; GUS activity was detected at 5 nM MC on solid medium and at 12 h after soaking in 25 microM MC. Histochemical GUS staining showed that this system was active mainly in leaf and stem. These results suggest that the AhR-mediated reporter gene expression system has potential for the bioassay of dioxins in the environment and as a novel gene expression system in plants.
Collapse
Affiliation(s)
- Susumu Kodama
- Graduate School of Science and Technology, Kobe University, Kobe, Hyogo, Japan
| | | | | | | |
Collapse
|
42
|
Degner SC, Kemp MQ, Hockings JK, Romagnolo DF. Cyclooxygenase-2 Promoter Activation by the Aromatic Hydrocarbon Receptor in Breast Cancer MCF-7 Cells: Repressive Effects of Conjugated Linoleic Acid. Nutr Cancer 2007; 59:248-57. [DOI: 10.1080/01635580701485585] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
43
|
Mortensen AS, Braathen M, Sandvik M, Arukwe A. Effects of hydroxy-polychlorinated biphenyl (OH-PCB) congeners on the xenobiotic biotransformation gene expression patterns in primary culture of Atlantic salmon (Salmo salar) hepatocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 68:351-60. [PMID: 17207528 DOI: 10.1016/j.ecoenv.2006.11.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2006] [Revised: 10/24/2006] [Accepted: 11/26/2006] [Indexed: 05/13/2023]
Abstract
Hydroxylated metabolites of PCBs [OH-PCBs] represent new health and environmental concern because they have been shown to have agonist or antagonist interactions with hormone receptors (HRs) or hormone-receptor mediated responses. The present study was designed to investigate the estrogenic potency based on anti-AhR signalling effect of three 4-OH substituted PCB congeners (#107, #146 and #187), one 3-OH substituted congener (#138), and the pharmaceutical synthetic estrogen, ethynylestradiol (EE2) in fish in vitro system using primary culture of Atlantic salmon hepatocytes. The effects were studied by quantifying changes in transcripts with gene-sequence primer pairs for a suite of gene responses (AhRalpha, ARNT, CYP1A1, CYP3A, UGT and GST) belonging to the xenobiotic biotransformation system. Our data show that OH-PCB congeners and EE2, decreased AhRalpha and ARNT transcript levels, and CYP1A1, UGT and GST gene expressions, together with CYP3A gene expression. The decreased expression of transcripts for xenobiotic biotransformation system is related to the concentration of individual OH-PCB congener and these responses are typical of reported estrogenic and estrogen-like effects on the CYP system. Modulation of biotransformation pathways by OH-PCBs may alter xenobiotic metabolism leading to the production of toxic reactive molecules, altering pharmacokinetics and diminishing the clearance rate of individual chemicals from the organism.
Collapse
Affiliation(s)
- Anne S Mortensen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | | | | | | |
Collapse
|
44
|
Schnekenburger M, Peng L, Puga A. HDAC1 bound to the Cyp1a1 promoter blocks histone acetylation associated with Ah receptor-mediated trans-activation. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1769:569-78. [PMID: 17707923 PMCID: PMC2083643 DOI: 10.1016/j.bbaexp.2007.07.002] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/12/2007] [Accepted: 07/12/2007] [Indexed: 11/24/2022]
Abstract
Metabolic bioactivation of polycyclic aromatic hydrocarbons, such as the environmental procarcinogen benzo[a]pyrene, is catalyzed by a cytochrome P450 monooxygenase encoded by the substrate-inducible Cyp1a1 gene. Cyp1a1 induction requires trans-activation by the heterodimeric transcriptional complex formed by the liganded Ah receptor (AHR) and its partner, ARNT. Previously, we showed that constitutively bound HDAC1 dissociates from Cyp1a1 promoter chromatin after ligand-mediated induction, concomitantly with the recruitment of AHR/ARNT complexes and p300. Here, we investigated the hypothesis that HDAC1 binding maintains the Cyp1a1 gene in a silenced state in uninduced cells. We find that Cyp1a1 induction by the AHR/ARNT is associated with modification of specific chromatin marks, including hyperacetylation of histone H3K14 and H4K16, trimethylation of histone H3K4, and phosphorylation of H3S10. HDAC1 and DNMT1 form complexes on the Cyp1a1 promoter of uninduced cells but HDAC1 inhibition alone is not sufficient to induce Cyp1a1 expression, although it allows for the hyperacetylation of H3K14 and H4K16 to levels similar to those found in B[a]P-induced cells. These results show that by blocking the modification of histone marks, HDAC1 plays a central role in Cyp1a1 expression and that its removal is a necessary but not sufficient condition for Cyp1a1 induction, underscoring the requirement for a concerted series of chromatin-remodeling events to complete the initial steps of gene trans-activation by the Ah receptor.
Collapse
Affiliation(s)
- Michael Schnekenburger
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, Ohio, 45267-0056
| | - Li Peng
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, Ohio, 45267-0056
| | - Alvaro Puga
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, Ohio, 45267-0056
| |
Collapse
|
45
|
Schnekenburger M, Talaska G, Puga A. Chromium cross-links histone deacetylase 1-DNA methyltransferase 1 complexes to chromatin, inhibiting histone-remodeling marks critical for transcriptional activation. Mol Cell Biol 2007; 27:7089-101. [PMID: 17682057 PMCID: PMC2168892 DOI: 10.1128/mcb.00838-07] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcriptional regulation of gene expression requires posttranslational modification of histone proteins, which, in concert with chromatin-remodeling factors, modulate chromatin structure. Exposure to environmental agents may interfere with specific histone modifications and derail normal patterns of gene expression. To test this hypothesis, we coexposed cells to binary mixtures of benzo[a]pyrene (B[a]P), an environmental procarcinogen that activates Cyp1a1 transcriptional responses mediated by the aryl hydrocarbon receptor (AHR), and chromium, a carcinogenic heavy metal that represses B[a]P-inducible AHR-mediated gene expression. We show that chromium cross-links histone deacetylase 1-DNA methyltransferase 1 (HDAC1-DNMT1) complexes to Cyp1a1 promoter chromatin and inhibits histone marks induced by AHR-mediated gene transactivation, including phosphorylation of histone H3 Ser-10, trimethylation of H3 Lys-4, and various acetylation marks in histones H3 and H4. These changes inhibit RNA polymerase II recruitment without affecting the kinetics of AHR DNA binding. HDAC1 and DNMT1 inhibitors or depletion of HDAC1 or DNMT1 with siRNAs blocks chromium-induced transcriptional repression by decreasing the interaction of these proteins with the Cyp1a1 promoter and allowing histone acetylation to proceed. By inhibiting Cyp1a1 expression, chromium stimulates the formation of B[a]P DNA adducts. Epigenetic modification of gene expression patterns may be a key element of the developmental and carcinogenic outcomes of exposure to chromium and to other environmental agents.
Collapse
Affiliation(s)
- Michael Schnekenburger
- Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267-0056, USA
| | | | | |
Collapse
|
46
|
Mortensen AS, Arukwe A. Interactions between estrogen- and Ah-receptor signalling pathways in primary culture of salmon hepatocytes exposed to nonylphenol and 3,3',4,4'-tetrachlorobiphenyl (congener 77). COMPARATIVE HEPATOLOGY 2007; 6:2. [PMID: 17433103 PMCID: PMC1855068 DOI: 10.1186/1476-5926-6-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2006] [Accepted: 04/13/2007] [Indexed: 12/16/2022]
Abstract
BACKGROUND The estrogenic and xenobiotic biotransformation gene expressions are receptor-mediated processes that are ligand structure-dependent interactions with estrogen-receptor (ER) and aryl hydrocarbon receptor (AhR), probably involving all subtypes and other co-factors. The anti-estrogenic activities of AhR agonists have been reported. In teleost fish, exposure to AhR agonists has been associated with reduced Vtg synthesis or impaired gonadal development in both in vivo- and in vitro studies. Inhibitory AhR and ER cross-talk have also been demonstrated in breast cancer cells, rodent uterus and mammary tumors. Previous studies have shown that AhR-agonists potentiate xenoestrogen-induced responses in fish in vivo system. Recently, several studies have shown that AhR-agonists directly activate ER alpha and induce estrogenic responses in mammalian in vitro systems. In this study, two separate experiments were performed to study the molecular interactions between ER and AhR signalling pathways using different concentration of PCB-77 (an AhR-agonist) and time factor, respectively. Firstly, primary Atlantic salmon hepatocytes were exposed to nonylphenol (NP: 5 microM--an ER agonist) singly or in combination with 0.001, 0.01 and 1 microM PCB-77 and sampled at 48 h post-exposure. Secondly, hepatocytes were exposed to NP (5 microM) or PCB-77 (1 microM) singly or in combination for 12, 24, 48 and 72 h. Samples were analyzed using a validated real-time PCR for genes in the ER pathway or known to be NP-responsive and AhR pathway or known to be PCB-77 responsive. RESULTS Our data showed a reciprocal inhibitory interaction between NP and PCB-77. PCB-77 produced anti-NP-mediated effect by decreasing the mRNA expression of ER-responsive genes. NP produced anti-AhR mediated effect or as inhibitor of AhR alpha, AhRR, ARNT, CYP1A1 and UDPGT expression. A novel aspect of the present study is that low (0.001 microM) and medium (0.01 microM) PCB-77 concentrations increased ER alpha mRNA expression above control and NP exposed levels, and at 12 h post-exposure, PCB-77 exposure alone produced significant elevation of ER alpha, ER beta and Zr-protein expressions above control levels. CONCLUSION The findings in the present study demonstrate a complex mode of ER-AhR interactions that were dependent on time of exposure and concentration of individual chemicals (NP and PCB-77). This complex mode of interaction is further supported by the effect of PCB-77 on ER alpha and ER beta (shown as increase in transcription) with no concurrent activation of Vtg (but Zr-protein) response. These complex interactions between two different classes of ligand-activated receptors provide novel mechanistic insights on signalling pathways. Therefore, the degree of simultaneous interactions between the ER and AhR gene transcripts demonstrated in this study supports the concept of cross-talk between these signalling pathways.
Collapse
Affiliation(s)
- Anne S Mortensen
- Department of Biology, Norwegian University of science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| |
Collapse
|
47
|
Mortensen AS, Arukwe A. Targeted salmon gene array (SalArray): a toxicogenomic tool for gene expression profiling of interactions between estrogen and aryl hydrocarbon receptor signalling pathways. Chem Res Toxicol 2007; 20:474-88. [PMID: 17291011 DOI: 10.1021/tx6002672] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In toxicogenomics, gene arrays are valuable tools in the identification of differentially expressed genes and potentially identify new gene biomarkers altered by exposure of organisms to xenobiotic compounds, either singly or as complex mixtures. In this study, we investigated the mechanisms of interaction between estrogen receptor (ER) and aryl hydrocarbon receptor (Ah receptor or AhR) signalling pathways using toxicogenomic approaches. First, we generated cDNA libraries using suppressive subtractive hybridization (SSH) of clones containing differentially expressed genes from Atlantic salmon (Salmo salar) separately exposed to ER and AhR agonists. Second, a targeted gene array (SalArray) was developed based on true-positive differentially expressed genes. In the experimental setup, primary cultures of salmon hepatocytes isolated by a two-step perfusion method were exposed for 48 h to nonylphenol (NP; 5 microM) and 3,3',4,4'-tetrachlorobiphenyl (TCB; 1 microM), singly and combined, in the absence or presence of antagonists. Using a targeted SalArray, we demonstrate that exposure of salmon to NP singly or in combination with TCB produced differential gene expression patterns in salmon liver. Array analysis showed that exposure of hepatocytes to NP mainly altered genes involved in the estrogenic pathway, including genes for steroid hormone synthesis and metabolism. The anti-estrogenic properties of TCB were demonstrated in the array analysis as genes induced by NP were decreased by TCB. To study the effects of TCB on ER-mediated transcription, hepatocytes were treated for 48 h with tamoxifen (Tam; 1 microM) and ICI182,780 (ICI; 1 microM). The effect of AhR on ER-mediated transcription was investigated by blocking AhR activity with alpha-naphthoflavone (ANF; 0.1 and 1 microM). Quantitative real-time polymerase chain reactions confirmed the changes in expression of ERalpha, ERbeta, vitellogenin (Vtg), zona radiata protein (Zr-protein), and vigilin for the ER pathway and AhRalpha, AhRbeta, AhRR, ARNT, CYP1A1, UDPGT, and a 20S proteasome beta-subunit for the AhR pathway. We found that exposure to NP and TCB both singly and in combination produced gene expression patterns that were negatively influenced by individual receptor antagonists. TCB caused decreased ER-mediated gene expression, and NP caused decreased AhR-mediated responses. Inhibition of AhR with ANF did not reverse the effect of TCB on ER-mediated transcription suggesting that AhRs do not have a direct role on TCB-mediated decreases of ER-mediated responses. In contrast, the inhibition of ER with Tam and ICI reversed the transcription of AhR-mediated responses (except AhRR). Taken together, the findings in the present study demonstrate a complex mode of ER-AhR interaction, possibly involving competition for common cofactors. This complex mode of interaction is further supported by the observation that the presence of ER antagonists potentiated the transcription of AhR isoforms and their mediated responses when TCB was given alone (more so for AhRbeta). Thus, the inhibitory ER-AhR interactions can be used to further investigate specific genes found to be affected in our targeted SalArray chip that are important for the reproductive effects of endocrine disruptors.
Collapse
Affiliation(s)
- Anne Skjetne Mortensen
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7491 Trondheim, Norway
| | | |
Collapse
|
48
|
Jensen KA, Luu TC, Chan WK. A truncated Ah receptor blocks the hypoxia and estrogen receptor signaling pathways: a viable approach for breast cancer treatment. Mol Pharm 2006; 3:695-703. [PMID: 17140257 PMCID: PMC2761706 DOI: 10.1021/mp0600438] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor which requires heterodimerization with the Ah receptor nuclear translocator (Arnt) for function. Arnt is also a dimerization partner of the hypoxia inducible factor 1alpha (HIF-1alpha) for the hypoxia signaling. Additionally, Arnt is found to be a potent coactivator of the estrogen receptor (ER) signaling. Thus we examined whether the presence of an increased amount of AhR may suppress both the HIF-1alpha and ER signaling pathways by sequestering Arnt. We tested our hypothesis using a human AhR construct C Delta553 which is capable of heterodimerizing with Arnt in the absence of a ligand. Transient transfection studies using a corresponding luciferase reporter plasmid in MCF-7 cells showed that C Delta553 effectively suppressed the AhR, HIF-1alpha, and ER signaling pathways. Reverse transcription/real-time QPCR data showed that C Delta553 blocked the up-regulation of the target genes controlled by AhR (CYP1A1), HIF-1alpha (VEGF, aldolase C, and LDH-A), and ER (GREB1, pS2, and c-myc) in MCF-7 cells. Since both HIF-1alpha and ER are highly active in the ER-positive breast cancer, C Delta553 has the potential to be developed as a protein drug to treat breast cancer by blocking these two signaling pathways.
Collapse
Affiliation(s)
- Kyle A. Jensen
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211
| | - Tony C. Luu
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211
| | - William K. Chan
- Department of Pharmaceutics and Medicinal Chemistry, Thomas J. Long School of Pharmacy and Health Sciences, University of the Pacific, Stockton, CA 95211
| |
Collapse
|
49
|
Sekine H, Mimura J, Yamamoto M, Fujii-Kuriyama Y. Unique and overlapping transcriptional roles of arylhydrocarbon receptor nuclear translocator (Arnt) and Arnt2 in xenobiotic and hypoxic responses. J Biol Chem 2006; 281:37507-16. [PMID: 17023418 DOI: 10.1074/jbc.m606910200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Arnt and the homologous Arnt2 share a high degree of sequence similarity and are believed to function as obligate common partners for a number of basic helix-loop-helix (bHLH)-PAS transcription factors including arylhydrocarbon receptor (AhR) and HIFalpha. Genetic disruption of both Arnt and Arnt2 demonstrated both unique and overlapping functions in response to environmental stimuli and during mouse development. Either stably or transiently expressed Arnt/Arnt2 wild type and various mutants or chimeric constructs in Hepa1-c4 cells exhibit similar levels of hypoxic response element-driven reporter gene expression and the induction of endogenous Glut-1 through binding with HIFalpha in response to hypoxia. In contrast, we observed clear functional differences in the ability of Arnt and Arnt2 to induce xenobiotic response element-driven reporter and endogenous CYP1A1 gene expression. In contrast with Arnt, Arnt2 was practically incapable of interacting with ligand-activated AhR to induce the expression of target genes for xenobiotic-metabolizing enzymes in response to xenobiotics. The differential binding of AhR by Arnt and Arnt2 can be ascribed to a single His/Pro amino acid difference in the PASB region of Arnt and Arnt2, suggesting that the PASB/PASB interaction between bHLH-PAS transcription factors plays a selective role for their specific partner molecule.
Collapse
Affiliation(s)
- Hiroki Sekine
- Center for Tsukuba Advanced Research Alliance and Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba 305-8577, Japan
| | | | | | | |
Collapse
|
50
|
Hockings JK, Thorne PA, Kemp MQ, Morgan SS, Selmin O, Romagnolo DF. The ligand status of the aromatic hydrocarbon receptor modulates transcriptional activation of BRCA-1 promoter by estrogen. Cancer Res 2006; 66:2224-32. [PMID: 16489025 DOI: 10.1158/0008-5472.can-05-1619] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In sporadic breast cancers, BRCA-1 expression is down-regulated in the absence of mutations in the BRCA-1 gene. This suggests that disruption of BRCA-1 expression may contribute to the onset of mammary tumors. Environmental contaminants found in industrial pollution, tobacco smoke, and cooked foods include benzo(a)pyrene [B(a)P] and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), which have been shown to act as endocrine disruptors and tumor promoters. In previous studies, we documented that estrogen (E2) induced BRCA-1 transcription through the recruitment of an activator protein-1/estrogen receptor-alpha (ER alpha) complex to the proximal BRCA-1 promoter. Here, we report that activation of BRCA-1 transcription by E2 requires occupancy of the BRCA-1 promoter by the unliganded aromatic hydrocarbon receptor (AhR). The stimulatory effects of E2 on BRCA-1 transcription are counteracted by (a) cotreatment with the AhR antagonist 3'-methoxy-4'-nitroflavone; (b) transient expression in ER alpha-negative HeLa cells of ER alpha lacking the protein-binding domain for the AhR; and (c) mutation of two consensus xenobiotic-responsive elements (XRE, 5'-GCGTG-3') located upstream of the ER alpha-binding region. These results suggest that the physical interaction between the unliganded AhR and the liganded ER alpha plays a positive role in E2-dependent activation of BRCA-1 transcription. Conversely, we show that the AhR ligands B(a)P and TCDD abrogate E2-induced BRCA-1 promoter activity. The repressive effects of TCDD are paralleled by increased recruitment of the liganded AhR and HDAC1, reduced occupancy by p300, SRC-1, and diminished acetylation of H4 at the BRCA-1 promoter region flanking the XREs. We propose that the ligand status of the AhR modulates activation of the BRCA-1 promoter by estrogen.
Collapse
Affiliation(s)
- Jennifer K Hockings
- Cancer Biology Interdisciplinary Graduate Program, University of Arizona, Tucson, USA
| | | | | | | | | | | |
Collapse
|