1
|
Selvam K, Wyrick JJ, Parra MA. DNA Repair in Nucleosomes: Insights from Histone Modifications and Mutants. Int J Mol Sci 2024; 25:4393. [PMID: 38673978 PMCID: PMC11050016 DOI: 10.3390/ijms25084393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
DNA repair pathways play a critical role in genome stability, but in eukaryotic cells, they must operate to repair DNA lesions in the compact and tangled environment of chromatin. Previous studies have shown that the packaging of DNA into nucleosomes, which form the basic building block of chromatin, has a profound impact on DNA repair. In this review, we discuss the principles and mechanisms governing DNA repair in chromatin. We focus on the role of histone post-translational modifications (PTMs) in repair, as well as the molecular mechanisms by which histone mutants affect cellular sensitivity to DNA damage agents and repair activity in chromatin. Importantly, these mechanisms are thought to significantly impact somatic mutation rates in human cancers and potentially contribute to carcinogenesis and other human diseases. For example, a number of the histone mutants studied primarily in yeast have been identified as candidate oncohistone mutations in different cancers. This review highlights these connections and discusses the potential importance of DNA repair in chromatin to human health.
Collapse
Affiliation(s)
- Kathiresan Selvam
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA
| | - Michael A. Parra
- Department of Chemistry, Susquehanna University, Selinsgrove, PA 17870, USA
| |
Collapse
|
2
|
Mishra PK, Wood H, Stanton J, Au WC, Eisenstatt JR, Boeckmann L, Sclafani RA, Weinreich M, Bloom KS, Thorpe PH, Basrai MA. Cdc7-mediated phosphorylation of Cse4 regulates high-fidelity chromosome segregation in budding yeast. Mol Biol Cell 2021; 32:ar15. [PMID: 34432494 PMCID: PMC8693968 DOI: 10.1091/mbc.e21-06-0323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/11/2021] [Accepted: 08/18/2021] [Indexed: 12/21/2022] Open
Abstract
Faithful chromosome segregation maintains chromosomal stability as errors in this process contribute to chromosomal instability (CIN), which has been observed in many diseases including cancer. Epigenetic regulation of kinetochore proteins such as Cse4 (CENP-A in humans) plays a critical role in high-fidelity chromosome segregation. Here we show that Cse4 is a substrate of evolutionarily conserved Cdc7 kinase, and that Cdc7-mediated phosphorylation of Cse4 prevents CIN. We determined that Cdc7 phosphorylates Cse4 in vitro and interacts with Cse4 in vivo in a cell cycle-dependent manner. Cdc7 is required for kinetochore integrity as reduced levels of CEN-associated Cse4, a faster exchange of Cse4 at the metaphase kinetochores, and defects in chromosome segregation, are observed in a cdc7-7 strain. Phosphorylation of Cse4 by Cdc7 is important for cell survival as constitutive association of a kinase-dead variant of Cdc7 (cdc7-kd) with Cse4 at the kinetochore leads to growth defects. Moreover, phospho-deficient mutations of Cse4 for consensus Cdc7 target sites contribute to CIN phenotype. In summary, our results have defined a role for Cdc7-mediated phosphorylation of Cse4 in faithful chromosome segregation.
Collapse
Affiliation(s)
- Prashant K. Mishra
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Henry Wood
- Queen Mary University of London, London E1 4NS, UK
| | - John Stanton
- University of North Carolina, Chapel Hill, NC 27599
| | - Wei-Chun Au
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Jessica R. Eisenstatt
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lars Boeckmann
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | | | | | - Munira A. Basrai
- Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
3
|
Eisenstatt JR, Ohkuni K, Au WC, Preston O, Gliford L, Suva E, Costanzo M, Boone C, Basrai MA. Reduced gene dosage of histone H4 prevents CENP-A mislocalization and chromosomal instability in Saccharomyces cerevisiae. Genetics 2021; 218:6159615. [PMID: 33751052 DOI: 10.1093/genetics/iyab033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Mislocalization of the centromeric histone H3 variant (Cse4 in budding yeast, CID in flies, CENP-A in humans) to noncentromeric regions contributes to chromosomal instability (CIN) in yeast, fly, and human cells. Overexpression and mislocalization of CENP-A have been observed in cancers, however, the mechanisms that facilitate the mislocalization of overexpressed CENP-A have not been fully explored. Defects in proteolysis of overexpressed Cse4 (GALCSE4) lead to its mislocalization and synthetic dosage lethality (SDL) in mutants for E3 ubiquitin ligases (Psh1, Slx5, SCFMet30, and SCFCdc4), Doa1, Hir2, and Cdc7. In contrast, defects in sumoylation of overexpressed cse4K215/216/A/R prevent its mislocalization and do not cause SDL in a psh1Δ strain. Here, we used a genome-wide screen to identify factors that facilitate the mislocalization of overexpressed Cse4 by characterizing suppressors of the psh1Δ GALCSE4 SDL. Deletions of histone H4 alleles (HHF1 or HHF2), which were among the most prominent suppressors, also suppress slx5Δ, cdc4-1, doa1Δ, hir2Δ, and cdc7-4 GALCSE4 SDL. Reduced dosage of H4 leads to defects in sumoylation and reduced mislocalization of overexpressed Cse4, which contributes to suppression of CIN when Cse4 is overexpressed. We determined that the hhf1-20, cse4-102, and cse4-111 mutants, which are defective in the Cse4-H4 interaction, also exhibit reduced sumoylation of Cse4 and do not display psh1Δ GALCSE4 SDL. In summary, we have identified genes that contribute to the mislocalization of overexpressed Cse4 and defined a role for the gene dosage of H4 in facilitating Cse4 sumoylation and mislocalization to noncentromeric regions, leading to CIN when Cse4 is overexpressed.
Collapse
Affiliation(s)
- Jessica R Eisenstatt
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kentaro Ohkuni
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Wei-Chun Au
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Olivia Preston
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Loran Gliford
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Evelyn Suva
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| | - Michael Costanzo
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Charles Boone
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada.,Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
4
|
Histone H4 Facilitates the Proteolysis of the Budding Yeast CENP-ACse4 Centromeric Histone Variant. Genetics 2016; 205:113-124. [PMID: 27794026 DOI: 10.1534/genetics.116.194027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/26/2016] [Indexed: 12/24/2022] Open
Abstract
The incorporation of histone variants into nucleosomes can alter chromatin-based processes. CENP-A is the histone H3 variant found exclusively at centromeres that serves as an epigenetic mark for centromere identity and is required for kinetochore assembly. CENP-A mislocalization to ectopic sites appears to contribute to genomic instability, transcriptional misregulation, and tumorigenesis, so mechanisms exist to ensure its exclusive localization to centromeres. One conserved process is proteolysis, which is mediated by the Psh1 E3 ubiquitin ligase in Saccharomyces cerevisiae (budding yeast). To determine whether there are features of the CENP-A nucleosome that facilitate proteolysis, we performed a genetic screen to identify histone H4 residues that regulate CENP-ACse4 degradation. We found that H4-R36 is a key residue that promotes the interaction between CENP-ACse4 and Psh1 Consistent with this, CENP-ACse4 protein levels are stabilized in H4-R36A mutant cells and CENP-ACse4 is enriched in the euchromatin. We propose that the defects in CENP-ACse4 proteolysis may be related to changes in Psh1 localization, as Psh1 becomes enriched at some 3' intergenic regions in H4-R36A mutant cells. Together, these data reveal a key residue in histone H4 that is important for efficient CENP-ACse4 degradation, likely by facilitating the interaction between Psh1 and CENP-ACse4.
Collapse
|
5
|
Murillo-Pineda M, Cabello-Lobato MJ, Clemente-Ruiz M, Monje-Casas F, Prado F. Defective histone supply causes condensin-dependent chromatin alterations, SAC activation and chromosome decatenation impairment. Nucleic Acids Res 2014; 42:12469-82. [PMID: 25300489 PMCID: PMC4227775 DOI: 10.1093/nar/gku927] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The structural organization of chromosomes is essential for their correct function and dynamics during the cell cycle. The assembly of DNA into chromatin provides the substrate for topoisomerases and condensins, which introduce the different levels of superhelical torsion required for DNA metabolism. In particular, Top2 and condensin are directly involved in both the resolution of precatenanes that form during replication and the formation of the intramolecular loop that detects tension at the centromeric chromatin during chromosome biorientation. Here we show that histone depletion activates the spindle assembly checkpoint (SAC) and impairs sister chromatid decatenation, leading to chromosome mis-segregation and lethality in the absence of the SAC. We demonstrate that histone depletion impairs chromosome biorientation and activates the Aurora-dependent pathway, which detects tension problems at the kinetochore. Interestingly, SAC activation is suppressed by the absence of Top2 and Smc2, an essential component of condensin. Indeed, smc2-8 suppresses catenanes accumulation, mitotic arrest and growth defects induced by histone depletion at semi-permissive temperature. Remarkably, SAC activation by histone depletion is associated with condensin-mediated alterations of the centromeric chromatin. Therefore, our results reveal the importance of a precise interplay between histone supply and condensin/Top2 for pericentric chromatin structure, precatenanes resolution and centromere biorientation.
Collapse
Affiliation(s)
- Marina Murillo-Pineda
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - María J Cabello-Lobato
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | - Marta Clemente-Ruiz
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| | | | - Félix Prado
- Departamento de Biología Molecular, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Seville, Spain
| |
Collapse
|
6
|
Kinetochore function and chromosome segregation rely on critical residues in histones H3 and H4 in budding yeast. Genetics 2013; 195:795-807. [PMID: 24037263 DOI: 10.1534/genetics.113.152082] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accurate chromosome segregation requires that sister kinetochores biorient and attach to microtubules from opposite poles. Kinetochore biorientation relies on the underlying centromeric chromatin, which provides a platform to assemble the kinetochore and to recruit the regulatory factors that ensure the high fidelity of this process. To identify the centromeric chromatin determinants that contribute to chromosome segregation, we performed two complementary unbiased genetic screens using a library of budding yeast mutants in every residue of histone H3 and H4. In one screen, we identified mutants that lead to increased loss of a nonessential chromosome. In the second screen, we isolated mutants whose viability depends on a key regulator of biorientation, the Aurora B protein kinase. Nine mutants were common to both screens and exhibited kinetochore biorientation defects. Four of the mutants map near the unstructured nucleosome entry site, and their genetic interaction with reduced IPL1 can be suppressed by increasing the dosage of SGO1, a key regulator of biorientation. In addition, the composition of purified kinetochores was altered in six of the mutants. Together, this work identifies previously unknown histone residues involved in chromosome segregation and lays the foundation for future studies on the role of the underlying chromatin structure in chromosome segregation.
Collapse
|
7
|
Mutagenesis of pairwise combinations of histone amino-terminal tails reveals functional redundancy in budding yeast. Proc Natl Acad Sci U S A 2012; 109:5779-84. [PMID: 22451923 DOI: 10.1073/pnas.1203453109] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A large body of literature provides compelling evidence for the role of evolutionarily conserved core histone residues in various biological processes. However, site-directed mutagenesis of individual residues that are known to be sites of posttranslational modifications often does not result in clear phenotypic defects. In some cases, the combination of multiple mutations can give rise to stronger phenotypes, implying functional redundancy between distinct residues on histones. Here, we examined the "histone redundancy hypothesis" by characterizing double deletion of all pairwise combinations of amino-terminal tails (N-tails) from the four core histones encoded in budding yeast. First, we found that multiple lysine residues on the N-tails of both H2A and H4 are redundantly involved in cell viability. Second, simultaneous deletion of N-tails from H2A and H3 leads to a severe growth defect, which is correlated with perturbed gross chromatin structure in the mutant cells. Finally, by combining point mutations on H3 with deletion of the H2A N-tail, we revealed a redundant role for lysine 4 on H3 and the H2A N-tail in hydroxyurea-mediated response. Altogether, these data suggest that the N-tails of core histones share previously unrecognized, potentially redundant functions that, in some cases are different from those of the widely accepted H2A/H2B and H3/H4 dimer pairs.
Collapse
|
8
|
Misregulation of Scm3p/HJURP causes chromosome instability in Saccharomyces cerevisiae and human cells. PLoS Genet 2011; 7:e1002303. [PMID: 21980305 PMCID: PMC3183075 DOI: 10.1371/journal.pgen.1002303] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/29/2011] [Indexed: 11/19/2022] Open
Abstract
The kinetochore (centromeric DNA and associated proteins) is a key determinant for high fidelity chromosome transmission. Evolutionarily conserved Scm3p is an essential component of centromeric chromatin and is required for assembly and function of kinetochores in humans, fission yeast, and budding yeast. Overexpression of HJURP, the mammalian homolog of budding yeast Scm3p, has been observed in lung and breast cancers and is associated with poor prognosis; however, the physiological relevance of these observations is not well understood. We overexpressed SCM3 and HJURP in Saccharomyces cerevisiae and HJURP in human cells and defined domains within Scm3p that mediate its chromosome loss phenotype. Our results showed that the overexpression of SCM3 (GALSCM3) or HJURP (GALHJURP) caused chromosome loss in a wild-type yeast strain, and overexpression of HJURP led to mitotic defects in human cells. GALSCM3 resulted in reduced viability in kinetochore mutants, premature separation of sister chromatids, and reduction in Cse4p and histone H4 at centromeres. Overexpression of CSE4 or histone H4 suppressed chromosome loss and restored levels of Cse4p at centromeres in GALSCM3 strains. Using mutant alleles of scm3, we identified a domain in the N-terminus of Scm3p that mediates its interaction with CEN DNA and determined that the chromosome loss phenotype of GALSCM3 is due to centromeric association of Scm3p devoid of Cse4p/H4. Furthermore, we determined that similar to other systems the centromeric association of Scm3p is cell cycle regulated. Our results show that altered stoichiometry of Scm3p/HJURP, Cse4p, and histone H4 lead to defects in chromosome segregation. We conclude that stringent regulation of HJURP and SCM3 expression are critical for genome stability.
Collapse
|
9
|
Kawashima S, Nakabayashi Y, Matsubara K, Sano N, Enomoto T, Tanaka K, Seki M, Horikoshi M. Global analysis of core histones reveals nucleosomal surfaces required for chromosome bi-orientation. EMBO J 2011; 30:3353-67. [PMID: 21772248 DOI: 10.1038/emboj.2011.241] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 06/27/2011] [Indexed: 01/15/2023] Open
Abstract
The attachment of sister kinetochores to microtubules from opposite spindle poles is essential for faithful chromosome segregation. Kinetochore assembly requires centromere-specific nucleosomes containing the histone H3 variant CenH3. However, the functional roles of the canonical histones (H2A, H2B, H3, and H4) in chromosome segregation remain elusive. Using a library of histone point mutants in Saccharomyces cerevisiae, 24 histone residues that conferred sensitivity to the microtubule-depolymerizing drugs thiabendazole (TBZ) and benomyl were identified. Twenty-three of these mutations were clustered at three spatially separated nucleosomal regions designated TBS-I, -II, and -III (TBZ/benomyl-sensitive regions I-III). Elevation of mono-polar attachment induced by prior nocodazole treatment was observed in H2A-I112A (TBS-I), H2A-E57A (TBS-II), and H4-L97A (TBS-III) cells. Severe impairment of the centromere localization of Sgo1, a key modulator of chromosome bi-orientation, occurred in H2A-I112A and H2A-E57A cells. In addition, the pericentromeric localization of Htz1, the histone H2A variant, was impaired in H4-L97A cells. These results suggest that the spatially separated nucleosomal regions, TBS-I and -II, are necessary for Sgo1-mediated chromosome bi-orientation and that TBS-III is required for Htz1 function.
Collapse
Affiliation(s)
- Satoshi Kawashima
- Molecular Cell Biology Laboratory, Graduate School of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
A role for histone H4K16 hypoacetylation in Saccharomyces cerevisiae kinetochore function. Genetics 2011; 189:11-21. [PMID: 21652526 DOI: 10.1534/genetics.111.130781] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hypoacetylated H4 is present at regional centromeres; however, its role in kinetochore function is poorly understood. We characterized H4 acetylation at point centromeres in Saccharomyces cerevisiae and determined the consequences of altered H4 acetylation on chromosome segregation. We observed low levels of tetra-acetylated and K16 acetylated histone H4 (H4K16Ac) at centromeres. Low levels of H4K16Ac were also observed at noncentromeric regions associated with Cse4p. Inhibition of histone deacetylases (HDAC) using nicotinamide (NAM) caused lethality in cse4 and hhf1-20 kinetochore mutants and increased centromeric H4K16Ac. Overexpression of Sas2-mediated H4K16 acetylation activity in wild-type cells led to increased rates of chromosome loss and synthetic dosage lethality in kinetochore mutants. Consistent with increased H4K16 acetylation as a cause of the phenotypes, deletion of the H4K16 deacetylase SIR2 or a sir2-H364Y catalytic mutant resulted in higher rates of chromosome loss compared to wild-type cells. Moreover, H4K16Q acetylmimic mutants displayed increased rates of chromosome loss compared to H4K16R nonacetylatable mutants and wild-type cells. Our work shows that hypoacetylated centromeric H4 is conserved across eukaryotic centromeres and hypoacetylation of H4K16 at centromeres plays an important role in accurate chromosome segregation.
Collapse
|
11
|
The SWI/SNF complex acts to constrain distribution of the centromeric histone variant Cse4. EMBO J 2011; 30:1919-27. [PMID: 21505420 PMCID: PMC3098484 DOI: 10.1038/emboj.2011.112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 03/09/2011] [Indexed: 11/30/2022] Open
Abstract
The SWI/SNF complex has an important role in regulating chromatin structure during transcriptional activation and DNA repair. Here, the SWI/SNF complex is also involved in the organisation of centromeric chromatin and prevention of the ectopic deposition of centromeric histone variants. In order to gain insight into the function of the Saccharomyces cerevisiae SWI/SNF complex, we have identified DNA sequences to which it is bound genomewide. One surprising observation is that the complex is enriched at the centromeres of each chromosome. Deletion of the gene encoding the Snf2 subunit of the complex was found to cause partial redistribution of the centromeric histone variant Cse4 to sites on chromosome arms. Cultures of snf2Δ yeast were found to progress through mitosis slowly. This was dependent on the mitotic checkpoint protein Mad2. In the absence of Mad2, defects in chromosome segregation were observed. In the absence of Snf2, chromatin organisation at centromeres is less distinct. In particular, hypersensitive sites flanking the Cse4 containing nucleosomes are less pronounced. Furthermore, SWI/SNF complex was found to be especially effective in the dissociation of Cse4 containing chromatin in vitro. This suggests a role for Snf2 in the maintenance of point centromeres involving the removal of Cse4 from ectopic sites.
Collapse
|
12
|
Overlapping regulation of CenH3 localization and histone H3 turnover by CAF-1 and HIR proteins in Saccharomyces cerevisiae. Genetics 2010; 187:9-19. [PMID: 20944015 DOI: 10.1534/genetics.110.123117] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Accurate chromosome segregation is dependent on the centromere-specific histone H3 isoform known generally as CenH3, or as Cse4 in budding yeast. Cytological experiments have shown that Cse4 appears at extracentromeric loci in yeast cells deficient for both the CAF-1 and HIR histone H3/H4 deposition complexes, consistent with increased nondisjunction in these double mutant cells. Here, we examined molecular aspects of this Cse4 mislocalization. Genome-scale chromatin immunoprecipitation analyses demonstrated broader distribution of Cse4 outside of centromeres in cac1Δ hir1Δ double mutant cells that lack both CAF-1 and HIR complexes than in either single mutant. However, cytological localization showed that the essential inner kinetochore component Mif2 (CENP-C) was not recruited to extracentromeric Cse4 in cac1Δ hir1Δ double mutant cells. We also observed that rpb1-1 mutants displayed a modestly increased Cse4 half-life at nonpermissive temperatures, suggesting that turnover of Cse4 is partially dependent on Pol II transcription. We used genome-scale assays to demonstrate that the CAF-1 and HIR complexes independently stimulate replication-independent histone H3 turnover rates. We discuss ways in which altered histone exchange kinetics may affect eviction of Cse4 from noncentromeric loci.
Collapse
|
13
|
Zacchi LF, Selmecki AM, Berman J, Davis DA. Low dosage of histone H4 leads to growth defects and morphological changes in Candida albicans. PLoS One 2010; 5:e10629. [PMID: 20498713 PMCID: PMC2869362 DOI: 10.1371/journal.pone.0010629] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 04/14/2010] [Indexed: 11/18/2022] Open
Abstract
Chromatin function depends on adequate histone stoichiometry. Alterations in histone dosage affect transcription and chromosome segregation, leading to growth defects and aneuploidies. In the fungal pathogen Candida albicans, aneuploidy formation is associated with antifungal resistance and pathogenesis. Histone modifying enzymes and chromatin remodeling proteins are also required for pathogenesis. However, little is known about the mechanisms that generate aneuploidies or about the epigenetic mechanisms that shape the response of C. albicans to the host environment. Here, we determined the impact of histone H4 deficit in the growth and colony morphology of C. albicans. We found that C. albicans requires at least two of the four alleles that code for histone H4 (HHF1 and HHF22) to grow normally. Strains with only one histone H4 allele show a severe growth defect and unstable colony morphology, and produce faster-growing, morphologically stable suppressors. Segmental or whole chromosomal trisomies that increased wild-type histone H4 copy number were the preferred mechanism of suppression. This is the first study of a core nucleosomal histone in C. albicans, and constitutes the prelude to future, more detailed research on the function of histone H4 in this important fungal pathogen.
Collapse
Affiliation(s)
- Lucia F. Zacchi
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Anna M. Selmecki
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Judith Berman
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dana A. Davis
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
14
|
Abstract
It has been firmly established that many interphase nuclear functions, including transcriptional regulation, are regulated by chromatin and histones. How mitotic progression and quality control might be influenced by histones is less well characterized. We show that histone H3 plays a crucial role in activating the spindle assembly checkpoint in response to a defect in mitosis. Prior to anaphase, all chromosomes must attach to spindles emanating from the opposite spindle pole bodies. The tension between sister chromatids generated by the poleward pulling force is an integral part of chromosome biorientation. Lack of tension due to erroneous attachment activates the spindle assembly checkpoint, which corrects the mistakes and ensures segregation fidelity. A histone H3 mutation impairs the ability of yeast cells to activate the checkpoint in a tensionless crisis, leading to missegregation and aneuploidy. The defects in tension sensing result directly from an attenuated H3-Sgo1p interaction essential for pericentric recruitment of Sgo1p. Reinstating the pericentric enrichment of Sgo1p alleviates the mitotic defects. Histone H3, and hence the chromatin, is thus a key factor transmitting the tension status to the spindle assembly checkpoint.
Collapse
|
15
|
Torras-Llort M, Moreno-Moreno O, Azorín F. Focus on the centre: the role of chromatin on the regulation of centromere identity and function. EMBO J 2009; 28:2337-48. [PMID: 19629040 PMCID: PMC2722248 DOI: 10.1038/emboj.2009.174] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 05/27/2009] [Indexed: 11/24/2022] Open
Abstract
The centromere is a specialised chromosomal structure that regulates faithful chromosome segregation during cell division, as it dictates the site of assembly of the kinetochore, a critical structure that mediates binding of chromosomes to the spindle, monitors bipolar attachment and pulls chromosomes to the poles during anaphase. Identified more than a century ago as the primary constriction of condensed metaphase chromosomes, the centromere remained elusive to molecular characterisation for many years owed to its unusual enrichment in highly repetitive satellite DNA sequences, except in budding yeast. In the last decade, our understanding of centromere structure, organisation and function has increased tremendously. Nowadays, we know that centromere identity is determined epigenetically by the formation of a unique type of chromatin, which is characterised by the presence of the centromere-specific histone H3 variant CenH3, originally called CENP-A, which replaces canonical histone H3 at centromeres. CenH3-chromatin constitutes the physical and functional foundation for kinetochore assembly. This review explores recent studies addressing the structural and functional characterisation of CenH3-chromatin, its assembly and propagation during mitosis, and its contribution to kinetochore assembly.
Collapse
Affiliation(s)
- Mònica Torras-Llort
- Institute of Molecular Biology of Barcelona, CSIC, and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Olga Moreno-Moreno
- Institute of Molecular Biology of Barcelona, CSIC, and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Fernando Azorín
- Institute of Molecular Biology of Barcelona, CSIC, and Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| |
Collapse
|
16
|
Desai P, Guha N, Galdieri L, Hadi S, Vancura A. Plc1p is required for proper chromatin structure and activity of the kinetochore in Saccharomyces cerevisiae by facilitating recruitment of the RSC complex. Mol Genet Genomics 2009; 281:511-23. [PMID: 19205744 DOI: 10.1007/s00438-009-0427-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2008] [Accepted: 01/15/2009] [Indexed: 01/08/2023]
Abstract
High-fidelity chromosome segregation during mitosis requires kinetochores, protein complexes that assemble on centromeric DNA and mediate chromosome attachment to spindle microtubules. In budding yeast, phosphoinositide-specific phospholipase C (Plc1p encoded by PLC1 gene) is important for function of kinetochores. Deletion of PLC1 results in alterations in chromatin structure of centromeres, reduced binding of microtubules to minichromosomes, and a higher frequency of chromosome loss. The mechanism of Plc1p's involvement in kinetochore activity was not initially obvious; however, a testable hypothesis emerged with the discovery of the role of inositol polyphosphates (InsPs), produced by a Plc1p-dependent pathway, in the regulation of chromatin-remodeling complexes. In addition, the remodels structure of chromatin (RSC) chromatin-remodeling complex was found to associate with kinetochores and to affect centromeric chromatin structure. We report here that Plc1p and InsPs are required for recruitment of the RSC complex to kinetochores, which is important for establishing proper chromatin structure of centromeres and centromere proximal regions. Mutations in PLC1 and components of the RSC complex exhibit strong genetic interactions and display synthetic growth defect, altered nuclear morphology, and higher frequency of minichromosome loss. The results thus provide a mechanistic explanation for the previously elusive role of Plc1p and InsPs in kinetochore function.
Collapse
Affiliation(s)
- Parima Desai
- Department of Biological Sciences, St John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | | | | | | | | |
Collapse
|
17
|
Lefrançois P, Euskirchen GM, Auerbach RK, Rozowsky J, Gibson T, Yellman CM, Gerstein M, Snyder M. Efficient yeast ChIP-Seq using multiplex short-read DNA sequencing. BMC Genomics 2009; 10:37. [PMID: 19159457 PMCID: PMC2656530 DOI: 10.1186/1471-2164-10-37] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 01/21/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Short-read high-throughput DNA sequencing technologies provide new tools to answer biological questions. However, high cost and low throughput limit their widespread use, particularly in organisms with smaller genomes such as S. cerevisiae. Although ChIP-Seq in mammalian cell lines is replacing array-based ChIP-chip as the standard for transcription factor binding studies, ChIP-Seq in yeast is still underutilized compared to ChIP-chip. We developed a multiplex barcoding system that allows simultaneous sequencing and analysis of multiple samples using Illumina's platform. We applied this method to analyze the chromosomal distributions of three yeast DNA binding proteins (Ste12, Cse4 and RNA PolII) and a reference sample (input DNA) in a single experiment and demonstrate its utility for rapid and accurate results at reduced costs. RESULTS We developed a barcoding ChIP-Seq method for the concurrent analysis of transcription factor binding sites in yeast. Our multiplex strategy generated high quality data that was indistinguishable from data obtained with non-barcoded libraries. None of the barcoded adapters induced differences relative to a non-barcoded adapter when applied to the same DNA sample. We used this method to map the binding sites for Cse4, Ste12 and Pol II throughout the yeast genome and we found 148 binding targets for Cse4, 823 targets for Ste12 and 2508 targets for PolII. Cse4 was strongly bound to all yeast centromeres as expected and the remaining non-centromeric targets correspond to highly expressed genes in rich media. The presence of Cse4 non-centromeric binding sites was not reported previously. CONCLUSION We designed a multiplex short-read DNA sequencing method to perform efficient ChIP-Seq in yeast and other small genome model organisms. This method produces accurate results with higher throughput and reduced cost. Given constant improvements in high-throughput sequencing technologies, increasing multiplexing will be possible to further decrease costs per sample and to accelerate the completion of large consortium projects such as modENCODE.
Collapse
Affiliation(s)
- Philippe Lefrançois
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Topology of closed circular DNA is affected by its packaging into nucleosomes and potentially by alteration of nucleosome structure. Changes in topology that reflect alterations in chromatin structure can be measured and quantified using closed circular plasmids from living yeast. Here we describe detailed protocols for measuring DNA topology in yeast chromatin.
Collapse
Affiliation(s)
- Randall H Morse
- NY State Department of Health and SUNY School of Public Health, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
19
|
Altered dosage and mislocalization of histone H3 and Cse4p lead to chromosome loss in Saccharomyces cerevisiae. Genetics 2008; 179:263-75. [PMID: 18458100 DOI: 10.1534/genetics.108.088518] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cse4p is an essential histone H3 variant in Saccharomyces cerevisiae that defines centromere identity and is required for proper segregation of chromosomes. In this study, we investigated phenotypic consequences of Cse4p mislocalization and increased dosage of histone H3 and Cse4p, and established a direct link between histone stoichiometry, mislocalization of Cse4p, and chromosome segregation. Overexpression of the stable Cse4p mutant, cse4(K16R), resulted in its mislocalization, increased association with chromatin, and a high rate of chromosome loss, all of which were suppressed by constitutive expression of histone H3 (delta 16H3). We determined that delta 16H3 did not lead to increased chromosome loss; however, increasing the dosage of histone H3 (GALH3) resulted in significant chromosome loss due to reduced levels of centromere (CEN)-associated Cse4p and synthetic dosage lethality (SDL) in kinetochore mutants. These phenotypes were suppressed by GALCSE4. We conclude that the chromosome missegregation of GALcse4(K16R) and GALH3 strains is due to mislocalization and a functionally compromised kinetochore, respectively. Suppression of these phenotypes by histone delta 16H3 and GALCSE4 supports the conclusion that proper stoichiometry affects the localization of histone H3 and Cse4p and is thus essential for accurate chromosome segregation.
Collapse
|
20
|
Mizuguchi G, Xiao H, Wisniewski J, Smith MM, Wu C. Nonhistone Scm3 and histones CenH3-H4 assemble the core of centromere-specific nucleosomes. Cell 2007; 129:1153-64. [PMID: 17574026 DOI: 10.1016/j.cell.2007.04.026] [Citation(s) in RCA: 237] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/28/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
The budding yeast histone H3 variant, Cse4, replaces conventional histone H3 in centromeric chromatin and, together with centromere-specific DNA-binding factors, directs assembly of the kinetochore, a multiprotein complex mediating chromosome segregation. We have identified Scm3, a nonhistone protein that colocalizes with Cse4 and is required for its centromeric association. Bacterially expressed Scm3 binds directly to and reconstitutes a stoichiometric complex with Cse4 and histone H4 but not with conventional histone H3 and H4. A conserved acidic domain of Scm3 is responsible for directing the Cse4-specific interaction. Strikingly, binding of Scm3 can replace histones H2A-H2B from preassembled Cse4-containing histone octamers. This incompatibility between Scm3 and histones H2A-H2B is correlated with diminished in vivo occupancy of histone H2B, H2A, and H2AZ at centromeres. Our findings indicate that nonhistone Scm3 serves to assemble and maintain Cse4-H4 at centromeres and may replace histone H2A-H2B dimers in a centromere-specific nucleosome core.
Collapse
Affiliation(s)
- Gaku Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 6068, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
21
|
Maruyama T, Nakamura T, Hayashi T, Yanagida M. Histone H2B mutations in inner region affect ubiquitination, centromere function, silencing and chromosome segregation. EMBO J 2006; 25:2420-31. [PMID: 16688222 PMCID: PMC1478186 DOI: 10.1038/sj.emboj.7601110] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 04/03/2006] [Indexed: 01/15/2023] Open
Abstract
The reiterated nature of histone genes has hampered genetic approach to dissect the role of histones in chromatin dynamics. We here report isolation of three temperature-sensitive (ts) Schizosaccharomyces pombe strains, containing amino-acid substitutions in the sole histone H2B gene (htb1+). The mutation sites reside in the highly conserved, non-helical residues of H2B, which are implicated in DNA-protein or protein-protein interactions in the nucleosome. In the allele of htb1-72, the substitution (G52D) occurs at the DNA binding loop L1, causing disruption of the gene silencing in heterochromatic regions and lagging chromosomes in anaphase. In another allele htb1-223 (P102L) locating in the junction between alpha3 and alphaC, the mutant residue is in contact with H2A and other histones, leading to structural aberrations in the central centromere chromatin and unequal chromosome segregation in anaphase. The third allele htb1-442 (E34K) near alpha1 displayed little defect. Evidence is provided that monoubiquitinated H2B is greatly unstable in P102L mutant, possibly owing to proteasome-independent destruction or enhanced deubiquitination. Histone H2B thus plays an important role in centromere/kinetochore formation.
Collapse
Affiliation(s)
- Takeshi Maruyama
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Takahiro Nakamura
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Takeshi Hayashi
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
| | - Mitsuhiro Yanagida
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto, Japan
- Department of Gene Mechanisms, Graduate School of Biostudies, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan. Tel.: +81 75 753 4205; Fax: +81 75 753 4208; E-mail:
| |
Collapse
|
22
|
Keogh MC, Mennella TA, Sawa C, Berthelet S, Krogan NJ, Wolek A, Podolny V, Carpenter LR, Greenblatt JF, Baetz K, Buratowski S. The Saccharomyces cerevisiae histone H2A variant Htz1 is acetylated by NuA4. Genes Dev 2006; 20:660-5. [PMID: 16543219 PMCID: PMC1413285 DOI: 10.1101/gad.1388106] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The histone H2A variant H2A.Z (Saccharomyces cerevisiae Htz1) plays roles in transcription, DNA repair, chromosome stability, and limiting telomeric silencing. The Swr1-Complex (SWR-C) inserts Htz1 into chromatin and shares several subunits with the NuA4 histone acetyltransferase. Furthermore, mutants of these two complexes share several phenotypes, suggesting they may work together. Here we show that NuA4 acetylates Htz1 Lys 14 (K14) after the histone is assembled into chromatin by the SWR-C. K14 mutants exhibit specific defects in chromosome transmission without affecting transcription, telomeric silencing, or DNA repair. Function-specific modifications may help explain how the same component of chromatin can function in diverse pathways.
Collapse
Affiliation(s)
- Michael-Christopher Keogh
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kanta H, Laprade L, Almutairi A, Pinto I. Suppressor analysis of a histone defect identifies a new function for the hda1 complex in chromosome segregation. Genetics 2006; 173:435-50. [PMID: 16415367 PMCID: PMC1461434 DOI: 10.1534/genetics.105.050559] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Histones are essential for the compaction of DNA into chromatin and therefore participate in all chromosomal functions. Specific mutations in HTA1, one of the two Saccharomyces cerevisiae genes encoding histone H2A, have been previously shown to cause chromosome segregation defects, including an increase in ploidy associated with altered pericentromeric chromatin structure, suggesting a role for histone H2A in kinetochore function. To identify proteins that may interact with histone H2A in the control of ploidy and chromosome segregation, we performed a genetic screen for suppressors of the increase-in-ploidy phenotype associated with one of the H2A mutations. We identified five genes, HHT1, MKS1, HDA1, HDA2, and HDA3, four of which encode proteins directly connected to chromatin function: histone H3 and each of the three subunits of the Hda1 histone deacetylase complex. Our results show that Hda3 has functions distinct from Hda2 and Hda1 and that it is required for normal chromosome segregation and cell cycle progression. In addition, HDA3 shows genetic interactions with kinetochore components, emphasizing a role in centromere function, and all three Hda proteins show association with centromeric DNA. These findings suggest that the Hda1 deacetylase complex affects histone function at the centromere and that Hda3 has a distinctive participation in chromosome segregation. Moreover, these suppressors provide the basis for future studies regarding histone function in chromosome segregation.
Collapse
Affiliation(s)
- Hasna Kanta
- Department of Biological Sciences, University of Arkansas, Fayetteville 72701, USA
| | | | | | | |
Collapse
|
24
|
Morey L, Barnes K, Chen Y, Fitzgerald-Hayes M, Baker RE. The histone fold domain of Cse4 is sufficient for CEN targeting and propagation of active centromeres in budding yeast. EUKARYOTIC CELL 2005; 3:1533-43. [PMID: 15590827 PMCID: PMC539035 DOI: 10.1128/ec.3.6.1533-1543.2004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Centromere-specific H3-like proteins (CenH3s) are conserved across the eukaryotic kingdom and are required for packaging centromere DNA into a specialized chromatin structure required for kinetochore assembly. Cse4 is the CenH3 protein of the budding yeast Saccharomyces cerevisiae. Like all CenH3 proteins, Cse4 consists of a conserved histone fold domain (HFD) and a divergent N terminus (NT). The Cse4 NT contains an essential domain designated END (for essential N-terminal domain); deletion of END is lethal. To investigate the role of the Cse4 NT in centromere targeting, a series of deletion alleles (cse4DeltaNT) were analyzed. No part of the Cse4 NT was required to target mutant proteins to centromere DNA in the presence of functional Cse4. A Cse4 degron strain was used to examine targeting of a Cse4DeltaNT protein in the absence of wild-type Cse4. The END was not required for centromere targeting under these conditions, confirming that the HFD confers specificity of Cse4 centromere targeting. Surprisingly, overexpression of the HFD bypassed the requirement for the END altogether, and viable S. cerevisiae strains in which the cells express only the Cse4 HFD and six adjacent N-terminal amino acids (Cse4Delta129) were constructed. Despite the complete absence of the NT, mitotic chromosome loss in the cse4Delta129 strain increased only 6-fold compared to a 15-fold increase in strains overexpressing wild-type Cse4. Thus, when overexpressed, the Cse4 HFD is sufficient for centromere function in S. cerevisiae, and no posttranslational modification or interaction of the NT with other kinetochore component(s) is essential for accurate chromosome segregation in budding yeast.
Collapse
Affiliation(s)
- Lisa Morey
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA
| | | | | | | | | |
Collapse
|
25
|
Wieland G, Orthaus S, Ohndorf S, Diekmann S, Hemmerich P. Functional complementation of human centromere protein A (CENP-A) by Cse4p from Saccharomyces cerevisiae. Mol Cell Biol 2004; 24:6620-30. [PMID: 15254229 PMCID: PMC444843 DOI: 10.1128/mcb.24.15.6620-6630.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have employed a novel in vivo approach to study the structure and function of the eukaryotic kinetochore multiprotein complex. RNA interference (RNAi) was used to block the synthesis of centromere protein A (CENP-A) and Clip-170 in human cells. By coexpression, homologous kinetochore proteins from Saccharomyces cerevisiae were then tested for the ability to complement the RNAi-induced phenotypes. Cse4p, the budding yeast CENP-A homolog, was specifically incorporated into kinetochore nucleosomes and was able to complement RNAi-induced cell cycle arrest in CENP-A-depleted human cells. Thus, Cse4p can structurally and functionally substitute for CENP-A, strongly suggesting that the basic features of centromeric chromatin are conserved between yeast and mammals. Bik1p, the budding yeast homolog of human CLIP-170, also specifically localized to kinetochores during mitosis, but Bik1p did not rescue CLIP-170 depletion-induced cell cycle arrest. Generally, the newly developed in vivo complementation assay provides a powerful new tool for studying the function and evolutionary conservation of multiprotein complexes from yeast to humans.
Collapse
Affiliation(s)
- Gerhard Wieland
- Department for Molecular Biology, Institute of Molecular Biotechnology, Beutenbergstrasse 11, D-07745 Jena, Germany
| | | | | | | | | |
Collapse
|
26
|
Crotti LB, Basrai MA. Functional roles for evolutionarily conserved Spt4p at centromeres and heterochromatin in Saccharomyces cerevisiae. EMBO J 2004; 23:1804-14. [PMID: 15057281 PMCID: PMC394231 DOI: 10.1038/sj.emboj.7600161] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2003] [Accepted: 02/16/2004] [Indexed: 11/09/2022] Open
Abstract
The kinetochore (centromeric DNA and associated proteins) mediates the attachment of chromosomes to the mitotic spindle apparatus and is required for faithful chromosome transmission. We established that evolutionarily conserved Saccharomyces cerevisiae SPT4, previously identified in genetic screens for defects in chromosome transmission fidelity (ctf), encodes a new structural component of specialized chromatin at kinetochores and heterochromatic loci, with roles in kinetochore function and gene silencing. Using chromatin immunoprecipitation assays (ChIP), we determined that kinetochore proteins Ndc10p, Cac1p, and Hir1p are required for the association of Spt4p to centromeric (CEN) loci. Absence of functional Spt4p leads to altered chromatin structure at the CEN DNA and mislocalization of the mammalian CENP-A homolog Cse4p to noncentromeric loci. Spt4p associates with telomeres (TEL) and HMRa loci in a Sir3p-dependent manner and is required for transcriptional gene silencing. We show that a human homolog of SPT4 (HsSPT4) complements Scspt4-silencing defects and associates with ScCEN DNA in an Ndc10p-dependent manner. Our results highlight the evolutionary conservation of pathways required for genome stability in yeast and humans.
Collapse
Affiliation(s)
| | - Munira A Basrai
- Genetics Branch, National Cancer Institute, Bethesda, MD, USA
- Genetics Branch, National Cancer Institute, NNMC Bldg. 8, Room 5101, 8901 Wisconsin Avenue, Bethesda, MD 20889-5105, USA. Tel.: +1 301 402 2552; Fax: +1 301 480 0380; E-mail:
| |
Collapse
|
27
|
Espelin CW, Simons KT, Harrison SC, Sorger PK. Binding of the essential Saccharomyces cerevisiae kinetochore protein Ndc10p to CDEII. Mol Biol Cell 2003; 14:4557-68. [PMID: 13679521 PMCID: PMC266772 DOI: 10.1091/mbc.e02-08-0533] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromosome segregation at mitosis depends critically on the accurate assembly of kinetochores and their stable attachment to microtubules. Analysis of Saccharomyces cerevisiae kinetochores has shown that they are complex structures containing >/=50 protein components. Many of these yeast proteins have orthologs in animal cells, suggesting that key aspects of kinetochore structure have been conserved through evolution, despite the remarkable differences between the 125-base pair centromeres of budding yeast and the Mb centromeres of animal cells. We describe here an analysis of S. cerevisiae Ndc10p, one of the four protein components of the CBF3 complex. CBF3 binds to the CDEIII element of centromeric DNA and initiates kinetochore assembly. Whereas CDEIII binding by Ndc10p requires the other components of CBF3, Ndc10p can bind on its own to CDEII, a region of centromeric DNA with no known binding partners. Ndc10p-CDEII binding involves a dispersed set of sequence-selective and -nonselective contacts over approximately 80 base pairs of DNA, suggesting formation of a multimeric structure. CDEII-like sites, active in Ndc10p binding, are also present along chromosome arms. We propose that a polymeric Ndc10p complex formed on CDEII and CDEIII DNA is the foundation for recruiting microtubule attachment proteins to kinetochores. A similar type of polymeric structure on chromosome arms may mediate other chromosome-spindle interactions.
Collapse
Affiliation(s)
- Christopher W Espelin
- Department of Biology, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Accurate chromosome segregation is essential to ensure genomic stability because the aneuploidy that results from segregation errors leads to birth defects and contributes to the development of cancer. Chromosome segregation is directed by the kinetochore, the chromosomal site of attachment to dynamic polymers called microtubules (MTs). Although the fidelity of chromosome segregation depends on precise interactions between kinetochores and MTs, it is still unclear how this interaction is mediated and regulated. Here we discuss current progress in determining how kinetochores assemble and attach to MTs during mitosis as well as how they correct errors.
Collapse
Affiliation(s)
- Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, PO Box 19024, 1100 Fairview Ave. North, A2-168, Seattle, WA 98109-1024, USA.
| | | |
Collapse
|
29
|
DeLillo N, Romero C, Lin H, Vancura A. Genetic evidence for a role of phospholipase C at the budding yeast kinetochore. Mol Genet Genomics 2003; 269:261-70. [PMID: 12756538 DOI: 10.1007/s00438-003-0832-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2002] [Accepted: 02/12/2003] [Indexed: 10/25/2022]
Abstract
Chromosome segregation during mitosis requires kinetochores, specialized organelles that mediate chromosome attachment to spindle microtubules. We have shown previously that in budding yeast, Plc1p (phosphoinositide-specific phospholipase C) localizes to centromeric loci, associates with the kinetochore proteins Ndc10p and Cep3p, and affects the function of kinetochores. Deletion of PLC1 results in nocodazole sensitivity, mitotic delay, and a higher frequency of chromosome loss. We report here that despite the nocodazole sensitivity of plc1Delta cells, Plc1p is not required for the spindle checkpoint. However, plc1Delta cells require a functional BUB1/BUB3-dependent spindle checkpoint for viability. PLC1 displays strong genetic interactions with genes encoding components of the inner kinetochore, including NDC10, SKP1, MIF2, CEP1, CEP3, and CTF13. Furthermore, plc1Delta cells display alterations in chromatin structure in the core centromere. Chromatin immunoprecipitation experiments indicate that Plc1p localizes to centromeric loci independently of microtubules, and accumulates at the centromeres during G(2)/M stage of cell cycle. These results are consistent with the view that Plc1p affects kinetochore function, possibly by modulating the structure of centromeric chromatin.
Collapse
Affiliation(s)
- N DeLillo
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, Jamaicam New York, NY 11439, USA
| | | | | | | |
Collapse
|
30
|
Hsu JM, Huang J, Meluh PB, Laurent BC. The yeast RSC chromatin-remodeling complex is required for kinetochore function in chromosome segregation. Mol Cell Biol 2003; 23:3202-15. [PMID: 12697820 PMCID: PMC153182 DOI: 10.1128/mcb.23.9.3202-3215.2003] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The accurate segregation of chromosomes requires the kinetochore, a complex protein machine that assembles onto centromeric DNA to mediate attachment of replicated sister chromatids to the mitotic spindle apparatus. This study reveals an important role for the yeast RSC ATP-dependent chromatin-remodeling complex at the kinetochore in chromosome transmission. Mutations in genes encoding two core subunits of RSC, the ATPase Sth1p and the Snf5p homolog Sfh1p, interact genetically with mutations in genes encoding kinetochore proteins and with a mutation in centromeric DNA. RSC also interacts genetically and physically with the histone and histone variant components of centromeric chromatin. Importantly, RSC is localized to centromeric and centromere-proximal chromosomal regions, and its association with these loci is dependent on Sth1p. Both sth1 and sfh1 mutants exhibit altered centromeric and centromere-proximal chromatin structure and increased missegregation of authentic chromosomes. Finally, RSC is not required for centromeric deposition of the histone H3 variant Cse4p, suggesting that RSC plays a role in reconfiguring centromeric and flanking nucleosomes following Cse4p recruitment for proper chromosome transmission.
Collapse
Affiliation(s)
- Jing-Mei Hsu
- Department of Microbiology and Immunology, Morse Institute of Molecular Biology and Genetics, and Program in Molecular and Cellular Biology, State University of New York, Brooklyn, New York 11203, USA
| | | | | | | |
Collapse
|
31
|
Mythreye K, Bloom KS. Differential kinetochore protein requirements for establishment versus propagation of centromere activity in Saccharomyces cerevisiae. J Cell Biol 2003; 160:833-43. [PMID: 12642611 PMCID: PMC2173759 DOI: 10.1083/jcb.200211116] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dicentric chromosomes undergo a breakage-fusion-bridge cycle as a consequence of having two centromeres on the same chromatid attach to opposite spindle poles in mitosis. Suppression of dicentric chromosome breakage reflects loss of kinetochore function at the kinetochore-microtubule or the kinetochore-DNA interface. Using a conditionally functional dicentric chromosome in vivo, we demonstrate that kinetochore mutants exhibit quantitative differences in their degree of chromosome breakage. Mutations in chl4/mcm17/ctf17 segregate dicentric chromosomes through successive cell divisions without breakage, indicating that only one of the two centromeres is functional. Centromere DNA introduced into the cell is unable to promote kinetochore assembly in the absence of CHL4. In contrast, established centromeres retain their segregation capacity for greater than 25 generations after depletion of Chl4p. The persistent mitotic stability of established centromeres reveals the presence of an epigenetic component in kinetochore segregation. Furthermore, this study identifies Chl4p in the initiation and specification of a heritable chromatin state.
Collapse
Affiliation(s)
- Karthikeyan Mythreye
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
32
|
Chen ES, Saitoh S, Yanagida M, Takahashi K. A cell cycle-regulated GATA factor promotes centromeric localization of CENP-A in fission yeast. Mol Cell 2003; 11:175-87. [PMID: 12535531 DOI: 10.1016/s1097-2765(03)00011-x] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
CENP-A, the centromere-specific histone H3 variant, plays a crucial role in organizing kinetochore chromatin for precise chromosome segregation. We have isolated Ams2, a Daxx-like motif-containing GATA factor, and histone H4, as multicopy suppressors of cnp1-1, an S. pombe CENP-A mutant. While depletion of Ams2 results in the reduction of CENP-A binding to the centromere and chromosome missegregation, increasing its dosage restores association of a CENP-A mutant protein with centromeres. Conversely, overexpression of CENP-A or histone H4 suppresses an ams2 disruptant. The intracellular amount of Ams2 thus affects centromeric nucleosomal constituents. Ams2 is abundant in S phase and associates with chromatin, including the central centromeres through binding to GATA-core sequences. Ams2 is thus a cell cycle-regulated GATA factor that is required for centromere function.
Collapse
Affiliation(s)
- Ee Sin Chen
- Department of Biophysics, Graduate School of Science, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
33
|
Vermaak D, Hayden HS, Henikoff S. Centromere targeting element within the histone fold domain of Cid. Mol Cell Biol 2002; 22:7553-61. [PMID: 12370302 PMCID: PMC135675 DOI: 10.1128/mcb.22.21.7553-7561.2002] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Centromeres require specialized nucleosomes; however, the mechanism of localization is unknown. Drosophila sp. centromeric nucleosomes contain the Cid H3-like protein. We have devised a strategy for identifying elements within Cid responsible for its localization to centromeres. By expressing Cid from divergent Drosophila species fused to green fluorescent protein in Drosophila melanogaster cells, we found that D. bipectinata Cid fails to localize to centromeres. Cid chimeras consisting of the D. bipectinata histone fold domain (HFD) replaced with segments from D. melanogaster identified loop I of the HFD as being critical for targeting to centromeres. Conversely, substitution of D. bipectinata loop I into D. melanogaster abolished centromeric targeting. In either case, loop I was the only segment capable of conferring targeting. Within loop I, we identified residues that are critical for targeting. Most mutations of conserved residues abolished targeting, and length reductions were deleterious. Taken together with the fact that H3 loop I makes numerous contacts with DNA and with the adaptive evolution of Cid, our results point to the importance of DNA specificity for targeting. We suggest that the process of deposition of (Cid.H4)2 tetramers allows for discriminating contacts to be made between loop I and DNA, providing the specificity needed for targeting.
Collapse
Affiliation(s)
- Danielle Vermaak
- Howard Hughes Medical Institute, Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
34
|
Meluh PB, Strunnikov AV. Beyond the ABCs of CKC and SCC. Do centromeres orchestrate sister chromatid cohesion or vice versa? EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:2300-14. [PMID: 11985612 DOI: 10.1046/j.1432-1033.2002.02886.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The centromere-kinetochore complex is a highly specialized chromatin domain that both mediates and monitors chromosome-spindle interactions responsible for accurate partitioning of sister chromatids to daughter cells. Centromeres are distinguished from adjacent chromatin by specific patterns of histone modification and the presence of a centromere-specific histone H3 variant (e.g. CENP-A). Centromere-proximal regions usually correspond to sites of avid and persistent sister chromatid cohesion mediated by the conserved cohesin complex. In budding yeast, there is a substantial body of evidence indicating centromeres direct formation and/or stabilization of centromere-proximal cohesion. In other organisms, the dependency of cohesion on centromere function is not as clear. Indeed, it appears that pericentromeric heterochromatin recruits cohesion proteins independent of centromere function. Nonetheless, aspects of centromere function are impaired in the absence of sister chromatid cohesion, suggesting the two are interdependent. Here we review the nature of centromeric chromatin, the dynamics and regulation of sister chromatid cohesion, and the relationship between the two.
Collapse
Affiliation(s)
- Pamela B Meluh
- Memorial Sloan-Kettering Cancer Center, Laboratory of Mechanism and Regulation of Mitosis, New York, NY 10021, USA.
| | | |
Collapse
|
35
|
Abstract
An unexpected new role for the chromatin assembly factor CAF-1 and the histone-regulating Hir proteins has been discovered in budding yeast. Both protein complexes are required together for building functional kinetochores.
Collapse
Affiliation(s)
- Torsten Krude
- University of Cambridge, Department of Zoology, Downing Street, CB2 3EJ, Cambridge, UK.
| |
Collapse
|
36
|
Sharp JA, Franco AA, Osley MA, Kaufman PD. Chromatin assembly factor I and Hir proteins contribute to building functional kinetochores in S. cerevisiae. Genes Dev 2002; 16:85-100. [PMID: 11782447 PMCID: PMC155315 DOI: 10.1101/gad.925302] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Budding yeast centromeres are comprised of approximately 125-bp DNA sequences that direct formation of the kinetochore, a specialized chromatin structure that mediates spindle attachment to chromosomes. We report here a novel role for the histone deposition complex chromatin assembly factor I (CAF-I) in building centromeric chromatin. The contribution of CAF-I to kinetochore function overlaps that of the Hir proteins, which have also been implicated in nucleosome formation and heterochromatic gene silencing. cacDelta hirDelta double mutant cells lacking both CAF-I and Hir proteins are delayed in anaphase entry in a spindle assembly checkpoint-dependent manner. Further, cacDelta and hirDelta deletions together cause increased rates of chromosome missegregation, genetic synergies with mutations in kinetochore protein genes, and alterations in centromeric chromatin structure. Finally, CAF-I subunits and Hir1 are enriched at centromeres, indicating that these proteins make a direct contribution to centromeric chromatin structures.
Collapse
Affiliation(s)
- Judith A Sharp
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
37
|
Van Hooser AA, Ouspenski II, Gregson HC, Starr DA, Yen TJ, Goldberg ML, Yokomori K, Earnshaw WC, Sullivan KF, Brinkley BR. Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci 2001; 114:3529-42. [PMID: 11682612 DOI: 10.1242/jcs.114.19.3529] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms that specify precisely where mammalian kinetochores form within arrays of centromeric heterochromatin remain largely unknown. Localization of CENP-A exclusively beneath kinetochore plates suggests that this distinctive histone might direct kinetochore formation by altering the structure of heterochromatin within a sub-region of the centromere. To test this hypothesis, we experimentally mistargeted CENP-A to non-centromeric regions of chromatin and determined whether other centromere-kinetochore components were recruited. CENP-A-containing non-centromeric chromatin assembles a subset of centromere-kinetochore components, including CENP-C, hSMC1, and HZwint-1 by a mechanism that requires the unique CENP-A N-terminal tail. The sequence-specific DNA-binding protein CENP-B and the microtubule-associated proteins CENP-E and HZW10 were not recruited, and neocentromeric activity was not detected. Experimental mistargeting of CENP-A to inactive centromeres or to acentric double-minute chromosomes was also not sufficient to assemble complete kinetochore activity. The recruitment of centromere-kinetochore proteins to chromatin appears to be a unique function of CENP-A, as the mistargeting of other components was not sufficient for assembly of the same complex. Our results indicate at least two distinct steps in kinetochore assembly: (1) precise targeting of CENP-A, which is sufficient to assemble components of a centromere-prekinetochore scaffold; and (2) targeting of kinetochore microtubule-associated proteins by an additional mechanism present only at active centromeres.
Collapse
Affiliation(s)
- A A Van Hooser
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Centromeres provide a distinctive mechanical function for the chromosomes as the site of kinetochore assembly and force generation in mitosis and meiosis. Recent studies show that a unique form of chromatin, based on the histone-H3-like protein CENP-A and homologues, provides a conserved foundation for this mechanical chromatin domain. CENP-A plays a role in templating kinetochore assembly and may be a central element in the epigenetic maintenance of centromere identity. Cohesion at the centromere, intimately linked to kinetochore assembly, is required for integrating spindle forces exerted across the centromere and for establishing the bipolar geometry of sister kinetochores.
Collapse
Affiliation(s)
- K F Sullivan
- Department of Cell Biology, The Scripps Research Institute, La Jolla, California 92037, USA.
| |
Collapse
|
39
|
Dobie KW, Kennedy CD, Velasco VM, McGrath TL, Weko J, Patterson RW, Karpen GH. Identification of chromosome inheritance modifiers in Drosophila melanogaster. Genetics 2001; 157:1623-37. [PMID: 11290718 PMCID: PMC1461595 DOI: 10.1093/genetics/157.4.1623] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Faithful chromosome inheritance is a fundamental biological activity and errors contribute to birth defects and cancer progression. We have performed a P-element screen in Drosophila melanogaster with the aim of identifying novel candidate genes involved in inheritance. We used a "sensitized" minichromosome substrate (J21A) to screen approximately 3,000 new P-element lines for dominant effects on chromosome inheritance and recovered 78 Sensitized chromosome inheritance modifiers (Scim). Of these, 69 decreased minichromosome inheritance while 9 increased minichromosome inheritance. Fourteen mutations are lethal or semilethal when homozygous and all exhibit dramatic mitotic defects. Inverse PCR combined with genomic analyses identified P insertions within or close to genes with previously described inheritance functions, including wings apart-like (wapl), centrosomin (cnn), and pavarotti (pav). Further, lethal insertions in replication factor complex 4 (rfc4) and GTPase-activating protein 1 (Gap1) exhibit specific mitotic chromosome defects, discovering previously unknown roles for these proteins in chromosome inheritance. The majority of the lines represent mutations in previously uncharacterized loci, many of which have human homologs, and we anticipate that this collection will provide a rich source of mutations in new genes required for chromosome inheritance in metazoans.
Collapse
Affiliation(s)
- K W Dobie
- Molecular Biology and Virology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Keith KC, Fitzgerald-Hayes M. CSE4 genetically interacts with the Saccharomyces cerevisiae centromere DNA elements CDE I and CDE II but not CDE III. Implications for the path of the centromere dna around a cse4p variant nucleosome. Genetics 2000; 156:973-81. [PMID: 11063678 PMCID: PMC1461345 DOI: 10.1093/genetics/156.3.973] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Each Saccharomyces cerevisiae chromosome contains a single centromere composed of three conserved DNA elements, CDE I, II, and III. The histone H3 variant, Cse4p, is an essential component of the S. cerevisiae centromere and is thought to replace H3 in specialized nucleosomes at the yeast centromere. To investigate the genetic interactions between Cse4p and centromere DNA, we measured the chromosome loss rates exhibited by cse4 cen3 double-mutant cells that express mutant Cse4 proteins and carry chromosomes containing mutant centromere DNA (cen3). When compared to loss rates for cells carrying the same cen3 DNA mutants but expressing wild-type Cse4p, we found that mutations throughout the Cse4p histone-fold domain caused surprisingly large increases in the loss of chromosomes carrying CDE I or CDE II mutant centromeres, but had no effect on chromosomes with CDE III mutant centromeres. Our genetic evidence is consistent with direct interactions between Cse4p and the CDE I-CDE II region of the centromere DNA. On the basis of these and other results from genetic, biochemical, and structural studies, we propose a model that best describes the path of the centromere DNA around a specialized Cse4p-nucleosome.
Collapse
Affiliation(s)
- K C Keith
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
41
|
Chen Y, Baker RE, Keith KC, Harris K, Stoler S, Fitzgerald-Hayes M. The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain. Mol Cell Biol 2000; 20:7037-48. [PMID: 10958698 PMCID: PMC88778 DOI: 10.1128/mcb.20.18.7037-7048.2000] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cse4p is an evolutionarily conserved histone H3-like protein that is thought to replace H3 in a specialized nucleosome at the yeast (Saccharomyces cerevisiae) centromere. All known yeast, worm, fly, and human centromere H3-like proteins have highly conserved C-terminal histone fold domains (HFD) but very different N termini. We have carried out a comprehensive and systematic mutagenesis of the Cse4p N terminus to analyze its function. Surprisingly, only a 33-amino-acid domain within the 130-amino-acid-long N terminus is required for Cse4p N-terminal function. The spacing of the essential N-terminal domain (END) relative to the HFD can be changed significantly without an apparent effect on Cse4p function. The END appears to be important for interactions between Cse4p and known kinetochore components, including the Ctf19p/Mcm21p/Okp1p complex. Genetic and biochemical evidence shows that Cse4p proteins interact with each other in vivo and that nonfunctional cse4 END and HFD mutant proteins can form functional mixed complexes. These results support different roles for the Cse4p N terminus and the HFD in centromere function and are consistent with the proposed Cse4p nucleosome model. The structure-function characteristics of the Cse4p N terminus are relevant to understanding how other H3-like proteins, such as the human homolog CENP-A, function in kinetochore assembly and chromosome segregation.
Collapse
Affiliation(s)
- Y Chen
- Department of Biochemistry and Molecular Biology, University of Massachusetts at Amherst, 01003, USA
| | | | | | | | | | | |
Collapse
|
42
|
Glowczewski L, Yang P, Kalashnikova T, Santisteban MS, Smith MM. Histone-histone interactions and centromere function. Mol Cell Biol 2000; 20:5700-11. [PMID: 10891506 PMCID: PMC86044 DOI: 10.1128/mcb.20.15.5700-5711.2000] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cse4p is a structural component of the core centromere of Saccharomyces cerevisiae and is a member of the conserved CENP-A family of specialized histone H3 variants. The histone H4 allele hhf1-20 confers defects in core centromere chromatin structure and mitotic chromosome transmission. We have proposed that Cse4p and histone H4 interact through their respective histone fold domains to assemble a nucleosome-like structure at centromeric DNA. To test this model, we targeted random mutations to the Cse4p histone fold domain and isolated three temperature-sensitive cse4 alleles in an unbiased genetic screen. Two of the cse4 alleles contain mutations at the Cse4p-H4 interface. One of these requires two widely separated mutations demonstrating long-range cooperative interactions in the structure. The third cse4 allele is mutated at its helix 2-helix 3 interface, a region required for homotypic H3 fold dimerization. Overexpression of wild-type Cse4p and histone H4 confer reciprocal allele-specific suppression of cse4 and hhf1 mutations, providing strong evidence for Cse4p-H4 protein interaction. Overexpression of histone H3 is dosage lethal in cse4 mutants, suggesting that histone H3 competes with Cse4p for histone H4 binding. However, the relative resistance of the Cse4p-H4 pathway to H3 interference argues that centromere chromatin assembly must be highly regulated.
Collapse
Affiliation(s)
- L Glowczewski
- Department of Microbiology and Cancer Center, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
43
|
Duronio RJ. The Eukaryotic Nucleus, 9-13 September 1999, Coolfont Conference Center, Berkeley Springs, WV, USA. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1471:R1-R14. [PMID: 10967425 DOI: 10.1016/s0304-419x(00)00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- R J Duronio
- Department of Biology, Lineberger Comprehensive Cancer Center, Program in Molecular Biology and Biotechnology, and Curriculum in Genetics and Molecular Biology, University of North Carolina, 27599, Chapel Hill, NC, USA.
| |
Collapse
|
44
|
Abstract
On monocentric chromosomes the centromere is the chromosomal site at which the kinetochore complex is assembled. This complex mediates the attachment and movement of chromosomes along spindle microtubules. The centromere is usually the last site to retain cohesion between sister centromeres. The location of the main sensor for defective spindle assembly at the kinetochore allows the release of this cohesion, and thus progression through mitosis, to be held in check until key events have been completed. The intricate nature of the centromere-kinetochore complexes and the events they co-ordinate and react to is presently being dissected by studies in several organisms. In particular, several new kinetochore proteins have been identified in many organisms over the last year.
Collapse
Affiliation(s)
- A L Pidoux
- Human Genetics Unit, Medical Research Council, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | | |
Collapse
|
45
|
Abstract
Histones are structural and functional components of the eukaryotic chromosome, and their function is essential for normal cell cycle progression. In this work, we describe the characterization of two Saccharomyces cerevisiae cold-sensitive histone H2A mutants. Both mutants contain single amino acid replacements of residues predicted to be on the surface of the nucleosome and in close contact with DNA. We show that these H2A mutations cause an increase-in-ploidy phenotype, an increased rate of chromosome loss, and a defect in traversing the G(2)-M phase of the cell cycle. Moreover, these H2A mutations show genetic interactions with mutations in genes encoding kinetochore components. Finally, chromatin analysis of these H2A mutants has revealed an altered centromeric chromatin structure. Taken together, these results strongly suggest that histone H2A is required for proper centromere-kinetochore function during chromosome segregation.
Collapse
Affiliation(s)
- I Pinto
- Department of Genetics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | |
Collapse
|
46
|
Abstract
Site-specific mutagenesis of the hmfB gene cloned from the archaeon Methanothermus fervidus, followed by expression in Escherichia coli, has been used to generate approximately 90 recombinant (r) variants of the archaeal histone HMfB. The abilities of these variants to form stable archaeal nucleosome-containing complexes with linear pBR322 DNA, and with an 89 bp restriction fragment of this DNA have been determined. Variants that failed to form such complexes, based on negative gel-shift assays, had substitutions at the N terminus or within the alpha1, L1 and L2 regions of the rHMfB histone fold, at sites predicted to be homologous to eucaryal histone fold residues that contact the DNA in the eucaryal nucleosome. Variants that failed to give gel shifts were further assayed for their abilities to facilitate ligase-catalyzed circularization of a linear 88 bp DNA molecule, and to reduce the ellipticity of a DNA solution at 275 nm (theta(275)). Consistent with cooperative but independent sites of DNA binding, a combination of three residue substitutions, one each in alpha1, L1 and L2, was required to generate a rHMfB variant with no detectable DNA binding based on gel shift, circularization and theta(275) reduction assays.
Collapse
Affiliation(s)
- D J Soares
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
47
|
Keith KC, Baker RE, Chen Y, Harris K, Stoler S, Fitzgerald-Hayes M. Analysis of primary structural determinants that distinguish the centromere-specific function of histone variant Cse4p from histone H3. Mol Cell Biol 1999; 19:6130-9. [PMID: 10454560 PMCID: PMC84538 DOI: 10.1128/mcb.19.9.6130] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cse4p is a variant of histone H3 that has an essential role in chromosome segregation and centromere chromatin structure in budding yeast. Cse4p has a unique 135-amino-acid N terminus and a C-terminal histone-fold domain that is more than 60% identical to histone H3 and the mammalian centromere protein CENP-A. Cse4p and CENP-A have biochemical properties similar to H3 and probably replace H3 in centromere-specific nucleosomes in yeasts and mammals, respectively. In order to identify regions of Cse4p that distinguish it from H3 and confer centromere function, a systematic site-directed mutational analysis was performed. Nested deletions of the Cse4p N terminus showed that this region of the protein contains at least one essential domain. The C-terminal histone-fold domain of Cse4p was analyzed by changing Cse4p amino acids that differ between Cse4p and H3 to the analogous H3 residues. Extensive substitution of contiguous Cse4p residues with H3 counterparts resulted in cell lethality. However, all large lethal substitution alleles could be subdivided into smaller viable alleles, many of which caused elevated rates of mitotic chromosome loss. The results indicate that residues critical for wild-type Cse4p function and high-fidelity chromosome transmission are distributed across the entire histone-fold domain. Our findings are discussed in the context of the known structure of H3 within the nucleosome and compared with previous results reported for CENP-A.
Collapse
Affiliation(s)
- K C Keith
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts at Amherst, Amherst, Massachusetts 01003, USA
| | | | | | | | | | | |
Collapse
|
48
|
Harata M, Oma Y, Mizuno S, Jiang YW, Stillman DJ, Wintersberger U. The nuclear actin-related protein of Saccharomyces cerevisiae, Act3p/Arp4, interacts with core histones. Mol Biol Cell 1999; 10:2595-605. [PMID: 10436015 PMCID: PMC25491 DOI: 10.1091/mbc.10.8.2595] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Act3p/Arp4, an essential actin-related protein of Saccharomyces cerevisiae located within the nucleus, is, according to genetic data, involved in transcriptional regulation. In addition to the basal core structure of the actin family members, which is responsible for ATPase activity, Act3p possesses two insertions, insertions I and II, the latter of which is predicted to form a loop-like structure protruding from beyond the surface of the molecule. Because Act3p is a constituent of chromatin but itself does not bind to DNA, we hypothesized that insertion II might be responsible for an Act3p-specific function through its interaction with some other chromatin protein. Far Western blot and two-hybrid analyses revealed the ability of insertion II to bind to each of the core histones, although with somewhat different affinities. Together with our finding of coimmunoprecipitation of Act3p with histone H2A, this suggests the in vivo existence of a protein complex required for correct expression of particular genes. We also show that a conditional act3 mutation affects chromatin structure of an episomal DNA molecule, indicating that the putative Act3p complex may be involved in the establishment, remodeling, or maintenance of chromatin structures.
Collapse
Affiliation(s)
- M Harata
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Division of Life Science, Graduate School of Agricultural Science, Tohoku University, Sendai 981-8555, Japan.
| | | | | | | | | | | |
Collapse
|
49
|
Dudley AM, Gansheroff LJ, Winston F. Specific components of the SAGA complex are required for Gcn4- and Gcr1-mediated activation of the his4-912delta promoter in Saccharomyces cerevisiae. Genetics 1999; 151:1365-78. [PMID: 10101163 PMCID: PMC1460567 DOI: 10.1093/genetics/151.4.1365] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations selected as suppressors of Ty or solo delta insertion mutations in Saccharomyces cerevisiae have identified several genes, SPT3, SPT7, SPT8, and SPT20, that encode components of the SAGA complex. However, the mechanism by which SAGA activates transcription of specific RNA polymerase II-dependent genes is unknown. We have conducted a fine-structure mutagenesis of one widely used SAGA-dependent promoter, the delta element of his4-912delta, to identify sequence elements important for its promoter activity. Our analysis has characterized three delta regions necessary for full promoter activity and accurate start site selection: an upstream activating sequence, a TATA region, and an initiator region. In addition, we have shown that factors present at the adjacent UASHIS4 (Gcn4, Bas1, and Pho2) also activate the delta promoter in his4-912delta. Our results suggest a model in which the delta promoter in his4-912delta is primarily activated by two factors: Gcr1 acting at the UASdelta and Gcn4 acting at the UASHIS4. Finally, we tested whether activation by either of these factors is dependent on components of the SAGA complex. Our results demonstrate that Spt3 and Spt20 are required for full delta promoter activity, but that Gcn5, another member of SAGA, is not required. Spt3 appears to be partially required for activation of his4-912delta by both Gcr1 and Gcn4. Thus, our work suggests that SAGA exerts a large effect on delta promoter activity through a combination of smaller effects on multiple factors.
Collapse
Affiliation(s)
- A M Dudley
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
50
|
Skibbens RV, Hieter P. Kinetochores and the checkpoint mechanism that monitors for defects in the chromosome segregation machinery. Annu Rev Genet 1999; 32:307-37. [PMID: 9928483 DOI: 10.1146/annurev.genet.32.1.307] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Whether we consider the division of the simplest unicellular organisms into two daughter cells or the generation of haploid gametes by the most complex eukaryotes, no two processes secure the continuance of life more than the proper replication and segregation of the genetic material. The cell cycle, marked in part by the periodic rise and fall of cyclin-dependent kinase (CDK) activities, is the means by which these two processes are separated. DNA damage and mistakes in chromosome segregation are costly, so nature has further devised elaborate checkpoint mechanisms that halt cell cycle progression, allowing time for repairs or corrections. In this article, we review the mitotic checkpoint mechanism that responds to defects in the chromosome segregation machinery and arrests cells in mitosis prior to anaphase onset. At opposite ends of this pathway are the kinetochore, where many checkpoint proteins reside, and the anaphase-promoting complex (APC), the metaphase-to-interphase transition regulator. Throughout this review we focus on budding yeast but reference parallel processes found in other organisms.
Collapse
Affiliation(s)
- R V Skibbens
- Carnegie Institute of Washington, Department of Embryology, Baltimore, Maryland 21210, USA.
| | | |
Collapse
|