1
|
Zheng C, Zhang C, He Y, Lin S, Zhu Z, Wang H, Chen G. Cbfβ: A key regulator in skeletal stem cell differentiation, bone development, and disease. FASEB J 2025; 39:e70399. [PMID: 39996474 DOI: 10.1096/fj.202500030r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/06/2025] [Indexed: 02/26/2025]
Abstract
The skeletal system comprises closely related yet functionally distinct bone and cartilage tissues, regulated by a complex network of transcriptional factors and signaling molecules. Among these, core-binding factor subunit beta (Cbfβ) emerges as a critical co-transcriptional factor that stabilizes Runx proteins, playing indispensable roles in skeletal development and homeostasis. Emerging evidence from genetic mouse models has highlighted the essential role of Cbfβ in directing the lineage commitment of mesenchymal stem cells (MSCs) and their differentiation into osteoblasts and chondrocytes. Notably, Cbfβ deficiency is strongly associated with severe skeletal dysplasia, affecting both endochondral and intramembranous ossification during embryonic and postnatal development. In this review, we synthesize recent advancements in understanding the structural and molecular functions of Cbfβ, with a particular focus on its interactions with key signaling pathways, including BMP/TGF-β, Wnt/β-catenin, Hippo/YAP, and IHH/PTHrP. These pathways converge on the Cbfβ/RUNX2 complex, which orchestrates a gene expression program essential for osteogenesis, bone formation, and cartilage development. The integration of these signaling networks ensures the precise regulation of skeletal development, remodeling, and repair. Furthermore, the successful local delivery of Cbfβ to address bone abnormalities underscores its potential as a novel therapeutic target for skeletal disorders such as cleidocranial dysplasia, osteoarthritis, and bone metastases. By elucidating the molecular mechanisms underlying Cbfβ function and its interactions with key signaling pathways, these insights not only advance our understanding of skeletal biology but also offer promising avenues for clinical intervention, ultimately improving outcomes for patients with skeletal disorders.
Collapse
Affiliation(s)
- Chenggong Zheng
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenyang Zhang
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yiliang He
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Sisi Lin
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhenya Zhu
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Haidong Wang
- Department of Orthopedics, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- Department of Biopharmaceutics, Zhejiang Provincial Engineering Research Center of New Technologies and Applications for Targeted Therapy of Major Diseases, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
2
|
Wang Q, Xie X, Zhang D, Mao F, Wang S, Liao Y. Saxagliptin enhances osteogenic differentiation in MC3T3-E1 cells, dependent on the activation of AMP-activated protein kinase α (AMPKα)/runt-related transcription factor-2 (Runx-2). Bioengineered 2022; 13:431-439. [PMID: 35258398 PMCID: PMC8805826 DOI: 10.1080/21655979.2021.2008667] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/16/2021] [Indexed: 12/29/2022] Open
Abstract
Osteoporosis is a metabolic bone disease commonly observed in the elderly, and its pathogenesis is associated with declined osteogenic differentiation. Osteogenic differentiation could be facilitated by the activation of the AMP-activated protein kinase (AMPK) pathway. Saxagliptin, an anti-diabetic agent with inhibitory effects against dipeptidyl peptidase 4 (DPP-4), has been recently reported to induce the activation of the AMPK pathway. The present study proposes to explore the function and mechanism of Saxagliptin in osteogenic differentiation. Osteogenic differentiation induction medium (ODIM) was utilized to induce osteogenic differentiation in MC3T3-E1 cells. Significantly increased mineral nodule formation, elevated alkaline phosphatase (ALP) activity, and upregulated expression of osteogenic marker genes activating transcription factor-4 (ATF-4), osteopontin (OPN), and type I collagen (Col1) were observed in ODIM-cultured MC3T3-E1 cells, all of which were further enhanced by the introduction of Saxagliptin. The elevated expression level of runt-related transcription factor-2 (Runx-2), an important transcriptional factor involved in the progression of osteogenic differentiation, in ODIM-cultured MC3T3-E1 cells was further promoted by Saxagliptin. The AMPK pathway in ODIM-cultured MC3T3-E1 cells was significantly activated by Saxagliptin, and the functions of Saxagliptin in promoting osteogenic differentiation were abolished by compound C, the inhibitor of the AMPK pathway. Conclusively, Saxagliptin enhanced osteogenic differentiation in MC3T3-E1 cells, dependent on the activation of AMPKα/RUNX-2.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Orthopaedics, The 5th People’s Hospital of Shanghai Fudan University, Shanghai, China
| | - Xiaoxing Xie
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Dehua Zhang
- Department of Orthopaedics, The Central Hospital of Karamay, Xinjiang, Karamay, Xinjiang, China
| | - Feng Mao
- Department of Orthopaedics, The Central Hospital of Karamay, Xinjiang, Karamay, Xinjiang, China
| | - Shaobo Wang
- Department of Orthopaedics, The Central Hospital of Karamay, Xinjiang, Karamay, Xinjiang, China
| | - Yi Liao
- Department of Orthopaedics, The Central Hospital of Karamay, Xinjiang, Karamay, Xinjiang, China
| |
Collapse
|
3
|
Zhu Y, Ortiz A, Costa M. Wrong place, wrong time: Runt-related transcription factor 2/SATB2 pathway in bone development and carcinogenesis. J Carcinog 2021; 20:2. [PMID: 34211338 PMCID: PMC8202446 DOI: 10.4103/jcar.jcar_22_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 12/03/2020] [Accepted: 01/06/2021] [Indexed: 12/23/2022] Open
Abstract
Upregulation or aberrant expression of genes such as special AT-rich sequence-binding protein 2 (SATB2) is necessary for normal cell differentiation and tissue development and is often associated with carcinogenesis and metastatic progression. SATB2 is a critical transcription factor for biological development of various specialized cell lineages, such as osteoblasts and neurons. The dysregulation of SATB2 expression has recently been associated with various types of cancer, while the mechanisms and pathways by which it mediates tumorigenesis are not well elucidated. Runt-related transcription factor 2 (RUNX2) is a master regulator for osteogenesis, and it shares common pathways with SATB2 to regulate bone development. Interestingly, these two transcription factors co-occur in several epithelial and mesenchymal cancers and are linked by multiple cancer-related proteins and microRNAs. This review examines the interactions between RUNX2 and SATB2 in a network necessary for normal bone development and the circumstances in which the expression of RUNX2 and SATB2 in the wrong place and time leads to carcinogenesis.
Collapse
Affiliation(s)
- Yusha Zhu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Angelica Ortiz
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Holmes TD, Pandey RV, Helm EY, Schlums H, Han H, Campbell TM, Drashansky TT, Chiang S, Wu CY, Tao C, Shoukier M, Tolosa E, Von Hardenberg S, Sun M, Klemann C, Marsh RA, Lau CM, Lin Y, Sun JC, Månsson R, Cichocki F, Avram D, Bryceson YT. The transcription factor Bcl11b promotes both canonical and adaptive NK cell differentiation. Sci Immunol 2021; 6:6/57/eabc9801. [PMID: 33712472 DOI: 10.1126/sciimmunol.abc9801] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Epigenetic landscapes can provide insight into regulation of gene expression and cellular diversity. Here, we examined the transcriptional and epigenetic profiles of seven human blood natural killer (NK) cell populations, including adaptive NK cells. The BCL11B gene, encoding a transcription factor (TF) essential for T cell development and function, was the most extensively regulated, with expression increasing throughout NK cell differentiation. Several Bcl11b-regulated genes associated with T cell signaling were specifically expressed in adaptive NK cell subsets. Regulatory networks revealed reciprocal regulation at distinct stages of NK cell differentiation, with Bcl11b repressing RUNX2 and ZBTB16 in canonical and adaptive NK cells, respectively. A critical role for Bcl11b in driving NK cell differentiation was corroborated in BCL11B-mutated patients and by ectopic Bcl11b expression. Moreover, Bcl11b was required for adaptive NK cell responses in a murine cytomegalovirus model, supporting expansion of these cells. Together, we define the TF regulatory circuitry of human NK cells and uncover a critical role for Bcl11b in promoting NK cell differentiation and function.
Collapse
Affiliation(s)
- Tim D Holmes
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway. .,Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Ram Vinay Pandey
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Eric Y Helm
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Heinrich Schlums
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Hongya Han
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Tessa M Campbell
- Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Theodore T Drashansky
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Samuel Chiang
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Cheng-Ying Wu
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Christine Tao
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | - Eva Tolosa
- Department of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Miao Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Christian Klemann
- Department of Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Rebecca A Marsh
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.,Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Colleen M Lau
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yin Lin
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75246, USA
| | - Joseph C Sun
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Robert Månsson
- Centre for Hematology and Regenerative Medicine, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| | - Frank Cichocki
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Cancer Center, Minneapolis, MN 55455, USA
| | - Dorina Avram
- Department of Anatomy and Cell Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA.,Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yenan T Bryceson
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, N-5021 Bergen, Norway. .,Centre for Hematology and Regenerative Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, S-14186 Stockholm, Sweden
| |
Collapse
|
5
|
Chen Y, Zhao X, Wu H. Transcriptional Programming in Arteriosclerotic Disease: A Multifaceted Function of the Runx2 (Runt-Related Transcription Factor 2). Arterioscler Thromb Vasc Biol 2021; 41:20-34. [PMID: 33115268 PMCID: PMC7770073 DOI: 10.1161/atvbaha.120.313791] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Despite successful therapeutic strategies in the prevention and treatment of arteriosclerosis, the cardiovascular complications remain a major clinical and societal issue worldwide. Increased vascular calcification promotes arterial stiffness and accelerates cardiovascular morbidity and mortality. Upregulation of the Runx2 (Runt-related transcription factor 2), an essential osteogenic transcription factor for bone formation, in the cardiovascular system has emerged as an important regulator for adverse cellular events that drive cardiovascular pathology. This review discusses the regulatory mechanisms that are critical for Runx2 expression and function and highlights the dynamic and complex cross talks of a wide variety of posttranslational modifications, including phosphorylation, acetylation, ubiquitination, and O-linked β-N-acetylglucosamine modification, in regulating Runx2 stability, cellular localization, and osteogenic transcriptional activity. How the activation of an array of signaling cascades by circulating and local microenvironmental factors upregulates Runx2 in vascular cells and promotes Runx2-mediated osteogenic transdifferentiation of vascular smooth muscle cells and expression of inflammatory cytokines that accelerate macrophage infiltration and vascular osteoclast formation is summarized. Furthermore, the increasing appreciation of a new role of Runx2 upregulation in promoting vascular smooth muscle cell phenotypic switch, and Runx2 modulated by O-linked β-N-acetylglucosamine modification and Runx2-dependent repression of smooth muscle cell-specific gene expression are discussed. Further exploring the regulation of this key osteogenic transcription factor and its new perspectives in the vasculature will provide novel insights into the transcriptional regulation of vascular smooth muscle cell phenotype switch, reprograming, and vascular inflammation that promote the pathogenesis of arteriosclerosis.
Collapse
Affiliation(s)
- Yabing Chen
- Department of Pathology, University of Alabama at Birmingham
- Research Department, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama 35294
| | - Xinyang Zhao
- Department of Biochemistry, University of Alabama at Birmingham
| | - Hui Wu
- Department of Integrative Biomedical & Diagnostic Sciences, Oregon Health and Science University School of Dentistry, Portland, Oregon 97239
| |
Collapse
|
6
|
Hong D, Fritz AJ, Gordon JA, Tye CE, Boyd JR, Tracy KM, Frietze SE, Carr FE, Nickerson JA, Van Wijnen AJ, Imbalzano AN, Zaidi SK, Lian JB, Stein JL, Stein GS. RUNX1-dependent mechanisms in biological control and dysregulation in cancer. J Cell Physiol 2019; 234:8597-8609. [PMID: 30515788 PMCID: PMC6395522 DOI: 10.1002/jcp.27841] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/12/2018] [Indexed: 01/02/2023]
Abstract
The RUNX1 transcription factor has recently been shown to be obligatory for normal development. RUNX1 controls the expression of genes essential for proper development in many cell lineages and tissues including blood, bone, cartilage, hair follicles, and mammary glands. Compromised RUNX1 regulation is associated with many cancers. In this review, we highlight evidence for RUNX1 control in both invertebrate and mammalian development and recent novel findings of perturbed RUNX1 control in breast cancer that has implications for other solid tumors. As RUNX1 is essential for definitive hematopoiesis, RUNX1 mutations in hematopoietic lineage cells have been implicated in the etiology of several leukemias. Studies of solid tumors have revealed a context-dependent function for RUNX1 either as an oncogene or a tumor suppressor. These RUNX1 functions have been reported for breast, prostate, lung, and skin cancers that are related to cancer subtypes and different stages of tumor development. Growing evidence suggests that RUNX1 suppresses aggressiveness in most breast cancer subtypes particularly in the early stage of tumorigenesis. Several studies have identified RUNX1 suppression of the breast cancer epithelial-to-mesenchymal transition. Most recently, RUNX1 repression of cancer stem cells and tumorsphere formation was reported for breast cancer. It is anticipated that these new discoveries of the context-dependent diversity of RUNX1 functions will lead to innovative therapeutic strategies for the intervention of cancer and other abnormalities of normal tissues.
Collapse
Affiliation(s)
- Deli Hong
- Dana Farber Cancer Institute, Boston, Massachusetts
| | - Andrew J Fritz
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jonathan A Gordon
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Coralee E Tye
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Joseph R Boyd
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Kirsten M Tracy
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Seth E Frietze
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E. Carr
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Andre J. Van Wijnen
- Departments of Orthopedic Surgery and Biochemistry & Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Anthony N. Imbalzano
- Graduate Program in Cell Biology and Department of Biochemistry and Molecular Pharmacology, UMass Medical School, Worcester, Massachusetts
| | - Sayyed K. Zaidi
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Jane B. Lian
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Janet L. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| | - Gary S. Stein
- Department of Biochemistry and University of Vermont Cancer Center, University of Vermont, Burlington, Vermont
| |
Collapse
|
7
|
van der Kouwe E, Staber PB. RUNX1-ETO: Attacking the Epigenome for Genomic Instable Leukemia. Int J Mol Sci 2019; 20:E350. [PMID: 30654457 PMCID: PMC6358732 DOI: 10.3390/ijms20020350] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 12/29/2022] Open
Abstract
Oncogenic fusion protein RUNX1-ETO is the product of the t(8;21) translocation, responsible for the most common cytogenetic subtype of acute myeloid leukemia. RUNX1, a critical transcription factor in hematopoietic development, is fused with almost the entire ETO sequence with the ability to recruit a wide range of repressors. Past efforts in providing a comprehensive picture of the genome-wide localization and the target genes of RUNX1-ETO have been inconclusive in understanding the underlying mechanism by which it deregulates native RUNX1. In this review; we dissect the current data on the epigenetic impact of RUNX1 and RUNX1-ETO. Both share similarities however, in recent years, research focused on epigenetic factors to explain their differences. RUNX1-ETO impairs DNA repair mechanisms which compromises genomic stability and favors a mutator phenotype. Among an increasing pool of mutated factors, regulators of DNA methylation are frequently found in t(8;21) AML. Together with the alteration of both, histone markers and distal enhancer regulation, RUNX1-ETO might specifically disrupt normal chromatin structure. Epigenetic studies on the fusion protein uncovered new mechanisms contributing to leukemogenesis and hopefully will translate into clinical applications.
Collapse
Affiliation(s)
- Emiel van der Kouwe
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Philipp Bernhard Staber
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
8
|
Tenno M, Kojo S, Lawir DF, Hess I, Shiroguchi K, Ebihara T, Endo TA, Muroi S, Satoh R, Kawamoto H, Boehm T, Taniuchi I. Cbfβ2 controls differentiation of and confers homing capacity to prethymic progenitors. J Exp Med 2018; 215:595-610. [PMID: 29343500 PMCID: PMC5789415 DOI: 10.1084/jem.20171221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/28/2017] [Accepted: 12/13/2017] [Indexed: 01/05/2023] Open
Abstract
Tenno et al. show that an evolutionarily conserved alternative splicing event in the Cbfb gene generates Cbfβ2, which forms a functionally distinct transcription factor complex underlying the differentiation of extrathymic T cell progenitors, including induction of the principal thymus-homing receptor, Ccr9. Multipotent hematopoietic progenitors must acquire thymus-homing capacity to initiate T lymphocyte development. Despite its importance, the transcriptional program underlying this process remains elusive. Cbfβ forms transcription factor complexes with Runx proteins, and here we show that Cbfβ2, encoded by an RNA splice variant of the Cbfb gene, is essential for extrathymic differentiation of T cell progenitors. Furthermore, Cbfβ2 endows extrathymic progenitors with thymus-homing capacity by inducing expression of the principal thymus-homing receptor, Ccr9. This occurs via direct binding of Cbfβ2 to cell type–specific enhancers, as is observed in Rorγt induction during differentiation of lymphoid tissue inducer cells by activation of an intronic enhancer. As in mice, an alternative splicing event in zebrafish generates a Cbfβ2-specific mRNA, important for ccr9 expression. Thus, despite phylogenetically and ontogenetically variable sites of origin of T cell progenitors, their robust thymus-homing capacity is ensured by an evolutionarily conserved mechanism emerging from functional diversification of Runx transcription factor complexes by acquisition of a novel splice variant.
Collapse
Affiliation(s)
- Mari Tenno
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Satoshi Kojo
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Divine-Fondzenyuy Lawir
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Isabell Hess
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Katsuyuki Shiroguchi
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan.,Laboratory for Integrative Omics, RIKEN Quantitative Biology Center, Osaka, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, Japan
| | - Takashi Ebihara
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Takaho A Endo
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Rumi Satoh
- Laboratory for Lymphocyte Development, RIKEN Center for Allergy and Immunology, Yokohama, Japan
| | - Hiroshi Kawamoto
- Laboratory for Lymphocyte Development, RIKEN Center for Allergy and Immunology, Yokohama, Japan
| | - Thomas Boehm
- Department of Developmental Immunology, Max-Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| |
Collapse
|
9
|
Abstract
Runx genes have been identified in all metazoans and considerable conservation of function observed across a wide range of phyla. Thus, insight gained from studying simple model organisms is invaluable in understanding RUNX biology in higher animals. Consequently, this chapter will focus on the Runx genes in the diploblasts, which includes sea anemones and sponges, as well as the lower triploblasts, including the sea urchin, nematode, planaria and insect. Due to the high degree of functional redundancy amongst vertebrate Runx genes, simpler model organisms with a solo Runx gene, like C. elegans, are invaluable systems in which to probe the molecular basis of RUNX function within a whole organism. Additionally, comparative analyses of Runx sequence and function allows for the development of novel evolutionary insights. Strikingly, recent data has emerged that reveals the presence of a Runx gene in a protist, demonstrating even more widespread occurrence of Runx genes than was previously thought. This review will summarize recent progress in using invertebrate organisms to investigate RUNX function during development and regeneration, highlighting emerging unifying themes.
Collapse
Affiliation(s)
- S Hughes
- Faculteit Techniek, Hogeschool van Arnhem en Nijmegen, Laan van Scheut 2, 6503 GL, Nijmegen, The Netherlands
| | - A Woollard
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
10
|
Nah GSS, Tay BH, Brenner S, Osato M, Venkatesh B. Characterization of the Runx gene family in a jawless vertebrate, the Japanese lamprey (Lethenteron japonicum). PLoS One 2014; 9:e113445. [PMID: 25405766 PMCID: PMC4236176 DOI: 10.1371/journal.pone.0113445] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 10/24/2014] [Indexed: 01/08/2023] Open
Abstract
The cyclostomes (jawless vertebrates), comprising lampreys and hagfishes, are the sister group of jawed vertebrates (gnathostomes) and are hence an important group for the study of vertebrate evolution. In mammals, three Runx genes, Runx1, Runx2 and Runx3, encode transcription factors that are essential for cell proliferation and differentiation in major developmental pathways such as haematopoiesis, skeletogenesis and neurogenesis and are frequently associated with diseases. We describe here the characterization of Runx gene family members from a cyclostome, the Japanese lamprey (Lethenteron japonicum). The Japanese lamprey contains three Runx genes, RunxA, RunxB, and RunxC. However, phylogenetic and synteny analyses suggest that they are not one-to-one orthologs of gnathostome Runx1, Runx2 and Runx3. The major protein domains and motifs found in gnathostome Runx proteins are highly conserved in the lamprey Runx proteins. Although all gnathostome Runx genes each contain two alternative promoters, P1 (distal) and P2 (proximal), only lamprey RunxB possesses the alternative promoters; lamprey RunxA and RunxC contain only P2 and P1 promoter, respectively. Furthermore, the three lamprey Runx genes give rise to fewer alternative isoforms than the three gnathostome Runx genes. The promoters of the lamprey Runx genes lack the tandem Runx-binding motifs that are highly conserved among the P1 promoters of gnathostome Runx1, Runx2 and Runx3 genes; instead these promoters contain dispersed single Runx-binding motifs. The 3'UTR of lamprey RunxB contains binding sites for miR-27 and miR-130b/301ab, which are conserved in mammalian Runx1 and Runx3, respectively. Overall, the Runx genes in lamprey seem to have experienced a different evolutionary trajectory from that of gnathostome Runx genes which are highly conserved all the way from cartilaginous fishes to mammals.
Collapse
Affiliation(s)
- Giselle Sek Suan Nah
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Boon-Hui Tay
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sydney Brenner
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Motomi Osato
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research, Singapore, Singapore
- * E-mail: (MO); (BV)
| | - Byrappa Venkatesh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- * E-mail: (MO); (BV)
| |
Collapse
|
11
|
Hultquist JF, McDougle RM, Anderson BD, Harris RS. HIV type 1 viral infectivity factor and the RUNX transcription factors interact with core binding factor β on genetically distinct surfaces. AIDS Res Hum Retroviruses 2012; 28:1543-51. [PMID: 22725134 DOI: 10.1089/aid.2012.0142] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) requires the cellular transcription factor core binding factor subunit β (CBFβ) to stabilize its viral infectivity factor (Vif) protein and neutralize the APOBEC3 restriction factors. CBFβ normally heterodimerizes with the RUNX family of transcription factors, enhancing their stability and DNA-binding affinity. To test the hypothesis that Vif may act as a RUNX mimic to bind CBFβ, we generated a series of CBFβ mutants at the RUNX/CBFβ interface and tested their ability to stabilize Vif and impact transcription at a RUNX-dependent promoter. While several CBFβ amino acid substitutions disrupted promoter activity, none of these impacted the ability of CBFβ to stabilize Vif or enhance degradation of APOBEC3G. A mutagenesis screen of CBFβ surface residues identified a single amino acid change, F68D, that disrupted Vif binding and its ability to degrade APOBEC3G. This mutant still bound RUNX and stimulated RUNX-dependent transcription. These separation-of-function mutants demonstrate that HIV-1 Vif and the RUNX transcription factors interact with cellular CBFβ on genetically distinct surfaces.
Collapse
Affiliation(s)
- Judd F. Hultquist
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota
| | - Rebecca M. McDougle
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Brett D. Anderson
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Reuben S. Harris
- Department of Biochemistry, Molecular Biology and Biophysics, Institute for Molecular Virology, Center for Genome Engineering, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
- Department of Molecular, Cellular, Developmental Biology and Genetics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
12
|
Walrad PB, Hang S, Gergen JP. Hairless is a cofactor for Runt-dependent transcriptional regulation. Mol Biol Cell 2011; 22:1364-74. [PMID: 21325629 PMCID: PMC3078061 DOI: 10.1091/mbc.e10-06-0483] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Runt is a vital transcriptional regulator in the developmental pathway responsible for segmentation in the Drosophila embryo. Runt activates or represses transcription in a manner that is dependent on both cellular context and the specific downstream target. Here we identify Hairless (H) as a Runt-interacting molecule that functions during segmentation. We find that H is important for maintenance of engrailed (en) repression as was previously demonstrated for Groucho (Gro), Rpd3, and CtBP. H also contributes to the Runt-dependent repression of sloppy-paired-1 (slp1), a role that is not shared with these other corepressors. We further find distinct roles for these different corepressors in the regulation of other Runt targets in the early Drosophila embryo. These findings, coupled with observations on the distinct functional requirements for Runt in regulating these several different targets, indicate that Runt-dependent regulation in the Drosophila blastoderm embryo relies on unique, target-gene-specific molecular interactions.
Collapse
Affiliation(s)
- Pegine B Walrad
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | |
Collapse
|
13
|
Wang CQ, Jacob B, Nah GSS, Osato M. Runx family genes, niche, and stem cell quiescence. Blood Cells Mol Dis 2010; 44:275-86. [PMID: 20144877 DOI: 10.1016/j.bcmd.2010.01.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 02/07/2023]
Abstract
In multicellular organisms, terminally differentiated cells of most tissues are short-lived and therefore require constant replenishment from rapidly dividing stem cells for homeostasis and tissue repair. For the stem cells to last throughout the lifetime of the organism, however, a small subset of stem cells, which are maintained in a hibernation-like state known as stem cell quiescence, is required. Such dormant stem cells reside in the niche and are activated into proliferation only when necessary. A multitude of factors are required for the maintenance of stem cell quiescence and niche. In particular, the Runx family genes have been implicated in stem cell quiescence in various organisms and tissues. In this review, we discuss the maintenance of stem cell quiescence in various tissues, mainly in the context of the Runx family genes, and with special focus on the hematopoietic system.
Collapse
Affiliation(s)
- Chelsia Qiuxia Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
14
|
Ito Y. RUNX genes in development and cancer: regulation of viral gene expression and the discovery of RUNX family genes. Adv Cancer Res 2008; 99:33-76. [PMID: 18037406 DOI: 10.1016/s0065-230x(07)99002-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mouse embryonal carcinoma (EC) cells, also called teratocarcinoma stem cells, are nonpermissive for polyomavirus growth, whereas differentiated derivatives of the cells are permissive. Mutant viruses capable of growing in EC cells can be isolated. They have genomic alterations within the viral enhancer, which is required for viral gene expression and DNA replication. This viral regulatory region was considered as a potential probe for mouse cell differentiation. The 24-bp-long A element within the enhancer was identified as a minimum element, which also shows a lower activity in EC cells compared with the differentiated cells. Transcription factors PEA1/AP1, PEA2/PEBP2, and PEA3/ETS were identified as A element-binding proteins. All of them are absent in EC cells and induced to be expressed when the cells are differentiated. Although PEBP2 has a weaker transactivation activity compared with other two, it is essential for the enhancer function of the A element. Purification and cDNA cloning revealed that PEBP2 has two subunits, DNA-binding alpha (PEBP2alpha) and non-DNA-binding beta (PEBP2beta). PEBP2alpha was found to be highly homologous to a Drosophila segmentation gene, runt, and a human gene AML1 that was identified as a part of the fusion gene, AML1/ETO (MTG8) generated by t(8;21) chromosome translocation associated with acute myelogenous leukemia (AML). Core-binding factor (CBF), which interacts with a murine retrovirus enhancer, was found to be identical to PEBP2. runt, PEBP2alpha and AML1 are now termed RUNX family, which are involved in cell specification during development. There are three mammalian RUNX genes, RUNX1, RUNX2, and RUNX3. RUNX1 is essential for generation of hematopoietic stem cells and is involved in human leukemia. RUNX2 is essential for skeletal development and has an oncogenic potential. RUNX3 is expressed in wider ranges of tissues and has multiple roles. Among others, RUNX3 is a major tumor suppressor of gastric and many other solid tumors.
Collapse
Affiliation(s)
- Yoshiaki Ito
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
15
|
Xia D, Zhang Y, Huang X, Sun Y, Zhang H. The C. elegans CBFbeta homolog, BRO-1, regulates the proliferation, differentiation and specification of the stem cell-like seam cell lineages. Dev Biol 2007; 309:259-72. [PMID: 17706957 DOI: 10.1016/j.ydbio.2007.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Revised: 07/11/2007] [Accepted: 07/14/2007] [Indexed: 11/22/2022]
Abstract
The RUNX/CBFbeta heterodimeric transcription factor plays an important role in regulating cell proliferation and differentiation in a variety of developmental contexts. Aberrant function of Runx and CBFbeta has been causally related to the development of various diseases, including acute myeloid leukemia, gastric cancer and cleidocranial dysplasia. The underlying mechanism of the RUNX/CBFbeta complex in regulation of cell proliferation is still poorly defined. In this study, we demonstrate that the Caenorhabditis elegans CBFbeta homolog, bro-1, is essential for the proliferation, differentiation and specification of a row of stem cell-like lineages, called seam cells. BRO-1 forms complex with the C. elegans RUNX homolog, RNT-1, and augments the DNA-binding activity of RNT-1. The RNT-1/BRO-1 complex directly interacts with the C. elegans Groucho homolog, UNC-37, whose loss of function mutations display similar defects in the proliferation of seam cells as those of bro-1 and rnt-1 mutants. Additionally, the defects in seam cell division in bro-1 mutants are substantially rescued by the inactivation of the negative regulators of the G1 to S phase cell cycle progression, including the lin-35 Rb, fzr-1 Cdh1 and cki-1 CIP homologs. Our studies indicate that the transcriptional repression activity of the RNT-1/BRO-1 complex regulates the G1 to S cell cycle progression during seam cell division.
Collapse
Affiliation(s)
- Dan Xia
- Graduate Program in Chinese Academy of Medical Sciences and Peking Union Medical College, PR China
| | | | | | | | | |
Collapse
|
16
|
Suad O, Eyal E, Blumenzweig I, Kessler N, Levanon D, Groner Y, Shakked Z. RUN-CBFβ Interaction inC. elegans: Computational Prediction and Experimental Verification. J Biomol Struct Dyn 2007; 24:343-58. [PMID: 17206850 DOI: 10.1080/07391102.2007.10507124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The Runt domain proteins are eukaryotic transcription factors that regulate major developmental pathways. All members of this family contain a highly-conserved sequence-specific DNA binding domain: the Runt domain (RD). Structural and biochemical studies have shown that the Runt domain undergoes a conformational transition upon binding to DNA and that this process is regulated by an unrelated partner protein CBFbeta that enhances the DNA binding affinity of RD. Most of the reported studies on the Runt domain transcription factors were performed on proteins from mammals and Drosophila whereas very little has been known about the C. elegans RD protein, RUN, which provides the simplest model system for understanding the function of this class of transcription factors. We performed computational studies on RD domains from various species including C. elegans, Drosophila, and human, using the atom-atom contact surface area scoring method. The scoring analysis indicates that the DNA binding regulation of the C. elegans RD protein (CeRD) occurs via its interaction with a CBFbeta-like partner, as found for the human proteins, whereas a different mode of regulation may occur in the Drosophila system. Sequence, secondary structure and fold analyses of a putative CBFbeta protein identified in the C. elegans genome, CeCBFbeta, sharing a 22% identity with the human protein, predict a similar structure of this protein to that of the human CBFbeta protein. We produced the C. elegans proteins CeRD and CeCBFbeta in bacteria and confirmed their physical interaction as well as cross interactions with the corresponding human proteins. We also confirmed the structural similarity of CBFbeta and CeCBFbeta by circular dichroism analysis. The combined results suggest that a similar mechanism of regulation operates for the human and the C. elegans RD proteins despite the low sequence identity between their CBFbeta proteins and the evolutionary distance between the two systems.
Collapse
Affiliation(s)
- Oded Suad
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
17
|
Kagoshima H, Shigesada K, Kohara Y. RUNX regulates stem cell proliferation and differentiation: Insights from studies ofC. elegans. J Cell Biochem 2007; 100:1119-30. [PMID: 17265434 DOI: 10.1002/jcb.21174] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The RUNX genes encode conserved transcription factors that play vital roles in the development of various animals and human diseases. Recent studies by a few groups including ours have demonstrated that this gene family, as represented by a single ortholog designeated rnt-1, also occurs and plays intriguing roles in the simple model organism, Caenorhabditis elegans. Our genetic and molecular analyses revealed that rnt-1 is allelic to mab-2, which had previously been known to cause an abnormal development of the male tail. rnt-1 was further shown to be predominantly expressed in the stem cell-like lateral seam hypodermal cells. These cells are characterized by their abilities to undergo stem cell-like asymmetric divisions giving rise to self-renewing seam cells and various differentiated descendants of hypodermal and neuronal fates. We found that rnt-1 mutants exhibit an impaired asymmetry in the division of T cells, the posterior-most member of the seam cells. Mutant analysis indicated that rnt-1 is involved in regulating T blast cell polarity in cooperation with the Wnt signaling pathway. On the other hand, Nimmo et al. independently discovered that rnt-1 acts as a rate limiting regulator of cell proliferation in the seam cells, V1-6. In this review, we will outline these new findings and discuss their general implications in the mechanism of coordination between proliferation and differentiation of stem cells.
Collapse
Affiliation(s)
- Hiroshi Kagoshima
- Genome Biology Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.
| | | | | |
Collapse
|
18
|
Bollerot K, Romero S, Dunon D, Jaffredo T. Core binding factor in the early avian embryo: cloning of Cbfβ and combinatorial expression patterns with Runx1. Gene Expr Patterns 2005; 6:29-39. [PMID: 16033710 DOI: 10.1016/j.modgep.2005.05.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 05/25/2005] [Accepted: 05/25/2005] [Indexed: 11/18/2022]
Abstract
We have isolated the avian ortholog for CBFbeta, the common non-DNA binding subunit of the core binding factor (CBF) that has important regulatory roles in major developmental pathways. CBFbeta forms heterodimers with the DNA-binding Runx proteins and increases their affinity for DNA and their protein stability. Here, we describe the Cbfbeta expression pattern during the first 4 days of chick embryo development, with a special interest in the developing hematopoietic system. We have compared its expression pattern to that of Runx1, which is crucial for the generation of definitive hematopoietic cells, and to other hematopoietic- or endothelial-specific markers (c-Myb, Pu.1, CD45, c-Ets-1 and VE-Cadherin). Initially, Cbfbeta is widely expressed in the early mesoderm in both the yolk sac and the embryo proper, but later its expression becomes restricted to specific organs or cell types. We have found that Cbfbeta expression overlaps with Runx1 in the hematopoietic system and neural tube. The somitic and mesonephric structures, however, express Cbfbeta in the absence of detectable Runx1. Finally, Cbfbeta and Runx1 display multiple combinatorial patterns in the endoderm and in specific nerves or ganglia. Taken together, we show that Cbfbeta exhibits a dynamic expression pattern that varies according to the organ, cell type or developmental stage. By revealing multiple combinatorial patterns between Cbfbeta and Runx1, these data provide new insights into the role of CBF during early development.
Collapse
Affiliation(s)
- K Bollerot
- UMR7622, UMPC Paris VI, 9, Quai St Bernard, 75005 Paris, France
| | | | | | | |
Collapse
|
19
|
Jackson Behan K, Fair J, Singh S, Bogwitz M, Perry T, Grubor V, Cunningham F, Nichols CD, Cheung TL, Batterham P, Pollock JA. Alternative splicing removes an Ets interaction domain from Lozenge during Drosophila eye development. Dev Genes Evol 2005; 215:423-35. [PMID: 15868204 DOI: 10.1007/s00427-005-0490-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 04/08/2005] [Indexed: 10/25/2022]
Abstract
Physical and functional characteristics of the RUNX family of transcription factors are conserved between vertebrates and the Drosophila protein Lozenge. The runt-homology domain responsible for DNA binding and also the C-terminus are both nearly identical between the two proteins. The mammalian and fly proteins heterodimerize with a non-DNA binding partner protein to form a core binding factor essential for gene regulation during cell differentiation. The mammalian protein RUNX1 (AML1/PEBP2alphaB) interacts with the transcription factor Ets-1 to increase DNA binding and transactivation potential. Alternative splicing of the mammalian RUNX1 removes a domain required for this cooperative transactivation. In this work we determine the structure of the lozenge transcription unit and map 21 mutations. We show that the lozenge transcript is alternatively spliced during eye development to remove an Ets interaction domain. Emphasis is placed on Pointed the Drosophila homolog of the vertebrate Ets-1 protein; both Lozenge and Pointed proteins are needed for the activation of prospero expression. We use site-directed mutagenesis and yeast two-hybrid analysis to show that conserved amino acids within the alternate Lozenge exon are important for interaction with Pointed. Furthermore, the ectopic expression of Lozenge is sufficient to rescue Prospero expression in the presence of the Pointed competitor, Yan(ACT). We show that both lozenge isoforms are expressed during eye development and that the relative ratio of the transcripts for the two isoforms is sensitive to changes in Ras activity. We suggest that during eye development, Lozenge isoforms function in divergent roles, either interacting with Pointed on downstream targets or by functioning independently to establish distinct cell fates.
Collapse
|
20
|
Pinto JP, Conceição NM, Viegas CSB, Leite RB, Hurst LD, Kelsh RN, Cancela ML. Identification of a new pebp2alphaA2 isoform from zebrafish runx2 capable of inducing osteocalcin gene expression in vitro. J Bone Miner Res 2005; 20:1440-53. [PMID: 16007341 DOI: 10.1359/jbmr.050318] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 01/19/2005] [Accepted: 03/16/2005] [Indexed: 11/18/2022]
Abstract
UNLABELLED The zebrafish runx2b transcription factor is an ortholog of RUNX2 and is highly conserved at the structural level. The runx2b pebp2alphaA2 isoform induces osteocalcin gene expression by binding to a specific region of the promoter and seems to have been selectively conserved in the teleost lineage. INTRODUCTION RUNX2 (also known as CBFA1/Osf2/AML3/PEBP2alphaA) is a transcription factor essential for bone formation in mammals, as well as for osteoblast and chondrocyte differentiation, through regulation of expression of several bone- and cartilage-related genes. Since its discovery, Runx2 has been the subject of intense studies, mainly focused in unveiling regulatory targets of this transcription factor in high vertebrates. However, no single study has been published addressing the role of Runx2 in bone metabolism of low vertebrates. While analyzing the zebrafish (Danio rerio) runx2 gene, we identified the presence of two orthologs of RUNX2, which we named runx2a and runx2b and cloned a pebp2alphaA-like transcript of the runx2b gene, which we named pebp2alphaA2. MATERIALS AND METHODS Zebrafish runx2b gene and cDNA were isolated by RT-PCR and sequence data mining. The 3D structure of runx2b runt domain was modeled using mouse Runx1 runt as template. The regulatory effect of pebp2alphaA2 on osteocalcin expression was analyzed by transient co-transfection experiments using a luciferase reporter gene. Phylogenetic analysis of available Runx sequences was performed with TREE_PUZZLE 5.2. and MrBayes. RESULTS AND CONCLUSIONS We showed that the runx2b gene structure is highly conserved between mammals and fish. Zebrafish runx2b has two promoter regions separated by a large intron. Sequence analysis suggested that the runx2b gene encodes three distinct isoforms, by a combination of alternative splicing and differential promoter activation, as described for the human gene. We have cloned a pebp2alphaA-like transcript of the runx2b gene, which we named pebp2alphaA2, and showed its high degree of sequence similarity with the mammalian pebp2alphaA. The cloned zebrafish osteocalcin promoter was found to contain three putative runx2-binding elements, and one of them, located at -221 from the ATG, was capable of mediating pebp2alphaA2 transactivation. In addition, cross-species transactivation was also confirmed because the mouse Cbfa1 was able to induce the zebrafish osteocalcin promoter, whereas the zebrafish pebp2alphaA2 activated the murine osteocalcin promoter. These results are consistent with the high degree of evolutionary conservation of these proteins. The 3D structure of the runx2b runt domain was modeled based on the runt domain of mouse Runx1. Results show a high degree of similarity in the 3D configuration of the DNA binding regions from both domains, with significant differences only observed in non-DNA binding regions or in DNA-binding regions known to accommodate considerable structure flexibility. Phylogenetic analysis was used to clarify the relationship between the isoforms of each of the two zebrafish Runx2 orthologs and other Runx proteins. Both zebrafish runx2 genes clustered with other Runx2 sequences. The duplication event seemed, however, to be so old that, whereas Runx2b clearly clusters with the other fish sequences, it is unclear whether Runx2a clusters with Runx2 from higher vertebrates or from other fish.
Collapse
Affiliation(s)
- Jorge P Pinto
- CCMAR, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | | | | | | | | | | | |
Collapse
|
21
|
Meng X, Brodsky MH, Wolfe SA. A bacterial one-hybrid system for determining the DNA-binding specificity of transcription factors. Nat Biotechnol 2005; 23:988-94. [PMID: 16041365 PMCID: PMC1435991 DOI: 10.1038/nbt1120] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 06/06/2005] [Indexed: 11/08/2022]
Abstract
The DNA-binding specificities of transcription factors can be used to computationally predict cis-regulatory modules (CRMs) that regulate gene expression. However, the absence of specificity data for the majority of transcription factors limits the widespread implementation of this approach. We have developed a bacterial one-hybrid system that provides a simple and rapid method to determine the DNA-binding specificity of a transcription factor. Using this technology, we successfully determined the DNA-binding specificity of seven previously characterized transcription factors and one novel transcription factor, the Drosophila melanogaster factor Odd-skipped. Regulatory targets of Odd-skipped were successfully predicted using this information, demonstrating that the data produced by the bacterial one-hybrid system are relevant to in vivo function.
Collapse
Affiliation(s)
- Xiangdong Meng
- Program in Gene Function and Expression, University of Massachusetts Medical School, 364 Plantation St., Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
22
|
Wildonger J, Mann RS. The t(8;21) translocation converts AML1 into a constitutive transcriptional repressor. Development 2005; 132:2263-72. [PMID: 15829516 DOI: 10.1242/dev.01824] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human translocation (t8;21) is associated with approximately 12% of the cases of acute myelogenous leukemia. Two genes, AML1 and ETO, are fused together at the translocation breakpoint, resulting in the expression of a chimeric protein called AML1-ETO. AML1-ETO is thought to interfere with normal AML1 function, although the mechanism by which it does so is unclear. Here, we have used Drosophila genetics to investigate two models of AML1-ETO function. In the first model, AML1-ETO is a constitutive transcriptional repressor of AML1 target genes, regardless of whether they are normally activated or repressed by AML1. In the second model, AML1-ETO dominantly interferes with AML1 activity by, for example, competing for a common co-factor. To discriminate between these models, the effects of expressing AML1-ETO were characterized and compared with loss-of-function phenotypes of lozenge (lz), an AML1 homolog expressed during Drosophila eye development. We also present results of genetic interaction experiments with AML1 co-factors that are not consistent with AML1-ETO behaving as a dominant-negative factor. Instead, our data suggest that AML1-ETO acts as a constitutive transcriptional repressor.
Collapse
Affiliation(s)
- Jill Wildonger
- Center for Neurobiology and Behavior, Columbia University Medical School, New York, NY 10032, USA
| | | |
Collapse
|
23
|
Boumah CE, Selvamurugan N, Partridge NC. Transcription in the osteoblast: regulatory mechanisms utilized by parathyroid hormone and transforming growth factor-beta. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 80:287-321. [PMID: 16164977 DOI: 10.1016/s0079-6603(05)80007-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Christine E Boumah
- Department of Physiology and Biophysics, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
24
|
Abstract
Runt-related (RUNX) gene family is composed of three members, RUNX1/AML1, RUNX2 and RUNX3, and encodes the DNA-binding (alpha) subunits of the Runt domain transcription factor polyomavirus enhancer-binding protein 2 (PEBP2)/core-binding factor (CBF), which is a heterodimeric transcription factor. RUNX1 is most frequently involved in human acute leukemia. RUNX2 shows oncogenic potential in mouse experimental system. RUNX3 is a strong candidate as a gastric cancer tumor suppressor. The beta subunit gene of PEBP2/CBF is also frequently involved in chromosome rearrangements associated with human leukemia. In this Overview, I will summarize how this growing field has been formed and what are the challenging new frontiers for better understanding of the oncogenic potential of this gene family.
Collapse
Affiliation(s)
- Yoshiaki Ito
- Institute of Molecular and Cell Biology and Oncology Research Institute, National University of Singapore, 30 Medical Drive, Singapore 117609, Singapore.
| |
Collapse
|
25
|
Waltzer L, Ferjoux G, Bataillé L, Haenlin M. Cooperation between the GATA and RUNX factors Serpent and Lozenge during Drosophila hematopoiesis. EMBO J 2003; 22:6516-25. [PMID: 14657024 PMCID: PMC291817 DOI: 10.1093/emboj/cdg622] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 10/06/2003] [Accepted: 10/22/2003] [Indexed: 11/14/2022] Open
Abstract
Members of the GATA and RUNX families of genes appear to have conserved functions during hematopoiesis from Drosophila to mammals. In Drosophila, the GATA factor Serpent (Srp) is required in blood cell progenitors for the formation of the two populations of blood cells (plasmatocytes and crystal cells), while the RUNX factor Lozenge (Lz) is specifically required for crystal cell development. Here we investigate the function and the mechanisms of action of Lz during hematopoiesis. Our results indicate that Lz can trigger crystal cell development. Interestingly, we show that Lz function is strictly dependent on the presence of functional Srp and that Srp and Lz cooperate to induce crystal cell differentiation in vivo. Furthermore, we show that Srp and Lz directly interact in vitro and that this interaction is conserved between Drosophila and mammals. Moreover, both Srp and mouse GATA1 synergize with mouse RUNX1 to activate transcription. We propose that interaction and cooperation between GATA and RUNX factors may play an important role in regulating blood cell formation from Drosophila to mammals.
Collapse
Affiliation(s)
- Lucas Waltzer
- Centre de Biologie du Développement, CNRS UMR 5547, 118 route de Narbonne, 31062 Toulouse, France.
| | | | | | | |
Collapse
|
26
|
Zhang L, Li Z, Yan J, Pradhan P, Corpora T, Cheney MD, Bravo J, Warren AJ, Bushweller JH, Speck NA. Mutagenesis of the Runt domain defines two energetic hot spots for heterodimerization with the core binding factor beta subunit. J Biol Chem 2003; 278:33097-104. [PMID: 12807883 DOI: 10.1074/jbc.m303972200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in several developmental pathways and in human disease. Mutations in CBF genes are found in leukemias, bone disorders, and gastric cancers. CBFs consist of a DNA-binding CBF alpha subunit (Runx1, Runx2, or Runx3) and a non-DNA-binding CBF beta subunit. CBF alpha binds DNA in a sequence-specific manner, whereas CBF beta enhances DNA binding by CBF alpha. Both DNA binding and heterodimerization with CBF beta are mediated by a single domain in the CBF alpha subunits known as the "Runt domain." We analyzed the energetic contribution of amino acids in the Runx1 Runt domain to heterodimerization with CBF beta. We identified two energetic "hot spots" that were also found in a similar analysis of CBF beta (Tang, Y.-Y., Shi, J., Zhang, L., Davis, A., Bravo, J., Warren, A. J., Speck, N. A., and Bushweller, J. H. (2000) J. Biol. Chem. 275, 39579-39588). The importance of the hot spot residues for Runx1 function was demonstrated in in vivo transient transfection assays. These data refine the structural analyses and further our understanding of the Runx1-CBF beta interface.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Li Z, Yan J, Matheny CJ, Corpora T, Bravo J, Warren AJ, Bushweller JH, Speck NA. Energetic contribution of residues in the Runx1 Runt domain to DNA binding. J Biol Chem 2003; 278:33088-96. [PMID: 12807882 DOI: 10.1074/jbc.m303973200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in hematopoiesis and in the development of bone, stomach epithelium, and proprioceptive neurons. Mutations in CBF genes are found in leukemias, bone disorders, and gastric cancer. CBFs consist of a DNA-binding CBF alpha subunit and a non-DNA-binding CBF beta subunit. DNA binding and heterodimerization with CBF beta are mediated by the Runt domain in CBF alpha. Here we report an alanine-scanning mutagenesis study of the Runt domain that targeted amino acids identified by structural studies to reside at the DNA or CBF beta interface, as well as amino acids mutated in human disease. We determined the energy contributed by each of the DNA-contacting residues in the Runt domain to DNA binding both in the absence and presence of CBF beta. We propose mechanisms by which mutations in the Runt domain found in hematopoietic and bone disorders affect its affinity for DNA.
Collapse
Affiliation(s)
- Zhe Li
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Vander Zwan CJ, Wheeler JC, Li LH, Tracey WD, Gergen JP. A DNA-binding-independent pathway of repression by the Drosophila Runt protein. Blood Cells Mol Dis 2003; 30:207-22. [PMID: 12732185 DOI: 10.1016/s1079-9796(03)00026-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA-binding proteins are important for regulating gene expression during development. It is widely assumed that this regulation involves sequence-specific DNA binding by these transcription factors to cognate cis-regulatory sequences of their downstream target genes. However, studies in both the Drosophila and the mouse model systems have provided examples in which the DNA-binding activity of a transcription factor is not essential for in vivo function. Using a system that allows for quantitative analysis of gene function in the Drosophila embryo, we have discovered a DNA-binding-independent activity of Runt, the founding member of the RUNX family of transcriptional regulators. Examination of the in vivo potency of a DNA-binding-defective form of Runt reveals differential requirements for DNA binding in the regulation of different downstream target genes. DNA binding is not required for establishing repression of the odd-numbered stripes of the segment polarity gene engrailed, but does contribute to Runt's role as a regulator of sloppy-paired, another downstream target gene in the pathway of segmentation. We investigate this DNA-binding-independent pathway using a genetic screen for dose-dependent modifiers of runt activity. These studies reveal that DNA-binding proteins encoded by the tramtrack locus cooperate with Runt to repress engrailed. These results provide new insights into the context-dependent regulatory functions of Runt domain proteins and provide a paradigm for understanding DNA-binding-independent regulation by developmentally important transcription factors.
Collapse
Affiliation(s)
- Christine J Vander Zwan
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, State University of New York at Stony Brook, Stony Brook, NY 11794-5140, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
As in mammals, blood cells in Drosophila are derived from a common multipotent hematopoietic precursor population. In the embryo, these precursors are derived from the head mesoderm, whereas larval hematopoietic precursors are found in a specialized organ called the lymph gland. This shift in location of hematopoietic differentiation is reminiscent of similar events that occur during mammalian development. Recent analysis has identified several transcriptional regulators in Drosophila that influence hematopoietic lineage commitment. Interestingly, many of these factors are similar to factors directing mammalian hematopoietic differentiation. Although Drosophila blood cells are much less varied in terms of specific lineages, it would appear that many mechanistic aspects by which hematopoietic cell fate is determined have been conserved between Drosophila and mammals. Herein, we describe the Drosophila blood cell types, their physical origin, and the transcriptional regulators that govern this process.
Collapse
Affiliation(s)
- Cory J Evans
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | |
Collapse
|
30
|
Asou N. The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit Rev Oncol Hematol 2003; 45:129-50. [PMID: 12604126 DOI: 10.1016/s1040-8428(02)00003-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A Runt domain transcription factor AML1/RUNX1 is essential for generation and differentiation of definitive hematopoietic stem cells. AML1 is the most frequent target of chromosomal translocations in acute leukemias. Several chimeric proteins such as AML1-MTG8 and TEL-AML1 have transdominant properties for wild-type AML1 and acts as transcriptional repressors. The transcriptional repression in AML1 fusion proteins is mediated by recruitment of nuclear corepressor complex that maintains local histone deacetylation. Inhibition of the expression of AML1-responsive genes leads to a block in hematopoietic cell differentiation and consequent leukemic transformation. On the other hand, mutations in the Runt domain of the AML1 are identified in both sporadic acute myeloblastic leukemia (AML) without AML1 translocation and familial platelet disorder with predisposition to AML. These observations indicate that a decrease in AML1 dosage resulting from chromosomal translocations or mutations contributes to leukemogenesis. Furthermore, dysregulated chromatin remodeling and transcriptional control appears to be a common pathway in AML1-associated leukemias that could be an important target for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Norio Asou
- Department of Internal Medicine II, Kumamoto University School of Medicine, 1-1-1 Honjo, 860-8556, Kumamoto, Japan.
| |
Collapse
|
31
|
Vangala RK, Heiss-Neumann MS, Rangatia JS, Singh SM, Schoch C, Tenen DG, Hiddemann W, Behre G. The myeloid master regulator transcription factor PU.1 is inactivated by AML1-ETO in t(8;21) myeloid leukemia. Blood 2003; 101:270-7. [PMID: 12393465 DOI: 10.1182/blood-2002-04-1288] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription factor PU.1 plays a pivotal role in normal myeloid differentiation. PU.1(-/-) mice exhibit a complete block in myeloid differentiation. Heterozygous PU.1 mutations were reported in some patients with acute myeloid leukemia (AML), but not in AML with translocation t(8;21), which gives rise to the fusion gene AML1-ETO. Here we report a negative functional impact of AML1-ETO on the transcriptional activity of PU.1. AML1-ETO physically binds to PU.1 in t(8;21)(+) Kasumi-1 cells. AML1-ETO binds to the beta(3)beta(4) region in the DNA-binding domain of PU.1 and displaces the coactivator c-Jun from PU.1, thus down-regulating the transcriptional activity of PU.1. This physical interaction of AML1-ETO and PU.1 did not abolish the DNA-binding capacity of PU.1. AML1-ETO down-regulates the transactivation capacity of PU.1 in myeloid U937 cells, and the expression levels of PU.1 target genes in AML French-American-British (FAB) subtype M2 patients with t(8;21) were lower than in patients without t(8;21). Conditional expression of AML1-ETO causes proliferation in mouse bone marrow cells and inhibits antiproliferative function of PU.1. Overexpression of PU.1, however, differentiates AML1-ETO-expressing Kasumi-1 cells to the monocytic lineage. Thus, the function of PU.1 is down-regulated by AML1-ETO in t(8;21) myeloid leukemia, whereas overexpression of PU.1 restores normal differentiation.
Collapse
MESH Headings
- Animals
- Binding Sites
- Bone Marrow Cells/cytology
- Cell Differentiation
- Cell Division
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- Down-Regulation/drug effects
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Mice
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/pharmacology
- Oncogene Proteins, Fusion/physiology
- Protein Binding
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-jun
- RUNX1 Translocation Partner 1 Protein
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Trans-Activators/physiology
- Transcription Factors/metabolism
- Transcription Factors/pharmacology
- Transcription Factors/physiology
- Transcription, Genetic/drug effects
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Rajani K Vangala
- Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-University Munich and GSF-National Research Center for Environment and Health, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Burns CE, DeBlasio T, Zhou Y, Zhang J, Zon L, Nimer SD. Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. Exp Hematol 2002; 30:1381-9. [PMID: 12482499 DOI: 10.1016/s0301-472x(02)00955-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The AML/RUNX family of transcription factors plays important roles in hematopoiesis, neurogenesis, bone development, and segmentation in vertebrate embryos. The aim of this study was to isolate runt-related genes in a genetically and embryologically exploitable system, the zebrafish, and characterize their function during hematopoietic development. MATERIALS AND METHODS Two runt-related genes were isolated by degenerate PCR and standard library screening, and a radiation hybrid panel, T51 RH, was used to resolve their chromosomal localization. In situ hybridization demonstrated their expression whereas their transcriptional activity was assessed using an AML1-responsive reporter gene in the MLA 144 T-cell line. RESULTS We isolated the zebrafish runxa and runxb cDNAs, which encode proteins highly homologous to the human and murine Runx1 (AML1) and Runx3 (AML2) proteins. In contrast to a recent report, we detected runxa expression in both hematopoietic and neural tissues of the developing zebrafish. runxa transcripts first appear during segmentation in bilateral mesodermal cells that coexpress one of the earliest blood and endothelial cell markers, scl/tal-1. By 24 hours postfertilization (hpf), runxa transcripts are seen in the ventral wall of the dorsal aorta. Hematopoietic runxa expression is lost in cloche mutants, which are defective in blood and endothelial cell formation. runxb transcripts are seen in nonhematopoietic domains. Both Runxa and Runxb transactivate an AML1-responsive human promoter in hematopoietic cells. Genomic localization studies demonstrate that runxa is located on linkage group 1 (LG1), and the runxb gene is located on LG13. CONCLUSIONS Our gene expression analysis strongly suggests that both the functional and spatial aorta-gonad-mesonephros (AGM) region has been conserved throughout evolution. Our runxa spatiotemporal expression data shed light on the role of vertebrate Runx1/AML1 in primitive vs definitive hematopoietic development.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Aorta/embryology
- Core Binding Factor Alpha 2 Subunit
- Core Binding Factor Alpha 3 Subunit
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- Embryo, Nonmammalian
- Endothelium, Vascular/chemistry
- Endothelium, Vascular/cytology
- Endothelium, Vascular/embryology
- Gene Expression Regulation, Developmental
- Genetic Linkage
- Gonads/embryology
- Hematopoiesis/genetics
- Humans
- Mesonephros/embryology
- Molecular Sequence Data
- Phylogeny
- Promoter Regions, Genetic/drug effects
- Proto-Oncogene Proteins
- RNA, Messenger/analysis
- Sequence Homology, Amino Acid
- Transcription Factors/genetics
- Transcription Factors/isolation & purification
- Transcription Factors/pharmacology
- Zebrafish
- Zebrafish Proteins/genetics
- Zebrafish Proteins/isolation & purification
Collapse
|
33
|
Kummalue T, Lou J, Friedman AD. Multimerization via its myosin domain facilitates nuclear localization and inhibition of core binding factor (CBF) activities by the CBFbeta-smooth muscle myosin heavy chain myeloid leukemia oncoprotein. Mol Cell Biol 2002; 22:8278-91. [PMID: 12417730 PMCID: PMC134059 DOI: 10.1128/mcb.22.23.8278-8291.2002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In CBFbeta-SMMHC, core binding factor beta (CBFbeta) is fused to the alpha-helical rod domain of smooth muscle myosin heavy chain (SMMHC). We generated Ba/F3 hematopoietic cells expressing a CBFbeta-SMMHC variant lacking 28 amino acids homologous to the assembly competence domain (ACD) required for multimerization of skeletal muscle myosin. CBFbeta-SMMHC(DeltaACD) multimerized less effectively than either wild-type protein or a variant lacking a different 28-residue segment. In contrast to the control proteins, the DeltaACD mutant did not inhibit CBF DNA binding, AML1-mediated reporter activation, or G(1) to S cell cycle progression, the last being dependent upon activation of CBF-regulated genes. We also linked the CBFbeta domain to 149 or 83 C-terminal CBFbeta-SMMHC residues, retaining 86 or 20 amino acids N-terminal to the ACD. CBFbeta-SMMHC(149C) multimerized and slowed Ba/F3 proliferation, whereas CBFbeta-SMMHC(83C) did not. The majority of CBFbeta-SMMHC and CBFbeta-SMMHC(149C) was detected in the nucleus, whereas the DeltaACD and 83C variants were predominantly cytoplasmic, indicating that multimerization facilitates nuclear retention of CBFbeta-SMMHC. When linked to the simian virus 40 nuclear localization signal (NLS), a significant fraction of CBFbeta-SMMHC(DeltaACD) entered the nucleus but only mildly inhibited CBF activities. As NLS-CBFbeta-SMMHC(83C) remained cytoplasmic, we directed the ACD to CBF target genes by linking it to the AML1 DNA binding domain or to full-length AML1. These AML1-ACD fusion proteins did not affect Ba/F3 proliferation, in contrast to AML1-ETO, which markedly slowed G(1) to S progression dependent upon the integrity of its DNA-binding domain. Thus, the ACD facilitates inhibition of CBF by mediating multimerization of CBFbeta-SMMHC in the nucleus. Therapeutics targeting the ACD may be effective in acute myeloid leukemia cases associated with CBFbeta-SMMHC expression.
Collapse
Affiliation(s)
- Tanawan Kummalue
- Division of Pediatric Oncology, Johns Hopkins University, Baltimore, Maryland
| | | | | |
Collapse
|
34
|
Bartfeld D, Shimon L, Couture GC, Rabinovich D, Frolow F, Levanon D, Groner Y, Shakked Z. DNA recognition by the RUNX1 transcription factor is mediated by an allosteric transition in the RUNT domain and by DNA bending. Structure 2002; 10:1395-407. [PMID: 12377125 DOI: 10.1016/s0969-2126(02)00853-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Runt domain proteins are transcription regulators of major developmental pathways. Here we present the crystal structures of the Runt domain (RD) of the human protein RUNX1 and its DNA binding site in their free states and compare them with the published crystal structures of RD bound to DNA and to the partner protein CBFbeta. We demonstrate that (1) RD undergoes an allosteric transition upon DNA binding, which is further stabilized by CBFbeta, and that (2) the free DNA target adopts a bent-helical conformation compatible with that of the complex. These findings elucidate the mechanism by which CBFbeta enhances RD binding to DNA as well as the role of the intrinsic conformation of the DNA target in the recognition process.
Collapse
Affiliation(s)
- Deborah Bartfeld
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Shimada H, Ichikawa H, Ohki M. Potential involvement of the AML1-MTG8 fusion protein in the granulocytic maturation characteristic of the t(8;21) acute myelogenous leukemia revealed by microarray analysis. Leukemia 2002; 16:874-85. [PMID: 11986950 DOI: 10.1038/sj.leu.2402465] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2001] [Accepted: 01/15/2002] [Indexed: 11/08/2022]
Abstract
The AML1 (RUNX1)-MTG8 (ETO) fusion transcription factor generated by the t(8;21) translocation is believed to deregulate the expression of genes that are crucial for normal differentiation and proliferation of hematopoietic progenitors, resulting in acute myelogenous leukemia. To elucidate the role of AML1-MTG8 in leukemogenesis, we used oligonucleotide microarrays to detect alterations in gene expression caused by ectopic expression of AML1-MTG8 in a murine myeloid progenitor cell line, L-G. Microarray analysis of approximately 6500 genes identified 32 candidate genes under the downstream control of AML1-MTG8. Among the 32 genes, 23 were not known to be regulated by AML1-MTG8. These included many granule protein genes and several cell surface antigen genes. Interestingly, AML1-MTG8 enhanced the expression of several genes that are usually induced during granulocytic differentiation, particularly those encoding azurophil granule proteins, including cathepsin G, myeloperoxidase and lysozyme. This indicates that AML1-MTG8 induces partial differentiation of myeloid progenitor cells into promyelocytes in the absence of the usual differentiation signals, while it inhibits terminal differentiation into mature granulocytes. Thus, AML1-MTG8 itself may play a crucial role in defining a unique cytologic type with abnormal maturation, characteristic of t(8;21) acute myelogenous leukemia.
Collapse
MESH Headings
- Acute-Phase Proteins/drug effects
- Acute-Phase Proteins/genetics
- Animals
- Case-Control Studies
- Cathepsin G
- Cathepsins/drug effects
- Cathepsins/genetics
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Line
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- Gene Expression Profiling
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Granulocytes/drug effects
- Granulocytes/pathology
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/pathology
- Lipocalin-2
- Lipocalins
- Mice
- Muramidase/drug effects
- Muramidase/genetics
- Myeloid Progenitor Cells/cytology
- Myeloid Progenitor Cells/drug effects
- Oligonucleotide Array Sequence Analysis
- Oncogene Proteins/drug effects
- Oncogene Proteins/genetics
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/pharmacology
- Oncogene Proteins, Fusion/physiology
- Peroxidase/drug effects
- Peroxidase/genetics
- Proto-Oncogene Proteins
- RUNX1 Translocation Partner 1 Protein
- Serine Endopeptidases
- Transcription Factors/genetics
- Transcription Factors/pharmacology
- Transcription Factors/physiology
- Transduction, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- H Shimada
- Cancer Genomics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | |
Collapse
|
36
|
Swarthout JT, D'Alonzo RC, Selvamurugan N, Partridge NC. Parathyroid hormone-dependent signaling pathways regulating genes in bone cells. Gene 2002; 282:1-17. [PMID: 11814673 DOI: 10.1016/s0378-1119(01)00798-3] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Parathyroid hormone (PTH) is an 84-amino-acid polypeptide hormone functioning as a major mediator of bone remodeling and as an essential regulator of calcium homeostasis. PTH and PTH-related protein (PTHrP) indirectly activate osteoclasts resulting in increased bone resorption. During this process, PTH changes the phenotype of the osteoblast from a cell involved in bone formation to one directing bone resorption. In addition to these catabolic effects, PTH has been demonstrated to be an anabolic factor in skeletal tissue and in vitro. As a result, PTH has potential medical application to the treatment of osteoporosis, since intermittent administration of PTH stimulates bone formation. Activation of osteoblasts by PTH results in expression of genes important for the degradation of the extracellular matrix, production of growth factors, and stimulation and recruitment of osteoclasts. The ability of PTH to drive changes in gene expression is dependent upon activation of transcription factors such as the activator protein-1 family, RUNX2, and cAMP response element binding protein (CREB). Much of the regulation of these processes by PTH is protein kinase A (PKA)-dependent. However, while PKA is linked to many of the changes in gene expression directed by PTH, PKA activation has been shown to inhibit mitogen-activated protein kinase (MAPK) and proliferation of osteoblasts. It is now known that stimulation of MAPK and proliferation by PTH at low concentrations is protein kinase C (PKC)-dependent in both osteoblastic and kidney cells. Furthermore, PTH has been demonstrated to regulate components of the cell cycle. However, whether this regulation requires PKC and/or extracellular signal-regulated kinases or whether PTH is able to stimulate other components of the cell cycle is unknown. It is possible that stimulation of this signaling pathway by PTH mediates a unique pattern of gene expression resulting in proliferation in osteoblastic and kidney cells; however, specific examples of this are still unknown. This review will focus on what is known about PTH-mediated cell signaling, and discuss the established or putative PTH-regulated pattern of gene expression in osteoblastic cells following treatment with catabolic (high) or anabolic (low) concentrations of the hormone.
Collapse
Affiliation(s)
- John T Swarthout
- Cell and Molecular Biology Program, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | |
Collapse
|
37
|
D'Alonzo RC, Selvamurugan N, Karsenty G, Partridge NC. Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem 2002; 277:816-22. [PMID: 11641401 DOI: 10.1074/jbc.m107082200] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we determined that the activator protein-1 (AP-1)-binding site and the runt domain (RD)-binding site and their binding proteins, c-Fos.c-Jun and Cbfa, regulate the collagenase-3 promoter in parathyroid hormone-treated and differentiating osteoblasts. Here we show that Cbfa1 and c-Fos.c-Jun appear to cooperatively bind the RD- and AP-1-binding sites and form ternary structures in vitro. Both in vitro and in vivo co-immunoprecipitation and yeast two-hybrid studies further demonstrate interaction between Cbfa1 with c-Fos and c-Jun in the absence of phosphorylation and without binding to DNA. Additionally, only the runt domain of Cbfa1 was required for interaction with c-Jun and c-Fos. In mammalian cells, overexpression of Cbfa1 enhanced c-Jun activation of AP-1-binding site promoter activity, demonstrating functional interaction. Finally, insertion of base pairs that disrupted the helical phasing between the AP-1- and RD-binding sites also inhibited collagenase-3 promoter activation. Thus, we provide direct evidence that Cbfa1 and c-Fos.c-Jun physically interact and cooperatively bind the AP-1- and RD-binding sites in the collagenase-3 promoter. Moreover, the AP-1- and RD-binding sites appear to be organized in a specific required helical arrangement that facilitates transcription factor interaction and enables promoter activation.
Collapse
Affiliation(s)
- Richard C D'Alonzo
- Department of Physiology and Biophysics, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
38
|
Nasiadka A, Dietrich BH, Krause HM. Anterior-posterior patterning in the Drosophila embryo. GENE EXPRESSION AT THE BEGINNING OF ANIMAL DEVELOPMENT 2002. [DOI: 10.1016/s1569-1799(02)12027-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
39
|
MESH Headings
- Animals
- Chromosomes, Human, Pair 21
- Chromosomes, Human, Pair 8
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Models, Genetic
- Multigene Family
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/physiology
- Proto-Oncogene Proteins
- RUNX1 Translocation Partner 1 Protein
- Structure-Activity Relationship
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- J D Licht
- Derald H. Ruttenberg Cancer Center and Department of Medicine, Mount Sinai School of Medicine, Box 1130, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
40
|
Alcalay M, Orleth A, Sebastiani C, Meani N, Chiaradonna F, Casciari C, Sciurpi MT, Gelmetti V, Riganelli D, Minucci S, Fagioli M, Pelicci PG. Common themes in the pathogenesis of acute myeloid leukemia. Oncogene 2001; 20:5680-94. [PMID: 11607818 DOI: 10.1038/sj.onc.1204642] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The pathogenesis of acute myeloid leukemia is associated with the appearance of oncogenic fusion proteins generated as a consequence of specific chromosome translocations. Of the two components of each fusion protein, one is generally a transcription factor, whereas the other partner is more variable in function, but often involved in the control of cell survival and apoptosis. As a consequence, AML-associated fusion proteins function as aberrant transcriptional regulators that interfere with the process of myeloid differentiation, determine a stage-specific arrest of maturation and enhance cell survival in a cell-type specific manner. The abnormal regulation of transcriptional networks occurs through common mechanisms that include recruitment of aberrant co-repressor complexes, alterations in chromatin remodeling, and disruption of specific subnuclear compartments. The identification and analysis of common and specific target genes regulated by AML fusion proteins will be of fundamental importance for the full understanding of acute myeloid leukemogenesis and for the implementation of disease-specific drug design.
Collapse
MESH Headings
- Cell Differentiation
- Cell Survival
- Core Binding Factor Alpha 2 Subunit
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Gene Expression Regulation, Neoplastic
- Hematopoiesis
- Homozygote
- Humans
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Models, Biological
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Proto-Oncogene Proteins
- Signal Transduction
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Translocation, Genetic
Collapse
Affiliation(s)
- M Alcalay
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kaminker JS, Singh R, Lebestky T, Yan H, Banerjee U. Redundant function of Runt Domain binding partners, Big brother and Brother, during Drosophila development. Development 2001; 128:2639-48. [PMID: 11526071 DOI: 10.1242/dev.128.14.2639] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Core Binding Factor is a heterodimeric transcription factor complex in vertebrates that is composed of a DNA binding α-subunit and a non-DNA binding β-subunit. The α-subunit is encoded by members of the Runt Domain family of proteins and the β-subunit is encoded by the CBFβ gene. In Drosophila, two genes encoding α-subunits, runt and lozenge, and two genes encoding β-subunits, Big brother and Brother, have been previously identified. Here, a sensitized genetic screen was used to isolate mutant alleles of the Big brother gene. Expression studies show that Big brother is a nuclear protein that co-localizes with both Lozenge and Runt in the eye imaginal disc. The nuclear localization and stability of Big brother protein is mediated through the formation of heterodimeric complexes between Big brother and either Lozenge or Runt. Big brother functions with Lozenge during cell fate specification in the eye, and is also required for the development of the embryonic PNS. ds-RNA-mediated genetic interference experiments show that Brother and Big brother are redundant and function together with Runt during segmentation of the embryo. These studies highlight a mechanism for transcriptional control by a Runt Domain protein and a redundant pair of partners in the specification of cell fate during development.
Collapse
Affiliation(s)
- J S Kaminker
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
42
|
Tang YY, Shi J, Zhang L, Davis A, Bravo J, Warren AJ, Speck NA, Bushweller JH. Energetic and functional contribution of residues in the core binding factor beta (CBFbeta ) subunit to heterodimerization with CBFalpha. J Biol Chem 2000; 275:39579-88. [PMID: 10984496 DOI: 10.1074/jbc.m007350200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Core-binding factors (CBFs) are a small family of heterodimeric transcription factors that play critical roles in several developmental pathways, including hematopoiesis and bone development. Mutations in CBF genes are found in leukemias and bone disorders. CBFs consist of a DNA-binding CBFalpha subunit (Runx1, Runx2, or Runx3) and a non-DNA-binding CBFbeta subunit. CBFalpha binds DNA in a sequence-specific manner, whereas CBFbeta enhances DNA binding by CBFalpha. Recent structural analyses of the DNA-binding Runt domain of CBFalpha and the CBFbeta subunit identified the heterodimerization surfaces on each subunit. Here we identify amino acids in CBFbeta that mediate binding to CBFalpha. We determine the energy contributed by each of these amino acids to heterodimerization and the importance of these residues for in vivo function. These data refine the structural analyses and further support the hypothesis that CBFbeta enhances DNA binding by inducing a conformational change in the Runt domain.
Collapse
Affiliation(s)
- Y Y Tang
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Zebrafish homolog of the leukemia gene CBFB: its expression during embryogenesis and its relationship to scland gata-1 in hematopoiesis. Blood 2000. [DOI: 10.1182/blood.v96.13.4178] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Abstract
Mammalian CBFB encodes a transcription factor (CBFβ) that in combination with CBFα2 binds to specific DNA sequences and regulates expression of a number of hematopoietic genes.CBFB is associated with human leukemias through a chromosome 16 inversion and is essential for definitive hematopoiesis during mouse embryo development. We have isolated a zebrafishcbfb complementary DNA (cDNA) clone from a zebrafish kidney cDNA library. This cbfb is highly homologous to human and mouseCBFB/Cbfb genes at both the DNA and protein level. In biochemical analyses, cbfβ binds to human CBFα2 and enhances its DNA binding. During zebrafish development, cbfb is expressed in the lateral plate mesoderm at tail bud stage and in the intermediate cell mass (ICM, the location of embryonic hematopoiesis) between the 21- to 26-somite stages. The cbfb is also expressed in Rohon-Beard cells, cranial nerve ganglia, hindbrain, retina, branchial arches, jaw, and fin buds. Expression ofcbfb is decreased or absent in the ICM and Rohon-Beard cells in some hematopoietic mutants and is unaffected in others. We have also analyzed the expression of scl andgata-1 in the same hematopoietic mutants to ascertain the relative order of these transcription factors to cbfb in zebrafish hematopoiesis. Our results indicate that cbfb is expressed in early hematopoietic progenitors and that its expression pattern in the hematopoietic mutants is similar to that ofscl.
Collapse
|
44
|
Zebrafish homolog of the leukemia gene CBFB: its expression during embryogenesis and its relationship to scland gata-1 in hematopoiesis. Blood 2000. [DOI: 10.1182/blood.v96.13.4178.h8004178_4178_4184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mammalian CBFB encodes a transcription factor (CBFβ) that in combination with CBFα2 binds to specific DNA sequences and regulates expression of a number of hematopoietic genes.CBFB is associated with human leukemias through a chromosome 16 inversion and is essential for definitive hematopoiesis during mouse embryo development. We have isolated a zebrafishcbfb complementary DNA (cDNA) clone from a zebrafish kidney cDNA library. This cbfb is highly homologous to human and mouseCBFB/Cbfb genes at both the DNA and protein level. In biochemical analyses, cbfβ binds to human CBFα2 and enhances its DNA binding. During zebrafish development, cbfb is expressed in the lateral plate mesoderm at tail bud stage and in the intermediate cell mass (ICM, the location of embryonic hematopoiesis) between the 21- to 26-somite stages. The cbfb is also expressed in Rohon-Beard cells, cranial nerve ganglia, hindbrain, retina, branchial arches, jaw, and fin buds. Expression ofcbfb is decreased or absent in the ICM and Rohon-Beard cells in some hematopoietic mutants and is unaffected in others. We have also analyzed the expression of scl andgata-1 in the same hematopoietic mutants to ascertain the relative order of these transcription factors to cbfb in zebrafish hematopoiesis. Our results indicate that cbfb is expressed in early hematopoietic progenitors and that its expression pattern in the hematopoietic mutants is similar to that ofscl.
Collapse
|
45
|
Wheeler JC, Shigesada K, Gergen JP, Ito Y. Mechanisms of transcriptional regulation by Runt domain proteins. Semin Cell Dev Biol 2000; 11:369-75. [PMID: 11105901 DOI: 10.1006/scdb.2000.0184] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Runt domain proteins have vital roles in regulating transcription in developmental pathways extending from sex determination and segmentation in fruit fly embryos to the development of blood and bone in mammals. Many of the insights into the mechanisms by which these proteins act to regulate transcription originate either from studies on the Drosophila runt gene, the founding member of this family, or from work on the mammalian PEBP2/CBF transcription factor. Genetic experiments in the Drosophila system reveal that runt functions both to activate and to repress transcription of different downstream target genes and indicate that different mechanisms are used in the regulation of different specific downstream target genes. These studies have also identified other nuclear factors that work with Runt in some of these pathways. Studies in mammalian systems have provided additional evidence for the complexity of transcriptional regulation by Runt domain proteins and have identified other transcription factors that cooperate with Runt domain proteins to regulate the activity of different specific cis-regulatory enhancers. The emerging view from studies in both systems is that these proteins act as context-dependent regulators of transcription, activating or repressing gene expression dependent upon the constititution of a particular promoter/enhancer in a particular cell type. These results have yielded new insights into the molecular mechanisms that control animal development and provide a framework for investigating fundamental issues in eukaryotic transcriptional regulation.
Collapse
Affiliation(s)
- J C Wheeler
- Department of Biochemistry and Cell Biology and The Institute for Cell and Developmental Biology, State University of New York at Stony Brook, 11794-5215, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Core binding factor (CBF) is a heterodimeric transcription factor consisting of a DNA-binding subunit (Runx, also referred to as CBFA, AML 1, PEBP2alpha) and a non-DNA-binding subunit (CBFB). Biophysical characterization of the two proteins (and their interactions is providing a detailed understanding of this important transcription factor at the molecular level. Measurements of the relevant binding constants are helping to elucidate the mechanism of leukemogenesis associated with altered forms of these proteins. Determination of the 3D structures of CBFB and the DNA- and CBFB-binding domain of Runx, referred to as the Runt domain, are providing a structural basis for the functioning of the two proteins of CBF.
Collapse
Affiliation(s)
- J H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22908-0736, USA.
| |
Collapse
|
47
|
Abstract
Mammalian core binding factor beta (CBFbeta) and Drosophila Brother (Bro) and Big-brother (Bgb) proteins are transcription factors that dimerize with mammalian Runx and Drosophila Runt and Lozenge proteins and augment their DNA binding affinity and transcriptional potency. CBFbeta is essential for development and sustenance of definitive hematopoiesis during mouse embryogenesis. Bro and Bgb are required for Runt/Lozenge functions in Drosophila development. CBFbeta contributes to leukemogenesis since the CBFB gene is specifically and consistently mutated by a chromosome 16 inversion found in patients with acute myeloid leukemia subtype M4Eo. The ubiquitous expression pattern of the CBFB gene suggests that it may play important roles in many other organ systems.
Collapse
Affiliation(s)
- N Adya
- Genetics and Molecular Biology Branch, National Human Genome Research Institute, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
48
|
Abstract
Runt and Lozenge (LZ) are members of the Runt domain family of transcriptional regulators and control a large number of developmental processes in Drosophila. Runt is a pair-rule gene, and is part of the network of genes that control pattern formation in the embryo. In the central nervous system, Runt function is necessary for the development of a subset of neurons. Runt is also a key regulator of sex determination, and directly controls Sex-lethal, a master gene that determines sex of the animal and controls dosage compensation. The LZ protein also participates in several key processes. LZ controls pre-patterning and cell-fate choices in the development of the visual system by regulating the expression of several fate-specifying transcription factors, and works in conjunction with general signaling pathways. LZ function is also required in hematopoiesis for the specification of a Drosophila blood cell lineage.
Collapse
Affiliation(s)
- J Canon
- Department of Biological Chemistry, Molecular Biology Institute, University of California at Los Angeles, 90095, USA
| | | |
Collapse
|
49
|
Affiliation(s)
- L Pick
- Brookdale Center for Developmental and Molecular Biology, Mt. Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
50
|
Warren AJ, Bravo J, Williams RL, Rabbitts TH. Structural basis for the heterodimeric interaction between the acute leukaemia-associated transcription factors AML1 and CBFbeta. EMBO J 2000; 19:3004-15. [PMID: 10856244 PMCID: PMC203359 DOI: 10.1093/emboj/19.12.3004] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mutations in the genes encoding the interacting proteins AML1 and CBFbeta are the most common genetic abnormalities in acute leukaemia, and congenital mutations in the related AML3 gene are associated with disorders of osteogenesis. Furthermore, the interaction of AML1 with CBFbeta is essential for haematopoiesis. We report the 2.6 A resolution crystal structure of the complex between the AML1 Runt domain and CBFbeta, which represents a paradigm for the mode of interaction of this highly conserved family of transcription factors. The structure demonstrates that point mutations associated with cleidocranial dysplasia map to the conserved heterodimer interface, suggesting a role for CBFbeta in osteogenesis, and reveals a potential protein interaction platform composed of conserved negatively charged residues on the surface of CBFbeta.
Collapse
Affiliation(s)
- A J Warren
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, UK.
| | | | | | | |
Collapse
|