1
|
Gouaref I, Otmane A, Makrelouf M, Abderrhmane SA, Haddam AEM, Koceir EA. Crucial Interactions between Altered Plasma Trace Elements and Fatty Acids Unbalance Ratio to Management of Systemic Arterial Hypertension in Diabetic Patients: Focus on Endothelial Dysfunction. Int J Mol Sci 2024; 25:9288. [PMID: 39273236 PMCID: PMC11395650 DOI: 10.3390/ijms25179288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
The coexistence of SAH with T2DM is a common comorbidity. In this study, we investigated the link between altered plasma antioxidant trace elements (ATE: manganese, selenium, zinc, and copper) and fatty acids ratio (FAR: polyunsaturated/saturated) imbalance as transition biomarkers between vascular pathology (SAH) to metabolic pathology (T2DM). Our data revealed strong correlation between plasma ATE and FAR profile, which is modified during SAH-T2DM association compared to the healthy group. This relationship is mediated by lipotoxicity (simultaneously prominent visceral adipose tissue lipolysis, significant flow of non-esterified free fatty acids release, TG-Chol-dyslipidemia, high association of total SFA, palmitic acid, arachidonic acid, and PUFA ω6/PUFA ω3; drop in tandem of PUFA/SFA and EPA + DHA); oxidative stress (lipid peroxidation confirmed by TAS depletion and MDA rise, concurrent drop of Zn/Cu-SOD, GPx, GSH, Se, Zn, Se/Mn, Zn/Cu; concomitant enhancement of Cu, Mn, and Fe); endothelial dysfunction (endotheline-1 increase); athero-thrombogenesis risk (concomitant rise of ApoB100/ApoA1, Ox-LDL, tHcy, and Lp(a)), and inflammation (higher of Hs-CRP, fibrinogen and ferritin). Our study opens to new therapeutic targets and to better dietary management, such as to establishing dietary ATE and PUFA ω6/PUFA ω3 or PUFA/SFA reference values for atherosclerotic risk prevention in hypertensive/diabetic patients.
Collapse
Affiliation(s)
- Ines Gouaref
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| | - Amel Otmane
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Mohamed Makrelouf
- Biochemistry and Genetics Laboratory, University Hospital Center, Mohamed Lamine Debaghine, Bab El Oued, Algiers 16000, Algeria
| | - Samir Ait Abderrhmane
- Diabetology Unit, University Hospital Center, Mohamed Seghir Nekkache (ex. HCA de Aïn Naâdja), Algiers 16208, Algeria
| | - Ali El Mahdi Haddam
- Diabetology Unit, University Hospital Center, Mohamed Lamine Debaghine, Algiers I-University, Bab El Oued, Algiers 16000, Algeria
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism Team, Laboratory of Biology and Organism Physiology, Biological Sciences Faculty, Nutrition and Pathologies Post Graduate School, Houari Boumediene University of Sciences and Technology (USTHB), Bab Ezzouar, Algiers 16123, Algeria
- Tamayouz Laboratory, Centre de Recherche en Biotechnologie (CRBT), Ali Mendjli Nouvelle Ville UV 03 BP E73, Constantine 25000, Algeria
| |
Collapse
|
2
|
Hodapp SJ, Gravel N, Kannan N, Newton AC. Cancer-associated mutations in protein kinase C theta are loss-of-function. Biochem J 2024; 481:759-775. [PMID: 38752473 PMCID: PMC11346454 DOI: 10.1042/bcj20240148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024]
Abstract
The Ca2+-independent, but diacylglycerol-regulated, novel protein kinase C (PKC) theta (θ) is highly expressed in hematopoietic cells where it participates in immune signaling and platelet function. Mounting evidence suggests that PKCθ may be involved in cancer, particularly blood cancers, breast cancer, and gastrointestinal stromal tumors, yet how to target this kinase (as an oncogene or as a tumor suppressor) has not been established. Here, we examine the effect of four cancer-associated mutations, R145H/C in the autoinhibitory pseudosubstrate, E161K in the regulatory C1A domain, and R635W in the regulatory C-terminal tail, on the cellular activity and stability of PKCθ. Live-cell imaging studies using the genetically-encoded fluorescence resonance energy transfer-based reporter for PKC activity, C kinase activity reporter 2 (CKAR2), revealed that the pseudosubstrate and C1A domain mutations impaired autoinhibition to increase basal signaling. This impaired autoinhibition resulted in decreased stability of the protein, consistent with the well-characterized behavior of Ca2+-regulated PKC isozymes wherein mutations that impair autoinhibition are paradoxically loss-of-function because the mutant protein is degraded. In marked contrast, the C-terminal tail mutation resulted in enhanced autoinhibition and enhanced stability. Thus, the examined mutations were loss-of-function by different mechanisms: mutations that impaired autoinhibition promoted the degradation of PKC, and those that enhanced autoinhibition stabilized an inactive PKC. Supporting a general loss-of-function of PKCθ in cancer, bioinformatics analysis revealed that protein levels of PKCθ are reduced in diverse cancers, including lung, renal, head and neck, and pancreatic. Our results reveal that PKCθ function is lost in cancer.
Collapse
Affiliation(s)
- Stefanie J. Hodapp
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Nathan Gravel
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, University of Georgia, Athens, GA 30602, U.S.A
| | - Alexandra C. Newton
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
3
|
Eldeeb MA, Zhou W, Esmaili M, Elgohary AM, Wei H, Fahlman RP. N-degron-mediated degradation of the proteolytically activated form of PKC-theta kinase attenuates its pro-apoptotic function. Cell Signal 2023; 110:110830. [PMID: 37516395 DOI: 10.1016/j.cellsig.2023.110830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Cellular signalling cues lead to the initiation of apoptotic pathways and often result in the activation of caspases which in turn cause the generation of proteolytically generated protein fragments with new or altered functions. Mounting number of studies reveal that the activity of these proteolytically activated protein fragments can be counteracted via their selective degradation by the N-degron degradation pathways. Here, we investigate the proteolytically generated fragment of the PKC theta kinase, where we demonstrate the first report on the stability of this pro-apoptotic protein fragment. We have determined that the pro-apoptotic cleaved fragment of PKC-theta is unstable in cells because its N-terminal lysine targets it for proteasomal degradation via the N-degron degradation pathway and this degradation is inhibited by mutating the destabilizing N-termini, knockdown of the UBR1 and UBR2 E3 ligases. Tellingly, we demonstrate that the metabolic stabilization of the cleaved fragment of PKC-theta or inhibition of the N-degron degradation augments the apoptosis-inducing effect of staurosporine in Jurkat cells. Notably, we have unveiled that the cleaved fragment of PKC theta, per se, can induce apoptotic cell death in Jurkat T-cell leukemia. Our results expand the functional scope of mammalian N-degron degradation pathways, and support the notion that targeting N-degron degradation machinery may have promising therapeutic implications in cancer cells.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada; Department of Neurology, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.
| | - Wenbin Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, China
| | - Mansoore Esmaili
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Alaa M Elgohary
- Biophysics department, Faculty of science, Cairo University, Egypt
| | - Hai Wei
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, China
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Singh SK, Roy R, Kumar S, Srivastava P, Jha S, Rana B, Rana A. Molecular Insights of MAP4K4 Signaling in Inflammatory and Malignant Diseases. Cancers (Basel) 2023; 15:cancers15082272. [PMID: 37190200 PMCID: PMC10136566 DOI: 10.3390/cancers15082272] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are crucial in extracellular signal transduction to cellular responses. The classical three-tiered MAPK cascades include signaling through MAP kinase kinase kinase (MAP3K) that activates a MAP kinase kinase (MAP2K), which in turn induces MAPK activation and downstream cellular responses. The upstream activators of MAP3K are often small guanosine-5'-triphosphate (GTP)-binding proteins, but in some pathways, MAP3K can be activated by another kinase, which is known as a MAP kinase kinase kinase kinase (MAP4K). MAP4K4 is one of the widely studied MAP4K members, known to play a significant role in inflammatory, cardiovascular, and malignant diseases. The MAP4K4 signal transduction plays an essential role in cell proliferation, transformation, invasiveness, adhesiveness, inflammation, stress responses, and cell migration. Overexpression of MAP4K4 is frequently reported in many cancers, including glioblastoma, colon, prostate, and pancreatic cancers. Besides its mainstay pro-survival role in various malignancies, MAP4K4 has been implicated in cancer-associated cachexia. In the present review, we discuss the functional role of MAP4K4 in malignant/non-malignant diseases and cancer-associated cachexia and its possible use in targeted therapy.
Collapse
Affiliation(s)
- Sunil Kumar Singh
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruchi Roy
- UICentre for Drug Discovery, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sandeep Kumar
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Piush Srivastava
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Saket Jha
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Basabi Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| | - Ajay Rana
- Department of Surgery, Division of Surgical Oncology, University of Illinois at Chicago, Chicago, IL 60612, USA
- University of Illinois Hospital & Health Sciences System Cancer Center, University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown VA Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
5
|
Gao Y, Hu S, Li R, Jin S, Liu F, Liu X, Li Y, Yan Y, Liu W, Gong J, Yang S, Tu P, Shen L, Bai F, Wang Y. Hyperprogression of cutaneous T cell lymphoma after anti-PD-1 treatment. JCI Insight 2023; 8:164793. [PMID: 36649072 PMCID: PMC9977500 DOI: 10.1172/jci.insight.164793] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
BACKGROUNDImmune checkpoint blockade is an emerging treatment for T cell non-Hodgkin's lymphoma (T-NHL), but some patients with T-NHL have experienced hyperprogression with undetermined mechanisms upon anti-PD-1 therapy.METHODSSingle-cell RNA-Seq, whole-genome sequencing, whole-exome sequencing, and functional assays were performed on primary malignant T cells from a patient with advanced cutaneous T cell lymphoma who experienced hyperprogression upon anti-PD-1 treatment.RESULTSThe patient was enrolled in a clinical trial of anti-PD-1 therapy and experienced disease hyperprogression. Single-cell RNA-Seq revealed that PD-1 blockade elicited a remarkable activation and proliferation of the CD4+ malignant T cells, which showed functional PD-1 expression and an exhausted status. Further analyses identified somatic amplification of PRKCQ in the malignant T cells. PRKCQ encodes PKCθ; PKCθ is a key player in the T cell activation/NF-κB pathway. PRKCQ amplification led to high expressions of PKCθ and p-PKCθ (T538) on the malignant T cells, resulting in an oncogenic activation of the T cell receptor (TCR) signaling pathway. PD-1 blockade in this patient released this signaling, derepressed the proliferation of malignant T cells, and resulted in disease hyperprogression.CONCLUSIONOur study provides real-world clinical evidence that PD-1 acts as a tumor suppressor for malignant T cells with oncogenic TCR activation.TRIAL REGISTRATIONClinicalTrials.gov (NCT03809767).FUNDINGThe National Natural Science Foundation of China (81922058), the National Science Fund for Distinguished Young Scholars (T2125002), the National Science and Technology Major Project (2019YFC1315702), the National Youth Top-Notch Talent Support Program (283812), and the Peking University Clinical Medicine plus X Youth Project (PKU2019LCXQ012) supported this work.
Collapse
Affiliation(s)
- Yumei Gao
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Simeng Hu
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Academy for Advanced Interdisciplinary Studies (AAIS), and Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program (PTN), Peking University, Beijing, China
| | - Ruoyan Li
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Shanzhao Jin
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,BioMap Beijing Intelligence Technology Limited, Block C Information Center Haidian District, Beijing, China
| | - Fengjie Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xiangjun Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yingyi Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Yicen Yan
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Weiping Liu
- Department of Lymphoma, Key Laboratory of Carcinogenesis and Translational Research Ministry of Education, and
| | - Jifang Gong
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Shuxia Yang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ping Tu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), and School of Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China.,Center for Translational Cancer Research, Peking University First Hospital, Beijing, China
| | - Yang Wang
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Molecular Diagnosis on Dermatoses, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
6
|
Papa P, Whitefield B, Mortensen DS, Cashion D, Huang D, Torres E, Parnes J, Sapienza J, Hansen J, Correa M, Delgado M, Harris R, Hegde S, Norris S, Bahmanyar S, Plantevin-Krenitsky V, Liu Z, Leftheris K, Kulkarni A, Bennett B, Hur EM, Ringheim G, Khambatta G, Chan H, Muir J, Blease K, Burnett K, LeBrun L, Morrison L, Celeridad M, Khattri R, Cathers BE. Discovery of the Selective Protein Kinase C-θ Kinase Inhibitor, CC-90005. J Med Chem 2021; 64:11886-11903. [PMID: 34355886 DOI: 10.1021/acs.jmedchem.1c00388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The PKC-θ isoform of protein kinase C is selectively expressed in T lymphocytes and plays an important role in the T cell antigen receptor (TCR)-triggered activation of mature T cells, T cell proliferation, and the subsequent release of cytokines such as interleukin-2 (IL-2). Herein, we report the synthesis and structure-activity relationship (SAR) of a novel series of PKC-θ inhibitors. Through a combination of structure-guided design and exploratory SAR, suitable replacements for the basic C4 amine of the original lead (3) were identified. Property-guided design enabled the identification of appropriately substituted C2 groups to afford potent analogs with metabolic stability and permeability to support in vivo testing. With exquisite general kinase selectivity, cellular inhibition of T cell activation as assessed by IL-2 expression, a favorable safety profile, and demonstrated in vivo efficacy in models of acute and chronic T cell activation with oral dosing, CC-90005 (57) was selected for clinical development.
Collapse
Affiliation(s)
- Patrick Papa
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Brandon Whitefield
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Deborah S Mortensen
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Dan Cashion
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Dehua Huang
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Eduardo Torres
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Jason Parnes
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - John Sapienza
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Joshua Hansen
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Matthew Correa
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Mercedes Delgado
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Roy Harris
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Sayee Hegde
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Stephen Norris
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Sogole Bahmanyar
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | | | - Zheng Liu
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Katerina Leftheris
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Ashutosh Kulkarni
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Brydon Bennett
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Eun Mi Hur
- Bristol Myers Squibb, 86 Morris Avenue, Summit, New Jersey 07901, United States
| | - Garth Ringheim
- Bristol Myers Squibb, 86 Morris Avenue, Summit, New Jersey 07901, United States
| | - Godrej Khambatta
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Henry Chan
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Jeffrey Muir
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Kate Blease
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Kelven Burnett
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Laurie LeBrun
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Lisa Morrison
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Maria Celeridad
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Roli Khattri
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Brian E Cathers
- Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| |
Collapse
|
7
|
He Y, Yang Z, Zhao CS, Xiao Z, Gong Y, Li YY, Chen Y, Du Y, Feng D, Altman A, Li Y. T-cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1-SUMO1/Ubc9 nuclear pore subcomplex via PKC-θ-mediated phosphorylation of RanGAP1. eLife 2021; 10:67123. [PMID: 34110283 PMCID: PMC8225385 DOI: 10.7554/elife.67123] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/03/2021] [Indexed: 01/15/2023] Open
Abstract
The nuclear pore complex (NPC) is the sole and selective gateway for nuclear transport, and its dysfunction has been associated with many diseases. The metazoan NPC subcomplex RanBP2, which consists of RanBP2 (Nup358), RanGAP1-SUMO1, and Ubc9, regulates the assembly and function of the NPC. The roles of immune signaling in regulation of NPC remain poorly understood. Here, we show that in human and murine T cells, following T-cell receptor (TCR) stimulation, protein kinase C-θ (PKC-θ) directly phosphorylates RanGAP1 to facilitate RanBP2 subcomplex assembly and nuclear import and, thus, the nuclear translocation of AP-1 transcription factor. Mechanistically, TCR stimulation induces the translocation of activated PKC-θ to the NPC, where it interacts with and phosphorylates RanGAP1 on Ser504 and Ser506. RanGAP1 phosphorylation increases its binding affinity for Ubc9, thereby promoting sumoylation of RanGAP1 and, finally, assembly of the RanBP2 subcomplex. Our findings reveal an unexpected role of PKC-θ as a direct regulator of nuclear import and uncover a phosphorylation-dependent sumoylation of RanGAP1, delineating a novel link between TCR signaling and assembly of the RanBP2 NPC subcomplex.
Collapse
Affiliation(s)
- Yujiao He
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhiguo Yang
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chen-Si Zhao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Xiao
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Gong
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yun-Yi Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yiqi Chen
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yunting Du
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dianying Feng
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Amnon Altman
- Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, United States
| | - Yingqiu Li
- MOE Key Laboratory of Gene Function and Regulation, Guangdong Province Key Laboratory of Pharmaceutical Functional Genes, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
8
|
Ngoenkam J, Paensuwan P, Wipa P, Schamel WWA, Pongcharoen S. Wiskott-Aldrich Syndrome Protein: Roles in Signal Transduction in T Cells. Front Cell Dev Biol 2021; 9:674572. [PMID: 34169073 PMCID: PMC8217661 DOI: 10.3389/fcell.2021.674572] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/17/2021] [Indexed: 11/23/2022] Open
Abstract
Signal transduction regulates the proper function of T cells in an immune response. Upon binding to its specific ligand associated with major histocompatibility complex (MHC) molecules on an antigen presenting cell, the T cell receptor (TCR) initiates intracellular signaling that leads to extensive actin polymerization. Wiskott-Aldrich syndrome protein (WASp) is one of the actin nucleation factors that is recruited to TCR microclusters, where it is activated and regulates actin network formation. Here we highlight the research that has focused on WASp-deficient T cells from both human and mice in TCR-mediated signal transduction. We discuss the role of WASp in proximal TCR signaling as well as in the Ras/Rac-MAPK (mitogen-activated protein kinase), PKC (protein kinase C) and Ca2+-mediated signaling pathways.
Collapse
Affiliation(s)
- Jatuporn Ngoenkam
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Pussadee Paensuwan
- Department of Optometry, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok, Thailand
| | - Piyamaporn Wipa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wolfgang W. A. Schamel
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Immunology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Freiburg University Clinics, University of Freiburg, Freiburg, Germany
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
9
|
Marotel M, Villard M, Drouillard A, Tout I, Besson L, Allatif O, Pujol M, Rocca Y, Ainouze M, Roblot G, Viel S, Gomez M, Loustaud V, Alain S, Durantel D, Walzer T, Hasan U, Marçais A. Peripheral natural killer cells in chronic hepatitis B patients display multiple molecular features of T cell exhaustion. eLife 2021; 10:60095. [PMID: 33507150 PMCID: PMC7870135 DOI: 10.7554/elife.60095] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Antiviral effectors such as natural killer (NK) cells have impaired functions in chronic hepatitis B (CHB) patients. The molecular mechanism responsible for this dysfunction remains poorly characterised. We show that decreased cytokine production capacity of peripheral NK cells from CHB patients was associated with reduced expression of NKp30 and CD16, and defective mTOR pathway activity. Transcriptome analysis of patients NK cells revealed an enrichment for transcripts expressed in exhausted T cells suggesting that NK cell dysfunction and T cell exhaustion employ common mechanisms. In particular, the transcription factor TOX and several of its targets were over-expressed in NK cells of CHB patients. This signature was predicted to be dependent on the calcium-associated transcription factor NFAT. Stimulation of the calcium-dependent pathway recapitulated features of NK cells from CHB patients. Thus, deregulated calcium signalling could be a central event in both T cell exhaustion and NK cell dysfunction occurring during chronic infections.
Collapse
Affiliation(s)
- Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Marine Villard
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Annabelle Drouillard
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Issam Tout
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Laurie Besson
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Omran Allatif
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Marine Pujol
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Yamila Rocca
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Michelle Ainouze
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Guillaume Roblot
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Sébastien Viel
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Melissa Gomez
- CHU Limoges, Service d'Hépatogastroentérologie, U1248 INSERM, Université Limoges, Limoges, France
| | - Veronique Loustaud
- CHU Limoges, Service d'Hépatogastroentérologie, U1248 INSERM, Université Limoges, Limoges, France
| | - Sophie Alain
- Département de Microbiologie, CHU de Limoges, Faculté de médecine-Université de Limoges, Limoges, France
| | - David Durantel
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM, U1052, CNRS, Université de Lyon, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Uzma Hasan
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
10
|
Byerly JH, Port ER, Irie HY. PRKCQ inhibition enhances chemosensitivity of triple-negative breast cancer by regulating Bim. Breast Cancer Res 2020; 22:72. [PMID: 32600444 PMCID: PMC7322866 DOI: 10.1186/s13058-020-01302-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 05/26/2020] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Protein kinase C theta, (PRKCQ/PKCθ) is a serine/threonine kinase that is highly expressed in a subset of triple-negative breast cancers (TNBC) and promotes their growth, anoikis resistance, epithelial-mesenchymal transition (EMT), and invasion. Here, we show that PRKCQ regulates the sensitivity of TNBC cells to apoptosis triggered by standard-of-care chemotherapy by regulating levels of pro-apoptotic Bim. METHODS To determine the effects of PRKCQ expression on chemotherapy-induced apoptosis, shRNA and cDNA vectors were used to modulate the PRKCQ expression in MCF-10A breast epithelial cells or triple-negative breast cancer cells (MDA-MB231Luc, HCC1806). A novel PRKCQ small-molecule inhibitor, 17k, was used to inhibit kinase activity. Viability and apoptosis of cells treated with PRKCQ cDNA/shRNA/inhibitor +/-chemotherapy were measured. Expression levels of Bcl2 family members were assessed. RESULTS Enhanced expression of PRKCQ is sufficient to suppress apoptosis triggered by paclitaxel or doxorubicin treatment. Downregulation of PRKCQ also enhanced the apoptosis of chemotherapy-treated TNBC cells. Regulation of chemotherapy sensitivity by PRKCQ mechanistically occurs via regulation of levels of Bim, a pro-apoptotic Bcl2 family member; suppression of Bim prevents the enhanced apoptosis observed with combined PRKCQ downregulation and chemotherapy treatment. Regulation of Bim and chemotherapy sensitivity is significantly dependent on PRKCQ kinase activity; overexpression of a catalytically inactive PRKCQ does not suppress Bim or chemotherapy-associated apoptosis. Furthermore, PRKCQ kinase inhibitor treatment suppressed growth, increased anoikis and Bim expression, and enhanced apoptosis of chemotherapy-treated TNBC cells, phenocopying the effects of PRKCQ downregulation. CONCLUSIONS These studies support PRKCQ inhibition as an attractive therapeutic strategy and complement to chemotherapy to inhibit the growth and survival of TNBC cells.
Collapse
Affiliation(s)
- Jessica H Byerly
- Division of Hematology and Medical Oncology, Department of Medicine, New York, USA
| | - Elisa R Port
- Department of Surgery, Mount Sinai Hospital, New York, NY, 10029, USA
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine, New York, USA. .,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
11
|
Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 2020; 52:750-761. [PMID: 32439954 PMCID: PMC7272404 DOI: 10.1038/s12276-020-0435-8] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
T cell activation requires extracellular stimulatory signals that are mainly mediated by T cell receptor (TCR) complexes. The TCR recognizes antigens on major histocompatibility complex molecules with the cooperation of CD4 or CD8 coreceptors. After recognition, TCR-induced signaling cascades that propagate signals via various molecules and second messengers are induced. Consequently, many features of T cell-mediated immune responses are determined by these intracellular signaling cascades. Furthermore, differences in the magnitude of TCR signaling direct T cells toward distinct effector linages. Therefore, stringent regulation of T cell activation is crucial for T cell homeostasis and proper immune responses. Dysregulation of TCR signaling can result in anergy or autoimmunity. In this review, we summarize current knowledge on the pathways that govern how the TCR complex transmits signals into cells and the roles of effector molecules that are involved in these pathways.
Collapse
|
12
|
Ireland S, Ramnarayanan S, Fu M, Zhang X, Zhang J, Li J, Emebo D, Wang Y. Cytosolic Ca 2+ Modulates Golgi Structure Through PKCα-Mediated GRASP55 Phosphorylation. iScience 2020; 23:100952. [PMID: 32179476 PMCID: PMC7078314 DOI: 10.1016/j.isci.2020.100952] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/31/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022] Open
Abstract
It has been well documented that the ER responds to cellular stresses through the unfolded protein response (UPR), but it is unknown how the Golgi responds to similar stresses. In this study, we treated HeLa cells with ER stress inducers, thapsigargin (TG), tunicamycin (Tm), and dithiothreitol (DTT), and found that only TG treatment resulted in Golgi fragmentation. TG induced Golgi fragmentation at a low dose and short time when UPR was undetectable, indicating that Golgi fragmentation occurs independently of ER stress. Further experiments demonstrated that TG induces Golgi fragmentation through elevating intracellular Ca2+ and protein kinase Cα (PKCα) activity, which phosphorylates the Golgi stacking protein GRASP55. Significantly, activation of PKCα with other activating or inflammatory agents, including phorbol 12-myristate 13-acetate and histamine, modulates Golgi structure in a similar fashion. Hence, our study revealed a novel mechanism through which increased cytosolic Ca2+ modulates Golgi structure and function. Thapsigargin (TG) treatment leads to Golgi fragmentation independent of ER stress TG induces Golgi fragmentation through elevated cytosolic Ca2+ TG-induced cytosolic Ca2+ spikes activate PKCα that phosphorylates GRASP55 Histamine modulates the Golgi structure and function by a similar mechanism
Collapse
Affiliation(s)
- Stephen Ireland
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Saiprasad Ramnarayanan
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Mingzhou Fu
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Xiaoyan Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Jianchao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Dabel Emebo
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Biological Sciences Building, 1105 North University Avenue, Ann Arbor, MI 48109-1085, USA; Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI 48109-1085, USA.
| |
Collapse
|
13
|
Siegmund K, Thuille N, Posch N, Fresser F, Leitges M, Baier G. Novel mutant mouse line emphasizes the importance of protein kinase C theta for CD4 + T lymphocyte activation. Cell Commun Signal 2019; 17:56. [PMID: 31138259 PMCID: PMC6537413 DOI: 10.1186/s12964-019-0364-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/14/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The protein kinase C theta (PKCθ) has an important and non-redundant function downstream of the antigen receptor and co-receptor complex in T lymphocytes. PKCθ is not only essential for activation of NF-κB, AP-1 and NFAT and subsequent interleukin-2 expression, but also critical for positive selection and development of regulatory T lymphocytes in the thymus. Several domains regulate its activity, such as a pseudosubstrate sequence mediating an auto-inhibitory intramolecular interaction, the tandem C1 domains binding diacylglycerol, and phosphorylation at conserved tyrosine, threonine as well as serine residues throughout the whole length of the protein. To address the importance of the variable domain V1 at the very N-terminus, which is encoded by exon 2, a mutated version of PKCθ was analyzed for its ability to stimulate T lymphocyte activation. METHODS T cell responses were analyzed with promoter luciferase reporter assays in Jurkat T cells transfected with PKCθ expression constructs. A mouse line expressing mutated instead of wild type PKCθ was analyzed in comparison to PKCθ-deficient and wild type mice for thymic development and T cell subsets by flow cytometry and T cell activation by quantitative RT-PCR, luminex analysis and flow cytometry. RESULTS In cell lines, the exon 2-replacing mutation impaired the transactivation of interleukin-2 expression by constitutively active mutant form of PKCθ. Moreover, analysis of a newly generated exon 2-mutant mouse line (PKCθ-E2mut) revealed that the N-terminal replacement mutation results in an hypomorph mutant of PKCθ combined with reduced PKCθ protein levels in CD4+ T lymphocytes. Thus, PKCθ-dependent functions in T lymphocytes were affected resulting in impaired thymic development of single positive T lymphocytes in vivo. In particular, there was diminished generation of regulatory T lymphocytes. Furthermore, early activation responses such as interleukin-2 expression of CD4+ T lymphocytes were significantly reduced even though cell viability was not affected. Thus, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. CONCLUSION Taken together, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. Both our in vitro T cell culture experiments and ex vivo analyses of a PKCθ-E2-mutant mouse line independently validate the importance of PKCθ downstream of the antigen-receptor complex for activation of CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Kerstin Siegmund
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nikolaus Thuille
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nina Posch
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Friedrich Fresser
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | | | - Gottfried Baier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| |
Collapse
|
14
|
Siegmund K, Thuille N, Posch N, Fresser F, Leitges M, Baier G. Novel mutant mouse line emphasizes the importance of protein kinase C theta for CD4 + T lymphocyte activation. Cell Commun Signal 2019. [PMID: 31138259 PMCID: PMC6537413 DOI: 10.1186/s12964-019-0364-0#] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The protein kinase C theta (PKCθ) has an important and non-redundant function downstream of the antigen receptor and co-receptor complex in T lymphocytes. PKCθ is not only essential for activation of NF-κB, AP-1 and NFAT and subsequent interleukin-2 expression, but also critical for positive selection and development of regulatory T lymphocytes in the thymus. Several domains regulate its activity, such as a pseudosubstrate sequence mediating an auto-inhibitory intramolecular interaction, the tandem C1 domains binding diacylglycerol, and phosphorylation at conserved tyrosine, threonine as well as serine residues throughout the whole length of the protein. To address the importance of the variable domain V1 at the very N-terminus, which is encoded by exon 2, a mutated version of PKCθ was analyzed for its ability to stimulate T lymphocyte activation. METHODS T cell responses were analyzed with promoter luciferase reporter assays in Jurkat T cells transfected with PKCθ expression constructs. A mouse line expressing mutated instead of wild type PKCθ was analyzed in comparison to PKCθ-deficient and wild type mice for thymic development and T cell subsets by flow cytometry and T cell activation by quantitative RT-PCR, luminex analysis and flow cytometry. RESULTS In cell lines, the exon 2-replacing mutation impaired the transactivation of interleukin-2 expression by constitutively active mutant form of PKCθ. Moreover, analysis of a newly generated exon 2-mutant mouse line (PKCθ-E2mut) revealed that the N-terminal replacement mutation results in an hypomorph mutant of PKCθ combined with reduced PKCθ protein levels in CD4+ T lymphocytes. Thus, PKCθ-dependent functions in T lymphocytes were affected resulting in impaired thymic development of single positive T lymphocytes in vivo. In particular, there was diminished generation of regulatory T lymphocytes. Furthermore, early activation responses such as interleukin-2 expression of CD4+ T lymphocytes were significantly reduced even though cell viability was not affected. Thus, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. CONCLUSION Taken together, PKCθ-E2mut mice show a phenotype similar to conventional PKCθ-deficient mice. Both our in vitro T cell culture experiments and ex vivo analyses of a PKCθ-E2-mutant mouse line independently validate the importance of PKCθ downstream of the antigen-receptor complex for activation of CD4+ T lymphocytes.
Collapse
Affiliation(s)
- Kerstin Siegmund
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nikolaus Thuille
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Nina Posch
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | - Friedrich Fresser
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| | | | - Gottfried Baier
- 0000 0000 8853 2677grid.5361.1Department for Pharmacology and Genetics, Medical University Innsbruck, Division of Translational Cell Genetics, Peter Mayr Str. 1a, A-6020 Innsbruck, Austria
| |
Collapse
|
15
|
Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018; 134:118-133. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
16
|
Hage-Sleiman R, Hamze AB, El-Hed AF, Attieh R, Kozhaya L, Kabbani S, Dbaibo G. Ceramide inhibits PKCθ by regulating its phosphorylation and translocation to lipid rafts in Jurkat cells. Immunol Res 2017; 64:869-86. [PMID: 26798039 DOI: 10.1007/s12026-016-8787-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Protein kinase C theta (PKCθ) is a novel, calcium-independent member of the PKC family of kinases that was identified as a central player in T cell signaling and proliferation. Upon T cell activation by antigen-presenting cells, PKCθ gets phosphorylated and activated prior to its translocation to the immunological synapse where it couples with downstream effectors. PKCθ may be regulated by ceramide, a crucial sphingolipid that is known to promote differentiation, growth arrest, and apoptosis. To further investigate the mechanism, we stimulated human Jurkat T cells with either PMA or anti-CD3/anti-CD28 antibodies following induction of ceramide accumulation by adding exogenous ceramide, bacterial sphingomyelinase, or Fas ligation. Our results suggest that ceramide regulates the PKCθ pathway through preventing its critical threonine 538 (Thr538) phosphorylation and subsequent activation, thereby inhibiting the kinase's translocation to lipid rafts. Moreover, this inhibition is not likely to be a generic effect of ceramide on membrane reorganization. Other lipids, namely dihydroceramide, palmitate, and sphingosine, did not produce similar effects on PKCθ. Addition of the phosphatase inhibitors okadaic acid and calyculin A reversed the inhibition exerted by ceramide, and this suggests involvement of a ceramide-activated protein phosphatase. Such previously undescribed mechanism of regulation of PKCθ raises the possibility that ceramide, or one of its derivatives, and may prove valuable in novel therapeutic approaches for disorders involving autoimmunity or excessive inflammation-where PKCθ plays a critical role.
Collapse
Affiliation(s)
- Rouba Hage-Sleiman
- Department of Biology, Faculty of Sciences, Lebanese University, Hadath, Lebanon
| | - Asmaa B Hamze
- Department of Biomedical Science, Faculty of Health Sciences, Global University, Batrakiyye, Beirut, Lebanon
| | - Aimée F El-Hed
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Randa Attieh
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Lina Kozhaya
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Sarah Kabbani
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon
| | - Ghassan Dbaibo
- Department of Pediatrics and Adolescent Medicine, Center for Infectious Diseases Research, Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, PO Box 11-0236 Riad El Solh, Beirut, Lebanon.
| |
Collapse
|
17
|
Alharshawi K, Marinelarena A, Kumar P, El-Sayed O, Bhattacharya P, Sun Z, Epstein AL, Maker AV, Prabhakar BS. PKC-ѳ is dispensable for OX40L-induced TCR-independent Treg proliferation but contributes by enabling IL-2 production from effector T-cells. Sci Rep 2017; 7:6594. [PMID: 28747670 PMCID: PMC5529425 DOI: 10.1038/s41598-017-05254-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/25/2017] [Indexed: 01/07/2023] Open
Abstract
We have previously shown that OX40L/OX40 interaction is critical for TCR-independent selective proliferation of Foxp3+ Tregs, but not Foxp3- effector T-cells (Teff), when CD4+ T-cells are co-cultured with GM-CSF derived bone marrow dendritic cells (G-BMDCs). Events downstream of OX40L/OX40 interaction in Tregs responsible for this novel mechanism are not understood. Earlier, OX40L/OX40 interaction has been shown to stimulate CD4+ T-cells through the formation of a signalosome involving TRAF2/PKC-Ѳ leading to NF-kB activation. In this study, using CD4+ T-cells from WT and OX40-/- mice we first established that OX40 mediated activation of NF-kB was critical for this Treg proliferation. Although CD4+ T-cells from PKC-Ѳ-/- mice were also defective in G-BMDC induced Treg proliferation ex vivo, this defect could be readily corrected by adding exogenous IL-2 to the co-cultures. Furthermore, by treating WT, OX40-/-, and PKC-Ѳ-/- mice with soluble OX40L we established that OX40L/OX40 interaction was required and sufficient to induce Treg proliferation in vivo independent of PKC-Ѳ status. Although PKC-Ѳ is dispensable for TCR-independent Treg proliferation per se, it is essential for optimum IL-2 production by Teff cells. Finally, our findings suggest that OX40L binding to OX40 likely results in recruitment of TRAF1 for downstream signalling.
Collapse
Affiliation(s)
- Khaled Alharshawi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Alejandra Marinelarena
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Osama El-Sayed
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Zuoming Sun
- Department of Immunology, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Alan L Epstein
- Department of Pathology, University of Southern California Keck School of Medicine, Los Angeles, California, USA
| | - Ajay V Maker
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.,Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
18
|
Zischke J, Mamareli P, Pokoyski C, Gabaev I, Buyny S, Jacobs R, Falk CS, Lochner M, Sparwasser T, Schulz TF, Kay-Fedorov PC. The human cytomegalovirus glycoprotein pUL11 acts via CD45 to induce T cell IL-10 secretion. PLoS Pathog 2017. [PMID: 28628650 PMCID: PMC5491327 DOI: 10.1371/journal.ppat.1006454] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human Cytomegalovirus (HCMV) is a widespread pathogen, infection with which can cause severe disease for immunocompromised individuals. The complex changes wrought on the host's immune system during both productive and latent HCMV infection are well known. Infected cells are masked and manipulated and uninfected immune cells are also affected; peripheral blood mononuclear cell (PBMC) proliferation is reduced and cytokine profiles altered. Levels increase of the anti-inflammatory cytokine IL-10, which may be important for the establishment of HCMV infections and is required for the development of high viral titres by murine cytomegalovirus. The mechanisms by which HCMV affects T cell IL-10 secretion are not understood. We show here that treatment of PBMC with purified pUL11 induces IL-10 producing T cells as a result of pUL11 binding to the CD45 phosphatase on T cells. IL-10 production induced by HCMV infection is also in part mediated by pUL11. Supernatants from pUL11 treated cells have anti-inflammatory effects on untreated PBMC. Considering the mechanism, CD45 can be a positive or negative regulator of TCR signalling, depending on its expression level, and we show that pUL11 also has concentration dependent activating or inhibitory effects on T cell proliferation and on the kinase function of the CD45 substrate Lck. pUL11 is therefore the first example of a viral protein that can target CD45 to induce T cells with anti-inflammatory properties. It is also the first HCMV protein shown to induce T cell IL-10 secretion. Understanding the mechanisms by which pUL11-induced changes in signal strength influence T cell development and function may provide the basis for the development of novel antiviral treatments and therapies against immune pathologies.
Collapse
Affiliation(s)
- Jasmin Zischke
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF, TTU-IICH), Hannover-Braunschweig Site, Hannover, Germany
| | - Panagiota Mamareli
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Claudia Pokoyski
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Ildar Gabaev
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Sabine Buyny
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Christine S. Falk
- German Center for Infection Research (DZIF, TTU-IICH), Hannover-Braunschweig Site, Hannover, Germany
- Institute of Transplant Immunology, IFB-Tx, Hannover Medical School, Hannover, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research; a joint venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF, TTU-IICH), Hannover-Braunschweig Site, Hannover, Germany
| | - Penelope C. Kay-Fedorov
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF, TTU-IICH), Hannover-Braunschweig Site, Hannover, Germany
- * E-mail:
| |
Collapse
|
19
|
Siegmund K, Thuille N, Wachowicz K, Hermann-Kleiter N, Baier G. Protein kinase C theta is dispensable for suppression mediated by CD25+CD4+ regulatory T cells. PLoS One 2017; 12:e0175463. [PMID: 28531229 PMCID: PMC5439664 DOI: 10.1371/journal.pone.0175463] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/27/2017] [Indexed: 12/24/2022] Open
Abstract
The activation of conventional T cells upon T cell receptor stimulation critically depends on protein kinase C theta (PKCθ). However, its role in regulatory T (Treg) cell function has yet to be fully elucidated. Using siRNA or the potent and PKC family-selective pharmacological inhibitor AEB071, we could show that murine Treg-mediated suppression in vitro is independent of PKCθ function. Likewise, Treg cells of PKCθ-deficient mice were fully functional, showing a similar suppressive activity as wild-type CD25+CD4+ T cells in an in vitro suppression assay. Furthermore, in vitro-differentiated wild-type and PKCθ-deficient iTreg cells showed comparable Foxp3 expression as well as suppressive activity. However, we observed a reduced percentage of Foxp3+CD25+ CD4+ T cells in the lymphatic organs of PKCθ-deficient mice. Taken together, our results suggest that while PKCθ is involved in Treg cell differentiation in vivo, it is dispensable for Treg-mediated suppression.
Collapse
Affiliation(s)
- Kerstin Siegmund
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
- * E-mail: (GB); (KS)
| | - Nikolaus Thuille
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | - Katarzyna Wachowicz
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
| | | | - Gottfried Baier
- Department for Pharmacology and Genetics, Medical University Innsbruck, Innsbruck, Austria
- * E-mail: (GB); (KS)
| |
Collapse
|
20
|
NFκB-Pim-1-Eomesodermin axis is critical for maintaining CD8 T-cell memory quality. Proc Natl Acad Sci U S A 2017; 114:E1659-E1667. [PMID: 28193872 DOI: 10.1073/pnas.1608448114] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
T-cell memory is critical for long-term immunity. However, the factors involved in maintaining the persistence, function, and phenotype of the memory pool are undefined. Eomesodermin (Eomes) is required for the establishment of the memory pool. Here, we show that in T cells transitioning to memory, the expression of high levels of Eomes is not constitutive but rather requires a continuum of cell-intrinsic NFκB signaling. Failure to maintain NFκB signals after the peak of the response led to impaired Eomes expression and a defect in the maintenance of CD8 T-cell memory. Strikingly, we found that antigen receptor [T-cell receptor (TCR)] signaling regulates this process through expression of the NFκB-dependent kinase proviral integration site for Moloney murine leukemia virus-1 (PIM-1), which in turn regulates NFκB and Eomes. T cells defective in TCR-dependent NFκB signaling were impaired in late expression of Pim-1, Eomes, and CD8 memory. These defects were rescued when TCR-dependent NFκB signaling was restored. We also found that NFκB-Pim-1 signals were required at memory to maintain memory CD8 T-cell longevity, effector function, and Eomes expression. Hence, an NFκB-Pim-1-Eomes axis regulates Eomes levels to maintain memory fitness.
Collapse
|
21
|
Byerly J, Halstead-Nussloch G, Ito K, Katsyv I, Irie HY. PRKCQ promotes oncogenic growth and anoikis resistance of a subset of triple-negative breast cancer cells. Breast Cancer Res 2016; 18:95. [PMID: 27663795 PMCID: PMC5034539 DOI: 10.1186/s13058-016-0749-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 08/20/2016] [Indexed: 12/02/2022] Open
Abstract
Background The protein kinase C (PKC) family comprises distinct classes of proteins, many of which are implicated in diverse cellular functions. Protein tyrosine kinase C theta isoform (PRKCQ)/PKCθ, a member of the novel PKC family, may have a distinct isoform-specific role in breast cancer. PKCθ is preferentially expressed in triple-negative breast cancer (TNBC) compared to other breast tumor subtypes. We hypothesized that PRKCQ/PKCθ critically regulates growth and survival of a subset of TNBC cells. Methods To elucidate the role of PRKCQ/PKCθ in regulating growth and anoikis resistance, we used both gain and loss of function to modulate expression of PRKCQ. We enhanced expression of PKCθ (kinase-active or inactive) in non-transformed breast epithelial cells (MCF-10A) and assessed effects on epidermal growth factor (EGF)-independent growth, anoikis, and migration. We downregulated expression of PKCθ in TNBC cells, and determined effects on in vitro and in vivo growth and survival. TNBC cells were also treated with a small molecule inhibitor to assess requirement for PKCθ kinase activity in the growth of TNBC cells. Results PRKCQ/PKCθ can promote oncogenic phenotypes when expressed in non-transformed MCF-10A mammary epithelial cells; PRKCQ/PKCθ enhances anchorage-independent survival, growth-factor-independent proliferation, and migration. PKCθ expression promotes retinoblastoma (Rb) phosphorylation and cell-cycle progression under growth factor-deprived conditions that typically induce cell-cycle arrest of MCF-10A breast epithelial cells. Proliferation and Rb phosphorylation are dependent on PKCθ-stimulated extracellular signal-related kinase (Erk)/mitogen-activated protein kinase (MAPK) activity. Enhanced Erk/MAPK activity is dependent on the kinase activity of PKCθ, as overexpression of kinase-inactive PKCθ does not stimulate Erk/MAPK or Rb phosphorylation or promote growth-factor-independent proliferation. Downregulation of PRKCQ/PKCθ in TNBC cells enhances anoikis, inhibits growth in 3-D MatrigelTM cultures, and impairs triple-negative tumor xenograft growth. AEB071, an inhibitor of PKCθ kinase activity, also inhibits growth and invasive branching of TNBC cells in 3-D cultures, further supporting a role for PKCθ kinase activity in triple-negative cancer cell growth. Conclusions Enhanced PRKCQ/PKCθ expression can promote growth-factor-independent growth, anoikis resistance, and migration. PRKCQ critically regulates growth and survival of a subset of TNBC. Inhibition of PKCθ kinase activity may be an attractive therapeutic approach for TNBC, a subtype in need of improved targeted therapies. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0749-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessica Byerly
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA
| | - Gwyneth Halstead-Nussloch
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA
| | - Koichi Ito
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA
| | - Igor Katsyv
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Hanna Y Irie
- Division of Hematology and Medical Oncology, Department of Medicine and Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA. .,Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, USA.
| |
Collapse
|
22
|
Kim WK, Yun S, Park CK, Bauer S, Kim J, Lee MG, Kim H. Sustained Mutant KIT Activation in the Golgi Complex Is Mediated by PKC-θ in Gastrointestinal Stromal Tumors. Clin Cancer Res 2016; 23:845-856. [PMID: 27440273 DOI: 10.1158/1078-0432.ccr-16-0521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/18/2016] [Accepted: 07/11/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumorigenesis of gastrointestinal stromal tumors (GIST) is driven by gain-of-function mutations in the KIT gene, which result in overexpression of activated mutant KIT proteins (MT-KIT). However, the mechanism of MT-KIT overexpression is poorly understood. EXPERIMENTAL DESIGN By protein expression analysis and immunofluorescent microscopic analysis, we determine the stability and localization of MT-KIT in four GIST cell lines with different mutations and HeLa cells transfected with mutant KIT model vectors. We also used 154 human GIST tissues to analyze the relationship between the expression of PKC-θ and MT-KITs, and correlations between PKC-θ overexpression and clinicopathological parameters. RESULTS We report that four different MT-KIT proteins are intrinsically less stable than wild-type KIT due to proteasome-mediated degradation and abnormally localized to the endoplasmic reticulum (ER) or the Golgi complex. By screening a MT-KIT-stabilizing factor, we find that PKC-θ is strongly and exclusively expressed in GISTs and interacts with intracellular MT-KIT to promote its stabilization by increased retention in the Golgi complex. In addition, Western blotting analysis using 50 GIST samples shows strong correlation between PKC-θ and MT-KIT expression (correlation coefficient = 0.682, P < 0.000001). Immunohistochemical analysis using 154 GISTs further demonstrates that PKC-θ overexpression significantly correlates with several clinicopathological parameters such as high tumor grade, frequent recurrence/metastasis, and poor patient survival. CONCLUSIONS Our findings suggest that sustained MT-KIT overexpression through PKC-θ-mediated stabilization in the Golgi contributes to GIST progression and provides a rationale for anti-PKC-θ therapy in GISTs. Clin Cancer Res; 23(3); 845-56. ©2016 AACR.
Collapse
Affiliation(s)
- Won Kyu Kim
- Department of Pathology and Brain Korea 21 PLUS Projects for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - SeongJu Yun
- Department of Pathology and Brain Korea 21 PLUS Projects for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Cheol Keun Park
- Department of Pathology and Brain Korea 21 PLUS Projects for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sebastian Bauer
- Sarcoma Center, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Jiyoon Kim
- Department of Pharmacology, Pharmacogenomic Research Center for Membrane Transporters, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Goo Lee
- Department of Pharmacology, Pharmacogenomic Research Center for Membrane Transporters, Brain Korea 21 PLUS Project for Medical Sciences, Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hoguen Kim
- Department of Pathology and Brain Korea 21 PLUS Projects for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Brezar V, Tu WJ, Seddiki N. PKC-Theta in Regulatory and Effector T-cell Functions. Front Immunol 2015; 6:530. [PMID: 26528291 PMCID: PMC4602307 DOI: 10.3389/fimmu.2015.00530] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/28/2015] [Indexed: 01/20/2023] Open
Abstract
One of the major goals in immunology research is to understand the regulatory mechanisms that underpin the rapid switch on/off of robust and efficient effector (Teffs) or regulatory (Tregs) T-cell responses. Understanding the molecular mechanisms underlying the regulation of such responses is critical for the development of effective therapies. T-cell activation involves the engagement of T-cell receptor and co-stimulatory signals, but the subsequent recruitment of serine/threonine-specific protein Kinase C-theta (PKC-θ) to the immunological synapse (IS) is instrumental for the formation of signaling complexes, which ultimately lead to a transcriptional network in T cells. Recent studies demonstrated that major differences between Teffs and Tregs occurred at the IS where its formation induces altered signaling pathways in Tregs. These pathways are characterized by reduced recruitment of PKC-θ, suggesting that PKC-θ inhibits Tregs suppressive function in a negative feedback loop. As the balance of Teffs and Tregs has been shown to be central in several diseases, it was not surprising that some studies revealed that PKC-θ plays a major role in the regulation of this balance. This review will examine recent knowledge on the role of PKC-θ in T-cell transcriptional responses and how this protein can impact on the function of both Tregs and Teffs.
Collapse
Affiliation(s)
- Vedran Brezar
- INSERM U955, Équipe 16 and Faculté de Médecine, Université Paris Est , Créteil , France ; Vaccine Research Institute (VRI) , Créteil , France
| | - Wen Juan Tu
- Faculty of Education, Science, Technology and Maths, University of Canberra , Canberra, ACT , Australia
| | - Nabila Seddiki
- INSERM U955, Équipe 16 and Faculté de Médecine, Université Paris Est , Créteil , France ; Vaccine Research Institute (VRI) , Créteil , France
| |
Collapse
|
24
|
TCR-induced sumoylation of the kinase PKC-θ controls T cell synapse organization and T cell activation. Nat Immunol 2015; 16:1195-203. [PMID: 26390157 DOI: 10.1038/ni.3259] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 07/30/2015] [Indexed: 12/14/2022]
Abstract
Sumoylation regulates many cellular processes, but its role in signaling via the T cell antigen receptor (TCR) remains unknown. We found that the kinase PKC-θ was sumoylated upon costimulation with antigen or via the TCR plus the coreceptor CD28, with Lys325 and Lys506 being the main sumoylation sites. We identified the SUMO E3 ligase PIASxβ as a ligase for PKC-θ. Analysis of primary mouse and human T cells revealed that sumoylation of PKC-θ was essential for T cell activation. Desumoylation did not affect the catalytic activity of PKC-θ but inhibited the association of CD28 with PKC-θ and filamin A and impaired the assembly of a mature immunological synapse and central co-accumulation of PKC-θ and CD28. Our findings demonstrate that sumoylation controls TCR-proximal signaling and that sumoylation of PKC-θ is essential for the formation of a mature immunological synapse and T cell activation.
Collapse
|
25
|
Sun M, Huang F, Yu D, Zhang Y, Xu H, Zhang L, Li L, Dong L, Guo L, Wang S. Autoregulatory loop between TGF-β1/miR-411-5p/SPRY4 and MAPK pathway in rhabdomyosarcoma modulates proliferation and differentiation. Cell Death Dis 2015; 6:e1859. [PMID: 26291313 PMCID: PMC4558514 DOI: 10.1038/cddis.2015.225] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 05/13/2015] [Accepted: 07/07/2015] [Indexed: 12/30/2022]
Abstract
The origin of rhabdomyosarcoma (RMS) remains controversial. However, specific microRNAs (miRNAs) are downregulated in RMS and it is possible that re-expression of these miRNAs may lead to differentiation. Transforming growth factor-β1 (TGF-β1) is known to block differentiation of RMS. We therefore analyzed miRNA microarrays of RMS cell lines with or without TGF-β1 knockdown and identified a novel anti-oncogene miR-411-5p. Re-expression of miR-411-5p inhibited RMS cell proliferation in vitro and tumorigenicity in vivo. Using a luciferase reporting system and sequence analysis, the potential target of miR-411-5p was identified as sprouty homolog 4 (SPRY4), which inhibits protein kinase Cα-mediated activation of mitogen-activated protein kinases (MAPKs), especially p38MAPK phosphorylation. These results revealed an inverse correlation between TGF-β1/SPRY4 and miR-411-5p levels. SPRY4 small interfering RNA and miR-411-5p both activated p38MAPK phosphorylation and also promoted apoptosis and myogenic differentiation, indicated by increased caspase-3, myosin heavy chain, and myosin expression. SPRY4 and miR-411 mRNA levels correlated with TGF-β1 expression levels in RMS tissues, which was confirmed by immunohistochemical staining for TGF-β1, SPRY4, and phosphorylated p38MAPK proteins. Overall, these results indicate that miR-411-5p acts as an RMS differentiation-inducing miRNA prompting p38MAPK activation via directly downregulating SPRY4. These results establish an autoregulatory loop between TGF-β1/miR-411-5p/SPRY4 and MAPK in RMS, which governs the switch between proliferation and differentiation.
Collapse
Affiliation(s)
- M Sun
- Laboratory Animal Research Center, Soochow University School of Medicine, Suzhou 215123, China
| | - F Huang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - D Yu
- Department of Plastic Surgery, Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - Y Zhang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - H Xu
- Department of Oncology, First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - L Zhang
- Department of Surgery, First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - L Li
- Department of Osteology, Second Affiliated Hospital, Soochow University, Suzhou 215004, China
| | - L Dong
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - L Guo
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| | - S Wang
- Department of Pathology, Soochow University School of Medicine, Suzhou 215123, China
| |
Collapse
|
26
|
Kushibiki T, Tu Y, Abu-Yousif AO, Hasan T. Photodynamic activation as a molecular switch to promote osteoblast cell differentiation via AP-1 activation. Sci Rep 2015; 5:13114. [PMID: 26279470 PMCID: PMC4538568 DOI: 10.1038/srep13114] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022] Open
Abstract
In photodynamic therapy (PDT), cells are impregnated with a photosensitizing agent that is activated by light irradiation, thereby photochemically generating reactive oxygen species (ROS). The amounts of ROS produced depends on the PDT dose and the nature of the photosensitizer. Although high levels of ROS are cytotoxic, at physiological levels they play a key role as second messengers in cellular signaling pathways, pluripotency, and differentiation of stem cells. To investigate further the use of photochemically triggered manipulation of such pathways, we exposed mouse osteoblast precursor cells and rat primary mesenchymal stromal cells to low-dose PDT. Our results demonstrate that low-dose PDT can promote osteoblast differentiation via the activation of activator protein-1 (AP-1). Although PDT has been used primarily as an anti-cancer therapy, the use of light as a photochemical "molecular switch" to promote differentiation should expand the utility of this method in basic research and clinical applications.
Collapse
Affiliation(s)
- Toshihiro Kushibiki
- 1] Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, USA, 40 Blossom Street, Boston, MA 02114, USA [2] Department of Medical Engineering, National Defense Medical College, Japan, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Yupeng Tu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, USA, 40 Blossom Street, Boston, MA 02114, USA
| | - Adnan O Abu-Yousif
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, USA, 40 Blossom Street, Boston, MA 02114, USA
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, USA, 40 Blossom Street, Boston, MA 02114, USA
| |
Collapse
|
27
|
Fukahori H, Chida N, Maeda M, Tasaki M, Kawashima T, Noto T, Tsujimoto S, Nakamura K, Oshima S, Hirose J, Higashi Y, Morokata T. Effect of novel PKCθ selective inhibitor AS2521780 on acute rejection in rat and non-human primate models of transplantation. Int Immunopharmacol 2015; 27:232-7. [DOI: 10.1016/j.intimp.2015.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 06/04/2015] [Accepted: 06/09/2015] [Indexed: 11/29/2022]
|
28
|
Phetsouphanh C, Kelleher AD. The Role of PKC-θ in CD4+ T Cells and HIV Infection: To the Nucleus and Back Again. Front Immunol 2015; 6:391. [PMID: 26284074 PMCID: PMC4519685 DOI: 10.3389/fimmu.2015.00391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 07/17/2015] [Indexed: 11/13/2022] Open
Abstract
Protein kinase C (PKC)-θ is the only member of the PKC family that has the ability to translocate to the immunological synapse between T cells and antigen-presenting cells upon T cell receptor and MHC-II recognition. PKC-θ interacts functionally and physically with other downstream effector molecules to mediate T cell activation, differentiation, and migration. It plays a critical role in the generation of Th2 and Th17 responses and is less important in Th1 and CTL responses. PKC-θ has been recently shown to play a role in the nucleus, where it mediates inducible gene expression in the development of memory CD4+ T cells. This novel PKC (nPKC) can up-regulate HIV-1 transcription and PKC-θ activators such as Prostratin have been used in early HIV-1 reservoir eradication studies. The exact manner of the activation of virus by these compounds and the role of PKC-θ, particularly its nuclear form and its association with NF-κB in both the cytoplasmic and nuclear compartments, needs further precise elucidation especially given the very important role of NF-κB in regulating transcription from the integrated retrovirus. Continued studies of this nPKC isoform will give further insight into the complexity of T cell signaling kinases.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| | - Anthony D Kelleher
- The Kirby Institute of Infectious Diseases in Society, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
29
|
Abstract
Protein kinase Cθ (PKCθ) is a key enzyme in T-lymphocytes where it plays an important role in signal transduction downstream of the activated T-cell receptor (TCR) and the CD28 co-stimulatory receptor. Antigenic stimulation of T-cells triggers PKCθ translocation to the centre of the immunological synapse (IS) at the contact site between antigen-specific T-cells and antigen-presenting cells (APCs). The IS-residing PKCθ phosphorylates and activates effector molecules that transduce signals into distinct subcellular compartments and activate the transcription factors, nuclear factor κB (NF-κB), nuclear factor of activated T-cells (NFAT) and activating protein 1 (AP-1), which are essential for the induction of T-cell-mediated responses. Besides its major biological role in T-cells, PKCθ is expressed in several additional cell types and is involved in a variety of distinct physiological and pathological phenomena. For example, PKCθ is expressed at high levels in platelets where it regulates signal transduction from distinct surface receptors, and is required for optimal platelet activation and aggregation, as well as haemostasis. In addition, PKCθ is involved in physiological processes regulating insulin resistance and susceptibility to obesity, and is expressed at high levels in gastrointestinal stromal tumours (GISTs), although the functional importance of PKCθ in these processes and cell types is not fully clear. The present article briefly reviews selected topics relevant to the biological roles of PKCθ in health and disease.
Collapse
|
30
|
Selective protein kinase Cθ (PKCθ) inhibitors for the treatment of autoimmune diseases. Biochem Soc Trans 2015; 42:1524-8. [PMID: 25399564 DOI: 10.1042/bst20140167] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Protein kinase Cθ (PKCθ) is a member of a large family of serine/threonine kinases that are involved in diverse cellular functions. PKCθ has roles in T-cell activation and survival, where the dependency of T-cell responses on this enzyme appears to be dictated by both the nature of the antigen and by the inflammatory environment. Studies in PKCθ-deficient mice have demonstrated that although anti-viral responses are PKCθ-independent, T-cell responses associated with autoimmune diseases are PKCθ-dependent. PKCθ-deficient mice are either resistant to or show markedly reduced symptoms in models of MS (multiple sclerosis), IBD (inflammatory bowel disease), arthritis and asthma. Thus potent and selective inhibition of PKCθ has the potential to block T-cell-mediated autoimmunity without compromising anti-viral responses. The present review describes the design and optimization of potent and selective PKCθ inhibitors and their efficacy in both in vitro and in vivo studies. First, our compounds confirm the critical role for PKCθ in T-cell activation and proliferation and secondly they help to demonstrate that murine and human memory T-cell function continues to be dependent on this enzyme. In addition, these inhibitors demonstrate impressive efficacy in treating established autoimmune disease in murine models of IBD and MS.
Collapse
|
31
|
Siegmund K, Thuille N, Posch N, Fresser F, Baier G. Novel protein kinase C θ: coronin 1A complex in T lymphocytes. Cell Commun Signal 2015; 13:22. [PMID: 25889880 PMCID: PMC4390099 DOI: 10.1186/s12964-015-0100-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 03/13/2015] [Indexed: 01/09/2023] Open
Abstract
Background Protein kinase C-θ (PKCθ) plays an important role in signal transduction down-stream of the T cell receptor and T cells deficient of PKCθ show impaired NF-κB as well as NFAT/AP-1 activation resulting in strongly decreased IL-2 expression and proliferation. However, it is not yet entirely clear, how the function of PKCθ - upon T cell activation - is regulated on a molecular level. Findings Employing a yeast two-hybrid screen and co-immunoprecipitation analyses, we here identify coronin 1A (Coro1A) as a novel PKCθ-interacting protein. We show that the NH2-terminal WD40 domains of Coro1A and the C2-like domain of PKCθ are sufficient for the interaction. Furthermore, we confirm a physical interaction by GST-Coro1A mediated pull-down of endogenous PKCθ protein. Functionally, wild-type but not Coro1A lacking its actin-binding domain negatively interferes with PKCθ-dependent NF-κB, Cyclin D1 and IL-2 transactivation when analysed with luciferase promoter activation assays in Jurkat T cells. This could be phenocopied by pharmacological inhibitors of actin polymerization and PKC, respectively. Mechanistically, Coro1A overexpression attenuates both lipid raft and plasma membrane recruitment of PKCθ in CD3/CD28-activated T cells. Using primary CD3+ T cells, we observed that (opposite to PKCθ) Coro1A does not localize preferentially to the immunological synapse. In addition, we show that CD3+ T cells isolated from Coro1A-deficient mice show impaired IKK/NF-κB transactivation. Conclusions Together, these findings both in Jurkat T cells as well as in primary T cells indicate a regulatory role of Coro1A on PKCθ recruitment and function downstream of the TCR leading to NF-κB transactivation. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0100-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kerstin Siegmund
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Medical University Innsbruck, Peter Mayr Str. 1a, A-6020, Innsbruck, Austria.
| | - Nikolaus Thuille
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Medical University Innsbruck, Peter Mayr Str. 1a, A-6020, Innsbruck, Austria.
| | - Nina Posch
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Medical University Innsbruck, Peter Mayr Str. 1a, A-6020, Innsbruck, Austria.
| | - Friedrich Fresser
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Medical University Innsbruck, Peter Mayr Str. 1a, A-6020, Innsbruck, Austria.
| | - Gottfried Baier
- Department for Pharmacology and Genetics, Division of Translational Cell Genetics, Medical University Innsbruck, Peter Mayr Str. 1a, A-6020, Innsbruck, Austria.
| |
Collapse
|
32
|
Llavero F, Urzelai B, Osinalde N, Gálvez P, Lacerda HM, Parada LA, Zugaza JL. Guanine nucleotide exchange factor αPIX leads to activation of the Rac 1 GTPase/glycogen phosphorylase pathway in interleukin (IL)-2-stimulated T cells. J Biol Chem 2015; 290:9171-82. [PMID: 25694429 DOI: 10.1074/jbc.m114.608414] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 01/27/2023] Open
Abstract
Recently, we have reported that the active form of Rac 1 GTPase binds to the glycogen phosphorylase muscle isoform (PYGM) and modulates its enzymatic activity leading to T cell proliferation. In the lymphoid system, Rac 1 and in general other small GTPases of the Rho family participate in the signaling cascades that are activated after engagement of the T cell antigen receptor. However, little is known about the IL-2-dependent Rac 1 activator molecules. For the first time, a signaling pathway leading to the activation of Rac 1/PYGM in response to IL-2-stimulated T cell proliferation is described. More specifically, αPIX, a known guanine nucleotide exchange factor for the small GTPases of the Rho family, preferentially Rac 1, mediates PYGM activation in Kit 225 T cells stimulated with IL-2. Using directed mutagenesis, phosphorylation of αPIX Rho-GEF serines 225 and 488 is required for activation of the Rac 1/PYGM pathway. IL-2-stimulated serine phosphorylation was corroborated in Kit 225 T cells cultures. A parallel pharmacological and genetic approach identified PKCθ as the serine/threonine kinase responsible for αPIX serine phosphorylation. The phosphorylated state of αPIX was required to activate first Rac 1 and subsequently PYGM. These results demonstrate that the IL-2 receptor activation, among other early events, leads to activation of PKCθ. To activate Rac 1 and consequently PYGM, PKCθ phosphorylates αPIX in T cells. The biological significance of this PKCθ/αPIX/Rac 1 GTPase/PYGM signaling pathway seems to be the control of different cellular responses such as migration and proliferation.
Collapse
Affiliation(s)
- Francisco Llavero
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain, the Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building 205, 48170 Zamudio, Spain
| | - Bakarne Urzelai
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain
| | - Nerea Osinalde
- the Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense, Denmark
| | - Patricia Gálvez
- the Pharmascience Division, Technological Park of Health Sciences, Avda. de la Ciencia, s/n 18100 Armilla, Granada, Spain
| | - Hadriano M Lacerda
- the Department of Biomedical Sciences and Human Oncology, Unit of Cancer Epidemiology, Università degli Studi di Torino, 10124 Torino, Italy
| | - Luis A Parada
- the Instituto de Patología Experimental, Universidad Nacional de Salta, 4400 Salta, Argentina, and
| | - José L Zugaza
- From the Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, 48940 Leioa, Spain, the Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Building 205, 48170 Zamudio, Spain, the IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| |
Collapse
|
33
|
Fukahori H, Chida N, Maeda M, Tasaki M, Kawashima T, Matsuoka H, Suzuki K, Ishikawa T, Tanaka A, Higashi Y. Effect of AS2521780, a novel PKCθ selective inhibitor, on T cell-mediated immunity. Eur J Pharmacol 2014; 745:217-22. [DOI: 10.1016/j.ejphar.2014.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/23/2014] [Accepted: 10/28/2014] [Indexed: 01/29/2023]
|
34
|
Comet NR, Aguiló JI, Rathoré MG, Catalán E, Garaude J, Uzé G, Naval J, Pardo J, Villalba M, Anel A. IFNα signaling through PKC-θ is essential for antitumor NK cell function. Oncoimmunology 2014; 3:e948705. [PMID: 25960930 DOI: 10.4161/21624011.2014.948705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022] Open
Abstract
We have previously shown that the development of a major histocompatibility complex class I (MHC-I)-deficient tumor was favored in protein kinase C-θ knockout (PKC-θ-/-) mice compared to that occurring in wild-type mice. This phenomenon was associated with scarce recruitment of natural killer (NK) cells to the tumor site, as well as impaired NK cell activation and reduced cytotoxicity ex vivo. Poly-inosinic:cytidylic acid (poly I:C) treatment activated PKC-θ in NK cells depending on the presence of a soluble factor produced by a different splenocyte subset. In the present work, we sought to analyze whether interleukin-15 (IL-15) and/or interferon-α (IFNα) mediate PKC-θ-dependent antitumor NK cell function. We found that IL-15 improves NK cell viability, granzyme B expression, degranulation capacity and interferon-γ (IFNγ) secretion independently of PKC-θ. In contrast, we found that IFNα improves the degranulation capability of NK cells against target cancer cells in a PKC-θ-dependent fashion both ex vivo and in vivo. Furthermore, IFNα induces PKC-θ auto-phosphorylation in NK cells, in a signal transduction pathway involving both phosphatidylinositol-3-kinase (PI3K) and phospholipase-C (PLC) activation. PKC-θ dependence was further implicated in IFNα-induced transcriptional upregulation of chemokine (C-X-C motif) ligand 10 (CXCL10), a signal transducer and activator of transcription-1 (STAT-1)-dependent target of IFNα. The absence of PKC-θ did not affect IFNα-induced STAT-1 Tyr701 phosphorylation but affected the increase in STAT-1 phosphorylation on Ser727, attenuating CXCL10 secretion. This connection between IFNα and PKC-θ in NK cells may be exploited in NK cell-based tumor immunotherapy.
Collapse
Key Words
- CDK8, cyclin-dependent kinase 8
- CXCL10
- CXCL10, (C-X-C motif) ligand 10/CXCL10
- FCS, fetal calf serum
- IFN-α, IL-15
- IFNA1
- IFNα, interferon-α
- IFNγ, interferon-γ, IFNG
- IL-15, interleukin-15/IL15
- MACS, magnetic cell separation
- MEF, murine embryonic fibroblast
- MHC-I, major histocompability complex class I/MHC-I
- NK cells
- NK, natural killer
- PI3K, phosphatidylinositol-3-kinase
- PKC-θ
- PKC-θ, protein kinase C-θ, PRKCQ
- PLC, phospholipase-C
- Poly I:C, poly-inosinic:cytidilic acid
- RT-PCR, real-time polymerase chain reaction
- STAT-1, signal transducer and activator of transcription-1/STAT1.
- mAb, monoclonal antibody
Collapse
Affiliation(s)
- Natalia R Comet
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Juan Ignacio Aguiló
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Moeez G Rathoré
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France
| | - Elena Catalán
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Johan Garaude
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France
| | - Gilles Uzé
- CNRS UMR 5235; Université de Montpellier II; Place Eugene Bataillon ; Montpellier, France
| | - Javier Naval
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| | - Julián Pardo
- Immune Effector Cells Group; IIS Aragón; Biomedical Research Center of Aragón (CIBA); Nanoscience Institute of Aragon (INA); Zaragoza, Spain ; Aragón I+D Foundation (ARAID) ; Zaragoza, Spain
| | - Martín Villalba
- INSERM U1040; Université de Montpellier 1; UFR Médecine ; Montpellier, France ; Institut de Recherche en Biothérapie (IRB); CHU Montpellier ; Montpellier, France
| | - Alberto Anel
- Apoptosis, Immunity & Cancer Group; Department of Biochemistry and Molecular and Cell Biology ; University of Zaragoza and Aragón Health Research Institute (IIS Aragón) ; Zaragoza, Spain
| |
Collapse
|
35
|
Huang H, Tang Q, Chu H, Jiang J, Zhang H, Hao W, Wei X. MAP4K4 deletion inhibits proliferation and activation of CD4(+) T cell and promotes T regulatory cell generation in vitro. Cell Immunol 2014; 289:15-20. [PMID: 24681727 DOI: 10.1016/j.cellimm.2014.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 02/26/2014] [Indexed: 12/20/2022]
Abstract
CD4(+) T cells are critical for adaptive immunity. MAP4K4 is a key member of germinal center kinase group. However, the physiological function of MAP4K4 in primary CD4(+) T cells is still unclear. In this study, it was demonstrated that in vitro, MAP4K4 deletion remarkably suppressed CD4(+) T cell proliferation in response to phorbol 12-myristate 13-acetate (PMA) and ionomycin, which was not due to enhancing cell apoptosis. Additionally, MAP4K4 was required for the activation of CD4(+) T cells. MAP4K4 deletion significantly down-regulated expression of interleukin 2 (IL-2) and interferon-γ (IFN-γ), while notably up-regulating the expression of regulatory T cells (Treg) transcription factor Foxp3 in peripheral CD4(+) T cells. Furthermore, western blot analysis indicated that CD4(+) T cells lacking MAP4K4 failed to phosphorylate Jnk, Erk, p38 and PKC-θ. Thus, our results provide the evidence that MAP4K4 is essential for CD4(+) T cell proliferation, activation and cytokine production.
Collapse
Affiliation(s)
- Hongpeng Huang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China
| | - Qiuqiong Tang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China
| | - Hongqian Chu
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China
| | - Haizhou Zhang
- Roche R&D Center (China) Ltd., Shanghai 201203, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China.
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Peking University Health Science Center, Beijing 100191, PR China.
| |
Collapse
|
36
|
CKIP-1 is an intrinsic negative regulator of T-cell activation through an interaction with CARMA1. PLoS One 2014; 9:e85762. [PMID: 24465689 PMCID: PMC3894987 DOI: 10.1371/journal.pone.0085762] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022] Open
Abstract
The transcription factor NF-κB plays a key regulatory role in lymphocyte activation and generation of immune response. Stimulation of T cell receptor (TCR) induces phosphorylation of CARMA1 by PKCθ, resulting in formation of CARMA1-Bcl10-MALT1 (CBM) complex at lipid rafts and subsequently leading to NF-κB activation. While many molecular events leading to NF-κB activation have been reported, it is less understood how this activation is negatively regulated. We performed a cell-based screening for negative regulators of TCR-mediated NF-κB activation, using mutagenesis and complementation cloning strategies. Here we show that casein kinase-2 interacting protein-1 (CKIP-1) suppresses PKCθ-CBM-NF-κB signaling. We found that CKIP-1 interacts with CARMA1 and competes with PKCθ for association. We further confirmed that a PH domain of CKIP-1 is required for association with CARMA1 and its inhibitory effect. CKIP-1 represses NF-κB activity in unstimulated cells, and inhibits NF-κB activation induced by stimulation with PMA or constitutively active PKCθ, but not by stimulation with TNFα. Interestingly, CKIP-1 does not inhibit NF-κB activation induced by CD3/CD28 costimulation, which caused dissociation of CKIP-1 from lipid rafts. These data suggest that CKIP-1 contributes maintenance of a resting state on NF-κB activity or prevents T cells from being activated by inadequate signaling. In conclusion, we demonstrate that CKIP-1 interacts with CARMA1 and has an inhibitory effect on PKCθ-CBM-NF-κB signaling.
Collapse
|
37
|
Isakov N, Altman A. Regulation of immune system cell functions by protein kinase C. Front Immunol 2013; 4:384. [PMID: 24302926 PMCID: PMC3831523 DOI: 10.3389/fimmu.2013.00384] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 11/04/2013] [Indexed: 11/22/2022] Open
Affiliation(s)
- Noah Isakov
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Cancer Research Center, Ben Gurion University of the Negev , Beer Sheva , Israel
| | | |
Collapse
|
38
|
Smigielska-Czepiel K, van den Berg A, Jellema P, Slezak-Prochazka I, Maat H, van den Bos H, van der Lei RJ, Kluiver J, Brouwer E, Boots AMH, Kroesen BJ. Dual role of miR-21 in CD4+ T-cells: activation-induced miR-21 supports survival of memory T-cells and regulates CCR7 expression in naive T-cells. PLoS One 2013; 8:e76217. [PMID: 24098447 PMCID: PMC3787993 DOI: 10.1371/journal.pone.0076217] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/21/2013] [Indexed: 02/07/2023] Open
Abstract
Immune cell-type specific miRNA expression patterns have been described but the detailed role of single miRNAs in the function of T-cells remains largely unknown. We investigated the role of miR-21 in the function of primary human CD4+ T-cells. MiR-21 is substantially expressed in T-cells with a memory phenotype, and is robustly upregulated upon αCD3/CD28 activation of both naive and memory T-cells. By inhibiting the endogenous miR-21 function in activated naive and memory T-cells, we showed that miR-21 regulates fundamentally different aspects of T-cell biology, depending on the differentiation status of the T-cell. Stable inhibition of miR-21 function in activated memory T-cells led to growth disadvantage and apoptosis, indicating that the survival of memory T-cells depends on miR-21 function. In contrast, stable inhibition of miR-21 function in activated naive T-cells did not result in growth disadvantage, but led to a significant induction of CCR7 protein expression. Direct interaction between CCR7 and miR-21 was confirmed in a dual luciferase reporter assay. Our data provide evidence for a dual role of miR-21 in CD4+ T cells; Regulation of T-cell survival is confined to activated memory T-cells, while modulation of potential homing properties, through downregulation of CCR7 protein expression, is observed in activated naive T-cells.
Collapse
Affiliation(s)
- Katarzyna Smigielska-Czepiel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Anke van den Berg
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Pytrick Jellema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Izabella Slezak-Prochazka
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Henny Maat
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Hilda van den Bos
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Roelof Jan van der Lei
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joost Kluiver
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Anne Mieke H. Boots
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - Bart-Jan Kroesen
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Initiative on healthy Ageing and Immune Longevity (GRAIL), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
- * E-mail:
| |
Collapse
|
39
|
Lutz-Nicoladoni C, Christina LN, Thuille N, Nikolaus T, Wachowicz K, Katarzyna W, Gruber T, Thomas G, Leitges M, Michael L, Baier G, Gottfried B. PKCα and PKCβ cooperate functionally in CD3-induced de novo IL-2 mRNA transcription. Immunol Lett 2013; 151:31-8. [PMID: 23439007 PMCID: PMC3641392 DOI: 10.1016/j.imlet.2013.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/29/2013] [Accepted: 02/05/2013] [Indexed: 12/12/2022]
Abstract
The physiological functions of PKCα and PKCθ isotypes downstream of the antigen receptor have been defined in CD3(+) T cells. In contrast, no function of the second conventional PKC member, PKCβ, has been described yet in T cell antigen receptor signalling. To investigate the hypothesis that both conventional PKCα and PKCβ isotypes may have overlapping functions in T cell activation signalling, we generated mice that lacked the genes for both isotypes. We found that PKCα(-/-)/β(-/-) animals are viable, live normal life spans and display normal T cell development. However, these animals possess additive defects in T cell responses in comparison to animals that carry single mutations in these genes. Our studies demonstrate that the activities of PKCα and PKCβ converge to regulate IL-2 cytokine responses in anti-CD3 stimulated primary mouse T cells. Here, we present genetic evidence that PKCα and PKCβ cooperate in IL-2 transcriptional transactivation in primary mouse T cells independently of the actions of PKCθ.
Collapse
|
40
|
Jimenez JM, Boyall D, Brenchley G, Collier PN, Davis CJ, Fraysse D, Keily SB, Henderson J, Miller A, Pierard F, Settimo L, Twin HC, Bolton CM, Curnock AP, Chiu P, Tanner AJ, Young S. Design and Optimization of Selective Protein Kinase C θ (PKCθ) Inhibitors for the Treatment of Autoimmune Diseases. J Med Chem 2013; 56:1799-810. [DOI: 10.1021/jm301465a] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Juan-Miguel Jimenez
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Dean Boyall
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Guy Brenchley
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Philip N. Collier
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Christopher J. Davis
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Damien Fraysse
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Shazia B. Keily
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Jaclyn Henderson
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Andrew Miller
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Francoise Pierard
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Luca Settimo
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Heather C. Twin
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Claire M. Bolton
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Adam P. Curnock
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Peter Chiu
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Adam J. Tanner
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| | - Stephen Young
- Department of Chemistry and ‡Department of Biology, Vertex Pharmaceuticals (Europe) Ltd., 88 Milton Park, Abingdon, Oxfordshire OX14 4RY, U.K
| |
Collapse
|
41
|
Yan Zhang E, Kong KF, Altman A. The yin and yang of protein kinase C-theta (PKCθ): a novel drug target for selective immunosuppression. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2013; 66:267-312. [PMID: 23433459 PMCID: PMC3903317 DOI: 10.1016/b978-0-12-404717-4.00006-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Protein kinase C-theta (PKCθ) is a protein kinase C (PKC) family member expressed predominantly in T lymphocytes, and extensive studies addressing its function have been conducted. PKCθ is the only T cell-expressed PKC that localizes selectively to the center of the immunological synapse (IS) following conventional T cell antigen stimulation, and this unique localization is essential for PKCθ-mediated downstream signaling. While playing a minor role in T cell development, early in vitro studies relying, among others, on the use of PKCθ-deficient (Prkcq(-/-)) T cells revealed that PKCθ is required for the activation and proliferation of mature T cells, reflecting its importance in activating the transcription factors nuclear factor kappa B, activator protein-1, and nuclear factor of activated T cells, as well as for the survival of activated T cells. Upon subsequent analysis of in vivo immune responses in Prkcq(-/-) mice, it became clear that PKCθ has a selective role in the immune system: it is required for experimental Th2- and Th17-mediated allergic and autoimmune diseases, respectively, and for alloimmune responses, but is dispensable for protective responses against pathogens and for graft-versus-leukemia responses. Surprisingly, PKCθ was recently found to be excluded from the IS of regulatory T cells and to negatively regulate their suppressive function. These attributes of PKCθ make it an attractive target for catalytic or allosteric inhibitors that are expected to selectively suppress harmful inflammatory and alloimmune responses without interfering with beneficial immunity to infections. Early progress in developing such drugs is being made, but additional studies on the role of PKCθ in the human immune system are urgently needed.
Collapse
Affiliation(s)
| | | | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, California, USA
| |
Collapse
|
42
|
Giambra V, Jenkins CR, Wang H, Lam SH, Shevchuk OO, Nemirovsky O, Wai C, Gusscott S, Chiang MY, Aster JC, Humphries RK, Eaves C, Weng AP. NOTCH1 promotes T cell leukemia-initiating activity by RUNX-mediated regulation of PKC-θ and reactive oxygen species. Nat Med 2012; 18:1693-8. [PMID: 23086478 PMCID: PMC3738873 DOI: 10.1038/nm.2960] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 08/29/2012] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS), a byproduct of cellular metabolism, damage intracellular macromolecules and, when present in excess, can promote normal hematopoietic stem cell differentiation and exhaustion. However, mechanisms that regulate the amount of ROS in leukemia-initiating cells (LICs) and the biological role of ROS in these cells are largely unknown. We show here that the ROS(low) subset of CD44(+) cells in T cell acute lymphoblastic leukemia (T-ALL), a malignancy of immature T cell progenitors, is highly enriched in the most aggressive LICs and that ROS accumulation is restrained by downregulation of protein kinase C θ (PKC-θ). Notably, primary mouse T-ALLs lacking PKC-θ show improved LIC activity, whereas enforced PKC-θ expression in both mouse and human primary T-ALLs compromised LIC activity. We also show that PKC-θ is regulated by a new pathway in which NOTCH1 induces runt-related transcription factor 3 (RUNX3), RUNX3 represses RUNX1 and RUNX1 induces PKC-θ. NOTCH1, which is frequently activated by mutation in T-ALL and required for LIC activity in both mouse and human models, thus acts to repress PKC-θ. These results reveal key functional roles for PKC-θ and ROS in T-ALL and suggest that aggressive biological behavior in vivo could be limited by therapeutic strategies that promote PKC-θ expression or activity, or the accumulation of ROS.
Collapse
Affiliation(s)
- Vincenzo Giambra
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | | | - Hongfang Wang
- Department of Pathology, Brigham & Women’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | - Sonya H. Lam
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Olena O. Shevchuk
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Oksana Nemirovsky
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Carol Wai
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Sam Gusscott
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Mark Y. Chiang
- Division of Hematology/Oncology, University of Michigan Cancer Center, Ann Arbor, MI 48103, USA
| | - Jon C. Aster
- Department of Pathology, Brigham & Women’s Hospital/Harvard Medical School, Boston, MA 02115, USA
| | | | - Connie Eaves
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| | - Andrew P. Weng
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
43
|
Isakov N, Altman A. PKC-theta-mediated signal delivery from the TCR/CD28 surface receptors. Front Immunol 2012; 3:273. [PMID: 22936936 PMCID: PMC3425079 DOI: 10.3389/fimmu.2012.00273] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 08/09/2012] [Indexed: 12/23/2022] Open
Abstract
Protein kinase C-theta (PKCθ) is a key enzyme in T lymphocytes, where it plays an important role in signal transduction downstream of the activated T cell antigen receptor (TCR) and the CD28 costimulatory receptor. Interest in PKCθ as a potential drug target has increased following recent findings that PKCθ is essential for harmful inflammatory responses mediated by Th2 (allergies) and Th17 (autoimmunity) cells as well as for graft-versus-host disease (GvHD) and allograft rejection, but is dispensable for beneficial responses such as antiviral immunity and graft-versus-leukemia (GvL) response. TCR/CD28 engagement triggers the translocation of the cytosolic PKCθ to the plasma membrane (PM), where it localizes at the center of the immunological synapse (IS), which forms at the contact site between an antigen-specific T cell and antigen-presenting cells (APC). However, the molecular basis for this unique localization, and whether it is required for its proper function have remained unresolved issues until recently. Our recent study resolved these questions by demonstrating that the unique V3 (hinge) domain of PKCθ and, more specifically, a proline-rich motif within this domain, is essential and sufficient for its localization at the IS, where it is anchored to the cytoplasmic tail of CD28 via an indirect mechanism involving Lck protein tyrosine kinase (PTK) as an intermediate. Importantly, the association of PKCθ with CD28 is essential not only for IS localization, but also for PKCθ-mediated activation of downstream signaling pathways, including the transcription factors NF-κB and NF-AT, which are essential for productive T cell activation. Hence, interference with formation of the PKCθ-Lck-CD28 complex provides a promising basis for the design of novel, clinically useful allosteric PKCθ inhibitors. An additional recent study demonstrated that TCR triggering activates the germinal center kinase (GSK)-like kinase (GLK) and induces its association with the SLP-76 adaptor at the IS, where GLK phosphorylates the activation loop of PKCθ, converting it into an active enzyme. This recent progress, coupled with the need to study the biology of PKCθ in human T cells, is likely to facilitate the development of PKCθ-based therapeutic modalities for T cell-mediated diseases.
Collapse
Affiliation(s)
- Noah Isakov
- The Shraga Segal Department of Microbiology and Immunology, Faculty of Health Sciences and the Cancer Research Center, Ben-Gurion University of the Negev Beer Sheva, Israel
| | | |
Collapse
|
44
|
Thiele S, Wittmann J, Jäck HM, Pahl A. miR-9 enhances IL-2 production in activated human CD4+ T cells by repressing Blimp-1. Eur J Immunol 2012; 42:2100-8. [DOI: 10.1002/eji.201142203] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Jürgen Wittmann
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center; University of Erlangen-Nürnberg; Erlangen; Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Department of Internal Medicine III, Nikolaus-Fiebiger-Center; University of Erlangen-Nürnberg; Erlangen; Germany
| | - Andreas Pahl
- Division of Pharmacology and Toxicology, Department of Experimental and Clinical Pharmacology and Toxicology; University of Erlangen-Nürnberg; Erlangen; Germany
| |
Collapse
|
45
|
Sun Z. Intervention of PKC-θ as an immunosuppressive regimen. Front Immunol 2012; 3:225. [PMID: 22876242 PMCID: PMC3410430 DOI: 10.3389/fimmu.2012.00225] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/10/2012] [Indexed: 01/04/2023] Open
Abstract
PKC-θ is selectively enriched in T cells and specifically translocates to immunological synapse where it mediates critical T cell receptor signals required for T cell activation, differentiation, and survival. T cells deficient in PKC-θ are defective in their ability to differentiate into inflammatory effector cells that mediate actual immune responses whereas, their differentiation into regulatory T cells (Treg) that inhibits the inflammatory T cells is enhanced. Therefore, the manipulation of PKC-θ activity can shift the ratio between inflammatory effector T cells and inhibitory Tregs, to control T cell-mediated immune responses that are responsible for autoimmunity and allograft rejection. Indeed, PKC-θ-deficient mice are resistant to the development of several Th2 and Th17-dependent autoimmune diseases and are defective in mounting alloimmune responses required for rejection of transplanted allografts and graft-versus-host disease. Selective inhibition of PKC-θ is therefore considered as a potential treatment for prevention of autoimmune diseases and allograft rejection.
Collapse
Affiliation(s)
- Zuoming Sun
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| |
Collapse
|
46
|
Stahelin RV, Kong KF, Raha S, Tian W, Melowic HR, Ward KE, Murray D, Altman A, Cho W. Protein kinase Cθ C2 domain is a phosphotyrosine binding module that plays a key role in its activation. J Biol Chem 2012; 287:30518-28. [PMID: 22787157 DOI: 10.1074/jbc.m112.391557] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Protein kinase Cθ (PKCθ) is a novel PKC that plays a key role in T lymphocyte activation. To understand how PKCθ is regulated in T cells, we investigated the properties of its N-terminal C2 domain that functions as an autoinhibitory domain. Our measurements show that a Tyr(P)-containing peptide derived from CDCP1 binds the C2 domain of PKCθ with high affinity and activates the enzyme activity of the intact protein. The Tyr(P) peptide also binds the C2 domain of PKCδ tightly, but no enzyme activation was observed with PKCδ. Mutations of PKCθ-C2 residues involved in Tyr(P) binding abrogated the enzyme activation and association of PKCθ with Tyr-phosphorylated full-length CDCP1 and severely inhibited the T cell receptor/CD28-mediated activation of a PKCθ-dependent reporter gene in T cells. Collectively, these studies establish the C2 domain of PKCθ as a Tyr(P)-binding domain and suggest that the domain may play a major role in PKCθ activation via its Tyr(P) binding.
Collapse
Affiliation(s)
- Robert V Stahelin
- Department of Chemistry, University of Illinois, Chicago, IL 60607, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Wang X, Chuang HC, Li JP, Tan TH. Regulation of PKC-θ function by phosphorylation in T cell receptor signaling. Front Immunol 2012; 3:197. [PMID: 22798961 PMCID: PMC3393885 DOI: 10.3389/fimmu.2012.00197] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/11/2012] [Indexed: 01/03/2023] Open
Abstract
Protein kinase C (PKC)-θ is a serine/threonine kinase belonging to the calcium-independent novel PKC subfamily; its expression is restricted to certain tissues and cell types, including T cells. The signals delivered from T cell receptor (TCR) and CD28 costimulatory molecules trigger PKC-θ catalytic activation and membrane translocation to the immunological synapse, leading to activation of NF-κB, AP-1, and NF-AT. These transcription factors are important for T cell survival, activation, and differentiation. Phosphorylation of PKC-θ at multiple Ser/Thr/Tyr residues is induced in T cells during TCR signaling. Some phosphorylation sites play critical roles in the regulation of PKC-θ function and downstream signaling. The regulation mechanisms for PKC-θ phosphorylation sites are now being revealed. In this review, we discuss the current understanding of the regulation of PKC-θ function by phosphorylation during TCR signaling.
Collapse
Affiliation(s)
- Xiaohong Wang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | | | | | | |
Collapse
|
48
|
Anel A, Aguiló JI, Catalán E, Garaude J, Rathore MG, Pardo J, Villalba M. Protein Kinase C-θ (PKC-θ) in Natural Killer Cell Function and Anti-Tumor Immunity. Front Immunol 2012; 3:187. [PMID: 22783260 PMCID: PMC3389606 DOI: 10.3389/fimmu.2012.00187] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 06/15/2012] [Indexed: 12/24/2022] Open
Abstract
The protein kinase C-θ (PKCθ), which is essential for T cell function and survival, is also required for efficient anti-tumor immune surveillance. Natural killer (NK) cells, which express PKCθ, play a prominent role in this process, mainly by elimination of tumor cells with reduced or absent major histocompatibility complex class-I (MHC-I) expression. This justifies the increased interest of the use of activated NK cells in anti-tumor immunotherapy in the clinic. The in vivo development of MHC-I-deficient tumors is much favored in PKCθ−/− mice compared with wild-type mice. Recent data offer some clues on the mechanism that could explain the important role of PKCθ in NK cell-mediated anti-tumor immune surveillance: some studies show that PKCθ is implicated in signal transduction and anti-tumoral activity of NK cells elicited by interleukin (IL)-12 or IL-15, while others show that it is implicated in NK cell functional activation mediated by certain killer-activating receptors. Alternatively, the possibility that PKCθ is involved in NK cell degranulation is discussed, since recent data indicate that it is implicated in microtubule-organizing center polarization to the immune synapse in CD4+ T cells. The implication of PKC isoforms in degranulation has been more extensively studied in cytotoxic T lymphocyte, and these studies will be also summarized.
Collapse
Affiliation(s)
- Alberto Anel
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza Zaragoza, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Lupino E, Ramondetti C, Piccinini M. IκB kinase β is required for activation of NF-κB and AP-1 in CD3/CD28-stimulated primary CD4(+) T cells. THE JOURNAL OF IMMUNOLOGY 2012; 188:2545-55. [PMID: 22331067 DOI: 10.4049/jimmunol.1102938] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Engagement of the TCR and CD28 coreceptor by their respective ligands activates signal transduction cascades that ultimately lead to the activation of the transcription factors NFAT, AP-1, and NF-κB, which are required for the expression of cytokines and T cell clonal expansion. Previous studies have demonstrated that in mature T cells, activation of AP-1 and NF-κB is dependent on protein kinase C θ, suggesting the existence of a common signaling pathway. In this study, we show that in human primary CD4(+) T cells, exposure to the cell-permeable IKKβ inhibitor PS-1145 or genetic ablation of IKKβ abrogates cell proliferation and impairs the activation of NF-κB and AP-1 transcription factors in response to engagement of CD3 and CD28 coreceptor. In addition, we show that stimulation of T cells in the absence of IKKβ activity promotes the time-dependent and cyclosporine-sensitive expression of negative regulators of T cell signaling leading to a hyporesponsive state of T cells.
Collapse
Affiliation(s)
- Elisa Lupino
- Section of Biochemistry, Department of Medicine and Experimental Oncology, University of Turin, 10126 Turin, Italy
| | | | | |
Collapse
|
50
|
Ameliorated ConA-induced hepatitis in the absence of PKC-theta. PLoS One 2012; 7:e31174. [PMID: 22347449 PMCID: PMC3274545 DOI: 10.1371/journal.pone.0031174] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 01/04/2012] [Indexed: 11/23/2022] Open
Abstract
Severe liver injury that occurs when immune cells mistakenly attack an individual's own liver cells leads to autoimmune hepatitis. In mice, acute hepatitis can be induced by concanavalin A (ConA) treatment, which causes rapid activation of CD1d-positive natural killer (NK) T cells. These activated NKT cells produce large amounts of cytokines, which induce strong inflammation that damages liver tissues. Here we show that PKC-θ−/− mice were resistant to ConA-induced hepatitis due to essential function of PKC-θ in NKT cell development and activation. A dosage of ConA (25 mg/kg) that was lethal to wild-type (WT) mice failed to induce death resulting from liver injury in PKC-θ−/− mice. Correspondingly, ConA-induced production of cytokines such as IFNγ, IL-6, and TNFα, which mediate the inflammation responsible for liver injury, were significantly lower in PKC-θ−/− mice. Peripheral NKT cells had developmental defects at early stages in the thymus in PKC-θ−/− mice, and as a result their frequency and number were greatly reduced. Furthermore, PKC-θ−/− bone marrow adoptively transferred to WT mice displayed similar defects in NKT cell development, suggesting an intrinsic requirement for PKC-θ in NKT cell development. In addition, upon stimulation with NKT cell-specific lipid ligand, peripheral PKC-θ−/− NKT cells produced lower levels of inflammatory cytokines than that of WT NKT cells, suggesting that activation of NKT cells also requires PKC-θ. Our results suggest PKC-θ is an essential molecule required for activation of NKT cell to induce hepatitis, and thus, is a potential drug target for prevention of autoimmune hepatitis.
Collapse
|