1
|
Rex V, Zargari R, Stempel M, Halle S, Brinkmann MM. The innate and T-cell mediated immune response during acute and chronic gammaherpesvirus infection. Front Cell Infect Microbiol 2023; 13:1146381. [PMID: 37065193 PMCID: PMC10102517 DOI: 10.3389/fcimb.2023.1146381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Immediately after entry into host cells, viruses are sensed by the innate immune system, leading to the activation of innate antiviral effector mechanisms including the type I interferon (IFN) response and natural killer (NK) cells. This innate immune response helps to shape an effective adaptive T cell immune response mediated by cytotoxic T cells and CD4+ T helper cells and is also critical for the maintenance of protective T cells during chronic infection. The human gammaherpesvirus Epstein-Barr virus (EBV) is a highly prevalent lymphotropic oncovirus that establishes chronic lifelong infections in the vast majority of the adult population. Although acute EBV infection is controlled in an immunocompetent host, chronic EBV infection can lead to severe complications in immunosuppressed patients. Given that EBV is strictly host-specific, its murine homolog murid herpesvirus 4 or MHV68 is a widely used model to obtain in vivo insights into the interaction between gammaherpesviruses and their host. Despite the fact that EBV and MHV68 have developed strategies to evade the innate and adaptive immune response, innate antiviral effector mechanisms still play a vital role in not only controlling the acute infection but also shaping an efficient long-lasting adaptive immune response. Here, we summarize the current knowledge about the innate immune response mediated by the type I IFN system and NK cells, and the adaptive T cell-mediated response during EBV and MHV68 infection. Investigating the fine-tuned interplay between the innate immune and T cell response will provide valuable insights which may be exploited to design better therapeutic strategies to vanquish chronic herpesviral infection.
Collapse
Affiliation(s)
- Viktoria Rex
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Razieh Zargari
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Stempel
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| | - Melanie M. Brinkmann
- Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany
- Virology and Innate Immunity Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
- *Correspondence: Stephan Halle, ; Melanie M. Brinkmann,
| |
Collapse
|
2
|
Hornick EL, Wallis AM, Bishop GA. TRAF3 enhances type I interferon receptor signaling in T cells by modulating the phosphatase PTPN22. Sci Signal 2022; 15:eabn5507. [PMID: 36166512 PMCID: PMC9728096 DOI: 10.1126/scisignal.abn5507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Type I interferons (IFNs) are among the most powerful tools that host cells deploy against intracellular pathogens. Their effectiveness is due both to the rapid, directly antiviral effects of IFN-stimulated gene products and to the effects of type I IFN on responding immune cells. Type I IFN signaling through its receptor, IFNAR, is tightly regulated at multiple steps in the signaling cascade, including at the level of IFNAR downstream effectors, which include the kinase JAK1 and the transcriptional regulator STAT1. Here, we found that tumor necrosis factor receptor (TNFR)-associated factor 3 (TRAF3) enhanced the activation of JAK1 and STAT1 specifically in CD4+ T cells by preventing recruitment of the negative regulatory phosphatase PTPN22 to the IFNAR complex. The balance between signals through IFNAR and other cytokine receptors influences CD4+ T cell differentiation and function during infections. Our work reveals TRAF3 and PTPN22 as key regulators of CD4+ T cell activation by type I IFNs.
Collapse
Affiliation(s)
- Emma L. Hornick
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Alicia M. Wallis
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA
| | - Gail A. Bishop
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Graduate Program in Immunology, The University of Iowa, Iowa City, IA 52242, USA
- Department of Internal Medicine, The University of Iowa, Iowa City, IA 52242, USA
- Iowa City VA Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
3
|
Zoellner N, Coesfeld N, De Vos FH, Denter J, Xu HC, Zimmer E, Knebel B, Al-Hasani H, Mossner S, Lang PA, Floss DM, Scheller J. Synthetic mimetics assigned a major role to IFNAR2 in type I interferon signaling. Front Microbiol 2022; 13:947169. [PMID: 36118237 PMCID: PMC9480868 DOI: 10.3389/fmicb.2022.947169] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Type I interferons (IFNs) are potent inhibitors of viral replication. Here, we reformatted the natural murine and human type I interferon-α/β receptors IFNAR1 and IFNAR2 into fully synthetic biological switches. The transmembrane and intracellular domains of natural IFNAR1 and IFNAR2 were conserved, whereas the extracellular domains were exchanged by nanobodies directed against the fluorescent proteins Green fluorescent protein (GFP) and mCherry. Using this approach, multimeric single-binding GFP-mCherry ligands induced synthetic IFNAR1/IFNAR2 receptor complexes and initiated STAT1/2 mediated signal transduction via Jak1 and Tyk2. Homodimeric GFP and mCherry ligands showed that IFNAR2 but not IFNAR1 homodimers were sufficient to induce STAT1/2 signaling. Transcriptome analysis revealed that synthetic murine type I IFN signaling was highly comparable to IFNα4 signaling. Moreover, replication of vesicular stomatitis virus (VSV) in a cell culture-based viral infection model using MC57 cells was significantly inhibited after stimulation with synthetic ligands. Using intracellular deletion variants and point mutations, Y510 and Y335 in murine IFNAR2 were verified as unique phosphorylation sites for STAT1/2 activation, whereas the other tyrosine residues in IFNAR1 and IFNAR2 were not involved in STAT1/2 phosphorylation. Comparative analysis of synthetic human IFNARs supports this finding. In summary, our data showed that synthetic type I IFN signal transduction is originating from IFNAR2 rather than IFNAR1.
Collapse
Affiliation(s)
- Nele Zoellner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Noémi Coesfeld
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Frederik Henry De Vos
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Denter
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Haifeng C. Xu
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Elena Zimmer
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sofie Mossner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp A. Lang
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M. Floss
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
4
|
Zhang S, Wang L, Cheng G. The battle between host and SARS-CoV-2: Innate immunity and viral evasion strategies. Mol Ther 2022; 30:1869-1884. [PMID: 35176485 PMCID: PMC8842579 DOI: 10.1016/j.ymthe.2022.02.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 11/19/2022] Open
Abstract
The SARS-CoV-2 virus, the pathogen causing COVID-19, has caused more than 200 million confirmed cases, resulting in more than 4.5 million deaths worldwide by the end of August, 2021. Upon detection of SARS-CoV-2 infection by pattern recognition receptors (PRRs), multiple signaling cascades are activated, which ultimately leads to innate immune response such as induction of type I and III interferons, as well as other antiviral genes that together restrict viral spread by suppressing different steps of the viral life cycle. Our understanding of the contribution of the innate immune system in recognizing and subsequently initiating a host response to an invasion of SARS-CoV-2 has been rapidly expanding from 2020. Simultaneously, SARS-CoV-2 has evolved multiple immune evasion strategies to escape from host immune surveillance for successful replication. In this review, we will address the current knowledge of innate immunity in the context of SARS-CoV-2 infection and highlight recent advances in the understanding of the mechanisms by which SARS-CoV-2 evades a host's innate defense system.
Collapse
Affiliation(s)
- Shilei Zhang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lulan Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
5
|
An overview of human proteins and genes involved in SARS-CoV-2 infection. Gene 2022; 808:145963. [PMID: 34530086 PMCID: PMC8437745 DOI: 10.1016/j.gene.2021.145963] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/14/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023]
Abstract
As of July 2021, the outbreak of coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has led to more than 200 million infections and more than 4.2 million deaths globally. Complications of severe COVID-19 include acute kidney injury, liver dysfunction, cardiomyopathy, and coagulation dysfunction. Thus, there is an urgent need to identify proteins and genetic factors associated with COVID-19 susceptibility and outcome. We comprehensively reviewed recent findings of host-SARS-CoV-2 interactome analyses. To identify genetic variants associated with COVID-19, we focused on the findings from genome and transcriptome wide association studies (GWAS and TWAS) and bioinformatics analysis. We described established human proteins including ACE2, TMPRSS2, 40S ribosomal subunit, ApoA1, TOM70, HLA-A, and PALS1 interacting with SARS-CoV-2 based on cryo-electron microscopy results. Furthermore, we described approximately 1000 human proteins showing evidence of interaction with SARS-CoV-2 and highlighted host cellular processes such as innate immune pathways affected by infection. We summarized the evidence on more than 20 identified candidate genes in COVID-19 severity. Predicted deleterious and disruptive genetic variants with possible effects on COVID-19 infectivity have been also summarized. These findings provide novel insights into SARS-CoV-2 biology and infection as well as potential strategies for development of novel COVID therapeutic targets and drug repurposing.
Collapse
|
6
|
Fu X, De Angelis C, Schiff R. Interferon Signaling in Estrogen Receptor-positive Breast Cancer: A Revitalized Topic. Endocrinology 2022; 163:6429717. [PMID: 34791151 DOI: 10.1210/endocr/bqab235] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Indexed: 12/25/2022]
Abstract
Cancer immunology is the most rapidly expanding field in cancer research, with the importance of immunity in cancer pathogenesis now well accepted including in the endocrine-related cancers. The immune system plays an essential role in the development of ductal and luminal epithelial differentiation in the mammary gland. Originally identified as evolutionarily conserved antipathogen cytokines, interferons (IFNs) have shown important immune-modulatory and antineoplastic properties when administered to patients with various types of cancer, including breast cancer. Recent studies have drawn attention to the role of tumor- and stromal-infiltrating lymphocytes in dictating therapy response and outcome of breast cancer patients, which, however, is highly dependent on the breast cancer subtype. The emerging role of tumor cell-inherent IFN signaling in the subtype-defined tumor microenvironment could influence therapy response with protumor activities in breast cancer. Here we review evidence with new insights into tumor cell-intrinsic and tumor microenvironment-derived IFN signaling, and the crosstalk of IFN signaling with key signaling pathways in estrogen receptor-positive (ER+) breast cancer. We also discuss clinical implications and opportunities exploiting IFN signaling to treat advanced ER+ breast cancer.
Collapse
Affiliation(s)
- Xiaoyong Fu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Carmine De Angelis
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy
| | - Rachel Schiff
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
7
|
Shemesh M, Lochte S, Piehler J, Schreiber G. IFNAR1 and IFNAR2 play distinct roles in initiating type I interferon-induced JAK-STAT signaling and activating STATs. Sci Signal 2021; 14:eabe4627. [PMID: 34813358 DOI: 10.1126/scisignal.abe4627] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Maya Shemesh
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sara Lochte
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jacob Piehler
- Department of Biology and Center of Cellular Nanoanalytics, University of Osnabrück, 49076 Osnabrück, Germany
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Guo M, Cao W, Chen S, Tian R, Wang L, Liu Q, Zhang L, Wang Z, Zhao M, Lu Q, Zhu H. TRIM10 binds to IFN-α/β receptor 1 to negatively regulate type I IFN signal transduction. Eur J Immunol 2021; 51:1762-1773. [PMID: 33811647 DOI: 10.1002/eji.202049073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/06/2021] [Accepted: 04/01/2021] [Indexed: 01/12/2023]
Abstract
The type I interferon (IFN-I) system is important for antiviral and anticancer immunity. Prolonged activation of IFN/JAK/STAT signaling is closely associated with autoimmune diseases. TRIM10 dysfunction may be associated closely with certain autoimmune disorders. Here, we observed that the serum TRIM10 protein level is lower in patients with systemic lupus erythematosus than in healthy control subjects. We speculated the possible involvement of TRIM10-induced modulation of the IFN/JAK/STAT signaling pathway in systemic lupus erythematosus. In line with our hypothesis, TRIM10 inhibited the activation of JAK/STAT signaling pathway triggered by various stimuli. TRIM10 restricted the IFN-I/JAK/STAT signaling pathway, which was independent of its E3 ligase activity. Mechanistically, TRIM10 interacted with the intracellular domain of IFNAR1 and blocked the association of IFNAR1 with TYK2. These data suggest the possible TRIM10 suppresses IFN/JAK/STAT signaling pathway through blocking the interaction between IFNAR1 and TYK2. Targeting TRIM10 is a potential strategy for treating autoimmune diseases.
Collapse
Affiliation(s)
- Mengmeng Guo
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Wenyan Cao
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Shengwen Chen
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Renyun Tian
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Luoling Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Qian Liu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Lini Zhang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Zhenghao Wang
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Haizhen Zhu
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, China.,Research Center of Cancer Prevention and Treatment, Translational Medicine Research Center of Liver Cancer, Hunan Provincial Tumor Hospital, Changsha, China
| |
Collapse
|
9
|
Kienes I, Weidl T, Mirza N, Chamaillard M, Kufer TA. Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation. Int J Mol Sci 2021; 22:1301. [PMID: 33525590 PMCID: PMC7865845 DOI: 10.3390/ijms22031301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Tanja Weidl
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Nora Mirza
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | | | - Thomas A. Kufer
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| |
Collapse
|
10
|
Zanin N, Viaris de Lesegno C, Lamaze C, Blouin CM. Interferon Receptor Trafficking and Signaling: Journey to the Cross Roads. Front Immunol 2021; 11:615603. [PMID: 33552080 PMCID: PMC7855707 DOI: 10.3389/fimmu.2020.615603] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
Like most plasma membrane proteins, type I interferon (IFN) receptor (IFNAR) traffics from the outer surface to the inner compartments of the cell. Long considered as a passive means to simply control subunits availability at the plasma membrane, an array of new evidence establishes IFNAR endocytosis as an active contributor to the regulation of signal transduction triggered by IFN binding to IFNAR. During its complex journey initiated at the plasma membrane, the internalized IFNAR complex, i.e. IFNAR1 and IFNAR2 subunits, will experience post-translational modifications and recruit specific effectors. These finely tuned interactions will determine not only IFNAR subunits destiny (lysosomal degradation vs. plasma membrane recycling) but also the control of IFN-induced signal transduction. Finally, the IFNAR system perfectly illustrates the paradigm of the crosstalk between membrane trafficking and intracellular signaling. Investigating the complexity of IFN receptor intracellular routes is therefore necessary to reveal new insight into the role of IFNAR membrane dynamics in type I IFNs signaling selectivity and biological activity.
Collapse
Affiliation(s)
- Natacha Zanin
- NDORMS, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Christine Viaris de Lesegno
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Christophe Lamaze
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| | - Cedric M Blouin
- Institut Curie-Centre de Recherche, PSL Research University, Membrane Dynamics and Mechanics of Intracellular Signalling Laboratory, Paris, France.,Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France.,Centre National de la Recherche Scientifique (CNRS), UMR 3666, Paris, France
| |
Collapse
|
11
|
Stanifer ML, Guo C, Doldan P, Boulant S. Importance of Type I and III Interferons at Respiratory and Intestinal Barrier Surfaces. Front Immunol 2020; 11:608645. [PMID: 33362795 PMCID: PMC7759678 DOI: 10.3389/fimmu.2020.608645] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/11/2020] [Indexed: 12/23/2022] Open
Abstract
Interferons (IFNs) constitute the first line of defense against microbial infections particularly against viruses. They provide antiviral properties to cells by inducing the expression of hundreds of genes known as interferon-stimulated genes (ISGs). The two most important IFNs that can be produced by virtually all cells in the body during intrinsic innate immune response belong to two distinct families: the type I and type III IFNs. The type I IFN receptor is ubiquitously expressed whereas the type III IFN receptor's expression is limited to epithelial cells and a subset of immune cells. While originally considered to be redundant, type III IFNs have now been shown to play a unique role in protecting mucosal surfaces against pathogen challenges. The mucosal specific functions of type III IFN do not solely rely on the restricted epithelial expression of its receptor but also on the distinct means by which type III IFN mediates its anti-pathogen functions compared to the type I IFN. In this review we first provide a general overview on IFNs and present the similarities and differences in the signal transduction pathways leading to the expression of either type I or type III IFNs. By highlighting the current state-of-knowledge of the two archetypical mucosal surfaces (e.g. the respiratory and intestinal epitheliums), we present the differences in the signaling cascades used by type I and type III IFNs to uniquely induce the expression of ISGs. We then discuss in detail the role of each IFN in controlling pathogen infections in intestinal and respiratory epithelial cells. Finally, we provide our perspective on novel concepts in the field of IFN (stochasticity, response heterogeneity, cellular polarization/differentiation and tissue microenvironment) that we believe have implications in driving the differences between type I and III IFNs and could explain the preferences for type III IFNs at mucosal surfaces.
Collapse
Affiliation(s)
- Megan L. Stanifer
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Cuncai Guo
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricio Doldan
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Steeve Boulant
- Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
- Research Group “Cellular polarity and viral infection”, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
12
|
The Molecular Interactions of ZIKV and DENV with the Type-I IFN Response. Vaccines (Basel) 2020; 8:vaccines8030530. [PMID: 32937990 PMCID: PMC7565347 DOI: 10.3390/vaccines8030530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Zika Virus (ZIKV) and Dengue Virus (DENV) are related viruses of the Flavivirus genus that cause significant disease in humans. Existing control measures have been ineffective at curbing the increasing global incidence of infection for both viruses and they are therefore prime targets for new vaccination strategies. Type-I interferon (IFN) responses are important in clearing viral infection and for generating efficient adaptive immune responses towards infection and vaccination. However, ZIKV and DENV have evolved multiple molecular mechanisms to evade type-I IFN production. This review covers the molecular interactions, from detection to evasion, of these viruses with the type-I IFN response. Additionally, we discuss how this knowledge can be exploited to improve the design of new vaccine strategies.
Collapse
|
13
|
Keller KE, Yang YF, Sun YY, Walter MR, Wirtz MK. Analysis of interleukin-20 receptor complexes in trabecular meshwork cells and effects of cytokine signaling in anterior segment perfusion culture. Mol Vis 2019; 25:266-282. [PMID: 31205408 PMCID: PMC6545341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/25/2019] [Indexed: 11/19/2022] Open
Abstract
Purpose Inflammatory responses may be involved in the glaucomatous process. Our previous studies mapped a T104M mutation in interleukin-20 receptor beta (IL-20RB) in a family with primary open angle glaucoma (POAG). IL-20RB can heterodimerize with IL-20RA to propagate signals from IL-20 family cytokines, IL-19, IL-20, and IL-24 (the type I receptor complex), or it can heterodimerize with IL-22RA to propagate signals from IL-20 and IL-24 (type II receptor complex). In this study, we investigated IL-20 heterodimeric receptor complexes in the trabecular meshwork (TM) compared to dermal fibroblast cell cultures, and examined the phosphorylation of signal transducer and activator of transcription (STAT)-1, -3, and -5 following exposure to IL-20 family cytokines. Additionally, we determined the effects of IL-20 family cytokines on outflow rates in anterior segment perfusion culture, an in vitro model of intraocular pressure (IOP) regulation. Methods Primary human TM (HTM) cells were grown from dissected TM tissue, and IL-20 receptor expression was investigated with PCR. A Duolink assay was performed to investigate in situ IL-20 receptor protein interactions in HTM or dermal fibroblasts, and Imaris software was used to quantitate the association of the heterodimeric complexes. Phosphorylation of STAT-1, -3, and -5 were evaluated in HTM or dermal fibroblasts using Western immunoblotting after exposure to IL-10, IL-19, IL-20, IL-22, or IL-24. Anterior segment perfusion culture was performed in human cadaver and porcine eyes treated with IL-20, IL-19, or IL-24. Results All of the IL-20 receptors, IL-20RA, IL-20RB, and IL-22RA1 were expressed in HTM cells. Two isoforms of IL-20RA were expressed: The V1 variant, which is the longest, is the predominant isoform, while the V3 isoform, which lacks exon 3, was also expressed. The Duolink assay demonstrated that the type I (IL-20RA-IL-20RB) and type II (IL-22RA1-IL-20RB) receptors were expressed in HTM cells and dermal fibroblasts. However, in the HTM cells, the type I receptor was present at significantly higher levels, while the type II receptor was preferentially used in the dermal fibroblasts. The HTM cells and the dermal fibroblasts predominantly phosphorylate the Ser727 site in STAT-3. The dermal fibroblasts had higher induction of phosphorylated STAT-1 compared to the HTM cells, while neither cell type had phosphorylated STAT-5 in the cell lysates. The outflow rates in the human anterior segment cultures were increased 2.3-fold by IL-20. However, IL-19 and IL-24 showed differential responses. For IL-19 and IL-24, 50% of the eyes responded with a 1.7- or 1.5-fold increase, respectively, while the other half did not respond. Similarly, perfused porcine anterior segments showed "responders" and "non-responders": IL-20 responders (2.3-fold increase in outflow, n=12) and non-responders (n=11); IL-19 responders (2.1-fold increase, n=7) and non-responders (n=5); and IL-24 responders (1.8-fold increase, n=12) and non-responders (n=5). Conclusions Type I and type II IL-20 receptor complexes are expressed in human TM cells with predominant expression of the type I receptor (IL-20RA and IL-20RB), which propagates signals from all three IL-20 family cytokines. However, there was a variable response in the outflow rates following perfusion of cytokines in two different species. This may explain why some people are more susceptible to developing elevated IOP in response to inflammation.
Collapse
Affiliation(s)
- Kate E. Keller
- Department of Ophthalmology, Oregon Health & Sciences University, Portland, OR
| | - Yong-feng Yang
- Department of Ophthalmology, Oregon Health & Sciences University, Portland, OR
| | - Ying Ying Sun
- Department of Ophthalmology, Oregon Health & Sciences University, Portland, OR
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL
| | - Mary K. Wirtz
- Department of Ophthalmology, Oregon Health & Sciences University, Portland, OR
| |
Collapse
|
14
|
Cumming HE, Bourke NM. Type I IFNs in the female reproductive tract: The first line of defense in an ever-changing battleground. J Leukoc Biol 2018; 105:353-361. [PMID: 30549324 DOI: 10.1002/jlb.mr0318-122rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 12/30/2022] Open
Abstract
The primary function of the female reproductive tract (FRT) is to enable successful reproduction, yet the biologic mechanisms required to accomplish this, which include fluctuating sex hormones and tolerance of semen and a semi-allogeneic fetus, can leave this unique mucosal environment susceptible to pathogenic challenge. Consequently, the FRT has evolved specialized innate and adaptive immune responses tailored to protecting itself from infection without compromising reproductive success. A family of innate immune cytokines that has emerged as important regulators of these immune responses is the type I IFNs. Type I IFNs are typically rapidly produced in response to pathogenic stimulation and are capable of sculpting pleotropic biologic effects, including immunomodulation, antiproliferative effects, and inducing antiviral and bactericidal molecules. Here, we review what is currently known about type I IFN-mediated immunity in the FRT in human, primate, and murine models and explore their importance with respect to three highly relevant FRT infections: HIV, Zika, and Chlamydia.
Collapse
Affiliation(s)
- Helen E Cumming
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Monash University, Clayton, VIC, Australia
| | - Nollaig M Bourke
- Department of Medical Gerontology, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
15
|
Steen HC, Kotredes KP, Nogusa S, Harris MY, Balachandran S, Gamero AM. Phosphorylation of STAT2 on serine-734 negatively regulates the IFN-α-induced antiviral response. J Cell Sci 2016; 129:4190-4199. [PMID: 27802159 DOI: 10.1242/jcs.185421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 09/19/2016] [Indexed: 01/14/2023] Open
Abstract
Serine phosphorylation of STAT proteins is an important post-translational modification event that, in addition to tyrosine phosphorylation, is required for strong transcriptional activity. However, we recently showed that phosphorylation of STAT2 on S287 induced by type I interferons (IFN-α and IFN-β), evoked the opposite effect. S287-STAT2 phosphorylation inhibited the biological effects of IFN-α. We now report the identification and characterization of S734 on the C-terminal transactivation domain of STAT2 as a new phosphorylation site that can be induced by type I IFNs. IFN-α-induced S734-STAT2 phosphorylation displayed different kinetics to that of tyrosine phosphorylation. S734-STAT2 phosphorylation was dependent on STAT2 tyrosine phosphorylation and JAK1 kinase activity. Mutation of S734-STAT2 to alanine (S734A) enhanced IFN-α-driven antiviral responses compared to those driven by wild-type STAT2. Furthermore, DNA microarray analysis demonstrated that a small subset of type I IFN stimulated genes (ISGs) was induced more by IFNα in cells expressing S734A-STAT2 when compared to wild-type STAT2. Taken together, these studies identify phosphorylation of S734-STAT2 as a new regulatory mechanism that negatively controls the type I IFN-antiviral response by limiting the expression of a select subset of antiviral ISGs.
Collapse
Affiliation(s)
- Håkan C Steen
- Dept. of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Kevin P Kotredes
- Dept. of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Shoko Nogusa
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Michele Y Harris
- Dept. of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Siddharth Balachandran
- Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ana M Gamero
- Dept. of Medical Genetics and Molecular Biochemistry, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
16
|
|
17
|
Wallweber HJA, Tam C, Franke Y, Starovasnik MA, Lupardus PJ. Structural basis of recognition of interferon-α receptor by tyrosine kinase 2. Nat Struct Mol Biol 2014; 21:443-8. [PMID: 24704786 PMCID: PMC4161281 DOI: 10.1038/nsmb.2807] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/03/2014] [Indexed: 12/25/2022]
Abstract
Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family of non-receptor tyrosine kinases, which are essential for proper signaling in immune responses and development. Here we present a 2.0 angstrom resolution crystal structure of a receptor-binding fragment of human TYK2 encompassing the FERM and SH2 domains in complex with a so-called “box2” containing intracellular peptide motif from the IFNα receptor (IFNAR1). The TYK2–IFNAR1 interface reveals an unexpected receptor-binding mode that mimics a SH2 domain–phosphopeptide interaction, with a glutamate replacing the canonical phosphotyrosine residue. This structure provides the first view to our knowledge of a JAK in complex with its cognate receptor and defines the molecular logic through which JAKs evolved to interact with divergent receptor sequences.
Collapse
Affiliation(s)
- Heidi J A Wallweber
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| | - Christine Tam
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| | - Yvonne Franke
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| | | | - Patrick J Lupardus
- Department of Structural Biology, Genentech, South San Francisco, California, USA
| |
Collapse
|
18
|
Rustagi A, Gale M. Innate antiviral immune signaling, viral evasion and modulation by HIV-1. J Mol Biol 2013; 426:1161-77. [PMID: 24326250 DOI: 10.1016/j.jmb.2013.12.003] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/26/2013] [Accepted: 12/02/2013] [Indexed: 02/08/2023]
Abstract
The intracellular innate antiviral response in human cells is an essential component of immunity against virus infection. As obligate intracellular parasites, all viruses must evade the actions of the host cell's innate immune response in order to replicate and persist. Innate immunity is induced when pathogen recognition receptors of the host cell sense viral products including nucleic acid as "non-self". This process induces downstream signaling through adaptor proteins to activate latent transcription factors that drive the expression of genes encoding antiviral and immune modulatory effector proteins that restrict virus replication and regulate adaptive immunity. The interferon regulatory factors (IRFs) are transcription factors that play major roles in innate immunity. In particular, IRF3 is activated in response to infection by a range of viruses including RNA viruses, DNA viruses and retroviruses. Among these viruses, human immunodeficiency virus type 1 (HIV-1) remains a major global health problem mediating chronic infection in millions of people wherein recent studies show that viral persistence is linked with the ability of the virus to dysregulate and evade the innate immune response. In this review, we discuss viral pathogen sensing, innate immune signaling pathways and effectors that respond to viral infection, the role of IRF3 in these processes and how it is regulated by pathogenic viruses. We present a contemporary overview of the interplay between HIV-1 and innate immunity, with a focus on understanding how innate immune control impacts infection outcome and disease.
Collapse
Affiliation(s)
- Arjun Rustagi
- Departments of Immunology and Global Health, University of Washington, Seattle, WA 98195-8059, USA
| | - Michael Gale
- Departments of Immunology and Global Health, University of Washington, Seattle, WA 98195-8059, USA.
| |
Collapse
|
19
|
|
20
|
Yao Q, Fischer KP, Arnesen K, Lorne Tyrrell D, Gutfreund KS. The Pekin duck IL-10R2 common chain: cDNA cloning, genomic structure, molecular characterization and mRNA expression analysis. Int J Immunogenet 2013; 40:386-95. [PMID: 23331509 DOI: 10.1111/iji.12042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/12/2012] [Accepted: 12/16/2012] [Indexed: 11/26/2022]
Abstract
The interleukin-10 receptor 2 (IL-10R2, IL-10Rβ) is required for the signalling of the class 2 cytokines IL-10, IL-22, IL-26 and IFN-λ1-3 . Here, we describe the identification of the Pekin duck IL-10R2 (duIL-10R2) common chain and its gene structure. The duIL-10R2 cDNA encodes a 343 amino acid protein that has an amino acid identity of 76% and 42% with chicken and human IL-10R2, respectively. Binding residues of human IL-10R2 for IL-10 and IL-22 were mostly conserved in the avian IL-10R2 proteins within loops L3 and L5, but not within loops L2 and L6. Homology modelling of the duIL-10R2 extracellular domain structure using soluble human IL-10R2 (shIL-10R2, PDB ID: 3LQM) as a template revealed a protruding loop L5 and two distinct clefts between loops L2/L3 and L3/L5, similar to shIL-10R2. However, in contrast to the three amino acid β-hairpin loop L2 of shIL-10R2, loop L2 of duIL-10R2 is five residues longer. Residues within a putative Tyk2 binding site were highly conserved across all vertebrate IL-10R2 proteins examined. The duIL-10R2 gene shares a seven exon-six intron structure with chicken and human IL-10R2 genes, but avian genes are more compact. DuIL-10R2 mRNA was constitutively expressed in all tissues. Mitogen stimulation of duck peripheral blood mononuclear cells (PBMC) did not alter transcript levels. Our observations suggest that genomic organization and structural features implicated in multiple cytokine-binding properties of human IL-10R2 are conserved in duck IL-10R2, but the evolutionary changes that appear to have lead to low-affinity cytokine interaction within loop L2 are distinct to mammalian species.
Collapse
Affiliation(s)
- Q Yao
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | |
Collapse
|
21
|
Pioli PD, Saleh AMZ, El Fiky A, Nastiuk KL, Krolewski JJ. Sequential proteolytic processing of an interferon-alpha receptor subunit by TNF-alpha converting enzyme and presenilins. J Interferon Cytokine Res 2012; 32:312-25. [PMID: 22458690 DOI: 10.1089/jir.2011.0116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
It is well established that interferons trigger tyrosine-kinase-dependent signaling via JAK kinases and STAT transcription factors. However, we have observed both IFNaR2 receptor cleavage and functional activity of the liberated intracellular domain (ICD), suggesting that interferon-alpha (IFN-alpha) can also signal via regulated intramembrane proteolysis (RIP), an evolutionarily conserved mechanism of receptor-mediated signaling. Sequential cleavage of the receptor ectodomain and transmembrane domain is a hallmark of the most common class of RIP. To investigate the mechanisms of IFNaR2 RIP signaling, we examined IFNaR2 cleavage by TNF-alpha converting enzyme (TACE) and presenilin proteases. We tracked the fate of epitope-tagged and fusion variants of IFNaR2 in cells expressing wild-type, mutant, or null versions of TACE and presenilins 1 and 2. Cleavage and subcellular location were determined by immunoblot, fluoresence microscopy, and reporter assays. We found that both TACE and presenilin 1/2 cleave IFNaR2, in a sequential manner that allows the ICD to move to the nucleus. TACE cleavage was induced by IFN-alpha but was not consistently required for the anti-proliferative effects of IFN-alpha. In conclusion, IFNaR2 is cleaved by TACE and Presenilin 1/2, suggesting that interferons signal by both kinase and RIP-mediated pathways.
Collapse
Affiliation(s)
- Peter D Pioli
- Department of Pathology and Laboratory Medicine, University of California, IRVINE, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
22
|
Lei JT, Mazumdar T, Martinez-Moczygemba M. Three lysine residues in the common β chain of the interleukin-5 receptor are required for Janus kinase (JAK)-dependent receptor ubiquitination, endocytosis, and signaling. J Biol Chem 2011; 286:40091-103. [PMID: 21965659 DOI: 10.1074/jbc.m111.273482] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Eosinophils are multifunctional leukocytes implicated in the pathogenesis of numerous inflammatory diseases including allergic asthma and hypereosinophilic syndrome. Eosinophil physiology is critically dependent on IL-5 and the IL-5 receptor (IL-5R), composed of a ligand binding α chain (IL-5Rα), and a common β chain, βc. Previously, we demonstrated that the βc cytoplasmic tail is ubiquitinated and degraded by proteasomes following IL-5 stimulation. However, a complete understanding of the role of βc ubiquitination in IL-5R biology is currently lacking. By using a well established, stably transduced HEK293 cell model system, we show here that in the absence of ubiquitination, βc subcellular localization, IL-5-induced endocytosis, turnover, and IL-5R signaling were significantly impaired. Whereas ubiquitinated IL-5Rs internalized into trafficking endosomes for their degradation, ubiquitination-deficient IL-5Rs accumulated on the cell surface and displayed blunted signaling even after IL-5 stimulation. Importantly, we identified a cluster of three membrane-proximal βc lysine residues (Lys(457), Lys(461), and Lys(467)) whose presence was required for both JAK1/2 binding to βc and receptor ubiquitination. These findings establish that JAK kinase binding to βc requires the presence of three critical βc lysine residues, and this binding event is essential for receptor ubiquitination, endocytosis, and signaling.
Collapse
Affiliation(s)
- Jonathan T Lei
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, Houston, Texas 77030, USA
| | | | | |
Collapse
|
23
|
Zheng H, Qian J, Baker DP, Fuchs SY. Tyrosine phosphorylation of protein kinase D2 mediates ligand-inducible elimination of the Type 1 interferon receptor. J Biol Chem 2011; 286:35733-35741. [PMID: 21865166 DOI: 10.1074/jbc.m111.263608] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Type 1 interferons (including IFNα/β) activate their cell surface receptor to induce the intracellular signal transduction pathways that play an important role in host defenses against infectious agents and tumors. The extent of cellular responses to IFNα is limited by several important mechanisms including the ligand-stimulated and specific serine phosphorylation-dependent degradation of the IFNAR1 chain of Type 1 IFN receptor. Previous studies revealed that acceleration of IFNAR1 degradation upon IFN stimulation requires activities of tyrosine kinase TYK2 and serine/threonine protein kinase D2 (PKD2), whose recruitment to IFNAR1 is also induced by the ligand. Here we report that activation of PKD2 by IFNα (but not its recruitment to the receptor) depends on TYK2 catalytic activity. PKD2 undergoes IFNα-inducible tyrosine phosphorylation on specific phospho-acceptor site (Tyr-438) within the plekstrin homology domain. Activated TYK2 is capable of facilitating this phosphorylation in vitro. Tyrosine phosphorylation of PKD2 is required for IFNα-stimulated activation of this kinase as well as for efficient serine phosphorylation and degradation of IFNAR1 and ensuing restriction of the extent of cellular responses to IFNα.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Juan Qian
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Serge Y Fuchs
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
24
|
Gilli F. Role of differential expression of interferon receptor isoforms on the response of multiple sclerosis patients to therapy with interferon beta. J Interferon Cytokine Res 2011; 30:733-41. [PMID: 20874250 DOI: 10.1089/jir.2010.0098] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The cytokine interferon (IFN)-β is successfully used in the treatment of multiple sclerosis. However, some patients fail to respond to therapy, probably due to different biological patterns that are of importance in influencing clinical response. A common mechanism involved in the modulation of responsiveness to cytokine is represented by regulation of their receptor expression through autocrine-ligand-mediated loops. Mechanistically, IFN-β exerts its biological effects through interaction with the IFN-α/-β-receptor (IFNAR), which then activates several transcription factors. IFNAR is composed of 2 chains, IFNAR-1 and IFNAR-2, which associate with IFN-β to form a ternary complex. The major ligand-binding subunit is IFNAR-2 and it exists in 3 mRNA splice variants, resulting in 2 transmembrane (IFNAR-2b and IFNAR-2c) isoforms and a soluble (IFNAR-2a) one. On the contrary, from normal cells only one IFNAR-1 isoform, with transcriptional capacity, was identified. In the past decades, considerable information has accumulated pertaining to the downregulation of the IFNAR complex in IFN-treated patients, but only a few studies have investigated the molecular events involved in this phenomenon. The intent of the present review is to place this receptor downregulation in the context of IFN-β therapy and of its clinical and biological outcomes in IFN-β-treated patients.
Collapse
Affiliation(s)
- Francesca Gilli
- SCDO Neurology 2-Regional Reference Centre for Multiple Sclerosis (CReSM), Neuroscience Institute of the Cavalieri Ottolenghi Foundation, University Hospital S. Luigi Gonzaga, Ottolenghi, Orbassano (Torino), Italy.
| |
Collapse
|
25
|
Zhao W, Lee C, Piganis R, Plumlee C, de Weerd N, Hertzog PJ, Schindler C. A conserved IFN-alpha receptor tyrosine motif directs the biological response to type I IFNs. THE JOURNAL OF IMMUNOLOGY 2008; 180:5483-9. [PMID: 18390731 DOI: 10.4049/jimmunol.180.8.5483] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mammalian type I IFNs (IFN-Is) mediate their potent biological activities through an evolutionarily conserved IFN-alpha receptor (IFNAR), consisting of IFNAR1 and IFNAR2. These two chains direct the rapid activation of two founding members of the STAT family of transcription factors, STAT1 and STAT2. To understand how IFN-Is direct the recruitment and activation of STATs, a series of mutant murine IFNAR1 and IFNAR2 receptors were generated and evaluated in IFNAR1 and IFNAR2 knockout cells. These studies reveal that a single conserved IFNAR2 tyrosine, Y(510), plays a critical role in directing the IFN-I-dependent activation of STAT1 and STAT2, both in murine fibroblasts and macrophages. A second IFNAR2 tyrosine, Y(335), plays a more minor role. Likewise, Y(510) > Y(335) play a critical role in the induction of genes and antiviral activity traditionally associated with IFN-Is.
Collapse
Affiliation(s)
- Wenli Zhao
- Department of Microbiology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Kumar KGS, Varghese B, Banerjee A, Baker DP, Constantinescu SN, Pellegrini S, Fuchs SY. Basal ubiquitin-independent internalization of interferon alpha receptor is prevented by Tyk2-mediated masking of a linear endocytic motif. J Biol Chem 2008; 283:18566-72. [PMID: 18474601 DOI: 10.1074/jbc.m800991200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Linear endocytic motifs of signaling receptors as well as their ubiquitination determine the rate of ligand-induced endocytosis that mediates down-regulation of these receptors and restricts the magnitude and duration of their respective signal transduction pathways. We previously hypothesized that, in the absence of its cognate ligand, type I interferon (IFN), the IFNalpha receptor chain 1 (IFNAR1) receptor chain is protected from basal endocytosis by a hypothetical masking complex that prevents the Tyr-based endocytic motif within IFNAR1 from interacting with components of the adaptin protein complex 2 (AP2). Here we identify a member of the Janus kinase (Jak) family, Tyk2, as a component of such a masking complex. In the absence of ligand or of receptor chain ubiquitination, binding of Janus kinase Tyk2 within the proximity of the Tyr-based linear motif of IFNAR1 is required to prevent IFNAR1 internalization and to maintain its cell surface expression. Furthermore, interaction experiments revealed that Tyk2 physically shields this Tyr-based motif from the recognition by the AP50 subunit of AP2. These data delineate a long-sought ligand- and ubiquitin-independent mechanism by which Tyk2 contributes to both the regulation of total IFNAR1 levels as well as the regulation of the cell surface density of this receptor chain.
Collapse
Affiliation(s)
- K G Suresh Kumar
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology Research, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Liu J, Plotnikov A, Banerjee A, Suresh Kumar KG, Ragimbeau J, Marijanovic Z, Baker DP, Pellegrini S, Fuchs SY. Ligand-independent pathway that controls stability of interferon alpha receptor. Biochem Biophys Res Commun 2007; 367:388-93. [PMID: 18166147 DOI: 10.1016/j.bbrc.2007.12.137] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 12/20/2007] [Indexed: 11/15/2022]
Abstract
Ligand-specific negative regulation of cytokine-induced signaling relies on down regulation of the cytokine receptors. Down regulation of the IFNAR1 sub-unit of the Type I interferon (IFN) receptor proceeds via lysosomal receptor proteolysis, which is triggered by ubiquitination that depends on IFNAR1 serine phosphorylation. While IFN-inducible phosphorylation, ubiquitination, and degradation requires the catalytic activity of the Tyk2 Janus kinase, here we found the ligand- and Tyk2-independent pathway that promotes IFNAR1 phosphorylation, ubiquitination, and degradation when IFNAR1 is expressed at high levels. A major cellular kinase activity that is responsible for IFNAR1 phosphorylation in vitro does not depend on either ligand or Tyk2 activity. Inhibition of ligand-independent IFNAR1 degradation suppresses cell proliferation. We discuss the signaling events that might lead to ubiquitination and degradation of IFNAR1 via ligand-dependent and independent pathways and their potential physiologic significance.
Collapse
Affiliation(s)
- Jianghuai Liu
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology Research, School of Veterinary Medicine, University of Pennsylvania, Room 316 Hill Pavilion, 380 S University Avenue, Philadelphia, PA 19104-4539, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Recent advances in unravelling the complexities of the signalling pathways that constitute innate immunity have highlighted type I interferon as a key component in the response to infection. Here we focus on the emerging field of pattern-recognition receptor signalling, specifically Toll-like receptors and retinoic acid inducible gene-like helicases, from the perspective of this 50-year-old cytokine. The type I interferon gene family encompasses more than 20 subtypes, whose nature and properties have been extensively studied during its relatively long history. In this review we update and integrate available data on the mechanics of activation of the interferon genes and the role of this cytokine family in the innate immune response.
Collapse
Affiliation(s)
- Susie J Noppert
- Centre for Functional Genomics and Human Disease, Monash Institute of Medical Research, Monash University, Parkville, Victoria, Australia
| | | | | |
Collapse
|
29
|
de Weerd NA, Samarajiwa SA, Hertzog PJ. Type I interferon receptors: biochemistry and biological functions. J Biol Chem 2007; 282:20053-7. [PMID: 17502368 DOI: 10.1074/jbc.r700006200] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Nicole A de Weerd
- Centre for Functional Genomics and Human Disease, Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia
| | | | | |
Collapse
|
30
|
Lim JTE, Mansukhani M, Weinstein IB. Cyclin-dependent kinase 6 associates with the androgen receptor and enhances its transcriptional activity in prostate cancer cells. Proc Natl Acad Sci U S A 2005; 102:5156-61. [PMID: 15790678 PMCID: PMC556011 DOI: 10.1073/pnas.0501203102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclin-dependent kinase 6 (CDK6) binds to and is activated by cyclin D1 and thereby enhances the transition of cells through the G1 phase of the cell cycle. The present study indicates that, in human prostate cancer cells, CDK6 can also bind to the androgen receptor (AR) and stimulate its transcriptional activity in the presence of dihydrotestosterone. This effect of CDK6 does not require its kinase activity and is inhibited by cyclin D1 and p16INK4a. The T877A mutant of the AR frequently found in advanced cases of prostate cancer displays an exaggerated stimulation of transcriptional activity by CDK6. Androgen-sensitive LNCaP prostate cancer cells engineered to stably overexpress CDK6 display increased expression of the prostate-specific antigen and enhanced growth in the presence of dihydrotestosterone. CDK6 is present in the chromatin structure of these cells in association with the AR and the promoter region of the prostate-specific antigen gene. These findings suggest that CDK6 may play an important role in the development and/or progression of a subset of human prostate cancers by stimulating the activity of the AR.
Collapse
Affiliation(s)
- Jin T E Lim
- Department of Environmental Health Sciences, The Joseph L. Mailman School of Public Health, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
31
|
Caraglia M, Marra M, Pelaia G, Maselli R, Caputi M, Marsico SA, Abbruzzese A. Alpha-interferon and its effects on signal transduction pathways. J Cell Physiol 2005; 202:323-35. [PMID: 15389589 DOI: 10.1002/jcp.20137] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Interferon-alpha (IFNalpha) is a recombinant protein widely used in the therapy of several neoplasms such as myeloma, renal cell carcinoma, epidermoid cervical and head and neck tumors, and melanoma. IFNalpha, the first cytokine to be produced by recombinant DNA technology, has emerged as an important regulator of cancer cell growth and differentiation, affecting cellular communication and signal transduction pathways. However, the way by which tumor cell growth is directly suppressed by IFNalpha is not well known. Wide evidence exists on the possibility that cancer cells undergo apoptosis after the exposure to the cytokine. Here we will review the consolidate signal transducer and activator of transcription (STAT)-dependent mechanism of action of IFNalpha. We will discuss data obtained by us and others on the triggering of the stress-dependent kinase pathway induced by IFNalpha and its correlations with the apoptotic process. The regulation of the expression of proteins involved in apoptosis occurrence will be also described. In this regard, IFNalpha is emerging as a post-translational controller of the intracellular levels of the apoptosis-related protein tissue transglutaminase (tTG). This new way of regulation of tTG occurs through the modulation of their proteasome-dependent degradation induced by the cytokine. Until today, inconsistent data have been obtained regarding the clinical effectiveness of IFNalpha in the therapy of solid tumors. In fact, the benefit of IFNalpha treatment is limited to some neoplasms while others are completely or partially resistant. The mechanisms of tumor resistance to IFNalpha have been studied in vitro. The alteration of JAK-STAT components of the IFNalpha-induced signaling, can be indeed a mechanism of resistance to IFN. However, we have recently described a reactive mechanism of protection of tumor cells from the apoptosis induced by IFNalpha dependent on the epidermal growth factor (EGF)-mediated Ras/extracellular signal regulated kinase (Erk) signaling. The involvement of the Ras-->Erk pathway in the protection of tumor cells from the apoptosis induced by IFNalpha is further demonstrated by both Ras inactivation by RASN17 transfection and mitogen extracellular signal regulated kinase 1 (Mek-1) inhibition by exposure to PD098059. These data strongly suggest that the specific disruption of the latter could be a useful approach to potentiate the antitumour activity of IFNalpha against human tumors based on the new mechanistic insights achieved in the last years.
Collapse
Affiliation(s)
- Michele Caraglia
- Department of Biochemistry and Biophysics, Second University of Naples, Via Costantinopoli, Naples, Italy.
| | | | | | | | | | | | | |
Collapse
|
32
|
Tagliaferri P, Caraglia M, Budillon A, Marra M, Vitale G, Viscomi C, Masciari S, Tassone P, Abbruzzese A, Venuta S. New pharmacokinetic and pharmacodynamic tools for interferon-alpha (IFN-alpha) treatment of human cancer. Cancer Immunol Immunother 2005; 54:1-10. [PMID: 15693134 PMCID: PMC11032854 DOI: 10.1007/s00262-004-0549-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Accepted: 04/06/2004] [Indexed: 10/26/2022]
Abstract
Interferon alpha (IFN-alpha) has been widely used in the treatment of human solid and haematologic malignancies. Although the antitumour activity of IFN-alpha is well recognised at present, no major advances have been achieved in the last few years. Recent findings have provided new information on the molecular mechanisms of the antitumour activity of the cytokine. In fact, IFN-alpha appears to block cell proliferation, at least in part, through the induction of apoptotic effects. This cytokine can also regulate the progression of tumour cells through the different phases of the cell cycle inducing an increase of the expression of the cyclin-dependent kinase inhibitors p21 and p27. However, it must be considered that IFN-alpha is a physiologic molecule with ubiquitously expressed receptors that is likely to activate survival mechanisms in the cell. We have recently identified an epidermal growth factor (EGF) Ras-dependent protective response to the apoptosis induced by IFN-alpha in epidermoid cancer cells. The identification of tissue- and/or tumour-specific survival pathways and their selective targeting might provide a new approach to improve the efficacy of IFN-alpha-based treatment of human cancer. Moreover, new pegylated species of IFN-alpha are now available with a more favourable pharmacokinetic profile. We will review these achievements, and we will specifically address the topic of IFN-alpha-based molecularly targeted combinatory antitumour approaches.
Collapse
Affiliation(s)
- Pierosandro Tagliaferri
- Dipartimento di Medicina Sperimentale e Clinica, Università Magna Graecia di Catanzaro, Via T. Campanella 115, 88100 Catanzaro, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Wang SZ, Roberts RM. Interaction of stress-activated protein kinase-interacting protein-1 with the interferon receptor subunit IFNAR2 in uterine endometrium. Endocrinology 2004; 145:5820-31. [PMID: 15345682 DOI: 10.1210/en.2004-0991] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During early pregnancy in ruminants, a type I interferon (IFN-tau) signals from the conceptus to the mother to ensure the functional survival of the corpus luteum. IFN-tau operates through binding to the type I IFN receptor (IFNR). Here we have explored the possibility that IFNAR2, one of the two subunits of the receptor, might interact with hitherto unknown signal transduction factors in the uterus that link IFN action to pathways other than the well established Janus kinase-signal transducer and activator of transcription pathways. A yeast two-hybrid screen of an ovine (ov) endometrial cDNA library with the carboxyl-terminal 185 amino acids of ovIFNAR2 as bait identified stress-activated protein kinase-interacting protein 1 (ovSin1) as a protein that bound constitutively through its own carboxyl terminus to the receptor. ovSin1 is a little studied, 522-amino acid-long polypeptide (molecular weight, 59,200) that is highly conserved across vertebrates, but has identifiable orthologs in Drosophila and yeast. It appears to be expressed ubiquitously in mammals, although in low abundance, in a wide range of mammalian tissues in addition to endometrium. Sin1 mRNA occurs in at least two alternatively spliced forms, the smaller of which lacks a 108-bp internal exon. ovSin1, although not exhibiting features of a membrane-spanning protein, such as IFNAR2, is concentrated predominantly in luminal and glandular epithelial cells of the uterine endometrium. When ovSin1 and ovIFNAR2 are coexpressed, the two proteins can be coimmunoprecipitated and colocalized to the plasma membrane and to perinuclear structures. Sin1 provides a possible link among type I IFN action, stress-activated signaling pathways, and control of prostaglandin production.
Collapse
Affiliation(s)
- Shu-Zong Wang
- Department of Veterinary Pathology, University of Missouri, Columbia, Missouri 65211, USA
| | | |
Collapse
|
34
|
Saleh AZM, Fang AT, Arch AE, Neupane D, El Fiky A, Krolewski JJ. Regulated proteolysis of the IFNaR2 subunit of the interferon-alpha receptor. Oncogene 2004; 23:7076-86. [PMID: 15286706 DOI: 10.1038/sj.onc.1207955] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The type I interferons (IFNs) bind surface receptors, induce JAK kinases and activate STAT transcription factors to stimulate the transcription of genes downstream of IFN-stimulated response elements (ISREs). In this study, we demonstrate that IFNaR2, a subunit of the type I IFN receptor, is proteolytically cleaved in a regulated manner. Immunoblotting shows that multi-step cleavage occurs in response to phorbol ester (PMA) and IFN-alpha, generating both a transmembrane 'stub' and the intracellular domain (ICD), similar to Notch proteolysis. Isolated membrane fractions process IFNaR2 to release the ICD. A chimeric receptor construct is utilized to show that cleavage requires the presenilins and occurs in response to epidermal growth factor and protein kinase C-delta overexpression, as well as PMA and type I IFNs. Fluorescence microscopy demonstrates that a green fluorescent protein-ICD fusion localizes predominantly to the nucleus. A fusion between the ICD and the Gal4 DNA-binding domain represses transcription, in a histone deacetylase-dependent manner, of a Gal4 upstream activating sequence-regulated reporter, while overexpression of the ICD alone represses transcription of a reporter linked to an ISRE. Proteolytic cleavage events may facilitate receptor turnover or, more likely, function as a mechanism for signaling similar to that employed by Notch and the Alzheimer's precursor protein.
Collapse
Affiliation(s)
- Abu Z M Saleh
- Department of Pathology, College of Medicine, University of California, Irvine, CA 92697, USA
| | | | | | | | | | | |
Collapse
|
35
|
Oritani K, Tomiyama Y. Interferon-3/Limitin: Novel Type I Interferon That Displays a Narrow Range of Biological Activity. Int J Hematol 2004; 80:325-31. [PMID: 15615256 DOI: 10.1532/ijh97.04087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Interferon zeta (IFN-zeta)/limitin has been regarded as a novel type I IFN by the Nomenclature Committee of the International Society for Interferon and Cytokine Research. IFN-zeta/limitin, which has some sequence homology with IFN-alpha and IFN-beta, has a globular structure with 5 alpha helices and 4 loops and recognizes IFN-alpha/beta receptor. Although it displays antiviral, immunomodulatory, and antitumor effects, IFN-zeta/limitin has much less lymphomyelosuppressive activity than IFN-alpha. Unique interactions between IFN-zeta/limitin and the receptor probably led to the narrow range of signals and biological activities. A human homologue of IFN-zeta/limitin may be clinically more effective than IFN-alpha and IFN-beta because it has fewer adverse effects. Moreover, further analysis of the structure-function relationship may establish an engineered cytokine with the useful features of IFN-zeta/limitin.
Collapse
Affiliation(s)
- Kenji Oritani
- Department of Hematology and Oncology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | | |
Collapse
|
36
|
Kumar KGS, Krolewski JJ, Fuchs SY. Phosphorylation and specific ubiquitin acceptor sites are required for ubiquitination and degradation of the IFNAR1 subunit of type I interferon receptor. J Biol Chem 2004; 279:46614-20. [PMID: 15337770 DOI: 10.1074/jbc.m407082200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Ubiquitination, endocytosis, and lysosomal degradation of the IFNAR1 (interferon alpha receptor 1) subunit of the type I interferon (IFN) receptor is mediated by the SCFbeta-Trcp (Skp1-Cullin1-F-box protein beta transducin repeat-containing protein) E3 ubiquitin ligase in a phosphorylation-dependent manner. In addition, stability of IFNAR1 is regulated by its binding to Tyk2 kinase. Here we characterize the determinants of IFNAR1 ubiquitination and degradation. We found that the integrity of two Ser residues at positions 535 and 539 within the specific destruction motif present in the cytoplasmic tail of IFNAR1 is essential for the ability of IFNAR1 to recruit beta-Trcp as well as to undergo efficient ubiquitination and degradation. Using an antibody that specifically recognizes IFNAR1 phosphorylated on Ser535 we found that IFNAR1 is phosphorylated on this residue in cells. This phosphorylation is promoted by treatment of cells with IFNalpha. Although the cytoplasmic tail of IFNAR1 contains seven Lys residues that could function as potential ubiquitin acceptor sites, we found that only three (Lys501, Lys525, and Lys526), all located proximal to the destruction motif, are essential for ubiquitination and degradation of IFNAR1. Expression of Tyk2 stabilized IFNAR1 in a manner that was dependent neither on its binding to beta-Trcp nor IFNAR1 ubiquitination. We discuss the complexities and specifics of the ubiquitination and degradation of IFNAR1, which is a beta-Trcp substrate that undergoes degradation via a lysosomal pathway.
Collapse
Affiliation(s)
- K G Suresh Kumar
- Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
37
|
Abstract
More than a half a century ago, interferons (IFN) were identified as antiviral cytokines. Since that discovery, IFN have been in the forefront of basic and clinical cytokine research. The pleiotropic nature of these cytokines continues to engage a large number of investigators to define their actions further. IFN paved the way for discovery of Janus tyrosine kinase (JAK)-signal transducing activators of transcription (STAT) pathways. A number of important tumor suppressive pathways are controlled by IFN. Several infectious pathogens counteract IFN-induced signaling pathways. Recent studies indicate that IFN activate several new protein kinases, including the MAP kinase family, and downstream transcription factors. This review not only details the established IFN signaling paradigms but also provides insights into emerging alternate signaling pathways and mechanisms of pathogen-induced signaling interference.
Collapse
Affiliation(s)
- Dhananjaya V Kalvakolanu
- Molecular and Cellular Biology Graduate Program, Greenebaum Cancer Center, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
38
|
Inagaki Y, Nemoto T, Kushida M, Sheng Y, Higashi K, Ikeda K, Kawada N, Shirasaki F, Takehara K, Sugiyama K, Fujii M, Yamauchi H, Nakao A, de Crombrugghe B, Watanabe T, Okazaki I. Interferon alfa down-regulates collagen gene transcription and suppresses experimental hepatic fibrosis in mice. Hepatology 2003. [PMID: 14512876 DOI: 10.1002/hep.1840380415] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The equilibrium between the production and degradation of collagen is rigorously controlled by a number of growth factors and cytokines. Interferon alfa (IFN-alpha) is now widely used for the treatment of chronic hepatitis C, which can improve serum levels of fibrotic markers and the degree of hepatic fibrosis, not only in patients who responded to therapy but also in those in whom it is ineffective. These findings may suggest that IFN-alpha possesses direct antifibrotic effects in addition to its antiviral activity. However, in contrast to IFN-gamma, which has been shown to suppress collagen gene transcription, little is known about the mechanisms responsible for the antifibrotic effects of IFN-alpha. Here, we report that IFN-alpha, when administered into transgenic mice harboring the alpha2(I) collagen gene (COL1A2) promoter sequence, significantly repressed promoter activation and prevented the progression of hepatic fibrosis induced by carbon tetrachloride injection. Transient transfection assays indicated that IFN-alpha decreased the steady-state levels of COL1A2 messenger RNA (mRNA) and inhibited basal and TGF-beta/Smad3-stimulated COL1A2 transcription in activated hepatic stellate cells (HSC). These inhibitory effects of IFN-alpha on COL1A2 transcription were exerted through the interaction between phosphorylated Stat1 and p300. Blocking of the IFN-alpha signal by overexpressing the intracellular domain-deleted IFN receptor increased basal COL1A2 transcription and abolished the inhibitory effects of IFN-alpha. In conclusion, our results indicate that IFN-alpha antagonizes the TGF-beta/Smad3-stimulated COL1A2 transcription in vitro and suppresses COL1A2 promoter activation in vivo, providing a molecular basis for antifibrotic effects of IFN-alpha.
Collapse
Affiliation(s)
- Yutaka Inagaki
- Liver Fibrosis Research Unit, Department of Community Health, Tokai University School of Medicine, Bohseidai, Isehara 259-1193, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ragimbeau J, Dondi E, Alcover A, Eid P, Uzé G, Pellegrini S. The tyrosine kinase Tyk2 controls IFNAR1 cell surface expression. EMBO J 2003; 22:537-47. [PMID: 12554654 PMCID: PMC140723 DOI: 10.1093/emboj/cdg038] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The four mammalian Jak tyrosine kinases are non-covalently associated with cell surface receptors binding helical bundled cytokines. In the type I interferon receptor, Tyk2 associates with the IFNAR1 receptor subunit and positively influences ligand binding to the receptor complex. Here, we report that Tyk2 is essential for stable cell surface expression of IFNAR1. In the absence of Tyk2, mature IFNAR1 is weakly expressed on the cell surface. Rather, it is localized into a perinuclear endosomal compartment which overlaps with that of recycling transferrin receptors and with early endosomal antigen-1 (EEA1) positive vesicles. Conversely, co-expressed Tyk2 greatly enhances surface IFNAR1 expression. Importantly, we demonstrate that Tyk2 slows down IFNAR1 degradation and that this is due, at least in part, to inhibition of IFNAR1 endocytosis. In addition, Tyk2 induces plasma membrane relocalization of the R2 subunit of the interleukin-10 receptor. These results reveal a novel function of a Jak protein on internalization of a correctly processed cytokine receptor. This function is distinct from the previously reported effect of other Jak proteins on receptor exit from the endoplasmic reticulum.
Collapse
Affiliation(s)
- Josiane Ragimbeau
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| | - Elisabetta Dondi
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| | - Andrés Alcover
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| | - Pierre Eid
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| | - Gilles Uzé
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| | - Sandra Pellegrini
- Unité de Signalisation des Cytokines, CNRS URA 1961, Unité de Biologie des Interactions Cellulaires, CNRS URA 1960, Institut Pasteur, Paris 75724 cedex 15, Laboratoire d’Oncologie Virale, UPR 9045, CNRS, Villejuif and CNRS UMR 5124, Institut de Génétique Moléculaire, Montpellier 34293 cedex 5, France Corresponding author e-mail:
| |
Collapse
|
40
|
Usacheva A, Sandoval R, Domanski P, Kotenko SV, Nelms K, Goldsmith MA, Colamonici OR. Contribution of the Box 1 and Box 2 motifs of cytokine receptors to Jak1 association and activation. J Biol Chem 2002; 277:48220-6. [PMID: 12374810 DOI: 10.1074/jbc.m205757200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Kinases of the Jak family (Jak1/2/3 and Tyk2) interact with the membrane proximal domain of different cytokine receptors and play a critical role in the activation of cytokine and growth factor signaling pathways. In this report we demonstrate that both the Box 1 and Box 2 motif collaborate in the association and activation of Jak1 by type I interferons. Mutational analysis of the beta chain of type I interferon receptor (IFNalphaRbetaL/IFNAR2) revealed that Box 1 plays a more significant role in activation than in the association with Jak1. On the contrary, the Box 2 motif contributes more to the association with Jak1 than to kinase activation. Additionally, the study of the Jak1 binding sites on the IL2 receptor beta (IL2Rbeta), IFNgammaRalpha/IFNGR1, and IL10Ralpha/IL10R1 chains suggests that cytokine receptors have two different kinds of interaction with Jak1. One form of interaction involves the Box 1 and the previously described Box 2 motif, which we now designate as Box 2A, characterized by the VEVI and LEVL sequences present in IFNalphaRbetaL/IFNAR2 and IL2Rbeta subunits, respectively. The second form of interaction requires a motif termed Box 2B, which is present in the IFNgammaRalpha/IFNGR1 (SILLPKS) and IL10Ralpha/IL10R1 (SVLLFKK) chains. Interestingly, Box 2B localizes close to the membrane region (8-10 amino acids from the membrane) similar to Box 1, whereas Box 2A is more distal (38-58 amino acids from the membrane).
Collapse
Affiliation(s)
- Anna Usacheva
- Department of Pharmacology, University of Illinois, Chicago 60612, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Kloek C, Haq AK, Dunn SL, Lavery HJ, Banks AS, Myers MG. Regulation of Jak kinases by intracellular leptin receptor sequences. J Biol Chem 2002; 277:41547-55. [PMID: 12196522 DOI: 10.1074/jbc.m205148200] [Citation(s) in RCA: 169] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leptin signals the status of body energy stores via the leptin receptor (LR), a member of the Type I cytokine receptor family. Type I cytokine receptors mediate intracellular signaling via the activation of associated Jak family tyrosine kinases. Although their COOH-terminal sequences vary, alternatively spliced LR isoforms (LRa-LRd) share common NH(2)-terminal sequences, including the first 29 intracellular amino acids. The so-called long form LR (LRb) activates Jak-dependent signaling and is required for the physiologic actions of leptin. In this study, we have analyzed Jak activation by intracellular LR sequences under the control of the extracellular erythropoeitin (Epo) (Epo receptor/LRb chimeras). We show that Jak2 is the requisite Jak kinase for signaling by the LRb intracellular domain and confirm the requirement for the Box 1 motif for Jak2 activation. A minimal LRb intracellular domain for Jak2 activation includes intracellular amino acids 31-48. Although the sequence requirements for intracellular amino acids 37-48 are flexible, intracellular amino acids 31-36 of LRb play a critical role in Jak2 activation and contain a loose homology motif found in other Jak2-activating cytokine receptors. The failure of short form sequences to function in Jak2 activation reflects the absence of this motif.
Collapse
Affiliation(s)
- Carolyn Kloek
- Section on Obesity, Research Division, Joslin Diabetes Center and Department of Medicine, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | | | |
Collapse
|
42
|
Rosenfeld CS, Han CS, Alexenko AP, Spencer TE, Roberts RM. Expression of interferon receptor subunits, IFNAR1 and IFNAR2, in the ovine uterus. Biol Reprod 2002; 67:847-53. [PMID: 12193393 DOI: 10.1095/biolreprod.102.004267] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interferon-tau (IFN-tau) is the antiluteolytic factor released by concepti of ruminant ungulate species prior to implantation. All type I interferons, including IFN-tau, exert their action through a common receptor, which consists of two subunits, IFNAR1 and IFNAR2c, but the distribution of the two polypeptides in uterine endometrium has not been examined. In situ hybridization and immunohistochemistry on sections from pregnant and nonpregnant ovine uteri at Days 14 and 15 after estrus and mating showed that both IFNAR1 and IFNAR2 mRNA and protein were strongly expressed in endometrial luminal epithelium (LE), superficial glandular epithelium (GE), and stromal cells, within but not outside caruncles. Similar staining patterns were noted in pregnant and nonpregnant uteri for both subunits. Western blot analysis of membrane fractions from cell lines derived from endometrial LE, GE, and stromal cells, and affinity cross-linking experiments with radioactively labeled IFN-tau performed on crude endometrial membranes indicated the presence of both high ( approximately 110 kDa) and low (75-80 kDa) molecular mass forms of the two receptor subunits. To localize where IFN-tau binds when it is introduced into the uterine lumen, immunohistochemistry with an antiserum against IFN-tau was performed on sections of uteri from Day 14 nonpregnant ewes whose uteri had previously been infused with IFN-tau. Staining was concentrated on the LE and superficial GE cells, and was absent from the deeper regions of the glands and from the stromal tissues. These studies demonstrate the heavy concentration of IFNAR1 and IFNAR2 in cells of the LE and superficial GE, which appear to be the main targets for IFN-tau.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Department of Animal Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | | | |
Collapse
|
43
|
Usacheva A, Kotenko S, Witte MM, Colamonici OR. Two distinct domains within the N-terminal region of Janus kinase 1 interact with cytokine receptors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:1302-8. [PMID: 12133952 DOI: 10.4049/jimmunol.169.3.1302] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The interaction between receptors and kinases of the Janus kinase (Jak) family is critical for signaling by growth factors, cytokines, and IFNs. Therefore, the characterization of the domains involved in these interactions is pivotal not only in understanding kinase activation but also in the development of drugs that mimic or inhibit signaling. In this report, we have characterized the domains of Jak1 required to associate with distinct cytokine receptor subunits: IFN-alpha R beta L, IFN-gamma R alpha, IL-10R alpha, IL-2R beta, and IL-4R alpha. We demonstrate that two regions of Jak1 are necessary for the interaction with cytokine receptors. First, a common N-terminal region that includes Jak homology (JH) domain 7 and the first 19 aa of JH6, and, second, a C-terminal region (JH6-3) that was different for distinct receptors. The contribution of the two different regions of Jak1 to cytokine receptor binding was also variable. Deletion of JH7-6 impaired the association of IL-2R beta and IL-4R alpha chains with Jak1 but did not have a major impact on the binding of Jak1 to IFN-alpha R beta L or IL-10R alpha. Interestingly, regardless of the effect on receptor binding, removal of JH7-6 completely abrogated kinase activation, indicating that this domain is required for ligand-driven kinase activation and, thus, for proper signaling through cytokine receptors.
Collapse
Affiliation(s)
- Anna Usacheva
- Department of Pharmacology, University of Illinois, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
44
|
Kotenko SV. The family of IL-10-related cytokines and their receptors: related, but to what extent? Cytokine Growth Factor Rev 2002; 13:223-40. [PMID: 12486876 DOI: 10.1016/s1359-6101(02)00012-6] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Five novel cytokines (IL-19, IL-20, IL-22 (IL-TIF), IL-24 (human MDA-7, mouse FISP, rat C49A/Mob-5), and IL-26 (AK155)) demonstrating limited primary sequence identity and probable structural homology to IL-10 have been identified. These cellular cytokines, as well as several cytokines encoded in viral genomes (viral cytokines), form a family of IL-10-related cytokines or the IL-10 family. These cytokines share not only homology but also receptor subunits and perhaps activities. Receptors for these cytokines belong to the class II cytokine receptor family. The receptors are IL-10R2 (CRF2-4), IL-22R1 (CRF2-9), IL-22BP (CRF2-10), IL-20R1 (CRF2-8) and IL-20R2 (CRF2-11). Biological activities of these cytokines, receptor utilization and signaling, as well as expression patterns for cytokines and their receptors are summarized. Although data indicate that these cytokines are involved in regulation of inflammatory and immune responses, their major functions remain to be discovered.
Collapse
Affiliation(s)
- Sergei V Kotenko
- Department of Biochemistry and Molecular Biology, New Jersey Medical School, University of Medicine and Dentistry, 185 South Orange Avenue, MSB E-631, Newark, NJ 07103, USA.
| |
Collapse
|
45
|
Nguyen VP, Saleh AZM, Arch AE, Yan H, Piazza F, Kim J, Krolewski JJ. Stat2 binding to the interferon-alpha receptor 2 subunit is not required for interferon-alpha signaling. J Biol Chem 2002; 277:9713-21. [PMID: 11786546 DOI: 10.1074/jbc.m111161200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The interferon-alpha (IFNalpha) receptor consists of two subunits, the IFNalpha receptor 1 (IFNaR1) and 2 (IFNaR2) chains. Following ligand binding, IFNaR1 is phosphorylated on tyrosine 466, and this site recruits Stat2 via its SH2 domain. In contrast, IFNaR2 binds Stat2 constitutively. In this study we have characterized the Stat2-IFNaR2 interaction and examined its role in IFNalpha signaling. Stat2 binds the major IFNaR2 protein but not a variant containing a shorter cytoplasmic domain. The interaction does not require a STAT SH2 domain. Both tyrosine-phosphorylated and non-phosphorylated Stat2 bind IFNaR2 in vitro; however, relatively little phosphorylated Stat2 associates with IFNaR2 in vivo. In vitro binding assays defined IFNaR2 residues 418-444 as the minimal interaction domain and site-specific mutation of conserved acidic residues within this domain disrupted in vitro and in vivo binding. An IFNaR2 construct carrying these mutations was either (i) overexpressed in 293T cells or (ii) used to complement IFNaR2-deficient U5A cells. Unexpectedly, the activity of an IFNalpha-dependent reporter gene was not reduced but, instead, was enhanced up to 2-fold. This suggests that this particular IFNaR2-Stat2 interaction is not required for IFNalpha signaling, but might act to negatively inhibit signaling. Finally, a doubly truncated recombinant fragment of Stat2, spanning residues 136-702, associated with IFNaR2 in vitro, indicating that the interaction with IFNaR2 is direct and occurs in a central region of Stat2 marked by a hydrophobic core.
Collapse
Affiliation(s)
- Vinh-Phúc Nguyen
- Department of Pathology and the Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, California 92697, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Al-Lazikani B, Sheinerman FB, Honig B. Combining multiple structure and sequence alignments to improve sequence detection and alignment: application to the SH2 domains of Janus kinases. Proc Natl Acad Sci U S A 2001; 98:14796-801. [PMID: 11752426 PMCID: PMC64938 DOI: 10.1073/pnas.011577898] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this paper, an approach is described that combines multiple structure alignments and multiple sequence alignments to generate sequence profiles for protein families. First, multiple sequence alignments are generated from sequences that are closely related to each sequence of known three-dimensional structure. These alignments then are merged through a multiple structure alignment of family members of known structure. The merged alignment is used to generate a Hidden Markov Model for the family in question. The Hidden Markov Model can be used to search for new family members or to improve alignments for distantly related family members that already have been identified. Application of a profile generated for SH2 domains indicates that the Janus family of nonreceptor protein tyrosine kinases contains SH2 domains. This conclusion is strongly supported by the results of secondary structure-prediction programs, threading calculations, and the analysis of comparative models generated for these domains. One of the Janus kinases, human TYK2, has an SH2 domain that contains a histidine instead of the conserved arginine at the key phosphotyrosine-binding position, betaB5. Calculations of the pK(a) values of the betaB5 arginines in a number of SH2 domains and of the betaB5 histidine in a homology model of TYK2 suggest that this histidine is likely to be neutral around pH 7, thus indicating that it may have lost the ability to bind phosphotyrosine. If this indeed is the case, TYK2 may contain a domain with an SH2 fold that has a modified binding specificity.
Collapse
Affiliation(s)
- B Al-Lazikani
- Howard Hughes Medical Institute, Department of Biochemistry and Molecular Biophysics, Columbia University, 630 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
47
|
Dondi E, Pattyn E, Lutfalla G, Van Ostade X, Uzé G, Pellegrini S, Tavernier J. Down-modulation of type 1 interferon responses by receptor cross-competition for a shared Jak kinase. J Biol Chem 2001; 276:47004-12. [PMID: 11602573 DOI: 10.1074/jbc.m104316200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In contrast to the large number of class I and II cytokine receptors, only four Janus kinase (Jak) proteins are expressed in mammalian cells, implying the shared use of these kinases by many different receptor complexes. Consequently, if receptor numbers exceed the amount of available Jak, cross-interference patterns can be expected. We have engineered two model cellular systems expressing two different exogenous Tyk2-interacting receptors. A receptor chimera was generated wherein the extracellular part of the interferon type 1 receptor (Ifnar1) component of the interferon-alpha/beta receptor is replaced by the equivalent domain of the erythropoietin receptor. Despite Tyk2 activation, erythropoietin treatment of cells expressing this erythropoietin receptor/Ifnar1 chimera did not evoke any detectable IFN-type response. However, a dose-dependent interference with signal transduction via the endogenous Ifnar complex was found for STAT1, STAT2, STAT3, Tyk2, and Jak1 activation, for gene induction, and for antiviral activity. In a similar approach, cells expressing the beta1 chain of the interleukin-12 receptor showed a reduced transcriptional response to IFN-alpha as well as reduced STAT and kinase activation. In both model systems, titration of the Tyk2 kinase away from the Ifnar1 receptor chain accounts for the observed cross-interference.
Collapse
Affiliation(s)
- E Dondi
- Laboratoire de Signalisation des Cytokines, Institut Pasteur, 25, rue du Dr. Roux, 75724 Paris, cedex 15 France
| | | | | | | | | | | | | |
Collapse
|
48
|
Hamada K, Shimizu T, Matsui T, Tsukita S, Hakoshima T. Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J 2000; 19:4449-62. [PMID: 10970839 PMCID: PMC302071 DOI: 10.1093/emboj/19.17.4449] [Citation(s) in RCA: 299] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Radixin is a member of the ezrin/radixin/moesin (ERM) family of proteins, which play a role in the formation of the membrane-associated cytoskeleton by linking actin filaments and adhesion proteins. This cross-linking activity is regulated by phosphoinositides such as phosphatidylinositol 4,5-bisphosphate (PIP2) in the downstream of the small G protein Rho. The X-ray crystal structures of the radixin FERM domain, which is responsible for membrane binding, and its complex with inositol-(1,4, 5)-trisphosphate (IP3) have been determined. The domain consists of three subdomains featuring a ubiquitin-like fold, a four-helix bundle and a phosphotyrosine-binding-like domain, respectively. These subdomains are organized by intimate interdomain interactions to form characteristic grooves and clefts. One such groove is negatively charged and so is thought to interact with basic juxta-membrane regions of adhesion proteins. IP3 binds a basic cleft that is distinct from those of pleckstrin homology domains and is located on a positively charged flat molecular surface, suggesting an electrostatic mechanism of plasma membrane targeting. Based on the structural changes associated with IP3 binding, a possible unmasking mechanism of ERM proteins by PIP2 is proposed.
Collapse
Affiliation(s)
- K Hamada
- Department of Molecular Biology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
49
|
Abstract
Understanding the control exerted by cytokines on T helper cell subsets 1 and 2 (TH1-TH2) development has progressed to a fairly satisfying knowledge of intracellular signals and transcription factors. Less is understood about the molecular basis of TH1-TH2 development exerted by other parameters, such as how the antigen presenting cell can influence this process. Recent work suggests that dendritic cell subsets contribute significant polarizing influences on T helper differentiation, but how this comes about is less clear. In some cases known pathways may be used, as in the dendritic cell subset 1 exerting TH1 polarization by interleukin 12 (IL-12) production and STAT4 activation. In others, the effects are still in need of explanation.
Collapse
Affiliation(s)
- M Moser
- Département de Biologie Moleculaire, Université Libre de Bruxelles, Rue des Prof. Jeener et Brochet 12, 6041 Gosselies, Belgium
| | | |
Collapse
|
50
|
Murphy KM, Ouyang W, Farrar JD, Yang J, Ranganath S, Asnagli H, Afkarian M, Murphy TL. Signaling and transcription in T helper development. Annu Rev Immunol 2000; 18:451-94. [PMID: 10837066 DOI: 10.1146/annurev.immunol.18.1.451] [Citation(s) in RCA: 487] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The recognition of polarized T cell subsets defined by cytokine production was followed by a search to define the factors controlling this phenomenon. Suitable in vitro systems allowed the development of cytokine "recipes" that induced rapid polarization of naïve T cells into Th1 or Th2 populations. The next phase of work over the past several years has begun to define the intracellular processes set into motion during Th1/Th2 development, particularly by the strongly polarizing cytokines IL-12 and IL-4. Although somewhat incomplete, what has emerged is a richly detailed tapestry of signaling and transcription, controlling an important T cell developmental switch. In addition several new mediators of control have emerged, including IL-18, the intriguing Th2-selective T1/ST2 product, and heterogeneity in dendritic cells capable of directing cytokine-independent Th development.
Collapse
Affiliation(s)
- K M Murphy
- Department of Pathology, and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | | | | | |
Collapse
|