1
|
DNA-induced spatial entrapment of general transcription machinery can stabilize gene expression in a nondividing cell. Proc Natl Acad Sci U S A 2022; 119:2116091119. [PMID: 35074915 PMCID: PMC8795562 DOI: 10.1073/pnas.2116091119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 12/03/2022] Open
Abstract
How differentiated cells such as muscle or nerve maintain their gene expression for prolonged times is currently elusive. Here, using Xenopus oocyte, we have shown that the stability of gene expression in nondividing cells may arise due to the local entrapment of transcriptional machinery to specific gene transcription start sites. We found that within the same nucleus active versus inactive versions of the same gene are spatially segregated through liquid–liquid phase separation. We further observe that silent genes are associated with RNA-Pol-II phosphorylated on Ser5 but fails to attract RNA-Pol-II elongation factors. We propose that liquid–liquid phase separation mediated entrapment of limiting transcriptional machinery factors maintain stable expression of some genes in nondividing cells. An important characteristic of cell differentiation is its stability. Only rarely do cells or their stem cell progenitors change their differentiation pathway. If they do, it is often accompanied by a malfunction such as cancer. A mechanistic understanding of the stability of differentiated states would allow better prospects of alleviating the malfunctioning. However, such complete information is yet elusive. Earlier experiments performed in Xenopus oocytes to address this question suggest that a cell may maintain its gene expression by prolonged binding of cell type–specific transcription factors. Here, using DNA competition experiments, we show that the stability of gene expression in a nondividing cell could be caused by the local entrapment of part of the general transcription machinery in transcriptionally active regions. Strikingly, we found that transcriptionally active and silent forms of the same DNA template can stably coexist within the same nucleus. Both DNA templates are associated with the gene-specific transcription factor Ascl1, the core factor TBP2, and the polymerase II (Pol-II) ser5 C-terminal domain (CTD) phosphorylated form, while Pol-II ser2 CTD phosphorylation is restricted to the transcriptionally dominant template. We discover that the active and silent DNA forms are physically separated in the oocyte nucleus through partition into liquid–liquid phase-separated condensates. Altogether, our study proposes a mechanism of transcriptional regulation involving a spatial entrapment of general transcription machinery components to stabilize the active form of a gene in a nondividing cell.
Collapse
|
2
|
Okuda M, Ekimoto T, Kurita JI, Ikeguchi M, Nishimura Y. Structural and dynamical insights into the PH domain of p62 in human TFIIH. Nucleic Acids Res 2021; 49:2916-2930. [PMID: 33211877 PMCID: PMC7969019 DOI: 10.1093/nar/gkaa1045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/30/2020] [Accepted: 10/22/2020] [Indexed: 11/15/2022] Open
Abstract
TFIIH is a crucial transcription and DNA repair factor consisting of the seven-subunit core. The core subunit p62 contains a pleckstrin homology domain (PH-D), which is essential for locating TFIIH at transcription initiation and DNA damage sites, and two BSD (BTF2-like transcription factors, synapse-associated proteins and DOS2-like proteins) domains. A recent cryo-electron microscopy (cryo-EM) structure of human TFIIH visualized most parts of core, except for the PH-D. Here, by nuclear magnetic resonance spectroscopy we have established the solution structure of human p62 PH-D connected to the BSD1 domain by a highly flexible linker, suggesting the flexibility of PH-D in TFIIH. Based on this dynamic character, the PH-D was modeled in the cryo-EM structure to obtain the whole human TFIIH core structure, which indicates that the PH-D moves around the surface of core with a specific but limited spatial distribution; these dynamic structures were refined by molecular dynamics (MD) simulations. Furthermore, we built models, also refined by MD simulations, of TFIIH in complex with five p62-binding partners, including transcription factors TFIIEα, p53 and DP1, and nucleotide excision repair factors XPC and UVSSA. The models explain why the PH-D is crucially targeted by these factors, which use their intrinsically disordered acidic regions for TFIIH recruitment.
Collapse
Affiliation(s)
- Masahiko Okuda
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Toru Ekimoto
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Jun-Ichi Kurita
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yoshifumi Nishimura
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.,Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima 739-8258, Japan
| |
Collapse
|
3
|
Okuda M, Araki K, Ohtani K, Nishimura Y. The Interaction Mode of the Acidic Region of the Cell Cycle Transcription Factor DP1 with TFIIH. J Mol Biol 2016; 428:4993-5006. [DOI: 10.1016/j.jmb.2016.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/27/2016] [Accepted: 11/01/2016] [Indexed: 10/20/2022]
|
4
|
Chen R, Plunkett W. Strategy to induce apoptosis and circumvent resistance in chronic lymphocytic leukaemia. Best Pract Res Clin Haematol 2010; 23:155-66. [DOI: 10.1016/j.beha.2010.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
5
|
Gilmour DS. Promoter proximal pausing on genes in metazoans. Chromosoma 2008; 118:1-10. [PMID: 18830703 DOI: 10.1007/s00412-008-0182-4] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/14/2008] [Accepted: 09/14/2008] [Indexed: 10/21/2022]
Abstract
The past two decades of research into transcriptional control of protein-encoding genes in eukaryotes have focused on regulatory mechanisms that act by controlling the recruitment of Pol II to a gene's promoter. Recent genome-wide analyses of the distribution of Pol II indicates that Pol II is concentrated in the promoter regions of thousands of genes in human and Drosophila cells. In many cases, Pol II may have initiated transcription but paused in the promoter proximal region. Hence, release of Pol II from the promoter region into the body of a gene is now recognized as a common rate-limiting step in the control of gene expression. Notably, most genes with paused Pol II are expressed indicating that the pause can be transient. What causes Pol II to concentrate in the promoter region and how it is released to transcribe a gene are the focus of this review.
Collapse
Affiliation(s)
- David S Gilmour
- Center for Gene Regulation, Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
6
|
Kitsios G, Alexiou KG, Bush M, Shaw P, Doonan JH. A cyclin-dependent protein kinase, CDKC2, colocalizes with and modulates the distribution of spliceosomal components in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 54:220-35. [PMID: 18208522 DOI: 10.1111/j.1365-313x.2008.03414.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cyclin-dependent kinases (CDKs) play key regulatory roles in diverse cellular functions, including cell-cycle progression, transcription and translation. In plants, CDKs have been classified into several groups, named A through to G, but the functions of most are poorly characterized. CDKCs are known to phosphorylate the C-terminal domain (CTD) of RNA polymerase II (RNAP II), and therefore the CDKC-cyclinT (CycT) complex may have a role similar to the animal CDK9-CycT complex of the positive transcription elongation factor b (P-TEFb). However, we found that the predicted structure of the Arabidopsis CDKC2 protein is more similar to the mammalian cdc2-related kinase, CRK7, than to CDK9. CRK7 is proposed to link transcription with splicing, and CDKC2 contains all the structural features of CRK7 that make the latter distinct from CDK9. Consistent with this, we show that GFP-CDKC2 fusion proteins co-localize with spliceosomal components, that the expression of CDKC2 modifies the location of these components, and that co-localization was dependent on the transcriptional status of the cells and on CDKC2-kinase activity. We propose, therefore, that the Arabidopsis CDKC2 combines the functions of both CRK7 and CDK9, and could also couple splicing with transcription.
Collapse
|
7
|
Bird G, Zorio DAR, Bentley DL. RNA polymerase II carboxy-terminal domain phosphorylation is required for cotranscriptional pre-mRNA splicing and 3'-end formation. Mol Cell Biol 2004; 24:8963-9. [PMID: 15456870 PMCID: PMC517882 DOI: 10.1128/mcb.24.20.8963-8969.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 04/20/2004] [Accepted: 07/28/2004] [Indexed: 11/20/2022] Open
Abstract
We investigated the role of RNA polymerase II (pol II) carboxy-terminal domain (CTD) phosphorylation in pre-mRNA processing coupled and uncoupled from transcription in Xenopus oocytes. Inhibition of CTD phosphorylation by the kinase inhibitors 5,6-dichloro-1beta-D-ribofuranosyl-benzimidazole and H8 blocked transcription-coupled splicing and poly(A) site cleavage. These experiments suggest that pol II CTD phosphorylation is required for efficient pre-mRNA splicing and 3'-end formation in vivo. In contrast, processing of injected pre-mRNA was unaffected by either kinase inhibitors or alpha-amanitin-induced depletion of pol II. pol II therefore does not appear to participate directly in posttranscriptional processing, at least in frog oocytes. Together these experiments show that the influence of the phosphorylated CTD on pre-mRNA splicing and 3'-end processing is mediated by transcriptional coupling.
Collapse
Affiliation(s)
- Gregory Bird
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Science Center at Fitzsimons, P.O. Box 6511, Aurora, CO 80045, USA
| | | | | |
Collapse
|
8
|
Svejstrup JQ. The RNA polymerase II transcription cycle: cycling through chromatin. ACTA ACUST UNITED AC 2004; 1677:64-73. [PMID: 15020047 DOI: 10.1016/j.bbaexp.2003.10.012] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/03/2003] [Accepted: 10/03/2003] [Indexed: 01/22/2023]
Abstract
The cycle of events that characterizes RNA polymerase II transcription has been the focus of intense study over the past two decades. Our knowledge of the molecular processes leading to transcriptional initiation is greatly improved, and the focus of many recent studies has shifted towards the less well-characterized events taking place after assembly of the pre-initiation complex, such as promoter clearance, elongation, and termination. This review gives a brief overview of the transcription cycle as a whole, focusing especially on selected mechanisms that may drive or restrict the cycle, and on how the presence of chromatin may influence these mechanisms.
Collapse
Affiliation(s)
- Jesper Q Svejstrup
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms, Hertfordshire, EN6 3LD, UK.
| |
Collapse
|
9
|
Abstract
The androgen-androgen receptor (AR) signaling pathway plays a key role in proper development and function of male reproductive organs. Like other transcriptional regulators, AR may communicate with the general transcription machinery on the core promoter to exert its function as a transcriptional modulator. The molecular communication between AR and the general transcription machinery may be achieved either by the direct protein-protein interaction between AR and the general transcription machinery or by the indirect interaction mediated by coregulators. Analyses of AR-mediated transcription suggest that the orchestrated interaction of AR with the transcription factors IIF (TFIIF) and IIH (TFIIH), and positive transcription elongation factor b (P-TEFb), may increase efficiency of transcriptional elongation from the androgen target genes, such as prostate specific antigen (PSA). Based on studies so far, AR may regulate transcription not by enhanced assembly of preinitiation transcription complex but by regulating promoter clearance and elongation stage of transcription.
Collapse
Affiliation(s)
- Dong Kun Lee
- George Whipple Laboratory for Cancer Research, Department of Pathology, and the Cancer Center, 601 Elmwood Avenue, P.O. Box 626, Rochester 14642, NY, USA
| | | |
Collapse
|
10
|
Lee DK, Duan HO, Chang C. Androgen receptor interacts with the positive elongation factor P-TEFb and enhances the efficiency of transcriptional elongation. J Biol Chem 2001; 276:9978-84. [PMID: 11266437 DOI: 10.1074/jbc.m002285200] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Androgen receptor (AR) may communicate with the general transcription machinery on the core promoter to exert its function as a transcriptional modulator. Our previous report demonstrated that the AR interacted with transcription factor IIH (TFIIH) under physiological conditions and that overexpression of Cdk-activating kinase, the kinase moiety of TFIIH, enhanced AR-mediated transcription in prostate cancer cells. In an effort to further dissect the mechanisms implicated in AR transactivation, we report here that AR interacts with PITALRE, a kinase subunit of positive elongation factor b (P-TEFb). Cotransfection of the plasmid encoding the mutant PITALRE (mtPITALRE), defective in its RNA polymerase II COOH-terminal domain (CTD)-kinase activity, resulted in preferential inhibition of AR-mediated transactivation. Indeed, AR transactivation in PC-3 cells was preferentially inhibited at the low concentration of 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), a CTD kinase inhibitor. These results suggest that CTD phosphorylation may play an important role in AR-mediated transcription. Furthermore, a nuclear run-on transcription assay of the prostate-specific antigen gene, an androgen-inducible gene, showed that transcription efficiency of the distal region of the gene was enhanced upon androgen induction. Taken together, our reports suggest that AR interacts with TFIIH and P-TEFb and enhances the elongation stage of transcription.
Collapse
Affiliation(s)
- D K Lee
- George Whipple Laboratory for Cancer Research, Department of Pathology, Urology, Radiation Oncology, and the Cancer Center, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | |
Collapse
|
11
|
Costa PJ, Arndt KM. Synthetic lethal interactions suggest a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. Genetics 2000; 156:535-47. [PMID: 11014804 PMCID: PMC1461271 DOI: 10.1093/genetics/156.2.535] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Strong evidence indicates that transcription elongation by RNA polymerase II (pol II) is a highly regulated process. Here we present genetic results that indicate a role for the Saccharomyces cerevisiae Rtf1 protein in transcription elongation. A screen for synthetic lethal mutations was carried out with an rtf1 deletion mutation to identify factors that interact with Rtf1 or regulate the same process as Rtf1. The screen uncovered mutations in SRB5, CTK1, FCP1, and POB3. These genes encode an Srb/mediator component, a CTD kinase, a CTD phosphatase, and a protein involved in the regulation of transcription by chromatin structure, respectively. All of these gene products have been directly or indirectly implicated in transcription elongation, indicating that Rtf1 may also regulate this process. In support of this view, we show that RTF1 functionally interacts with genes that encode known elongation factors, including SPT4, SPT5, SPT16, and PPR2. We also show that a deletion of RTF1 causes sensitivity to 6-azauracil and mycophenolic acid, phenotypes correlated with a transcription elongation defect. Collectively, our results suggest that Rtf1 may function as a novel transcription elongation factor in yeast.
Collapse
Affiliation(s)
- P J Costa
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
12
|
Fivaz J, Bassi MC, Pinaud S, Mirkovitch J. RNA polymerase II promoter-proximal pausing upregulates c-fos gene expression. Gene 2000; 255:185-94. [PMID: 11024278 DOI: 10.1016/s0378-1119(00)00340-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Transcription elongation regulates c-fos expression in mouse and human cells. In the inactive state of the gene, RNA polymerases are engaged only in the promoter-proximal region. Upon activation, RNA polymerases move efficiently along the complete gene. We have used Epstein-Barr virus (EBV) episomes as a gene transfer system to study the role of promoter-proximal pausing and transcript elongation in c-fos expression. We find that the sequence located immediately downstream of the transcriptional start site specifies pausing of RNA polymerases, dependent on both its orientation and position relative to the promoter. This sequence is, however, not necessary to maintain repression in the absence of a stimulus. As promoter-proximal pausing is therefore not a repression mechanism for the c-fos gene, the promoter and enhancer sequences are the main determinants of RNA polymerase elongation competence. Surprisingly, we find that promoter-proximal pausing further increases transcriptional levels from a variety of promoters. These observations lead us to hypothesize that promoter-proximal pausing of RNA polymerase II augments c-fos expression by allowing more efficient phosphorylation of the C-terminal domain of the large subunit.
Collapse
Affiliation(s)
- J Fivaz
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, CH-1066, Epalinges, Switzerland
| | | | | | | |
Collapse
|
13
|
Clement JQ, Wilkinson MF. Rapid induction of nuclear transcripts and inhibition of intron decay in response to the polymerase II inhibitor DRB. J Mol Biol 2000; 299:1179-91. [PMID: 10873444 DOI: 10.1006/jmbi.2000.3745] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional inhibitor 5, 6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB) is an adenosine analog that has been shown to cause premature transcriptional termination and thus has been a useful tool to identify factors important for transcriptional elongation. Here, we establish an efficient system for studying DRB-sensitive steps of transcriptional elongation. In addition, we establish two novel effects of DRB not previously reported: intron stabilization and the induction of long transcripts by a mechanism other than premature termination. We found that DRB had a biphasic effect on T-cell receptor-beta (TCRbeta) transcripts driven by a tetracycline (tet)-responsive promoter in transfected HeLa cells. In the first phase, DRB caused a rapid decrease (within five minutes) of pre-mRNA and its spliced intron (IVS1(Cbeta1)), consistent with the known ability of DRB to inhibit transcription. In the second phase (which began ten minutes to two hours after treatment, depending on the dose), DRB dramatically increased the levels of IVS1(Cbeta1)-containing transcripts by a mechanism requiring de novo RNA synthesis. DRB induced the appearance of short 0.4 to 0.8 kb TCRbeta transcripts in vivo, indicating DRB enhances premature transcriptional termination. A approximately 475 nt prematurely terminated transcript (PT) was characterized that terminated at an internal poly(A) tract in the intron IVS1(Cbeta1). We identified three other effects of DRB. First, we observed that DRB induced the appearance of heterodisperse TCRbeta transcripts that were too long ( approximately 1 kb to >8 kb) to result from the type of premature termination events previously described. Their production was not promoter-specific, as we found that long transcripts were induced by DRB from both the tet-responsive and beta-actin promoters. Second, DRB upregulated full-length normal-sized c-myc mRNA, which provided further evidence that DRB has effects besides regulation of premature termination. Third, DRB stabilized lariat forms of the intron IVS1(Cbeta1), indicating that DRB exerts post-transcriptional actions. We propose that our model system will be useful for elucidating the factors that regulate RNA decay and transcriptional elongation in vivo.
Collapse
Affiliation(s)
- J Q Clement
- Department of Immunology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | | |
Collapse
|
14
|
Abstract
Cajal bodies (coiled bodies) are nuclear organelles that contain a variety of components required for transcription and processing of RNA. Cajal bodies in amphibian oocytes are stained by mAb H14, which recognizes the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II when the heptapeptide repeat is phosphorylated on serine-5. Oocytes were treated with the transcription inhibitor 5, 6-dichloro-1-beta-d-ribofuranosylbenzimidazole (DRB), which prevents phosphorylation of the CTD. Cajal bodies from oocytes that had been treated for 2-3 h with DRB no longer stained with mAb H14, but staining reappeared when the inhibitor was washed out. Epitope-tagged transcripts of two small subunits of polymerase II, RPB6 and RPB9, were injected into the cytoplasm of Xenopus and Triturus oocytes. Newly translated RPB6 and RPB9 were specifically targeted to Cajal bodies within 4 h, and Cajal bodies remained the site of highest concentration of tagged protein during the next 2 days. These data suggest that polymerase subunits pass through the Cajal bodies with a transit time no greater than a few hours. We discuss the possibility that Cajal bodies are sites of assembly or modification of the transcription machinery of the nucleus.
Collapse
Affiliation(s)
- G T Morgan
- Institute of Genetics, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | | | | | | |
Collapse
|
15
|
Yan M, Gralla JD. The use of ATP and initiating nucleotides during postrecruitment steps at the activated adenovirus E4 promoter. J Biol Chem 1999; 274:34819-24. [PMID: 10574953 DOI: 10.1074/jbc.274.49.34819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Permanganate probing has been used to follow the progress and ATP dependence of promoter opening during activated adenovirus E4 initiation and clearance. Using templates designed to restrict synthesis to defined positions, formation of a 3-nucleotide-long RNA was found to be sufficient to trigger expansion of the initial transcription bubble. This occurred by a discrete transition that expanded the downstream limit of melting from position 1 to 15. Subsequent clearance of the bubble from the promoter region also occurred without detectable intermediates. Thus, initial opening, extension, and the clearance of the promoter bubble appear to occur as discrete, unique transitions. The apparent K(m) values for these three steps were determined to be near 5, 9, and 50 microM, respectively. Comparison of these values with ATPase activities within known transcription factors raises the possibility that different activities could be responsible for each step.
Collapse
Affiliation(s)
- M Yan
- Department of Chemistry, Molecular Biology Institute, UCLA, Los Angeles, California 90095-1569, USA
| | | |
Collapse
|
16
|
Kim MK, Nikodem VM. hnRNP U inhibits carboxy-terminal domain phosphorylation by TFIIH and represses RNA polymerase II elongation. Mol Cell Biol 1999; 19:6833-44. [PMID: 10490622 PMCID: PMC84680 DOI: 10.1128/mcb.19.10.6833] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study describes a potential new function of hnRNP U as an RNA polymerase (Pol II) elongation inhibitor. We demonstrated that a subfraction of human hnRNP U is associated with the Pol II holoenzyme in vivo and as such recruited to the promoter as part of the preinitiation complex. hnRNP U, however, appears to dissociate from the Pol II complex at the early stage of transcription and is therefore absent from the elongating Pol II complex. When tested in the human immunodeficiency virus type 1 transcription system, hnRNP U inhibits elongation rather than initiation of transcription by Pol II. This inhibition requires the carboxy-terminal domain (CTD) of Pol II. We showed that hnRNP U can bind TFIIH in vivo under certain conditions and inhibit TFIIH-mediated CTD phosphorylation in vitro. We find that the middle domain of hnRNP U is sufficient to mediate its Pol II association and its inhibition of TFIIH-mediated phosphorylation and Pol II elongation. The abilities of hnRNP U to inhibit TFIIH-mediated CTD phosphorylation and its Pol II association are necessary for hnRNP U to mediate the repression of Pol II elongation. Based on these observations, we suggest that a subfraction of hnRNP U, as a component of the Pol II holoenzyme, may downregulate TFIIH-mediated CTD phosphorylation in the basal transcription machinery and repress Pol II elongation. With such functions, hnRNP U might provide one of the mechanisms by which the CTD is maintained in an unphosphorylated state in the Pol II holoenzyme.
Collapse
Affiliation(s)
- M K Kim
- Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | |
Collapse
|
17
|
Yankulov K, Todorov I, Romanowski P, Licatalosi D, Cilli K, McCracken S, Laskey R, Bentley DL. MCM proteins are associated with RNA polymerase II holoenzyme. Mol Cell Biol 1999; 19:6154-63. [PMID: 10454562 PMCID: PMC84545 DOI: 10.1128/mcb.19.9.6154] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
MCMs are a family of proteins related to ATP-dependent helicases that bind to origin recognition complexes and are required for initiation of DNA replication. We report that antibodies against MCM2(BM28) specifically inhibited transcription by RNA polymerase II (Pol II) in microinjected Xenopus oocytes. Consistent with this observation, MCM2 and other MCMs copurified with Pol II and general transcription factors (GTFs) in high-molecular-weight holoenzyme complexes isolated from Xenopus oocytes and HeLa cells. Pol II and GTFs also copurified with MCMs isolated by anti-MCM3 immunoaffinity chromatography. MCMs were specifically displaced from the holoenzyme complex by antibody against the C-terminal domain (CTD) of Pol II. In addition, MCMs bound to a CTD affinity column, suggesting that their association with holoenzyme depends in part on this domain of Pol II. These results suggest a new function for MCM proteins as components of the Pol II transcriptional apparatus.
Collapse
Affiliation(s)
- K Yankulov
- Department of Molecular Biology and Genetics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
McCracken S, Rosonina E, Fong N, Sikes M, Beyer A, O'Hare K, Shuman S, Bentley D. Role of RNA polymerase II carboxy-terminal domain in coordinating transcription with RNA processing. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 1999; 63:301-9. [PMID: 10384294 DOI: 10.1101/sqb.1998.63.301] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- S McCracken
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Biochemical evidence indicates that pre-mRNA splicing factors physically interact with the C-terminal domain of the largest subunit of RNA polymerase II. We have investigated the in vivo function of this interaction. In mammalian cells, truncation of the CTD of RNA pol II LS prevents the targeting of the splicing machinery to a transcription site. In the absence of the CTD, pre-mRNA splicing is severely reduced. The presence of unspliced RNA alone is not sufficient for the accumulation of splicing factors at the transcription site, nor for its efficient splicing. Our results demonstrate a critical role for the CTD of RNA pol II LS in the intranuclear targeting of splicing factors to transcription sites in vivo.
Collapse
Affiliation(s)
- T Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
20
|
Kumahara E, Ebihara T, Saffen D. Protein kinase inhibitor H7 blocks the induction of immediate-early genes zif268 and c-fos by a mechanism unrelated to inhibition of protein kinase C but possibly related to inhibition of phosphorylation of RNA polymerase II. J Biol Chem 1999; 274:10430-8. [PMID: 10187833 DOI: 10.1074/jbc.274.15.10430] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H7) has often been used in combination with protein kinase inhibitor (N-(2-guanidinoethyl)-5-isoquinolinesulfonamide) (HA1004) to assess the contribution of protein kinase C (PKC) to cellular processes, including the induction of gene expression. This use of H7 and HA1004 is based upon the fact that H7 inhibits PKC more potently than HA1004 in in vitro assays. Thus, although both compounds are broad spectrum protein kinase inhibitors, inhibition by H7, but not by HA1004, has often been interpreted as evidence for the involvement of PKC in the cellular process under study. Here we describe experiments that show that this interpretation is not correct with regard to the induction of two immediate-early genes, zif268 and c-fos, in PC12D cells. In these studies we confirmed that H7, but not HA1004, potently blocks the induction of zif268 and c-fos mRNA by nerve growth factor, carbachol, phorbol ester, Ca2+ ionophore, or forskolin. Surprisingly, however, H7 has no effect on the ability of these agents to activate mitogen-activated protein kinase (MAPK), an upstream activator of zif268 and c-fos gene expression. H7 also does not inhibit preactivated MAPK in vitro. Taken together, these results suggest that H7 blocks gene expression by acting at a site downstream from MAPK. H7 has previously been shown to block transcription in vitro by blocking the phosphorylation of the carboxyl-terminal domain of RNA polymerase II (Yankulov, K., Yamashita, K., Roy, R., Egly, J.-M., and Bentley, D. L.(1995) J. Biol. Chem. 270, 23922-23925). In this study, we show that pretreating PC12D cells with H7, but not with HA1004, significantly reduces levels of phosphorylated RNA polymerase II in vivo. These results suggest that H7 blocks gene expression by inhibiting the phosphorylation of RNA polymerase II, a step required for progression from transcription initiation to mRNA chain elongation.
Collapse
Affiliation(s)
- E Kumahara
- Department of Neurochemistry, Faculty of Medicine, University of Tokyo, Tokyo 113, Japan.
| | | | | |
Collapse
|
21
|
Meininghaus M, Eick D. Requirement of the carboxy-terminal domain of RNA polymerase II for the transcriptional activation of chromosomal c-fos and hsp70A genes. FEBS Lett 1999; 446:173-6. [PMID: 10100637 DOI: 10.1016/s0014-5793(99)00184-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The carboxy-terminal domain of the large subunit of mouse and human RNA polymerase II contains 52 repeats of a heptapeptide which are the targets for a variety of kinases. We have used an alpha-amanitin resistant form of the large subunit of pol II to study the role of the carboxy-terminal domain in the expression of chromosomal genes. The large subunit of RNA polymerase II and deletion mutants thereof, which contain only 31 (LSdelta31) and 5 (LSdeltaS) repeats, were expressed in 293 cells. Subsequently, the endogenous large subunit of RNA polymerase II was inhibited by alpha-amanitin and the induction of chromosomal c-fos and hsp70A genes was determined. Cells expressing the large subunit of RNA polymerase II and LSdelta31 were able to transcribe the c-fos and hsp70A genes after treatment with the phorbolester TPA and after heat-shock, respectively. In contrast, cells expressing LSdelta5 failed to induce expression of both genes.
Collapse
Affiliation(s)
- M Meininghaus
- GSF-Research Center for Environment and Health, Institute for Clinical Molecular Biology and Tumor Genetics, Munich, Germany
| | | |
Collapse
|
22
|
Schang LM, Rosenberg A, Schaffer PA. Transcription of herpes simplex virus immediate-early and early genes is inhibited by roscovitine, an inhibitor specific for cellular cyclin-dependent kinases. J Virol 1999; 73:2161-72. [PMID: 9971799 PMCID: PMC104461 DOI: 10.1128/jvi.73.3.2161-2172.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/1998] [Accepted: 12/03/1998] [Indexed: 11/20/2022] Open
Abstract
Although herpes simplex virus (HSV) replicates in noncycling as well as cycling cells, including terminally differentiated neurons, it has recently been shown that viral replication requires the activities of cellular cyclin-dependent kinases (cdks) (L. M. Schang, J. Phillips, and P. A. Schaffer, J. Virol. 72:5626-5637, 1998). Since we were unable to isolate HSV mutants resistant to two cdk inhibitors, Olomoucine and Roscovitine (Rosco), we hypothesized that cdks may be required for more than one viral function during HSV replication. In the experiments presented here, we tested this hypothesis by measuring the efficiency of (i) viral replication; (ii) expression of selected immediate-early (IE) (ICP0 and ICP4), early (E) (ICP8 and TK), and late (L) (gC) genes; and (iii) viral DNA synthesis in infected cultures to which Rosco was added after IE or IE and E proteins had already been synthesized. Rosco inhibited HSV replication, transcription of IE and E genes, and viral DNA synthesis when added at 1, 2, or 6 h postinfection or after release from a 6-h cycloheximide block. Transcription of a representative L gene, gC, was also inhibited by Rosco under all conditions examined. We conclude from these studies that cellular cdks are required for transcription of E as well as IE genes. In contrast, steady-state levels of at least one cellular housekeeping gene were not affected by Rosco. The requirement of viral IE and E transcription for cellular cdks may reflect either a requirement for specific cdk-activated cellular and/or viral transcription factors or a more global requirement for cdks in the transcriptional activation of the viral genome.
Collapse
Affiliation(s)
- L M Schang
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | | | |
Collapse
|
23
|
Frit P, Bergmann E, Egly JM. Transcription factor IIH: a key player in the cellular response to DNA damage. Biochimie 1999; 81:27-38. [PMID: 10214907 DOI: 10.1016/s0300-9084(99)80035-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
TFIIH (transcription factor IIH) is a multiprotein complex consisting of nine subunits initially characterized as a basal transcription factor required for initiation of protein-coding RNA synthesis. TFIIH was the first transcription factor shown to harbor several enzymatic activities, likely indicative of functional complexity. This intricacy was further emphasized with the cloning of the genes encoding the different subunits which disclosed direct connections between transcription, DNA repair and cell cycle regulation. In this review, we emphasize those functions of TFIIH involved in DNA repair, as well as their relationship to TFIIH's roles in transcription, cell cycle control and apoptosis. These connections may prove to be essential for the cellular response to DNA damage.
Collapse
Affiliation(s)
- P Frit
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université Louis-Pasteur, Strasbourg, Illkirch, France
| | | | | |
Collapse
|
24
|
Otero G, Fellows J, Li Y, de Bizemont T, Dirac AM, Gustafsson CM, Erdjument-Bromage H, Tempst P, Svejstrup JQ. Elongator, a multisubunit component of a novel RNA polymerase II holoenzyme for transcriptional elongation. Mol Cell 1999; 3:109-18. [PMID: 10024884 DOI: 10.1016/s1097-2765(00)80179-3] [Citation(s) in RCA: 392] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The form of RNA polymerase II (RNAPII) engaged in transcriptional elongation was isolated. Elongating RNAPII was associated with a novel multisubunit complex, termed elongator, whose stable interaction was dependent on a hyperphosphorylated state of the RNAPII carboxy-terminal domain (CTD). A free form of elongator was also isolated, demonstrating the discrete nature of the complex, and free elongator could bind directly to RNAPII. The gene encoding the largest subunit of elongator, ELP1, was cloned. Phenotypes of yeast elp1 delta cells demonstrated an involvement of elongator in transcriptional elongation as well as activation in vivo. Our data indicate that the transition from transcriptional initiation to elongation involves an exchange of the multiprotein mediator complex for elongator in a reaction coupled to CTD hyperphosphorylation.
Collapse
Affiliation(s)
- G Otero
- Mechanisms of Transcription Laboratory, Imperial Cancer Research Fund, Clare Hall Laboratories, South Mimms, Herts, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wada T, Takagi T, Yamaguchi Y, Watanabe D, Handa H. Evidence that P-TEFb alleviates the negative effect of DSIF on RNA polymerase II-dependent transcription in vitro. EMBO J 1998; 17:7395-403. [PMID: 9857195 PMCID: PMC1171084 DOI: 10.1093/emboj/17.24.7395] [Citation(s) in RCA: 288] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, a positive and a negative elongation factor, implicated in 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) inhibition of transcription elongation, has been identified. P-TEFb is a positive transcription elongation factor and the DRB-sensitive kinase that phosphorylates the C-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II). PITALRE, a member of the Cdc2 family of protein kinases, is the catalytic subunit of P-TEFb. DSIF is a human homolog of the yeast Spt4-Spt5 complex and renders elongation of transcription sensitive to DRB. DRB sensitivity-inducing factor (DSIF) binds to RNA Pol II and may directly regulate elongation. Here we show a functional interaction between P-TEFb and DSIF. The reduction of P-TEFb activity induced by either DRB, antibody against PITALRE, or immunodepletion resulted in a negative effect of DSIF on transcription. DSIF acts at an early phase of elongation, and the prior action of P-TEFb makes transcription resistant to DSIF. The state of phosphorylation of CTD determines the DSIF-RNA Pol II interaction, and may provide a direct link between P-TEFb and DSIF. Taken together, this study reveals a molecular basis for DRB action and suggests that P-TEFb stimulates elongation by alleviating the negative action of DSIF.
Collapse
Affiliation(s)
- T Wada
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
26
|
Yamaguchi M, Umeda M, Uchimiya H. A rice homolog of Cdk7/MO15 phosphorylates both cyclin-dependent protein kinases and the carboxy-terminal domain of RNA polymerase II. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 1998; 16:613-619. [PMID: 10036778 DOI: 10.1046/j.1365-313x.1998.00338.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The activation of cyclin-dependent protein kinases (CDKs) requires phosphorylation of a threonine residue within the T-loop by a CDK-activating kinase (CAK). The R2 protein of rice is very similar to CAKs of animals and fission yeast at the amino acid level but phosphorylation by R2 has not yet been demonstrated. When R2 was overexpressed in a CAK-deficient mutant of budding yeast, it suppressed the temperature sensitivity of the mutation. Immunoprecipitates of rice proteins with the anti-R2 antibody phosphorylated human CDK2, one of the rice CDKs (Cdc2Os1), and the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II of Arabidopsis. Mutational analysis indicated that R2 phosphorylated the threonine residue within the T-loop of CDK2 and Cdc2Os1. R2 was found mainly in two protein complexes which had molecular masses of 190 kDa and 70 kDa, respectively, whilst the CDK- and CTD-kinase activities associated with R2 were identified in a complex of 105 kDa. These results indicate that R2 is closely related to CAKs of animals and fission yeast in terms of its phosphorylation activity and, moreover, that this CAK of rice is distinct from a CAK of the dicotyledonous plant Arabidopsis.
Collapse
Affiliation(s)
- M Yamaguchi
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Japan
| | | | | |
Collapse
|
27
|
Abstract
The synthesis of mature and functional messenger RNA by eukaryotic RNA polymerase II (Pol II) is a complex, multistage process requiring the cooperative action of many cellular proteins. This process, referred to collectively as the transcription cycle, proceeds via five stages: preinitiation, initiation, promoter clearance, elongation, and termination. During the past few years, fundamental studies of the elongation stage of transcription have demonstrated the existence of several families of Pol II elongation factors governing the activity of Pol II. It is now clear that the elongation stage of transcription is a critical stage for the regulation of gene expression. In fact, two of these elongation factors, ELL and elongin, have been implicated in human cancer. This article will review the proteins involved in the regulation of the elongation stage of transcription by Pol II, describing the recent experimental findings that have propelled vigorous research on the properties and function of the elongating RNA polymerase II. --Shilatifard, A. Factors regulating the transcriptional elongation activity of RNA polymerase II.
Collapse
Affiliation(s)
- A Shilatifard
- Department of Biochemistry, St. Louis University School of Medicine, St. Louis, Missouri 63104, USA.
| |
Collapse
|
28
|
Fujinaga K, Cujec TP, Peng J, Garriga J, Price DH, Graña X, Peterlin BM. The ability of positive transcription elongation factor B to transactivate human immunodeficiency virus transcription depends on a functional kinase domain, cyclin T1, and Tat. J Virol 1998; 72:7154-9. [PMID: 9696809 PMCID: PMC109937 DOI: 10.1128/jvi.72.9.7154-7159.1998] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
By binding to the transactivation response element (TAR) RNA, the transcriptional transactivator (Tat) from the human immunodeficiency virus increases rates of elongation rather than initiation of viral transcription. Two cyclin-dependent serine/threonine kinases, CDK7 and CDK9, which phosphorylate the C-terminal domain of RNA polymerase II, have been implicated in Tat transactivation in vivo and in vitro. In this report, we demonstrate that CDK9, which is the kinase component of the positive transcription elongation factor b (P-TEFb) complex, can activate viral transcription when tethered to the heterologous Rev response element RNA via the regulator of expression of virion proteins (Rev). The kinase activity of CDK9 and cyclin T1 is essential for these effects. Moreover, P-TEFb binds to TAR only in the presence of Tat. We conclude that Tat-P-TEFb complexes bind to TAR, where CDK9 modifies RNA polymerase II for the efficient copying of the viral genome.
Collapse
Affiliation(s)
- K Fujinaga
- Departments of Medicine, Microbiology, and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94143-0703, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Pinaud S, Mirkovitch J. Regulation of c-fos expression by RNA polymerase elongation competence. J Mol Biol 1998; 280:785-98. [PMID: 9671550 DOI: 10.1006/jmbi.1998.1905] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular mechanisms underlying transcription elongation and their role in gene regulation are poorly characterized in eukaryotes. A number of genes, however, have been proposed to be regulated at the level of transcription elongation, including c-myc, c-fos and c-myb. Here, we analyze the control of transcription elongation at the mouse c-fos gene at the nucleotide level in intact cells. We find that RNA polymerases are engaged in the promoter-proximal part of the gene in the absence of gene activation signals and mRNA synthesis. Importantly, we determine that the engaged RNA polymerases originate from a continuous initiation of transcription which, in the absence of gene activation signals, terminate close to the promoter. We also observe that the c-fos gene presents an active chromatin conformation, with the promoter and upstream regulatory sequences constitutively occupied by proteins, accounting for the continuous initiation of RNA polymerase complexes. We propose that activation of c-fos gene expression results primarily from the assembly of elongation-competent RNA polymerases that can transcribe the complete gene. Our results suggest that the engaged RNA polymerases found downstream of a number of other eukaryotic promoters may be associated with transcription termination of elongation-incompetent polymerases in the absence of activating signals.
Collapse
Affiliation(s)
- S Pinaud
- Swiss Institute for Experimental Cancer Research (ISREC), Chemin des Boveresses 155, Epalinges, CH-1066, Switzerland
| | | |
Collapse
|
30
|
Peng J, Marshall NF, Price DH. Identification of a cyclin subunit required for the function of Drosophila P-TEFb. J Biol Chem 1998; 273:13855-60. [PMID: 9593731 DOI: 10.1074/jbc.273.22.13855] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P-TEFb is required for the transition from abortive elongation into productive elongation and is capable of phosphorylating the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II. We cloned a cDNA encoding the large subunit of Drosophila P-TEFb and found the predicted protein contained a cyclin motif. We now name the large subunit cyclin T and the previously cloned small subunit (Zhu, Y. R., Peery, T., Peng, J. M., Ramanathan, Y., Marshall, N., Marshall, T., Amendt, B., Mathews, M. B., and Price, D. H. (1997) Genes Dev. 11, 2622-2632) cyclin-dependent kinase 9 (CDK9). Recombinant P-TEFb produced in baculovirus-transfected Sf9 cells exhibited 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole-sensitive kinase activity similar to native P-TEFb. Kc cell nuclear extract depleted of P-TEFb failed to generate long DRB-sensitive transcripts, but this activity was restored upon addition of either native or recombinant P-TEFb. Like other CDKs, CDK9 is essentially inactive in the absence of its cyclin partner. P-TEFb containing a CDK9 mutation that knocked out the kinase activity did not function in transcription. Deletion of the carboxyl-terminal domain of cyclin T in P-TEFb reduced both the kinase and transcription activity to about 10%. The CDK-activating kinase in TFIIH was unable to activate the CTD kinase activity of P-TEFb.
Collapse
Affiliation(s)
- J Peng
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
31
|
Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog GA, Winston F, Buratowski S, Handa H. DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. Genes Dev 1998; 12:343-56. [PMID: 9450929 PMCID: PMC316480 DOI: 10.1101/gad.12.3.343] [Citation(s) in RCA: 600] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/1997] [Accepted: 12/04/1997] [Indexed: 02/05/2023]
Abstract
We report the identification of a transcription elongation factor from HeLa cell nuclear extracts that causes pausing of RNA polymerase II (Pol II) in conjunction with the transcription inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB). This factor, termed DRB sensitivity-inducing factor (DSIF), is also required for transcription inhibition by H8. DSIF has been purified and is composed of 160-kD (p160) and 14-kD (p14) subunits. Isolation of a cDNA encoding DSIF p160 shows it to be a homolog of the Saccharomyces cerevisiae transcription factor Spt5. Recombinant Supt4h protein, the human homolog of yeast Spt4, is functionally equivalent to DSIF p14, indicating that DSIF is composed of the human homologs of Spt4 and Spt5. In addition to its negative role in elongation, DSIF is able to stimulate the rate of elongation by RNA Pol II in a reaction containing limiting concentrations of ribonucleoside triphosphates. A role for DSIF in transcription elongation is further supported by the fact that p160 has a region homologous to the bacterial elongation factor NusG. The combination of biochemical studies on DSIF and genetic analysis of Spt4 and Spt5 in yeast, also in this issue, indicates that DSIF associates with RNA Pol II and regulates its processivity in vitro and in vivo.
Collapse
Affiliation(s)
- T Wada
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yamaguchi Y, Wada T, Handa H. Interplay between positive and negative elongation factors: drawing a new view of DRB. Genes Cells 1998; 3:9-15. [PMID: 9581978 DOI: 10.1046/j.1365-2443.1998.00162.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
DRB is a classic inhibitor of transcription by RNA polymerase II (pol II). Although it has been demonstrated that DRB inhibits the elongation step of transcription, its mode of action has been elusive. DRB also markedly inhibits human immunodeficiency virus (HIV) transcription, by targeting the elongation which is enhanced by the HIV-encoded transactivator Tat. Two factors essential for DRB action have recently been identified. These factors, positive transcription elongation factor b (P-TEFb) and DRB sensitivity-inducing factor (DSIF), positively and negatively regulate pol II elongation, and are likely to be relevant to the function of Tat. In this review, we summarize the recent findings on these factors, and discuss a possible model for the molecular mechanism of DRB action.
Collapse
Affiliation(s)
- Y Yamaguchi
- Department of Biomolecular Engineering, Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | |
Collapse
|
33
|
Yeung G, Choi LM, Chao LC, Park NJ, Liu D, Jamil A, Martinson HG. Poly(A)-driven and poly(A)-assisted termination: two different modes of poly(A)-dependent transcription termination. Mol Cell Biol 1998; 18:276-89. [PMID: 9418875 PMCID: PMC121491 DOI: 10.1128/mcb.18.1.276] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/1997] [Accepted: 10/13/1997] [Indexed: 02/05/2023] Open
Abstract
We mapped the elements that mediate termination of transcription downstream of the chicken betaH- and betaA-globin gene poly(A) sites. We found no unique element and no segment of 3'-flanking DNA to be significantly more effective than any other. When we replaced the native 3'-flanking DNA with bacterial DNA, it too supported transcription termination. Termination in the bacterial DNA depended on a functional poly(A) signal, which apparently compelled termination to occur in the downstream DNA with little regard for its sequence. We also studied premature termination by poorly processive polymerases close to the promoter. The rate of premature termination varied for different DNA sequences. However, the efficiencies of poly(A)-driven termination and promoter-proximal premature termination varied similarly on different DNAs, suggesting that poly(A)-driven termination functions by returning the transcription complex to a form which resembles a prior state of low processivity. The poly(A)-driven termination described here differs dramatically from the poly(A)-assisted termination previously described for the simian virus 40 (SV40) early transcription unit. In the SV40 early transcription unit, essentially no termination occurs downstream of the poly(A) site unless a special termination element is present. The difference between the betaH-globin and SV40 modes of termination is governed by sequences in the upstream DNA. For maximum efficiency, the betaH-globin poly(A) signal required the assistance of upstream enhancing sequences. Moreover, the SV40 early poly(A) signal also drove termination in betaH-globin style when it was placed in a betaH-globin sequence context. These studies were facilitated by a rapid, improved method of run-on transcription analysis, based on the use of a vector containing two G-free cassettes.
Collapse
Affiliation(s)
- G Yeung
- Department of Chemistry and Biochemistry, University of California at Los Angeles, 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Archambault J, Chambers RS, Kobor MS, Ho Y, Cartier M, Bolotin D, Andrews B, Kane CM, Greenblatt J. An essential component of a C-terminal domain phosphatase that interacts with transcription factor IIF in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1997; 94:14300-5. [PMID: 9405607 PMCID: PMC24951 DOI: 10.1073/pnas.94.26.14300] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
One of the essential components of a phosphatase that specifically dephosphorylates the Saccharomyces cerevisiae RNA polymerase II (RPII) large subunit C-terminal domain (CTD) is a novel polypeptide encoded by an essential gene termed FCP1. The Fcp1 protein is localized to the nucleus, and it binds the largest subunit of the yeast general transcription factor IIF (Tfg1). In vitro, transcription factor IIF stimulates phosphatase activity in the presence of Fcp1 and a second complementing fraction. Two distinct regions of Fcp1 are capable of binding to Tfg1, but the C-terminal Tfg1 binding domain is dispensable for activity in vivo and in vitro. Sequence comparison reveals that residues 173-357 of Fcp1 correspond to an amino acid motif present in proteins of unknown function predicted in many organisms.
Collapse
Affiliation(s)
- J Archambault
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario, Canada M5G 1L6
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Inamoto S, Segil N, Pan ZQ, Kimura M, Roeder RG. The cyclin-dependent kinase-activating kinase (CAK) assembly factor, MAT1, targets and enhances CAK activity on the POU domains of octamer transcription factors. J Biol Chem 1997; 272:29852-8. [PMID: 9368058 DOI: 10.1074/jbc.272.47.29852] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Octamer binding transcription factors (Oct factors) play important roles in activation of transcription of various genes but, in some cases, require cofactors that interact with the DNA binding (POU) domain. In the present study, a yeast two-hybrid screen with the Oct-1 POU domain as a bait identified MAT1 as a POU domain-binding protein. MAT1 is known to be required for the assembly of cyclin-dependent kinase (CDK)-activating kinase (CAK), which is functionally associated with the general transcription factor IIH (TFIIH). Further analyses showed that MAT1 interacts with POU domains of Oct-1, Oct-2, and Oct-3 in vitro in a DNA-independent manner. MAT1-containing TFIIH was also shown to interact with POU domains of Oct-1 and Oct-2. MAT1 is shown to enhance the ability of a recombinant CDK7-cyclin H complex (bipartite CAK) to phosphorylate isolated POU domains, intact Oct-1, and the C-terminal domain of RNA polymerase II, but not the originally defined substrate, CDK2. Phosphopeptide mapping indicates that the site (Ser385) of a mitosis-specific phosphorylation that inhibits Oct-1 binding to DNA is not phosphorylated by CAK. However, one CAK-phosphorylated phosphopeptide comigrates with a Cdc2-phosphorylated phosphopeptide previously shown to be mitosis-specific, suggesting that, in vitro, CAK is able to phosphorylate at least one site that is also phosphorylated in vivo. These results suggest (i) that interactions between POU domains and MAT1 can target CAK to Oct factors and result in their phosphorylation, (ii) that MAT1 not only functions as a CAK assembly factor but also acts to alter the spectrum of CAK substrates, and (iii) that a POU-MAT1 interaction may play a role in the recruitment of TFIIH to the preinitiation complex or in subsequent initiation and elongation reactions.
Collapse
Affiliation(s)
- S Inamoto
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
36
|
Zhu Y, Pe'ery T, Peng J, Ramanathan Y, Marshall N, Marshall T, Amendt B, Mathews MB, Price DH. Transcription elongation factor P-TEFb is required for HIV-1 tat transactivation in vitro. Genes Dev 1997; 11:2622-32. [PMID: 9334325 PMCID: PMC316609 DOI: 10.1101/gad.11.20.2622] [Citation(s) in RCA: 585] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/1997] [Accepted: 08/21/1997] [Indexed: 02/05/2023]
Abstract
P-TEFb is a key regulator of the process controlling the processivity of RNA polymerase II and possesses a kinase activity that can phosphorylate the carboxy-terminal domain of the largest subunit of RNA polymerase II. Here we report the cloning of the small subunit of Drosophila P-TEFb and the finding that it encodes a Cdc2-related protein kinase. Sequence comparison suggests that a protein with 72% identity, PITALRE, could be the human homolog of the Drosophila protein. Functional homology was suggested by transcriptional analysis of an RNA polymerase II promoter with HeLa nuclear extract depleted of PITALRE. Because the depleted extract lost the ability to produce long DRB-sensitive transcripts and this loss was reversed by the addition of purified Drosophila P-TEFb, we propose that PITALRE is a component of human P-TEFb. In addition, we found that PITALRE associated with the activation domain of HIV-1 Tat, indicating that P-TEFb is a Tat-associated kinase (TAK). An in vitro transcription assay demonstrates that the effect of Tat on transcription elongation requires P-TEFb and suggests that the enhancement of transcriptional processivity by Tat is attributable to enhanced function of P-TEFb on the HIV-1 LTR.
Collapse
Affiliation(s)
- Y Zhu
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Cujec TP, Okamoto H, Fujinaga K, Meyer J, Chamberlin H, Morgan DO, Peterlin BM. The HIV transactivator TAT binds to the CDK-activating kinase and activates the phosphorylation of the carboxy-terminal domain of RNA polymerase II. Genes Dev 1997; 11:2645-57. [PMID: 9334327 PMCID: PMC316603 DOI: 10.1101/gad.11.20.2645] [Citation(s) in RCA: 169] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The human immunodeficiency virus encodes the transcriptional transactivator Tat, which binds to the transactivation response (TAR) RNA stem-loop in the viral long terminal repeat (LTR) and increases rates of elongation rather than initiation of transcription by RNA polymerase II (Pol II). In this study, we demonstrate that Tat binds directly to the cyclin-dependent kinase 7 (CDK7), which leads to productive interactions between Tat and the CDK-activating kinase (CAK) complex and between Tat and TFIIH. Tat activates the phosphorylation of the carboxy-terminal domain (CTD) of Pol II by CAK in vitro. The ability of CAK to phosphorylate the CTD can be inhibited specifically by a CDK7 pseudosubstrate peptide that also inhibits transcriptional activation by Tat in vitro and in vivo. We conclude that the phosphorylation of the CTD by CAK is essential for Tat transactivation. Our data identify a cellular protein that interacts with the activation domain of Tat, demonstrate that this interaction is critical for the function of Tat, and provide a mechanism by which Tat increases the processivity of Pol II.
Collapse
Affiliation(s)
- T P Cujec
- Howard Hughes Medical Institute, Department of Medicine, University of California at San Francisco, San Franscisco, California USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Affiliation(s)
- K A Jones
- The Salk Institute for Biological Studies, La Jolla, California 92037-1099 USA.
| |
Collapse
|
39
|
Mancebo HS, Lee G, Flygare J, Tomassini J, Luu P, Zhu Y, Peng J, Blau C, Hazuda D, Price D, Flores O. P-TEFb kinase is required for HIV Tat transcriptional activation in vivo and in vitro. Genes Dev 1997; 11:2633-44. [PMID: 9334326 PMCID: PMC316604 DOI: 10.1101/gad.11.20.2633] [Citation(s) in RCA: 456] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/1997] [Accepted: 08/22/1997] [Indexed: 02/05/2023]
Abstract
To identify novel inhibitors of transcriptional activation by the HIV Tat protein, we used a combination of in vitro and in vivo Tat-dependent transcription assays to screen >100,000 compounds. All compounds identified blocked Tat-dependent stimulation of transcriptional elongation. Analysis of a panel of structurally diverse inhibitors indicated that their target is the human homolog of Drosophila positive transcription elongation factor b (P-TEFb). Loss of Tat transactivation in extracts depleted of the kinase subunit of human P-TEFb, PITALRE, was reversed by addition of partially purified human P-TEFb. Transfection experiments with wild-type or kinase knockout PITALRE demonstrated that P-TEFb is required for Tat function. Our results suggest that P-TEFb represents an attractive target for the development of novel HIV therapeutics.
Collapse
Affiliation(s)
- H S Mancebo
- Tularik, Inc., South San Francisco, California 94080 USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Rountree MR, Selker EU. DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev 1997; 11:2383-95. [PMID: 9308966 PMCID: PMC316521 DOI: 10.1101/gad.11.18.2383] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/1997] [Accepted: 07/28/1997] [Indexed: 02/05/2023]
Abstract
In plants, animals, and fungi, DNA methylation is frequently associated with gene silencing, yet little is known about the role of the methylation in silencing. In Neurospora crassa, repeated sequences are silenced by repeat-induced point mutation (RIP) and genes that have suffered numerous GC --> AT mutations by RIP are typically methylated at remaining cytosines. We investigated possible effects on transcription from methylation associated with RIP by taking advantage of 5-azacytidine, which prevents most methylation in Neurospora and a dim-2 mutation that abolishes all detectable methylation. Northern analyses revealed that methylation prevents the accumulation of transcripts from genes mutated by RIP. Measurements of transcription rates in vivo showed that methylation inhibits transcription severely but does not influence mRNA stability. Results of nuclear run-on experiments demonstrated that transcription initiation was not significantly inhibited by the dense methylation in the promoter sequences. In contrast, methylation blocked transcription elongation in vivo.
Collapse
Affiliation(s)
- M R Rountree
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
41
|
Chang CH, Luse DS. The H3/H4 tetramer blocks transcript elongation by RNA polymerase II in vitro. J Biol Chem 1997; 272:23427-34. [PMID: 9287358 DOI: 10.1074/jbc.272.37.23427] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have investigated transcript elongation efficiency by RNA polymerase II on chromatin templates in vitro. Circular plasmid DNAs bearing purified RNA polymerase II transcription complexes were assembled into nucleosomes using purified histones and transient exposure to high salt, followed by dilution and dialysis. This approach resulted in nucleosome assembly beginning immediately downstream of the transcription complexes. RNA polymerases on these nucleosomal templates could extend their 15- or 35-nucleotide nascent RNAs by only about 10 nucleotides in 15 min, even in the presence of elongation factors TFIIF and SII. Efficient transcript elongation did occur upon dissociation of nucleosomes with 1% sarkosyl, indicating that the RNA polymerases were not damaged by the high salt reconstitution procedure. Since the elongation complexes were released by sarkosyl but not by SII, these complexes apparently did not enter the arrested conformation when they encountered nucleosomes. Surprisingly, elongation was no more efficient on nucleosomal templates reconstituted only with H3/H4 tetramers, even in the presence of elongation factors and/or competitor DNA at high concentration. Thus, in a purified system lacking nucleosome remodeling factors, not only the core histone octamer but also the H3/H4 tetramer provide an nearly absolute block to transcript elongation by RNA polymerase II, even in the presence of elongation factors.
Collapse
Affiliation(s)
- C H Chang
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
42
|
Dvir A, Conaway RC, Conaway JW. A role for TFIIH in controlling the activity of early RNA polymerase II elongation complexes. Proc Natl Acad Sci U S A 1997; 94:9006-10. [PMID: 9256425 PMCID: PMC23002 DOI: 10.1073/pnas.94.17.9006] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/1997] [Indexed: 02/05/2023] Open
Abstract
TFIIH is a multifunctional RNA polymerase II transcription factor that possesses DNA-dependent ATPase, DNA helicase, and protein kinase activities. Previous studies have established that TFIIH enters the preinitiation complex and fulfills a critical role in initiation by catalyzing ATP-dependent formation of the open complex prior to synthesis of the first phosphodiester bond of nascent transcripts. In this report, we present direct evidence that TFIIH also controls RNA polymerase II activity at a postinitiation stage of transcription, by preventing premature arrest by very early elongation complexes just prior to their transition to stably elongating complexes. Unexpectedly, we observe that TFIIH is capable of entering the transcription cycle not only during assembly of the preinitiation complex but also after initiation and synthesis of as many as four to six phosphodiester bonds. These findings shed new light on the role of TFIIH in initiation and promoter escape and reveal an unanticipated flexibility in the ability of TFIIH to interact with RNA polymerase II transcription intermediates prior to, during, and immediately after initiation.
Collapse
Affiliation(s)
- A Dvir
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, 825 Northeast 13th Street, Oklahoma City, OK 73104, USA
| | | | | |
Collapse
|
43
|
McEwan IJ, Gustafsson J. Interaction of the human androgen receptor transactivation function with the general transcription factor TFIIF. Proc Natl Acad Sci U S A 1997; 94:8485-90. [PMID: 9238003 PMCID: PMC22967 DOI: 10.1073/pnas.94.16.8485] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human androgen receptor (AR) is a ligand-activated transcription factor that regulates genes important for male sexual differentiation and development. To better understand the role of the receptor as a transcription factor we have studied the mechanism of action of the N-terminal transactivation function. In a protein-protein interaction assay the AR N terminus (amino acids 142-485) selectively bound to the basal transcription factors TFIIF and the TATA-box-binding protein (TBP). Reconstitution of the transactivation activity in vitro revealed that AR142-485 fused to the LexA protein DNA-binding domain was competent to activate a reporter gene in the presence of a competing DNA template lacking LexA binding sites. Furthermore, consistent with direct interaction with basal transcription factors, addition of recombinant TFIIF relieved squelching of basal transcription by AR142-485. Taken together these results suggest that one mechanism of transcriptional activation by the AR involves binding to TFIIF and recruitment of the transcriptional machinery.
Collapse
Affiliation(s)
- I J McEwan
- Department of Biosciences, Novum, Karolinska Institute, S-141 57 Huddinge, Sweden.
| | | |
Collapse
|
44
|
Tijsterman M, Verhage RA, van de Putte P, Tasseron-de Jong JG, Brouwer J. Transitions in the coupling of transcription and nucleotide excision repair within RNA polymerase II-transcribed genes of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 1997; 94:8027-32. [PMID: 9223308 PMCID: PMC21550 DOI: 10.1073/pnas.94.15.8027] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The molecular mechanism of transcription-coupled nucleotide excision repair in eukaryotes is poorly understood. The identification of the dual role of basal transcription factor TFIIH in DNA repair and transcription provided a plausible link between both processes. However, TFIIH is not part of the elongating transcription complex, suggesting that additional components are required to recruit TFIIH when RNA polymerase II (RNAPII) stalls at the site of DNA damage. Previously, we have shown that the yeast Rad26 protein is involved in transcription-coupled DNA repair. This paper describes the differential contribution of the Rad26 protein to efficient removal of UV-induced cyclobutane pyrimidine dimers (CPDs) from transcribed DNA. Two distinct regions within the transcribed strand of RNAPII-transcribed genes are identified that differ in their requirement for the RAD26 gene product. Using high-resolution repair analysis, we determined the in vivo repair kinetics of cyclobutane pyrimidine dimers positioned around the transcription initiation site of RNAPII-transcribed genes RPB2 and URA3. Although transcription-coupled repair is severely reduced in rad26 mutants, lesions positioned in a small region immediately downstream of transcription initiation are efficiently removed in the absence of Rad26. The observed transition in repair characteristics is abrupt and in excellent agreement with the region where TFIIH dissociates from RNAPII in vitro, strongly suggesting an inverse correlation between TFIIH association and Rad26 requirement. These data suggest that a transcription repair coupling factor (Rad26/CSB) is required for efficient repair only during the elongating stages of RNAPII transcription.
Collapse
Affiliation(s)
- M Tijsterman
- Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
45
|
Abstract
RNA polymerase II holoenzymes isolated from yeast and mammalian cells are large, preassembled complexes that contain some or all of the general transcription initiation factors and many other polypeptides. Recent experiments suggest that these holoenzymes may mediate alterations in chromatin structure and play a key role in regulatory mechanisms that influence transcriptional initiation, RNA chain elongation, RNA processing and transcription termination.
Collapse
Affiliation(s)
- J Greenblatt
- Banting and Best Department of Medical Research, University of Toronto, 112 College Street, Toronto, Ontario, Canada M5G 1L6.
| |
Collapse
|
46
|
Shilatifard A, Conaway JW, Conaway RC. Mechanism and regulation of transcriptional elongation and termination by RNA polymerase II. Curr Opin Genet Dev 1997; 7:199-204. [PMID: 9115429 DOI: 10.1016/s0959-437x(97)80129-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Over the past year, key advances in several areas of research on the structure and function of the RNA polymerase (pol II) elongation complex have shed considerable light on the mechanisms governing the elongation stage of eukaryotic mRNA synthesis. Novel features of the regulation of elongation by DNA and RNA binding transcriptional activators have been brought to light; the mechanisms of action of elongation factors that suppress pausing and premature arrest by transcribing pol II have been defined in greater detail; and novel elongation factors implicated in human disease have been identified and characterized.
Collapse
Affiliation(s)
- A Shilatifard
- Program in Molecular and Cell Biology, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, Oklahoma, 73104, USA
| | | | | |
Collapse
|
47
|
Abstract
The cyclin-dependent kinase (CDK)-activating kinase CAK has been proposed to function in the control of cell cycle progression, DNA repair and RNA polymerase II (pol II) transcription. Most CAK exists as complexes of three subunits: CDK7, cyclin H (CycH) and MAT1. This tripartite CAK occurs in a free form and in association with 'core' TFIIH, which functions in both pol II transcription and DNA repair. We investigated the substrate specificities of different forms of CAK. Addition of the MAT1 subunit to recombinant bipartite CDK7-CycH switched its substrate preference to favour the pol II large subunit C-terminal domain (CTD) over CDK2. We suggest that the MAT1 protein, previously shown to function as an assembly factor for CDK7-CycH, also acts to modulate CAK substrate specificity. The substrate specificities of natural TFIIH and free CAK were also compared. TFIIH had a strong preference for the CTD over CDK2 relative to free CAK. TFIIH, but not free CAK, could efficiently hyperphosphorylate the CTD. In the context of TFIIH, the kinase also acquired specificity for the general transcription factors TFIIE and TFIIF which were not recognized by free CAK. We conclude that the substrate preference of the CDK7-CycH kinase is governed by association with both MAT1 and 'core' TFIIH.
Collapse
Affiliation(s)
- K Y Yankulov
- Amgen Institute and Department of Medical Biophysics, University of Toronto, Ontario, Canada
| | | |
Collapse
|
48
|
Rossignol M, Kolb-Cheynel I, Egly JM. Substrate specificity of the cdk-activating kinase (CAK) is altered upon association with TFIIH. EMBO J 1997; 16:1628-37. [PMID: 9130708 PMCID: PMC1169767 DOI: 10.1093/emboj/16.7.1628] [Citation(s) in RCA: 147] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The transcription/DNA repair factor TFIIH consists of nine subunits, several exhibiting known functions: helicase/ATPase, kinase activity and DNA binding. Three subunits of TFIIH, cdk7, cyclin H and MAT1, form a ternary complex, cdk-activating kinase (CAK), found either on its own or as part of TFIIH. In the present work, we demonstrate that purified human CAK complex (free CAK) and recombinant CAK (rCAK) produced in insect cells exhibit a strong preference for the cyclin-dependent kinase 2 (cdk2) over a ctd oligopeptide substrate (which mimics the carboxy-terminal domain of the RNA polymerase II). In contrast, TFIIH preferentially phosphorylates the ctd as well as TFIIE alpha, but not cdk2. TFIIH was resolved into four subcomplexes: the kinase complex composed of cdk7, cyclin H and MAT1; the core TFIIH which contains XPB, p62, p52, p44 and p34; and two other subcomplexes in which XPD is found associated with either the kinase complex or with the core TFIIH. Using these fractions, we demonstrate that TFIIH lacking the CAK subcomplex completely recovers its transcriptional activity in the presence of free CAK. Furthermore, studies examining the interactions between TFIIH subunits provide evidence that CAK is integrated within TFIIH via XPB and XPD.
Collapse
Affiliation(s)
- M Rossignol
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, UPR 6520 (CNRS), Unité 184 (INSERM), Illkirch, CU de Strasbourg, France
| | | | | |
Collapse
|
49
|
Abstract
Understanding of cyclin-dependent kinase (CDK) regulation in mammalian cells has deepened even as the functions ascribed to these enzymes have multiplied. We know from crystallographic studies how a prototypic CDK-cyclin complex is activated and inactivated; the challenge now is to extend this knowledge to other CDKs involved in cell cycle progression. At the same time, as CDKs turn up in some unexpected places, interest in CDK regulation has spread beyond the cell cycle field.
Collapse
Affiliation(s)
- R P Fisher
- Program in Cell Biology and Genetics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, New York 10021 USA. r-fisher@ski. mskcc.org
| |
Collapse
|
50
|
Abstract
Ternary complexes of DNA-dependent RNA polymerase with its DNA template and nascent transcript are central intermediates in transcription. In recent years, several unusual biochemical reactions have been discovered that affect the progression of RNA polymerase in ternary complexes through various transcription units. These reactions can be signaled intrinsically, by nucleic acid sequences and the RNA polymerase, or extrinsically, by protein or other regulatory factors. These factors can affect any of these processes, including promoter proximal and promoter distal pausing in both prokaryotes and eukaryotes, and therefore play a central role in regulation of gene expression. In eukaryotic systems, at least two of these factors appear to be related to cellular transformation and human cancers. New models for the structure of ternary complexes, and for the mechanism by which they move along DNA, provide plausible explanations for novel biochemical reactions that have been observed. These models predict that RNA polymerase moves along DNA without the constant possibility of dissociation and consequent termination. A further prediction of these models is that the polymerase can move in a discontinuous or inchworm-like manner. Many direct predictions of these models have been confirmed. However, one feature of RNA chain elongation not predicted by the model is that the DNA sequence can determine whether the enzyme moves discontinuously or monotonically. In at least two cases, the encounter between the RNA polymerase and a DNA block to elongation appears to specifically induce a discontinuous mode of synthesis. These findings provide important new insights into the RNA chain elongation process and offer the prospect of understanding many significant biological regulatory systems at the molecular level.
Collapse
Affiliation(s)
- S M Uptain
- Department of Molecular and Cell Biology, University of California at Berkeley 94720, USA.
| | | | | |
Collapse
|