1
|
Mohanty S, Lekven AC. Divergent functions of the evolutionarily conserved, yet seemingly dispensable, Wnt target, sp5. Differentiation 2025; 141:100829. [PMID: 39675112 DOI: 10.1016/j.diff.2024.100829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/10/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
The activation of sp5 in response to Wnt/β-catenin signaling is observed in many species during axis patterning, neural crest induction, maintenance and differentiation of stem cells. Indeed, the conserved response of sp5 orthologs to Wnt-mediated activation is the basis for this gene commonly being used as a readout for Wnt signaling activity. However, several seemingly conflicting findings regarding the function of sp5 in the context of Wnt signaling cast this gene in an enigmatic light. In this review, we examine current knowledge of sp5 structure and function, its relationship to Wnt signaling in varied contexts, and present perspectives on how progress on this interesting gene can move forward.
Collapse
Affiliation(s)
- Saurav Mohanty
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | - Arne C Lekven
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA.
| |
Collapse
|
2
|
Uslupehlivan M, Deveci R. Glycosylation analysis of transcription factor TFIIB using bioinformatics and experimental methods. J Biomol Struct Dyn 2024:1-11. [PMID: 39601751 DOI: 10.1080/07391102.2024.2434031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/06/2024] [Indexed: 11/29/2024]
Abstract
Transcription is a fundamental process involving the interaction of RNA polymerase II and related transcription factors. TFIIB is a transcription factor that plays a significant role in the formation and stability of the preinitiation complex in a precise orientation, as well as in the control of initiation and pre-elongation steps. At the initiation step, TFIIB interacts with three structures: the end of the TATA-binding protein, a GC-rich DNA sequence followed by the TATA box, and the C-terminal domain of RNA polymerase II. It is known that RNA polymerase II is a glycoprotein and contains O-GlcNAc sugar at the C-terminal domain during the initiation stage of transcription. However, it is unclear whether the transcription factors interacting with RNA polymerase II are glycoproteins or not. The study aims to determine the glycosylation (N- and/or O-linked glycosylations) of TFIIB by using bioinformatics in one invertebrate and seven vertebrate species and experimental methods in the sea urchin Paracentrotus lividus oocyte. Both bioinformatics and experimental analysis have shown that TFIIB is a glycoprotein. In addition, PNGase-F enzyme treatment, lectin blotting, and colloidal-gold conjugated lectin labeling results revealed that TFIIB contains O-linked GalNAc, mannose, GlcNAc, and α-2,3-linked sialic acid. Based on our results, we suggest that glycosylation modification may be involved in the transcription mechanism of the TFIIB protein.
Collapse
Affiliation(s)
- Muhammet Uslupehlivan
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Türkiye
| | - Remziye Deveci
- Faculty of Science, Department of Biology, Molecular Biology Section, Ege University, Izmir, Türkiye
| |
Collapse
|
3
|
Mitchell CW, Galan Bartual S, Ferenbach AT, Scavenius C, van Aalten DMF. Exploiting O-GlcNAc transferase promiscuity to dissect site-specific O-GlcNAcylation. Glycobiology 2023; 33:1172-1181. [PMID: 37856504 DOI: 10.1093/glycob/cwad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/04/2023] [Accepted: 10/18/2023] [Indexed: 10/21/2023] Open
Abstract
Protein O-GlcNAcylation is an evolutionary conserved post-translational modification catalysed by the nucleocytoplasmic O-GlcNAc transferase (OGT) and reversed by O-GlcNAcase (OGA). How site-specific O-GlcNAcylation modulates a diverse range of cellular processes is largely unknown. A limiting factor in studying this is the lack of accessible techniques capable of producing homogeneously O-GlcNAcylated proteins, in high yield, for in vitro studies. Here, we exploit the tolerance of OGT for cysteine instead of serine, combined with a co-expressed OGA to achieve site-specific, highly homogeneous mono-glycosylation. Applying this to DDX3X, TAB1, and CK2α, we demonstrate that near-homogeneous mono-S-GlcNAcylation of these proteins promotes DDX3X and CK2α solubility and enables production of mono-S-GlcNAcylated TAB1 crystals, albeit with limited diffraction. Taken together, this work provides a new approach for functional dissection of protein O-GlcNAcylation.
Collapse
Affiliation(s)
- Conor W Mitchell
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, United Kingdom
| | - Sergio Galan Bartual
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Andrew T Ferenbach
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Daan M F van Aalten
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
- Division of Molecular, Cell, and Developmental Biology, School of Life Sciences, University of Dundee, Dow St., Dundee, DD1 5EH, United Kingdom
| |
Collapse
|
4
|
de Lima Castro M, Dos Passos RR, Justina VD, do Amaral WN, Giachini FR. Physiological and pathological evidence of O-GlcNAcylation regulation during pregnancy related process. Placenta 2023; 141:43-50. [PMID: 37210277 DOI: 10.1016/j.placenta.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 04/25/2023] [Indexed: 05/22/2023]
Abstract
O-GlcNAcylation is a dynamic and reversible post-translational modification (PTM) controlled by the enzymes O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). Changes in its expression lead to a breakdown in cellular homeostasis, which is linked to several pathological processes. Placentation and embryonic development are periods of high cell activity, and imbalances in cell signaling pathways can result in infertility, miscarriage, or pregnancy complications. O-GlcNAcylation is involved in cellular processes such as genome maintenance, epigenetic regulation, protein synthesis/degradation, metabolic pathways, signaling pathways, apoptosis, and stress response. Trophoblastic differentiation/invasion and placental vasculogenesis, as well as zygote viability and embryonic neuronal development, are all dependent on O-GlcNAcylation. This PTM is required for pluripotency, which is a required condition for embryonic development. Further, this pathway is a nutritional sensor and cell stress marker, which is primarily measured by the OGT enzyme and its product, protein O-GlcNAcylation. Yet, this post-translational modification is enrolled in metabolic and cardiovascular adaptations during pregnancy. Finally, evidence of how O-GlcNAc impacts pregnancy during pathological conditions such as hyperglycemia, gestational diabetes, hypertension, and stress disorders are reviewed. Considering this scenario, progress in understanding the role of O- GlcNAcylation in pregnancy is required.
Collapse
Affiliation(s)
- Marta de Lima Castro
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Rinaldo Rodrigues Dos Passos
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Vanessa Dela Justina
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Waldemar Naves do Amaral
- Graduation Program in Health Sciences, Faculty of Medicine, Federal University of Goias, Goiânia, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological Sciences, Federal University of Goias, Goiânia, Brazil; Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil.
| |
Collapse
|
5
|
You M, Xie Z, Zhang N, Zhang Y, Xiao D, Liu S, Zhuang W, Li L, Tao Y. Signaling pathways in cancer metabolism: mechanisms and therapeutic targets. Signal Transduct Target Ther 2023; 8:196. [PMID: 37164974 PMCID: PMC10172373 DOI: 10.1038/s41392-023-01442-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 05/12/2023] Open
Abstract
A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
Collapse
Affiliation(s)
- Mengshu You
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Zhuolin Xie
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Nan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Yixuan Zhang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Wei Zhuang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, People's Republic of China.
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong.
| | - Yongguang Tao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- Department of Pathology, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Xiangya Hospital, Central South University, 410078, Changsha, Hunan, China.
- Department of Thoracic Surgery, Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
6
|
Abstract
Post-translational modification with O-linked β-N-acetylglucosamine (O-GlcNAc), a process referred to as O-GlcNAcylation, occurs on a vast variety of proteins. Mounting evidence in the past several decades has clearly demonstrated that O-GlcNAcylation is a unique and ubiquitous modification. Reminiscent of a code, protein O-GlcNAcylation functions as a crucial regulator of nearly all cellular processes studied. The primary aim of this review is to summarize the developments in our understanding of myriad protein substrates modified by O-GlcNAcylation from a systems perspective. Specifically, we provide a comprehensive survey of O-GlcNAcylation in multiple species studied, including eukaryotes (e.g., protists, fungi, plants, Caenorhabditis elegans, Drosophila melanogaster, murine, and human), prokaryotes, and some viruses. We evaluate features (e.g., structural properties and sequence motifs) of O-GlcNAc modification on proteins across species. Given that O-GlcNAcylation functions in a species-, tissue-/cell-, protein-, and site-specific manner, we discuss the functional roles of O-GlcNAcylation on human proteins. We focus particularly on several classes of relatively well-characterized human proteins (including transcription factors, protein kinases, protein phosphatases, and E3 ubiquitin-ligases), with representative O-GlcNAc site-specific functions presented. We hope the systems view of the great endeavor in the past 35 years will help demystify the O-GlcNAc code and lead to more fascinating studies in the years to come.
Collapse
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Chunyan Hou
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington, DC 20057, United States
| |
Collapse
|
7
|
dos Passos Junior RR, de Freitas RA, Dela Justina V, San Martín S, Lima VV, Giachini FR. Protein O-GlcNAcylation as a nutrient sensor signaling placental dysfunction in hypertensive pregnancy. Front Endocrinol (Lausanne) 2022; 13:1032499. [PMID: 36531508 PMCID: PMC9754152 DOI: 10.3389/fendo.2022.1032499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/18/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION During pregnancy, arterial hypertension may impair placental function, which is critical for a healthy baby's growth. Important proteins during placentation are known to be targets for O-linked β-N-acetylglucosamine modification (O-GlcNAcylation), and abnormal protein O-GlcNAcylation has been linked to pathological conditions such as hypertension. However, it is unclear how protein O-GlcNAcylation affects placental function and fetal growth throughout pregnancy during hypertension. METHODS To investigate this question, female Wistar and spontaneously hypertensive rats (SHR) were mated with male Wistar rats, and after pregnancy confirmation by vaginal smear, rats were divided into groups of 14, 17, and 20 days of pregnancy (DOPs). On the 14th, 17th, and 20th DOP, rats were euthanized, fetal parameters were measured, and placentas were collected for western blot, immunohistochemical, and morphological analyses. RESULTS SHR presented a higher blood pressure than the Wistar rats (p=0.001). Across all DOPs, SHR showed reduced fetal weight and an increase in small-for-gestational-age fetuses. While near-term placentas were heavier in SHR (p=0.006), placental efficiency decreased at 17 (p=0.01) and 20 DOPs (p<0.0001) in this group. Morphological analysis revealed reduced junctional zone area and labyrinth vasculature changes on SHR placentas in all DOPs. O-GlcNAc protein expression was lower in placentas from SHR compared with Wistar at 14, 17, and 20 DOPs. Decreased expression of O-GlcNAc transferase (p=0.01) and O-GlcNAcase (p=0.002) enzymes was found at 14 DOPs in SHR. Immunohistochemistry showed reduced placental O-GlcNAc content in both the junctional zone and labyrinth of the placentas from SHR. Periodic acid-Schiff analysis showed decreased glycogen cell content in the placentas from SHR at 14, 17, and 20 DOPs. Moreover, glucose transporter 1 expression was decreased in placentas from SHR in all DOPs. CONCLUSIONS These findings suggest that decreased protein O-GlcNAcylation caused by insufficient placental nutritional apport contributes to placental dysfunction during hypertensive pregnancy, impairing fetal growth.
Collapse
Affiliation(s)
| | | | - Vanessa Dela Justina
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Sebastián San Martín
- Biomedical Research Center, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Victor Vitorino Lima
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Fernanda Regina Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological and Health Sciences, Federal University of Mato Grosso, Barra do Garças, Brazil
| |
Collapse
|
8
|
Li W, Li F, Zhang X, Lin HK, Xu C. Insights into the post-translational modification and its emerging role in shaping the tumor microenvironment. Signal Transduct Target Ther 2021; 6:422. [PMID: 34924561 PMCID: PMC8685280 DOI: 10.1038/s41392-021-00825-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 12/11/2022] Open
Abstract
More and more in-depth studies have revealed that the occurrence and development of tumors depend on gene mutation and tumor heterogeneity. The most important manifestation of tumor heterogeneity is the dynamic change of tumor microenvironment (TME) heterogeneity. This depends not only on the tumor cells themselves in the microenvironment where the infiltrating immune cells and matrix together forming an antitumor and/or pro-tumor network. TME has resulted in novel therapeutic interventions as a place beyond tumor beds. The malignant cancer cells, tumor infiltrate immune cells, angiogenic vascular cells, lymphatic endothelial cells, cancer-associated fibroblastic cells, and the released factors including intracellular metabolites, hormonal signals and inflammatory mediators all contribute actively to cancer progression. Protein post-translational modification (PTM) is often regarded as a degradative mechanism in protein destruction or turnover to maintain physiological homeostasis. Advances in quantitative transcriptomics, proteomics, and nuclease-based gene editing are now paving the global ways for exploring PTMs. In this review, we focus on recent developments in the PTM area and speculate on their importance as a critical functional readout for the regulation of TME. A wealth of information has been emerging to prove useful in the search for conventional therapies and the development of global therapeutic strategies.
Collapse
Affiliation(s)
- Wen Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
| | - Feifei Li
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China
- Guangxi Collaborative Innovation Center for Biomedicine (Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment), Guangxi Medical University, 530021, Nanning, Guangxi, China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), 400038, Chongqing, China
| | - Hui-Kuan Lin
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, 610042, Chengdu, P. R. China.
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Wake Forest University, Winston Salem, NC, 27101, USA.
| |
Collapse
|
9
|
Yin BK, Wang ZQ. Beyond HAT Adaptor: TRRAP Liaisons with Sp1-Mediated Transcription. Int J Mol Sci 2021; 22:12445. [PMID: 34830324 PMCID: PMC8625110 DOI: 10.3390/ijms222212445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/09/2021] [Accepted: 11/15/2021] [Indexed: 12/19/2022] Open
Abstract
The members of the phosphatidylinositol 3-kinase-related kinase (PIKK) family play vital roles in multiple biological processes, including DNA damage response, metabolism, cell growth, mRNA decay, and transcription. TRRAP, as the only member lacking the enzymatic activity in this family, is an adaptor protein for several histone acetyltransferase (HAT) complexes and a scaffold protein for multiple transcription factors. TRRAP has been demonstrated to regulate various cellular functions in cell cycle progression, cell stemness maintenance and differentiation, as well as neural homeostasis. TRRAP is known to be an important orchestrator of many molecular machineries in gene transcription by modulating the activity of some key transcription factors, including E2F1, c-Myc, p53, and recently, Sp1. This review summarizes the biological and biochemical studies on the action mode of TRRAP together with the transcription factors, focusing on how TRRAP-HAT mediates the transactivation of Sp1-governing biological processes, including neurodegeneration.
Collapse
Affiliation(s)
- Bo-Kun Yin
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
| | - Zhao-Qi Wang
- Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany;
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
10
|
Oliveri LM, Buzaleh AM, Gerez EN. An increase in O-GlcNAcylation of Sp1 down-regulates the gene expression of pi class glutathione S-transferase in diabetic mice. Biochem Biophys Rep 2021; 27:101049. [PMID: 34195388 PMCID: PMC8220555 DOI: 10.1016/j.bbrep.2021.101049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/28/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress is a key factor contributing to the development of diabetes complications. Glutathione S-transferases (GSTs) protect against products of oxidative stress by conjugating glutathione to electrophilic substrates, producing compounds that are generally less reactive and more soluble. The expression and activity of GSTs during diabetes have been extensively studied, but little is known about regulation mechanisms of Pi-class GST (GSTP). The aim of the present study was to evaluate how GSTP is regulated in a Streptozotocin (STZ)-induced murine diabetes model. GST activity and GSTP expression were determined in adult male mice diabetized with STZ. Specificity protein 1 (Sp1) expression and O-glycosylation, as well as the role of AP-1 members Jun and Fos in the regulation of GSTP expression, were also assessed. The results showed that GST total activity and GSTP mRNA and protein levels were decreased in the diabetic liver, and returned to normal values after insulin administration. The insulin-mimetic drug vanadate was also able to restore GST activity, but failed to recover GSTP mRNA/protein levels. In diabetic animals, O-glycosylated Sp1 levels were increased, whereas, in insulin-treated animals, glycosylation values were similar to those of controls. After vanadate administration, Sp1 expression levels and glycosylation were lower than those of controls. Our results suggest that hyperglycemia could lead to the observed increase in Sp1 O-glycosylation, which would, in turn, lead to a decrease in the expression of Sp1-dependent GSTP in the liver of diabetic mice.
Collapse
Affiliation(s)
- Leda María Oliveri
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Universidad de, Buenos Aires, Argentina
| | - Ana María Buzaleh
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Universidad de, Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de, Buenos Aires, Argentina
| | - Esther Noemí Gerez
- Centro de Investigaciones Sobre Porfirinas y Porfirias (CIPYP), UBA-CONICET, Hospital de Clínicas José de San Martín, Universidad de, Buenos Aires, Argentina
- Cátedra Bioquímica General Celular y Molecular, Facultad de Ciencias Médicas, Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| |
Collapse
|
11
|
Sheikh MA, Emerald BS, Ansari SA. Stem cell fate determination through protein O-GlcNAcylation. J Biol Chem 2021; 296:100035. [PMID: 33154167 PMCID: PMC7948975 DOI: 10.1074/jbc.rev120.014915] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Embryonic and adult stem cells possess the capability of self-renewal and lineage-specific differentiation. The intricate balance between self-renewal and differentiation is governed by developmental signals and cell-type-specific gene regulatory mechanisms. A perturbed intra/extracellular environment during lineage specification could affect stem cell fate decisions resulting in pathology. Growing evidence demonstrates that metabolic pathways govern epigenetic regulation of gene expression during stem cell fate commitment through the utilization of metabolic intermediates or end products of metabolic pathways as substrates for enzymatic histone/DNA modifications. UDP-GlcNAc is one such metabolite that acts as a substrate for enzymatic mono-glycosylation of various nuclear, cytosolic, and mitochondrial proteins on serine/threonine amino acid residues, a process termed protein O-GlcNAcylation. The levels of GlcNAc inside the cells depend on the nutrient availability, especially glucose. Thus, this metabolic sensor could modulate gene expression through O-GlcNAc modification of histones or other proteins in response to metabolic fluctuations. Herein, we review evidence demonstrating how stem cells couple metabolic inputs to gene regulatory pathways through O-GlcNAc-mediated epigenetic/transcriptional regulatory mechanisms to govern self-renewal and lineage-specific differentiation programs. This review will serve as a primer for researchers seeking to better understand how O-GlcNAc influences stemness and may catalyze the discovery of new stem-cell-based therapeutic approaches.
Collapse
Affiliation(s)
- Muhammad Abid Sheikh
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE.
| |
Collapse
|
12
|
Liu L, Li L, Ma C, Shi Y, Liu C, Xiao Z, Zhang Y, Tian F, Gao Y, Zhang J, Ying W, Wang PG, Zhang L. O-GlcNAcylation of Thr 12/Ser 56 in short-form O-GlcNAc transferase (sOGT) regulates its substrate selectivity. J Biol Chem 2019; 294:16620-16633. [PMID: 31527085 DOI: 10.1074/jbc.ra119.009085] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/11/2019] [Indexed: 02/05/2023] Open
Abstract
O-GlcNAcylation is a ubiquitous protein glycosylation playing different roles on variant proteins. O-GlcNAc transferase (OGT) is the unique enzyme responsible for the sugar addition to nucleocytoplasmic proteins. Recently, multiple O-GlcNAc sites have been observed on short-form OGT (sOGT) and nucleocytoplasmic OGT (ncOGT), both of which locate in the nucleus and cytoplasm in cell. Moreover, O-GlcNAcylation of Ser389 in ncOGT (1036 amino acids) affects its nuclear translocation in HeLa cells. To date, the major O-GlcNAcylation sites and their roles in sOGT remain unknown. Here, we performed LC-MS/MS and mutational analyses to seek the major O-GlcNAcylation site on sOGT. We identified six O-GlcNAc sites in the tetratricopeptide repeat domain in sOGT, with Thr12 and Ser56 being two "key" sites. Thr12 is a dominant O-GlcNAcylation site, whereas the modification of Ser56 plays a role in regulating sOGT O-GlcNAcylation, partly through Thr12 In vitro activity and pulldown assays demonstrated that O-GlcNAcylation does not affect sOGT activity but does affect sOGT-interacting proteins. In HEK293T cells, S56A bound to and hence glycosylated more proteins in contrast to T12A and WT sOGT. By proteomic and bioinformatics analyses, we found that T12A and S56A differed in substrate proteins (e.g. HNRNPU and PDCD6IP), which eventually affected cell cycle progression and/or cell proliferation. These findings demonstrate that O-GlcNAcylation modulates sOGT substrate selectivity and affects its role in the cell. The data also highlight the regulatory role of O-GlcNAcylation at Thr12 and Ser56.
Collapse
Affiliation(s)
- Li Liu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Ling Li
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Cheng Ma
- Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Yangde Shi
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Congcong Liu
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Zikang Xiao
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Yong Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China.,West China-Washington Mitochondria and Metabolism Research Center, Key Laboratory of Transplant Engineering and Immunology, MOH, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Fang Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Yang Gao
- School of medicine, Nankai University, Tianjin 300071, China
| | - Jie Zhang
- School of medicine, Nankai University, Tianjin 300071, China
| | - Wantao Ying
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing 102206, China
| | - Peng George Wang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.,Center for Diagnostics and Therapeutics, Department of Chemistry, Georgia State University, Atlanta, Georgia 30303
| | - Lianwen Zhang
- College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| |
Collapse
|
13
|
Khalid M, Khan S, Ahmad J, Shaheryar M. Identification of self-regulatory network motifs in reverse engineering gene regulatory networks using microarray gene expression data. IET Syst Biol 2019; 13:55-68. [PMID: 33444479 PMCID: PMC8687352 DOI: 10.1049/iet-syb.2018.5001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 11/01/2018] [Accepted: 12/10/2018] [Indexed: 11/19/2022] Open
Abstract
Gene Regulatory Networks (GRNs) are reconstructed from the microarray gene expression data through diversified computational approaches. This process ensues in symmetric and diagonal interaction of gene pairs that cannot be modelled as direct activation, inhibition, and self-regulatory interactions. The values of gene co-expressions could help in identifying co-regulations among them. The proposed approach aims at computing the differences in variances of co-expressed genes rather than computing differences in values of mean expressions across experimental conditions. It adopts multivariate co-variances using principal component analysis (PCA) to predict an asymmetric and non-diagonal gene interaction matrix, to select only those gene pair interactions that exhibit the maximum variances in gene regulatory expressions. The asymmetric gene regulatory interactions help in identifying the controlling regulatory agents, thus lowering the false positive rate by minimizing the connections between previously unlinked network components. The experimental results on real as well as in silico datasets including time-series RTX therapy, Arabidopsis thaliana, DREAM-3, and DREAM-8 datasets, in comparison with existing state-of-the-art approaches demonstrated the enhanced performance of the proposed approach for predicting positive and negative feedback loops and self-regulatory interactions. The generated GRNs hold the potential in determining the real nature of gene pair regulatory interactions.
Collapse
Affiliation(s)
- Mehrosh Khalid
- School of Electrical Engineering and Computer ScienceNational University of Sciences and TechnologyIslamabadPakistan
| | - Sharifullah Khan
- School of Electrical Engineering and Computer ScienceNational University of Sciences and TechnologyIslamabadPakistan
| | - Jamil Ahmad
- Research Centre for Modelling and SimulationNational University of Sciences and TechnologyIslamabadPakistan
| | - Muhammad Shaheryar
- Department of Computer ScienceCapital University of Science and TechnologyIslamabadPakistan
| |
Collapse
|
14
|
Dierschke SK, Miller WP, Favate JS, Shah P, Imamura Kawasawa Y, Salzberg AC, Kimball SR, Jefferson LS, Dennis MD. O-GlcNAcylation alters the selection of mRNAs for translation and promotes 4E-BP1-dependent mitochondrial dysfunction in the retina. J Biol Chem 2019; 294:5508-5520. [PMID: 30733333 PMCID: PMC6462503 DOI: 10.1074/jbc.ra119.007494] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/31/2019] [Indexed: 02/05/2023] Open
Abstract
Diabetes promotes the posttranslational modification of proteins by O-linked addition of GlcNAc (O-GlcNAcylation) to Ser/Thr residues of proteins and thereby contributes to diabetic complications. In the retina of diabetic mice, the repressor of mRNA translation, eIF4E-binding protein 1 (4E-BP1), is O-GlcNAcylated, and sequestration of the cap-binding protein eukaryotic translation initiation factor (eIF4E) is enhanced. O-GlcNAcylation has also been detected on several eukaryotic translation initiation factors and ribosomal proteins. However, the functional consequence of this modification is unknown. Here, using ribosome profiling, we evaluated the effect of enhanced O-GlcNAcylation on retinal gene expression. Mice receiving thiamet G (TMG), an inhibitor of the O-GlcNAc hydrolase O-GlcNAcase, exhibited enhanced retinal protein O-GlcNAcylation. The principal effect of TMG on retinal gene expression was observed in ribosome-associated mRNAs (i.e. mRNAs undergoing translation), as less than 1% of mRNAs exhibited changes in abundance. Remarkably, ∼19% of the transcriptome exhibited TMG-induced changes in ribosome occupancy, with 1912 mRNAs having reduced and 1683 mRNAs having increased translational rates. In the retina, the effect of O-GlcNAcase inhibition on translation of specific mitochondrial proteins, including superoxide dismutase 2 (SOD2), depended on 4E-BP1/2. O-GlcNAcylation enhanced cellular respiration and promoted mitochondrial superoxide levels in WT cells, and 4E-BP1/2 deletion prevented O-GlcNAcylation-induced mitochondrial superoxide in cells in culture and in the retina. The retina of diabetic WT mice exhibited increased reactive oxygen species levels, an effect not observed in diabetic 4E-BP1/2-deficient mice. These findings provide evidence for a mechanism whereby diabetes-induced O-GlcNAcylation promotes oxidative stress in the retina by altering the selection of mRNAs for translation.
Collapse
Affiliation(s)
- Sadie K Dierschke
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - William P Miller
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - John S Favate
- the Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Premal Shah
- the Department of Genetics, Rutgers University, Piscataway, New Jersey 08854
| | - Yuka Imamura Kawasawa
- the Department of Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033, and
| | - Anna C Salzberg
- the Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Scot R Kimball
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Leonard S Jefferson
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Michael D Dennis
- From the Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, Pennsylvania 17033,
| |
Collapse
|
15
|
Cao B, Duan M, Xing Y, Liu C, Yang F, Li Y, Yang T, Wei Y, Gao Q, Jiang J. O-GlcNAc transferase activates stem-like cell potential in hepatocarcinoma through O-GlcNAcylation of eukaryotic initiation factor 4E. J Cell Mol Med 2019; 23:2384-2398. [PMID: 30677218 PMCID: PMC6433694 DOI: 10.1111/jcmm.14043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 08/27/2018] [Accepted: 10/28/2018] [Indexed: 01/14/2023] Open
Abstract
O-GlcNAcylation catalysed by O-GlcNAc transferase (OGT) is a reversible post-translational modification. O-GlcNAcylation participates in transcription, epigenetic regulation, and intracellular signalling. Dysregulation of O-GlcNAcylation in response to high glucose or OGT expression has been implicated in metabolic diseases and cancer. However, the underlying mechanisms by which OGT regulates hepatoma development remain largely unknown. Here, we employed the lentiviral shRNA-based system to knockdown OGT to analyse the contribution of OGT in hepatoma cell proliferation and stem-like cell potential. The sphere-forming assay and western blot analysis of stem-related gene expression were used to evaluate stem-like cell potential of hepatoma cell. We found that the level of total O-GlcNAcylation or OGT protein was increased in hepatocellular carcinoma. OGT activated stem-like cell potential in hepatoma through eukaryotic initiation factor 4E (eIF4E) which bound to stem-related gene Sox2 5'-untranslated region. O-GlcNAcylation of eIF4E at threonine 168 and threonine 177 protected it from degradation through proteasome pathway. Expression of eIF4E in hepatoma was determined by immunostaining in 232 HCC patients, and Kaplan-Meier survival analysis was used to determine the correlation of eIF4E expression with prognosis. High glucose promoted stem-like cell potential of hepatoma cell through OGT-eIF4E axis. Collectively, our findings indicate that OGT promotes the stem-like cell potential of hepatoma cell through O-GlcNAcylation of eIF4E. These results provide a mechanism of HCC development and a cue between the pathogenesis of HCC and high glucose condition.
Collapse
Affiliation(s)
- Benjin Cao
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan, Shanghai, People's Republic of China
| | - Meng Duan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, People's Republic of China
| | - Yang Xing
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan, Shanghai, People's Republic of China
| | - Chanjuan Liu
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan, Shanghai, People's Republic of China
| | - Fan Yang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan, Shanghai, People's Republic of China
| | - Yinan Li
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan, Shanghai, People's Republic of China
| | - Tianxiao Yang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan, Shanghai, People's Republic of China
| | - Yuanyan Wei
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan, Shanghai, People's Republic of China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, People's Republic of China
| | - Jianhai Jiang
- Key Laboratory of Glycoconjuates Research, Ministry of Public Health, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan, Shanghai, People's Republic of China
| |
Collapse
|
16
|
Silencing of Transcription Factor Sp1 Promotes SN1 Transporter Regulation by Ammonia in Mouse Cortical Astrocytes. Int J Mol Sci 2019; 20:ijms20020234. [PMID: 30634395 PMCID: PMC6359076 DOI: 10.3390/ijms20020234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/27/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022] Open
Abstract
The involvement of the astrocytic SN1 (SNAT3) transporter in ammonia-induced l-glutamine retention was recently documented in mouse-cultured astrocytes. Here we investigated the involvement of specificity protein 1 (Sp1) transcription factor in SN1 regulation in ammonium chloride (“ammonia”)-treated astrocytes. Sp1 expression and its cellular localization were determined using real-time qPCR, Western blot, and confocal microscopy. Sp1 binding to Snat3 promoter was analyzed by chromatin immunoprecipitation. The role of Sp1 in SN1 expression and SN1-mediated [3H]glutamine uptake in ammonia-treated astrocytes was verified using siRNA and mithramycin A. The involvement of protein kinase C (PKC) isoforms in Sp1 level/phosphorylation status was verified using siRNA technology. Sp1 translocation to the nuclei and its enhanced binding to the Snat3 promoter, along with Sp1 dependence of system N-mediated [3H]glutamine uptake, were observed in astrocytes upon ammonia exposure. Ammonia decreased the level of phosphorylated Sp1, and the effect was reinforced by long-term incubation with PKC modulator, phorbol 12-myristate 13-acetate, which is a treatment likely to dephosphorylate Sp1. Furthermore, silencing of the PKCδ isoform appears to enhance the ammonia effect on the Sp1 level. Collectively, the results demonstrate the regulatory role of Sp1 in regulation of SN1 expression and activity in ammonia-treated astrocytes and implicate altered Sp1 phosphorylation status in this capacity.
Collapse
|
17
|
Lima VV, Dela Justina V, Dos Passos RR, Volpato GT, Souto PCS, San Martin S, Giachini FR. O-GlcNAc Modification During Pregnancy: Focus on Placental Environment. Front Physiol 2018; 9:1263. [PMID: 30298013 PMCID: PMC6160872 DOI: 10.3389/fphys.2018.01263] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022] Open
Abstract
Successful placentation is a key event for fetal development, which commences following embryo implantation into the uterine wall, eliciting decidualization, placentation, and remodeling of blood vessels to provide physiological exchange between embryo-fetus and mother. Several signaling pathways are recruited to modulate such important processes and specific proteins that regulate placental function are a target for the glycosylation with O-linked β-N-acetylglucosamine (O-GlcNAc), or O-GlcNAcylation. This is a reversible post-translational modification on nuclear and cytoplasmic proteins, mainly controlled by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA). O-GlcNAcylation has been implicated as a modulator of proteins, both in physiological and pathological conditions and, more recently, O-GlcNAc has also been shown to be an important modulator in placental tissue. In this mini-review, the interplay between O-GlcNAcylation of proteins and placental function will be addressed, discussing the possible implications of this post-translational modification through placental development and pregnancy.
Collapse
Affiliation(s)
- Victor Vitorino Lima
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil
| | | | | | - Gustavo Tadeu Volpato
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Paula Cristina S Souto
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Sebastian San Martin
- Biomedical Research Center, School of Medicine, Universidad de Valparaíso, Valparaíso, Chile
| | - Fernanda Regina Giachini
- Institute of Health and Biological Science, Federal University of Mato Grosso, Barra do Garças, Brazil.,Institute of Biological Science, Federal University of Goias, Goiânia, Brazil
| |
Collapse
|
18
|
The Nutrient-Sensing Hexosamine Biosynthetic Pathway as the Hub of Cancer Metabolic Rewiring. Cells 2018; 7:cells7060053. [PMID: 29865240 PMCID: PMC6025041 DOI: 10.3390/cells7060053] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022] Open
Abstract
Alterations in glucose and glutamine utilizing pathways and in fatty acid metabolism are currently considered the most significant and prevalent metabolic changes observed in almost all types of tumors. Glucose, glutamine and fatty acids are the substrates for the hexosamine biosynthetic pathway (HBP). This metabolic pathway generates the “sensing molecule” UDP-N-Acetylglucosamine (UDP-GlcNAc). UDP-GlcNAc is the substrate for the enzymes involved in protein N- and O-glycosylation, two important post-translational modifications (PTMs) identified in several proteins localized in the extracellular space, on the cell membrane and in the cytoplasm, nucleus and mitochondria. Since protein glycosylation controls several key aspects of cell physiology, aberrant protein glycosylation has been associated with different human diseases, including cancer. Here we review recent evidence indicating the tight association between the HBP flux and cell metabolism, with particular emphasis on the post-transcriptional and transcriptional mechanisms regulated by the HBP that may cause the metabolic rewiring observed in cancer. We describe the implications of both protein O- and N-glycosylation in cancer cell metabolism and bioenergetics; focusing our attention on the effect of these PTMs on nutrient transport and on the transcriptional regulation and function of cancer-specific metabolic pathways.
Collapse
|
19
|
Hoter A, Amiri M, Prince A, Amer H, Warda M, Naim HY. Differential Glycosylation and Modulation of Camel and Human HSP Isoforms in Response to Thermal and Hypoxic Stresses. Int J Mol Sci 2018; 19:ijms19020402. [PMID: 29385708 PMCID: PMC5855624 DOI: 10.3390/ijms19020402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/18/2018] [Accepted: 01/26/2018] [Indexed: 01/11/2023] Open
Abstract
Increased expression of heat shock proteins (HSPs) following heat stress or other stress conditions is a common physiological response in almost all living organisms. Modification of cytosolic proteins including HSPs by O-GlcNAc has been shown to enhance their capabilities for counteracting lethal levels of cellular stress. Since HSPs are key players in stress resistance and protein homeostasis, we aimed to analyze their forms at the cellular and molecular level using camel and human HSPs as models for efficient and moderate thermotolerant mammals, respectively. In this study, we cloned the cDNA encoding two inducible HSP members, HSPA6 and CRYAB from both camel (Camelus dromedarius) and human in a Myc-tagged mammalian expression vector. Expression of these chaperones in COS-1 cells revealed protein bands of approximately 25-kDa for both camel and human CRYAB and 70-kDa for camel HSPA6 and its human homologue. While localization and trafficking of the camel and human HSPs revealed similar cytosolic localization, we could demonstrate altered glycan structure between camel and human HSPA6. Interestingly, the glycoform of camel HSPA6 was rapidly formed and stabilized under normal and stress culture conditions whereas human HSPA6 reacted differently under similar thermal and hypoxic stress conditions. Our data suggest that efficient glycosylation of camel HSPA6 is among the mechanisms that provide camelids with a superior capability for alleviating stressful environmental circumstances.
Collapse
Affiliation(s)
- Abdullah Hoter
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Mahdi Amiri
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| | - Abdelbary Prince
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Hassan Amer
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Mohamad Warda
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
| |
Collapse
|
20
|
The Role of Stress-Induced O-GlcNAc Protein Modification in the Regulation of Membrane Transport. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:1308692. [PMID: 29456783 PMCID: PMC5804373 DOI: 10.1155/2017/1308692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/03/2017] [Indexed: 02/06/2023]
Abstract
O-linked N-acetylglucosamine (O-GlcNAc) is a posttranslational modification that is increasingly recognized as a signal transduction mechanism. Unlike other glycans, O-GlcNAc is a highly dynamic and reversible process that involves the addition and removal of a single N-acetylglucosamine molecule to Ser/Thr residues of proteins. UDP-GlcNAc—the direct substrate for O-GlcNAc modification—is controlled by the rate of cellular metabolism, and thus O-GlcNAc is dependent on substrate availability. Serving as a feedback mechanism, O-GlcNAc influences the regulation of insulin signaling and glucose transport. Besides nutrient sensing, O-GlcNAc was also implicated in the regulation of various physiological and pathophysiological processes. Due to improvements of mass spectrometry techniques, more than one thousand proteins were detected to carry the O-GlcNAc moiety; many of them are known to participate in the regulation of metabolites, ions, or protein transport across biological membranes. Recent studies also indicated that O-GlcNAc is involved in stress adaptation; overwhelming evidences suggest that O-GlcNAc levels increase upon stress. O-GlcNAc elevation is generally considered to be beneficial during stress, although the exact nature of its protective effect is not understood. In this review, we summarize the current data regarding the oxidative stress-related changes of O-GlcNAc levels and discuss the implications related to membrane trafficking.
Collapse
|
21
|
Tarbet HJ, Toleman CA, Boyce M. A Sweet Embrace: Control of Protein-Protein Interactions by O-Linked β-N-Acetylglucosamine. Biochemistry 2017; 57:13-21. [PMID: 29099585 DOI: 10.1021/acs.biochem.7b00871] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
O-Linked β-N-acetylglucosamine (O-GlcNAc) is a critical post-translational modification (PTM) of thousands of intracellular proteins. Reversible O-GlcNAcylation governs many aspects of cell physiology and is dysregulated in numerous human diseases. Despite this broad pathophysiological significance, major aspects of O-GlcNAc signaling remain poorly understood, including the biochemical mechanisms through which O-GlcNAc transduces information. Recent work from many laboratories, including our own, has revealed that O-GlcNAc, like other intracellular PTMs, can control its substrates' functions by inhibiting or inducing protein-protein interactions. This dynamic regulation of multiprotein complexes exerts diverse downstream signaling effects in a range of processes, cell types, and organisms. Here, we review the literature about O-GlcNAc-regulated protein-protein interactions and suggest important questions for future studies in the field.
Collapse
Affiliation(s)
- Heather J Tarbet
- Department of Biochemistry, Duke University School of Medicine , Durham, North Carolina 27710, United States
| | - Clifford A Toleman
- Department of Biochemistry, Duke University School of Medicine , Durham, North Carolina 27710, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine , Durham, North Carolina 27710, United States
| |
Collapse
|
22
|
Akan I, Olivier-Van Stichelen S, Bond MR, Hanover JA. Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration. J Neurochem 2017; 144:7-34. [PMID: 29049853 DOI: 10.1111/jnc.14242] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022]
Abstract
Proteostasis is essential in the mammalian brain where post-mitotic cells must function for decades to maintain synaptic contacts and memory. The brain is dependent on glucose and other metabolites for proper function and is spared from metabolic deficits even during starvation. In this review, we outline how the nutrient-sensitive nucleocytoplasmic post-translational modification O-linked N-acetylglucosamine (O-GlcNAc) regulates protein homeostasis. The O-GlcNAc modification is highly abundant in the mammalian brain and has been linked to proteopathies, including neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. C. elegans, Drosophila, and mouse models harboring O-GlcNAc transferase- and O-GlcNAcase-knockout alleles have helped define the role O-GlcNAc plays in development as well as age-associated neurodegenerative disease. These enzymes add and remove the single monosaccharide from protein serine and threonine residues, respectively. Blocking O-GlcNAc cycling is detrimental to mammalian brain development and interferes with neurogenesis, neural migration, and proteostasis. Findings in C. elegans and Drosophila model systems indicate that the dynamic turnover of O-GlcNAc is critical for maintaining levels of key transcriptional regulators responsible for neurodevelopment cell fate decisions. In addition, pathways of autophagy and proteasomal degradation depend on a transcriptional network that is also reliant on O-GlcNAc cycling. Like the quality control system in the endoplasmic reticulum which uses a 'mannose timer' to monitor protein folding, we propose that cytoplasmic proteostasis relies on an 'O-GlcNAc timer' to help regulate the lifetime and fate of nuclear and cytoplasmic proteins. O-GlcNAc-dependent developmental alterations impact metabolism and growth of the developing mouse embryo and persist into adulthood. Brain-selective knockout mouse models will be an important tool for understanding the role of O-GlcNAc in the physiology of the brain and its susceptibility to neurodegenerative injury.
Collapse
Affiliation(s)
- Ilhan Akan
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Michelle R Bond
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
23
|
Roth S, Khalaila I. The effect of O -GlcNAcylation on hnRNP A1 translocation and interaction with transportin1. Exp Cell Res 2017; 350:210-217. [DOI: 10.1016/j.yexcr.2016.11.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 11/16/2016] [Accepted: 11/28/2016] [Indexed: 01/03/2023]
|
24
|
Lee A, Miller D, Henry R, Paruchuri VDP, O'Meally RN, Boronina T, Cole RN, Zachara NE. Combined Antibody/Lectin Enrichment Identifies Extensive Changes in the O-GlcNAc Sub-proteome upon Oxidative Stress. J Proteome Res 2016; 15:4318-4336. [PMID: 27669760 DOI: 10.1021/acs.jproteome.6b00369] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
O-Linked N-acetyl-β-d-glucosamine (O-GlcNAc) is a dynamic post-translational modification that modifies and regulates over 3000 nuclear, cytoplasmic, and mitochondrial proteins. Upon exposure to stress and injury, cells and tissues increase the O-GlcNAc modification, or O-GlcNAcylation, of numerous proteins promoting the cellular stress response and thus survival. The aim of this study was to identify proteins that are differentially O-GlcNAcylated upon acute oxidative stress (H2O2) to provide insight into the mechanisms by which O-GlcNAc promotes survival. We achieved this goal by employing Stable Isotope Labeling of Amino Acids in Cell Culture (SILAC) and a novel "G5-lectibody" immunoprecipitation strategy that combines four O-GlcNAc-specific antibodies (CTD110.6, RL2, HGAC39, and HGAC85) and the lectin WGA. Using the G5-lectibody column in combination with basic reversed phase chromatography and C18 RPLC-MS/MS, 990 proteins were identified and quantified. Hundreds of proteins that were identified demonstrated increased (>250) or decreased (>110) association with the G5-lectibody column upon oxidative stress, of which we validated the O-GlcNAcylation status of 24 proteins. Analysis of proteins with altered glycosylation suggests that stress-induced changes in O-GlcNAcylation cluster into pathways known to regulate the cell's response to injury and include protein folding, transcriptional regulation, epigenetics, and proteins involved in RNA biogenesis. Together, these data suggest that stress-induced O-GlcNAcylation regulates numerous and diverse cellular pathways to promote cell and tissue survival.
Collapse
Affiliation(s)
- Albert Lee
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Devin Miller
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Roger Henry
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Venkata D P Paruchuri
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N O'Meally
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Tatiana Boronina
- Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Robert N Cole
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States.,Mass Spectrometry and Proteomics Facility, The Johns Hopkins University School of Medicine , 733 North Broadway Street, Baltimore, Maryland 21205-2185, United States
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| |
Collapse
|
25
|
Seo HG, Kim HB, Kang MJ, Ryum JH, Yi EC, Cho JW. Identification of the nuclear localisation signal of O-GlcNAc transferase and its nuclear import regulation. Sci Rep 2016; 6:34614. [PMID: 27713473 PMCID: PMC5054401 DOI: 10.1038/srep34614] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 08/22/2016] [Indexed: 01/22/2023] Open
Abstract
Nucleocytoplasmic O-GlcNAc transferase (OGT) attaches a single GlcNAc to hydroxyl groups of serine and threonine residues. Although the cellular localisation of OGT is important to regulate a variety of cellular processes, the molecular mechanisms regulating the nuclear localisation of OGT is unclear. Here, we characterised three amino acids (DFP; residues 451-453) as the nuclear localisation signal of OGT and demonstrated that this motif mediated the nuclear import of non-diffusible β-galactosidase. OGT bound the importin α5 protein, and this association was abolished when the DFP motif of OGT was mutated or deleted. We also revealed that O-GlcNAcylation of Ser389, which resides in the tetratricopeptide repeats, plays an important role in the nuclear localisation of OGT. Our findings may explain how OGT, which possesses a NLS, exists in the nucleus and cytosol simultaneously.
Collapse
Affiliation(s)
- Hyeon Gyu Seo
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Han Byeol Kim
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Min Jueng Kang
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 03080, Republic of Korea
| | - Joo Hwan Ryum
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Eugene C Yi
- Department of Molecular Medicine and Biopharmaceutical Sciences, School of Convergence Science and Technology and College of Medicine or College of Pharmacy, Seoul National University, 28 Yeongeon-dong, Jongno-gu, Seoul 03080, Republic of Korea
| | - Jin Won Cho
- Department of Integrated OMICS for Biomedical Science, Graduate School, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
26
|
|
27
|
Ha C, Lim K. O-GlcNAc modification of Sp3 and Sp4 transcription factors negatively regulates their transcriptional activities. Biochem Biophys Res Commun 2015; 467:341-7. [PMID: 26431879 DOI: 10.1016/j.bbrc.2015.09.155] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/14/2022]
Abstract
The addition of O-linked N-acetylglucosamine (O-GlcNAc) on serine or threonine modifies a myriad of proteins and regulates their function, stability and localization. O-GlcNAc modification is common among chromosome-associated proteins, such as transcription factors, suggesting its extensive involvement in gene expression regulation. In this study, we demonstrate the O-GlcNAc status of the Sp family members of transcription factors and the functional impact on their transcriptional activities. We highlight the presence of O-GlcNAc residues in Sp3 and Sp4, but not Sp2, as demonstrated by their enrichment in GlcNAc positive protein fractions and by detection of O-GlcNAc residues on Sp3 and Sp4 co-expressed in Escherichia coli together with O-GlcNAc transferase (OGT) using an O-GlcNAc-specific antibody. Deletion mutants of Sp3 and Sp4 indicate that the majority of O-GlcNAc sites reside in their N-terminal transactivation domain. Overall, using reporter gene assays and co-immunoprecipitations, we demonstrate a functional inhibitory role of O-GlcNAc modifications in Sp3 and Sp4 transcription factors. Thereby, our study strengthens the current notion that O-GlcNAc modification is an important regulator of protein interactome.
Collapse
Affiliation(s)
- Changhoon Ha
- ASAN Institute for Life Science, ASAN Medical Center, Seoul, Republic of Korea
| | - Kihong Lim
- Center for Vaccine Biology and Immunology, University of Rochester Medical Center, NY 14642, USA.
| |
Collapse
|
28
|
Bhuiyan T, Waridel P, Kapuria V, Zoete V, Herr W. Distinct OGT-Binding Sites Promote HCF-1 Cleavage. PLoS One 2015; 10:e0136636. [PMID: 26305326 PMCID: PMC4549301 DOI: 10.1371/journal.pone.0136636] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/06/2015] [Indexed: 01/17/2023] Open
Abstract
Human HCF-1 (also referred to as HCFC-1) is a transcriptional co-regulator that undergoes a complex maturation process involving extensive O-GlcNAcylation and site-specific proteolysis. HCF-1 proteolysis results in two active, noncovalently associated HCF-1N and HCF-1C subunits that regulate distinct phases of the cell-division cycle. HCF-1 O-GlcNAcylation and site-specific proteolysis are both catalyzed by O-GlcNAc transferase (OGT), which thus displays an unusual dual enzymatic activity. OGT cleaves HCF-1 at six highly conserved 26 amino acid repeat sequences called HCF-1PRO repeats. Here we characterize the substrate requirements for OGT cleavage of HCF-1. We show that the HCF-1PRO-repeat cleavage signal possesses particular OGT-binding properties. The glutamate residue at the cleavage site that is intimately involved in the cleavage reaction specifically inhibits association with OGT and its bound cofactor UDP-GlcNAc. Further, we identify a novel OGT-binding sequence nearby the first HCF-1PRO-repeat cleavage signal that enhances cleavage. These results demonstrate that distinct OGT-binding sites in HCF-1 promote proteolysis, and provide novel insights into the mechanism of this unusual protease activity.
Collapse
Affiliation(s)
- Tanja Bhuiyan
- Center for Integrative Genomics, University of Lausanne, Génopode, Lausanne, Switzerland
| | - Patrice Waridel
- Protein Analysis Facility, Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Génopode, Lausanne, Switzerland
| | - Vaibhav Kapuria
- Center for Integrative Genomics, University of Lausanne, Génopode, Lausanne, Switzerland
| | - Vincent Zoete
- Molecular Modeling Group, Swiss Institute of Bioinformatics, Génopode, Lausanne, Switzerland
| | - Winship Herr
- Center for Integrative Genomics, University of Lausanne, Génopode, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
29
|
Zhu Y, Liu TW, Cecioni S, Eskandari R, Zandberg WF, Vocadlo DJ. O-GlcNAc occurs cotranslationally to stabilize nascent polypeptide chains. Nat Chem Biol 2015; 11:319-25. [PMID: 25774941 DOI: 10.1038/nchembio.1774] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/13/2015] [Indexed: 12/20/2022]
Abstract
Nucleocytoplasmic glycosylation of proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) is recognized as a conserved post-translational modification found in all metazoans. O-GlcNAc has been proposed to regulate diverse cellular processes. Impaired cellular O-GlcNAcylation has been found to lead to decreases in the levels of various proteins, which is one mechanism by which O-GlcNAc seems to exert its varied physiological effects. Here we show that O-GlcNAcylation also occurs cotranslationally. This process protects nascent polypeptide chains from premature degradation by decreasing cotranslational ubiquitylation. Given that hundreds of proteins are O-GlcNAcylated within cells, our findings suggest that cotranslational O-GlcNAcylation may be a phenomenon regulating proteostasis of an array of nucleocytoplasmic proteins. These findings set the stage to assess whether O-GlcNAcylation has a role in protein quality control in a manner that bears similarity with the role played by N-glycosylation within the secretory pathway.
Collapse
Affiliation(s)
- Yanping Zhu
- 1] Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. [2] Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Ta-Wei Liu
- 1] Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. [2] Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Samy Cecioni
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Razieh Eskandari
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Wesley F Zandberg
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - David J Vocadlo
- 1] Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada. [2] Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
30
|
Specificity protein 1 regulates gene expression related to fatty acid metabolism in goat mammary epithelial cells. Int J Mol Sci 2015; 16:1806-20. [PMID: 25594872 PMCID: PMC4307335 DOI: 10.3390/ijms16011806] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 01/06/2015] [Indexed: 12/28/2022] Open
Abstract
Specificity protein 1 (SP1) is a ubiquitous transcription factor that plays an important role in controlling gene expression. Although important in mediating the function of various hormones, the role of SP1 in regulating milk fat formation remains unknown. To investigate the sequence and expression information, as well as its role in modulating lipid metabolism, we cloned SP1 gene from mammary gland of Xinong Saanen dairy goat. The full-length cDNA of the SP1 gene is 4376 bp including 103 bp of 5'UTR, 2358 bp of ORF (HM_236311) and 1915 bp of 3'UTR, which is predicted to encode a 786 amino acids polypeptide. Phylogenetic tree analysis showed that goat SP1 has the closest relationship with sheep, followed by bovines (bos taurus, odobenus and ceratotherium), pig, primates (pongo, gorilla, macaca and papio) and murine (rattus and mus), while the furthest relationship was with canis and otolemur. Expression was predominant in the lungs, small intestine, muscle, spleen, mammary gland and subcutaneous fat. There were no significant expression level differences between the mammary gland tissues collected at lactation and dry-off period. Overexpression of SP1 in goat mammary epithelial cells (GMECs) led to higher mRNA expression level of peroxisome proliferator-activated receptor-γ (PPARγ) and lower liver X receptor α (LXRα) mRNA level, both of which were crucial in regulating fatty acid metabolism, and correspondingly altered the expression of their downstream genes in GMECs. These results were further enhanced by the silencing of SP1. These findings suggest that SP1 may play an important role in fatty acid metabolism.
Collapse
|
31
|
Beishline K, Azizkhan-Clifford J. Sp1 and the 'hallmarks of cancer'. FEBS J 2015; 282:224-58. [PMID: 25393971 DOI: 10.1111/febs.13148] [Citation(s) in RCA: 396] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 09/26/2014] [Accepted: 11/10/2014] [Indexed: 12/19/2022]
Abstract
For many years, transcription factor Sp1 was viewed as a basal transcription factor and relegated to a role in the regulation of so-called housekeeping genes. Identification of Sp1's role in recruiting the general transcription machinery in the absence of a TATA box increased its importance in gene regulation, particularly in light of recent estimates that the majority of mammalian genes lack a TATA box. In this review, we briefly consider the history of Sp1, the founding member of the Sp family of transcription factors. We review the evidence suggesting that Sp1 is highly regulated by post-translational modifications that positively and negatively affect the activity of Sp1 on a wide array of genes. Sp1 is over-expressed in many cancers and is associated with poor prognosis. Targeting Sp1 in cancer treatment has been suggested; however, our review of the literature on the role of Sp1 in the regulation of genes that contribute to the 'hallmarks of cancer' illustrates the extreme complexity of Sp1 functions. Sp1 both activates and suppresses the expression of a number of essential oncogenes and tumor suppressors, as well as genes involved in essential cellular functions, including proliferation, differentiation, the DNA damage response, apoptosis, senescence and angiogenesis. Sp1 is also implicated in inflammation and genomic instability, as well as epigenetic silencing. Given the apparently opposing effects of Sp1, a more complete understanding of the function of Sp1 in cancer is required to validate its potential as a therapeutic target.
Collapse
Affiliation(s)
- Kate Beishline
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
32
|
Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. Proc Natl Acad Sci U S A 2014; 112:291-6. [PMID: 25535363 DOI: 10.1073/pnas.1419050112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The formation of glycoconjugates depends on nucleotide sugars, which serve as donor substrates for glycosyltransferases in the lumen of Golgi vesicles and the endoplasmic reticulum (ER). Import of nucleotide sugars from the cytosol is an important prerequisite for these reactions and is mediated by nucleotide sugar transporters. Here, we report the identification of REPRESSOR OF CYTOKININ DEFICIENCY 1 (ROCK1, At5g65000) as an ER-localized facilitator of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylgalactosamine (UDP-GalNAc) transport in Arabidopsis thaliana. Mutant alleles of ROCK1 suppress phenotypes inferred by a reduced concentration of the plant hormone cytokinin. This suppression is caused by the loss of activity of cytokinin-degrading enzymes, cytokinin oxidases/dehydrogenases (CKXs). Cytokinin plays an essential role in regulating shoot apical meristem (SAM) activity and shoot architecture. We show that rock1 enhances SAM activity and organ formation rate, demonstrating an important role of ROCK1 in regulating the cytokinin signal in the meristematic cells through modulating activity of CKX proteins. Intriguingly, genetic and molecular analysis indicated that N-glycosylation of CKX1 was not affected by the lack of ROCK1-mediated supply of UDP-GlcNAc. In contrast, we show that CKX1 stability is regulated in a proteasome-dependent manner and that ROCK1 regulates the CKX1 level. The increased unfolded protein response in rock1 plants and suppression of phenotypes caused by the defective brassinosteroid receptor bri1-9 strongly suggest that the ROCK1 activity is an important part of the ER quality control system, which determines the fate of aberrant proteins in the secretory pathway.
Collapse
|
33
|
Donovan K, Alekseev O, Qi X, Cho W, Azizkhan-Clifford J. O-GlcNAc modification of transcription factor Sp1 mediates hyperglycemia-induced VEGF-A upregulation in retinal cells. Invest Ophthalmol Vis Sci 2014; 55:7862-73. [PMID: 25352121 DOI: 10.1167/iovs.14-14048] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
PURPOSE Proangiogenic protein VEGF-A contributes significantly to retinal lesions and neovascularization in diabetic retinopathy (DR). In preclinical DR, hyperglycemia can upregulate VEGF-A in retinal cells. The VEGF-A promoter is responsive to the transcription factor specificity protein 1 (Sp1). The O-GlcNAc modification is driven by glucose concentration and has a profound effect on Sp1 activity. This study investigated the effects of hyperglycemia on Sp1-mediated expression of VEGF-A in the retinal endothelium and pigment epithelium. METHODS Hyperglycemia-exposed ARPE-19 (human retinal pigment epithelial cells) and TR-iBRB (rat retinal microendothelial cells) were assayed for levels of VEGF-A by qRT-PCR, Western blot, and ELISA. Small molecule inhibitors of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA) were used to manipulate O-GlcNAc levels. Vascular endothelial growth factor-A protein and transcript were measured in cells depleted of OGT or Sp1 by shRNA. The proximal VEGF-A promoter was analyzed for glucose sensitivity by luciferase assay. Chromatin immunoprecipitation (ChIP) was used to assess Sp1 occupancy on the VEGF-A promoter. RESULTS Hyperglycemia increased VEGF-A promoter activity and upregulated VEGF-A transcript and protein. Elevation of O-GlcNAc by OGA inhibitors was sufficient to increase VEGF-A. O-GlcNAc transferase inhibition abrogated glucose-driven VEGF-A. Cellular depletion of OGT or Sp1 by shRNA significantly abrogated glucose-induced changes in VEGF-A. ChIP analysis showed that hyperglycemia significantly increased binding of Sp1 to the VEGF-A promoter. CONCLUSIONS Hyperglycemia-driven VEGF-A production is mediated by elevated O-GlcNAc modification of the Sp1 transcription factor. This mechanism may be significant in the pathogenesis of preclinical DR through VEGF-A upregulation.
Collapse
Affiliation(s)
- Kelly Donovan
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Oleg Alekseev
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Xin Qi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - William Cho
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| | - Jane Azizkhan-Clifford
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States
| |
Collapse
|
34
|
Sohn KC, Lee EJ, Shin JM, Lim EH, No Y, Lee JY, Yoon TY, Lee YH, Im M, Lee Y, Seo YJ, Lee JH, Kim CD. Regulation of keratinocyte differentiation by O-GlcNAcylation. J Dermatol Sci 2014; 75:10-5. [PMID: 24802710 DOI: 10.1016/j.jdermsci.2014.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 04/04/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND O-linked β-N-acetylglucosamine (O-GlcNAc) modification is one of the posttranslational modification, emerging as an important regulatory mechanism in various cellular events. OBJECTIVE We attempted to investigate whether O-GlcNAcylation is involved in keratinocyte differentiation. METHODS Immunohistochemistry and Western blot were performed to demonstrate O-GlcNAcylation in keratinocyte differentiation. RESULTS During calcium-induced keratinocyte differentiation, overall O-GlcNAcylation was decreased in a temporal manner. We focused our attention on transcription factor Sp-1, which is implicated in keratinocyte differentiation. Total Sp-1 level did not change during keratinocyte differentiation. However, O-GlcNAcylated Sp-1 was decreased in a keratinocyte differentiation-dependent manner. Interestingly, transcriptional activity of Sp-1, in terms of involucrin and loricrin promoter activities, was markedly increased by overexpression of O-GlcNAcase (OGA). In addition, membrane permeable non-O-GlcNAcylated Sp-1 did show transcriptional activity, while membrane permeable O-GlcNAcylated Sp-1 did not, suggesting O-GlcNAcylated Sp-1 is an inactive form in keratinocyte differentiation. CONCLUSION Our results reveal that O-GlcNAcylation is a dynamic regulatory mechanism for keratinocyte differentiation.
Collapse
Affiliation(s)
- Kyung-Cheol Sohn
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun Jin Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jung-Min Shin
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Eun-Hwa Lim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yoonoo No
- Department of Dermatology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Ji Yeoun Lee
- Department of Dermatology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Tae Young Yoon
- Department of Dermatology, School of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Ho Lee
- Department of Anatomy, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Myung Im
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Young-Joon Seo
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeung-Hoon Lee
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Chang Deok Kim
- Department of Dermatology and Research Institute for Medical Sciences, School of Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
35
|
Abstract
Diabetic complications are the major causes of morbidity and mortality in patients with diabetes. Microvascular complications include retinopathy, nephropathy and neuropathy, which are leading causes of blindness, end‐stage renal disease and various painful neuropathies; whereas macrovascular complications involve atherosclerosis related diseases, such as coronary artery disease, peripheral vascular disease and stroke. Diabetic complications are the result of interactions among systemic metabolic changes, such as hyperglycemia, local tissue responses to toxic metabolites from glucose metabolism, and genetic and epigenetic modulators. Chronic hyperglycemia is recognized as a major initiator of diabetic complications. Multiple molecular mechanisms have been proposed to mediate hyperglycemia’s adverse effects on vascular tissues. These include increased polyol pathway, activation of the diacylglycerol/protein kinase C pathway, increased oxidative stress, overproduction and action of advanced glycation end products, and increased hexosamine pathway. In addition, the alterations of signal transduction pathways induced by hyperglycemia or toxic metabolites can also lead to cellular dysfunctions and damage vascular tissues by altering gene expression and protein function. Less studied than the toxic mechanisms, hyperglycemia might also inhibit the endogenous vascular protective factors such as insulin, vascular endothelial growth factor, platelet‐derived growth factor and activated protein C, which play important roles in maintaining vascular homeostasis. Thus, effective therapies for diabetic complications need to inhibit mechanisms induced by hyperglycemia’s toxic effects and also enhance the endogenous protective factors. The present review summarizes these multiple biochemical pathways activated by hyperglycemia and the potential therapeutic interventions that might prevent diabetic complications. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2010.00018.x, 2010)
Collapse
Affiliation(s)
- Munehiro Kitada
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| | - Zhaoyun Zhang
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| | - Akira Mima
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| | - George L King
- Dianne Nunnally Hoppes Laboratory for Diabetes Complications, Joslin Diabetes Center, Boston, MA, USA
| |
Collapse
|
36
|
Hwang JS, Hwang SY, Han IO. Basal transcription is regulated by lipopolysaccharide and glucosamine via the regulation of DNA binding of RNA polymerase II in RAW264.7 cells. Life Sci 2014; 110:93-8. [PMID: 24968300 DOI: 10.1016/j.lfs.2014.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/21/2014] [Accepted: 06/10/2014] [Indexed: 11/30/2022]
Abstract
AIMS The objective of this study is to investigate glucosamine (GlcN) as a transcriptional regulator of iNOS and other genes in association with the dynamic O-GlcNAcylation of RNA polymerase II (RNAPII). MAIN METHODS The LPS- and/or GlcN-stimulated transcriptional activities of various Gal4-binding site/TATA-box-containing reporter constructs were measured. KEY FINDINGS Basal transcriptional activities of nuclear factor-κB (NF-κB) and nitric oxide synthase (iNOS) reporter plasmids are inhibited by GlcN in RAW264.7 cells. Furthermore, GlcN suppressed whereas lipopolysaccharide (LPS) stimulated the basal activity of Gal4-binding site/TATA-box-containing reporter constructs. LPS reduced the O-linked N-acetylglucosamine modification (O-GlcNAcylation) of RNAPII, but enhanced the binding of this enzyme to the iNOS promoter. In contrast, GlcN enhanced RNAPII O-GlcNAcylation, but inhibited iNOS promoter binding. Furthermore, the basal activities of reporter plasmids containing activator protein 1 (AP1), E2F, or cyclic AMP response element (CRE) binding sites were consistently inhibited by GlcN in a dose-dependent manner. However, GlcN did not inhibit the phorbol 12-myristate 13-acetate- (PMA-) or forskolin-induced transcriptional activities of AP1 and CRE. The transcriptional activity of transforming growth factor alpha (TGF-α) was slightly increased by both LPS and GlcN. SIGNIFICANCE In conclusion, our data demonstrate that LPS activates, whereas GlcN suppresses, basal activities of transcription through the regulation of RNAPII O-GlcNAcylation and DNA binding.
Collapse
Affiliation(s)
- Ji-Sun Hwang
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Republic of Korea
| | - So-Young Hwang
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Inn-Oc Han
- Department of Physiology and Biophysics, College of Medicine, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
37
|
Elevated O-LinkedN-Acetylglucosamine Correlated with Reduced Sp1 Cooperative DNA Binding with Its Collaborating Factorsin Vivo. Biosci Biotechnol Biochem 2014; 74:1668-72. [DOI: 10.1271/bbb.100289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
38
|
Abstract
More than half of all patients with diabetes develop neuropathic disorders affecting the distal sensory and/or motor nerves, or autonomic or cranial nerve functions. Glycemic control can decrease the incidence of neuropathy but is not adequate alone to prevent or treat the disease. This chapter introduces diabetic neuropathy with a morphological description of the disease then describes our current understanding of metabolic and molecular mechanisms that contribute to neurovascular dysfunctions. Key mechanisms include glucose and lipid imbalances and insulin resistance that are interconnected via oxidative stress, inflammation, and altered gene expression. These complex interactions should be considered for the development of new treatment strategies against the onset or progression of neuropathy. Advances in understanding the combined metabolic stressors and the novel study of epigenetics suggest new therapeutic targets to combat this morbid and intractable disease affecting millions of patients with type 1 or type 2 diabetes.
Collapse
|
39
|
Wollaston-Hayden EE, Harris RBS, Liu B, Bridger R, Xu Y, Wells L. Global O-GlcNAc Levels Modulate Transcription of the Adipocyte Secretome during Chronic Insulin Resistance. Front Endocrinol (Lausanne) 2014; 5:223. [PMID: 25657638 PMCID: PMC4302944 DOI: 10.3389/fendo.2014.00223] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 12/05/2014] [Indexed: 01/06/2023] Open
Abstract
Increased flux through the hexosamine biosynthetic pathway and the corresponding increase in intracellular glycosylation of proteins via O-linked β-N-acetylglucosamine (O-GlcNAc) is sufficient to induce insulin resistance (IR) in multiple systems. Previously, our group used shotgun proteomics to identify multiple rodent adipocytokines and secreted proteins whose levels are modulated upon the induction of IR by indirectly and directly modulating O-GlcNAc levels. We have validated the relative levels of several of these factors using immunoblotting. Since adipocytokines levels are regulated primarily at the level of transcription and O-GlcNAc alters the function of many transcription factors, we hypothesized that elevated O-GlcNAc levels on key transcription factors are modulating secreted protein expression. Here, we show that upon the elevation of O-GlcNAc levels and the induction of IR in mature 3T3-F442a adipocytes, the transcript levels of multiple secreted proteins reflect the modulation observed at the protein level. We validate the transcript levels in male mouse models of diabetes. Using inguinal fat pads from the severely IR db/db mouse model and the mildly IR diet-induced mouse model, we have confirmed that the secreted proteins regulated by O-GlcNAc modulation in cell culture are likewise modulated in the whole animal upon a shift to IR. By comparing the promoters of similarly regulated genes, we determine that Sp1 is a common cis-acting element. Furthermore, we show that the LPL and SPARC promoters are enriched for Sp1 and O-GlcNAc modified proteins during insulin resistance in adipocytes. Thus, the O-GlcNAc modification of proteins bound to promoters, including Sp1, is linked to adipocytokine transcription during insulin resistance.
Collapse
Affiliation(s)
- Edith E. Wollaston-Hayden
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Ruth B. S. Harris
- Department of Physiology, Georgia Health Sciences University, Augusta, GA, USA
| | - Bingqiang Liu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Robert Bridger
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Ying Xu
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- *Correspondence: Lance Wells, Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA e-mail:
| |
Collapse
|
40
|
Johnson B, Opimba M, Bernier J. Implications of the O-GlcNAc modification in the regulation of nuclear apoptosis in T cells. Biochim Biophys Acta Gen Subj 2013; 1840:191-8. [PMID: 24035784 DOI: 10.1016/j.bbagen.2013.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 08/12/2013] [Accepted: 09/06/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND O-linked β-N-acetylglucosamine (O-GlcNAc) is a nutrient-/stress-sensitive post-translational modification that affects nucleocytoplasmic proteins. The enzyme O-N-acetylglucosamine transferase (OGT) catalyzes the addition of O-GlcNAc, whereas O-N-acetylglucosaminidase (OGA) removes it. O-GlcNAcylation plays a role in fundamental regulatory mechanisms through the modification of proteins involved in cell division, metabolism, transcription, cell signaling and apoptosis. The effects of O-GlcNAcylation on apoptosis appear to be cell-dependent, as elevated levels played a protective role in primary neonatal rat ventricular myocytes but had a cytotoxic effect in rat pancreatic β-cells. The aim of the current study was to determine the implications of the O-GlcNAc modification on T cell apoptosis. METHODS Human T lymphoblastic HPB-ALL cells were treated with the OGA inhibitor O-(2-acetamido-2-deoxy-d-glucopyranosylidene) amino-N-phenylcarbamate (PUGNAc), or with glucosamine (GlcN), to increase O-GlcNAcylation. Apoptosis was induced in the presence of tributyltin (TBT). DNA fragmentation was observed by cell cycle analysis and corresponded to the sub G0/G1 population. O-GlcNAcylated proteins were detected by immunoblot using a specific antibody (ctd110.6) and were precipitated using succinylated wheat germ agglutinin (sWGA). RESULTS HPB-ALL cells treated with PUGNAc displayed a significant reduction in DNA fragmentation after TBT-induced apoptosis. DFF45, the protein that inhibits the endonuclease DFF40, was identified to be O-GlcNAc modified. O-GlcNAcylated DFF45 appeared to be more resistant to caspase cleavage during apoptosis. Our results suggest that a decrease in the O-GlcNAc modification on DFF45 occurs before its cleavage by caspase. GENERAL SIGNIFICANCE Our results indicate that the O-GlcNAcylation of DFF45 may represent a mechanism to control the accidental activation of DFF.
Collapse
Affiliation(s)
- Bruno Johnson
- INRS-Institut Armand-Frappier, 531 Boul. des Prairies, Laval, QC H7V1B7, Canada
| | | | | |
Collapse
|
41
|
Kanwal S, Fardini Y, Pagesy P, N’Tumba-Byn T, Pierre-Eugène C, Masson E, Hampe C, Issad T. O-GlcNAcylation-inducing treatments inhibit estrogen receptor α expression and confer resistance to 4-OH-tamoxifen in human breast cancer-derived MCF-7 cells. PLoS One 2013; 8:e69150. [PMID: 23935944 PMCID: PMC3730543 DOI: 10.1371/journal.pone.0069150] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 06/05/2013] [Indexed: 01/08/2023] Open
Abstract
O-GlcNAcylation (addition of N-acetyl-glucosamine on serine or threonine
residues) is a post-translational modification that regulates stability,
activity or localization of cytosolic and nuclear proteins. O-linked
N-acetylgluocosmaine transferase (OGT) uses UDP-GlcNAc, produced in the
hexosamine biosynthetic pathway to O-GlcNacylate proteins. Removal of O-GlcNAc
from proteins is catalyzed by the β-N-Acetylglucosaminidase (OGA). Recent
evidences suggest that O-GlcNAcylation may affect the growth of cancer cells.
However, the consequences of O-GlcNAcylation on anti-cancer therapy have not
been evaluated. In this work, we studied the effects of O-GlcNAcylation on
tamoxifen-induced cell death in the breast cancer-derived MCF-7 cells.
Treatments that increase O-GlcNAcylation (PUGNAc and/or glucosoamine) protected
MCF-7 cells from death induced by tamoxifen. In contrast, inhibition of OGT
expression by siRNA potentiated the effect of tamoxifen on cell death. Since the
PI-3 kinase/Akt pathway is a major regulator of cell survival, we used BRET to
evaluate the effect of PUGNAc+glucosamine on PIP3 production. We
observed that these treatments stimulated PIP3 production in MCF-7
cells. This effect was associated with an increase in Akt phosphorylation.
However, the PI-3 kinase inhibitor LY294002, which abolished the effect of
PUGNAc+glucosamine on Akt phosphorylation, did not impair the protective effects
of PUGNAc+glucosamine against tamoxifen-induced cell death. These results
suggest that the protective effects of O-GlcNAcylation are independent of the
PI-3 kinase/Akt pathway. As tamoxifen sensitivity depends on the estrogen
receptor (ERα) expression level, we evaluated the effect of PUGNAc+glucosamine
on the expression of this receptor. We observed that O-GlcNAcylation-inducing
treatment significantly reduced the expression of ERα mRNA and protein,
suggesting a potential mechanism for the decreased tamoxifen sensitivity induced
by these treatments. Therefore, our results suggest that inhibition of
O-GlcNAcylation may constitute an interesting approach to improve the
sensitivity of breast cancer to anti-estrogen therapy.
Collapse
Affiliation(s)
- Shahzina Kanwal
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Yann Fardini
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Patrick Pagesy
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Thierry N’Tumba-Byn
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Cécile Pierre-Eugène
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Elodie Masson
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Cornelia Hampe
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
| | - Tarik Issad
- Institut Cochin, Université Paris Descartes, CNRS (UMR8104), Paris,
France
- INSERM, U1016, Paris, France
- * E-mail:
| |
Collapse
|
42
|
Dennis MD, Shenberger JS, Stanley BA, Kimball SR, Jefferson LS. Hyperglycemia mediates a shift from cap-dependent to cap-independent translation via a 4E-BP1-dependent mechanism. Diabetes 2013; 62:2204-14. [PMID: 23434932 PMCID: PMC3712054 DOI: 10.2337/db12-1453] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes and its associated hyperglycemia induce multiple changes in liver function, yet we know little about the role played by translational control of gene expression in mediating the responses to these conditions. Here, we evaluate the hypothesis that hyperglycemia-induced O-GlcNAcylation of the translational regulatory protein 4E-BP1 alters hepatic gene expression through a process involving the selection of mRNA for translation. In both streptozotocin (STZ)-treated mice and cells in culture exposed to hyperglycemic conditions, expression of 4E-BP1 and its interaction with the mRNA cap-binding protein eIF4E were enhanced in conjunction with downregulation of cap-dependent and concomitant upregulation of cap-independent mRNA translation, as assessed by a bicistronic luciferase reporter assay. Phlorizin treatment of STZ-treated mice lowered blood glucose concentrations and reduced activity of the cap-independent reporter. Notably, the glucose-induced shift from cap-dependent to cap-independent mRNA translation did not occur in cells lacking 4E-BP1. The extensive nature of this shift in translational control of gene expression was revealed using pulsed stable isotope labeling by amino acids in cell culture to identify proteins that undergo altered rates of synthesis in response to hyperglycemia. Taken together, these data provide evidence for a novel mechanism whereby O-GlcNAcylation of 4E-BP1 mediates translational control of hepatic gene expression.
Collapse
Affiliation(s)
- Michael D. Dennis
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; the
| | - Jeffrey S. Shenberger
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; and the
| | - Bruce A. Stanley
- Department of Microbiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; the
- Corresponding author: Scot R. Kimball,
| | - Leonard S. Jefferson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania; the
| |
Collapse
|
43
|
Abstract
To maintain homeostasis under variable nutrient conditions, cells rapidly and robustly respond to fluctuations through adaptable signaling networks. Evidence suggests that the O-linked N-acetylglucosamine (O-GlcNAc) posttranslational modification of serine and threonine residues functions as a critical regulator of intracellular signaling cascades in response to nutrient changes. O-GlcNAc is a highly regulated, reversible modification poised to integrate metabolic signals and acts to influence many cellular processes, including cellular signaling, protein stability, and transcription. This review describes the role O-GlcNAc plays in governing both integrated cellular processes and the activity of individual proteins in response to nutrient levels. Moreover, we discuss the ways in which cellular changes in O-GlcNAc status may be linked to chronic diseases such as type 2 diabetes, neurodegeneration, and cancers, providing a unique window through which to identify and treat disease conditions.
Collapse
Affiliation(s)
- Michelle R. Bond
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| | - John A. Hanover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892; ,
| |
Collapse
|
44
|
Jochmann R, Pfannstiel J, Chudasama P, Kuhn E, Konrad A, Stürzl M. O-GlcNAc transferase inhibits KSHV propagation and modifies replication relevant viral proteins as detected by systematic O-GlcNAcylation analysis. Glycobiology 2013; 23:1114-30. [PMID: 23580777 DOI: 10.1093/glycob/cwt028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
O-GlcNAcylation is an inducible, highly dynamic and reversible post-translational modification, mediated by a unique enzyme named O-linked N-acetyl-d-glucosamine (O-GlcNAc) transferase (OGT). In response to nutrients, O-GlcNAc levels are differentially regulated on many cellular proteins involved in gene expression, translation, immune reactions, protein degradation, protein-protein interaction, apoptosis and signal transduction. In contrast to eukaryotic cells, little is known about the role of O-GlcNAcylation in the viral life cycle. Here, we show that the overexpression of the OGT reduces the replication efficiency of Kaposi's sarcoma-associated herpesvirus (KSHV) in a dose-dependent manner. In order to investigate the global impact of O-GlcNAcylation in the KSHV life cycle, we systematically analyzed the 85 annotated KSHV-encoded open reading frames for O-GlcNAc modification. For this purpose, an immunoprecipitation (IP) strategy with three different approaches was carried out and the O-GlcNAc signal of the identified proteins was properly controlled for specificity. Out of the 85 KSHV-encoded proteins, 18 proteins were found to be direct targets for O-GlcNAcylation. Selected proteins were further confirmed by mass spectrometry for O-GlcNAc modification. Correlation of the functional annotation and the O-GlcNAc status of KSHV proteins showed that the predominant targets were proteins involved in viral DNA synthesis and replication. These results indicate that O-GlcNAcylation plays a major role in the regulation of KSHV propagation.
Collapse
Affiliation(s)
- Ramona Jochmann
- Division of Molecular and Experimental Surgery, University Medical Center Erlangen, Friedrich-Alexander University of Erlangen-Nuremberg, Schwabachanlage 10, 91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
45
|
Penque BA, Hoggatt AM, Herring BP, Elmendorf JS. Hexosamine biosynthesis impairs insulin action via a cholesterolgenic response. Mol Endocrinol 2013; 27:536-47. [PMID: 23315940 DOI: 10.1210/me.2012-1213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Plasma membrane cholesterol accumulation has been implicated in cellular insulin resistance. Given the role of the hexosamine biosynthesis pathway (HBP) as a sensor of nutrient excess, coupled to its involvement in the development of insulin resistance, we delineated whether excess glucose flux through this pathway provokes a cholesterolgenic response induced by hyperinsulinemia. Exposing 3T3-L1 adipocytes to physiologically relevant doses of hyperinsulinemia (250pM-5000pM) induced a dose-dependent gain in the mRNA/protein levels of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGR). These elevations were associated with elevated plasma membrane cholesterol. Mechanistically, hyperinsulinemia increased glucose flux through the HBP and O-linked β-N-acetylglucosamine (O-GlcNAc) modification of specificity protein 1 (Sp1), known to activate cholesterolgenic gene products such as the sterol response element-binding protein (SREBP1) and HMGR. Chromatin immunoprecipitation demonstrated that increased O-GlcNAc modification of Sp1 resulted in a higher binding affinity of Sp1 to the promoter regions of SREBP1 and HMGR. Luciferase assays confirmed that HMGR promoter activity was elevated under these conditions and that inhibition of the HBP with 6-diazo-5-oxo-l-norleucine (DON) prevented hyperinsulinemia-induced activation of the HMGR promoter. In addition, both DON and the Sp1 DNA-binding inhibitor mithramycin prevented the hyperinsulinemia-induced increases in HMGR mRNA/protein and plasma membrane cholesterol. In these mithramycin-treated cells, both cortical filamentous actin structure and insulin-stimulated glucose transport were restored. Together, these data suggest a novel mechanism whereby increased HBP activity increases Sp1 transcriptional activation of a cholesterolgenic program, thereby elevating plasma membrane cholesterol and compromising cytoskeletal structure essential for insulin action.
Collapse
Affiliation(s)
- Brent A Penque
- Departments of Cellular and Integrative Physiology, Indiana UniversitySchool of Medicine, Indianapolis, IN 46202, USA
| | | | | | | |
Collapse
|
46
|
García-Huerta P, Díaz-Hernandez M, Delicado EG, Pimentel-Santillana M, Miras-Portugal MT, Gómez-Villafuertes R. The specificity protein factor Sp1 mediates transcriptional regulation of P2X7 receptors in the nervous system. J Biol Chem 2012; 287:44628-44. [PMID: 23139414 PMCID: PMC3531778 DOI: 10.1074/jbc.m112.390971] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
P2X7 receptors are involved not only in physiological functions but also in pathological brain processes. Although an increasing number of findings indicate that altered receptor expression has a causative role in neurodegenerative diseases and cancer, little is known about how expression of P2rx7 gene is controlled. Here we reported the first molecular and functional evidence that Specificity protein 1 (Sp1) transcription factor plays a pivotal role in the transcriptional regulation of P2X7 receptor. We delimited a minimal region in the murine P2rx7 promoter containing four SP1 sites, two of them being highly conserved in mammals. The functionality of these SP1 sites was confirmed by site-directed mutagenesis and Sp1 overexpression/down-regulation in neuroblastoma cells. Inhibition of Sp1-mediated transcriptional activation by mithramycin A reduced endogenous P2X7 receptor levels in primary cultures of cortical neurons and astrocytes. Using P2rx7-EGFP transgenic mice that express enhanced green fluorescent protein under the control of P2rx7 promoter, we found a high correlation between reporter expression and Sp1 levels in the brain, demonstrating that Sp1 is a key element in the transcriptional regulation of P2X7 receptor in the nervous system. Finally, we found that Sp1 mediates P2X7 receptor up-regulation in neuroblastoma cells cultured in the absence of serum, a condition that enhances chromatin accessibility and facilitates the exposure of SP1 binding sites.
Collapse
Affiliation(s)
- Paula García-Huerta
- Departamento de Bioquímica y Biología Molecular, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
47
|
Zhang F, Snead CM, Catravas JD. Hsp90 regulates O-linked β-N-acetylglucosamine transferase: a novel mechanism of modulation of protein O-linked β-N-acetylglucosamine modification in endothelial cells. Am J Physiol Cell Physiol 2012; 302:C1786-96. [PMID: 22496241 DOI: 10.1152/ajpcell.00004.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) modification of proteins is involved in many important cellular processes. Increased O-GlcNAc has been implicated in major diseases, such as diabetes and its complications and cardiovascular and neurodegenerative diseases. Recently, we reported that O-GlcNAc modification occurs in the proteasome and serves to inhibit proteasome function by blocking the ATPase activity in the 19S regulatory cap, explaining, at least in part, the adverse effects of O-GlcNAc modification and suggesting that downregulating O-GlcNAc might be important in the treatment of human diseases. In this study, we report on a novel mechanism to modulate cellular O-GlcNAc modification, namely through heat shock protein 90 (Hsp90) inhibition. We observed that O-linked β-N-acetylglucosamine transferase (OGT) interacts with the tetratricopeptide repeat binding site of Hsp90. Inhibition of Hsp90 by its specific inhibitors, radicicol or 17-N-allylamino-17-demethoxygeldanamycin, destabilized OGT in primary endothelial cell cultures and enhanced its degradation by the proteasome. Furthermore, Hsp90 inhibition downregulated O-GlcNAc protein modifications and attenuated the high glucose-induced increase in O-GlcNAc protein modification, including high glucose-induced increase in endothelial or type 3 isoform of nitric oxide synthase (eNOS) O-GlcNAcylation. These results suggest that Hsp90 is involved in the regulation of OGT and O-GlcNAc modification and that Hsp90 inhibitors might be used to modulate O-GlcNAc modification and reverse its adverse effects in human diseases.
Collapse
Affiliation(s)
- Fengxue Zhang
- Vascular Biology Center, Medical College of Georgia, Georgia Health Sciences University, Augusta, 30912-2500, USA.
| | | | | |
Collapse
|
48
|
Ko YC, Tsai WH, Wang PW, Wu IL, Lin SY, Chen YL, Chen JY, Lin SF. Suppressive regulation of KSHV RTA with O-GlcNAcylation. J Biomed Sci 2012; 19:12. [PMID: 22300411 PMCID: PMC3395832 DOI: 10.1186/1423-0127-19-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The replication and transcription activator (RTA) of Kaposi's sarcoma-associated herpesvirus (KSHV) is a molecular switch that initiates a productive replication of latent KSHV genomes. KSHV RTA (K-RTA) is composed of 691 amino acids with high Ser and Thr content (17.7%), but to what extent these Ser and Thr are modified in vivo has not been explored. METHODS By using tandem mass spectrometric analysis of affinity-purified FLAG tagged K-RTA, we sought to identify Ser and Thr residues that are post-translationally modified in K-RTA. RESULTS We found that K-RTA is an O-GlcNAcylated protein and Thr-366/Thr-367 is the primary motif with O-GlcNAcylation in vivo. The biological significance of O-GlcNAc modified Thr-366 and Thr-367 was assessed by site-specific amino acid substitution. Replacement of Thr with Ala at amino acid 366 or 367 caused a modest enhancement of K-RTA transactivation activity in a luciferase reporter assay and a cell model for KSHV reactivation. By using co-immunoprecipitation coupled with western blot analysis, we showed that the capacity of K-RTA in associating with endogenous PARP1 was significantly reduced in the Thr-366/Thr-367 O-GlcNAc mutants. PARP1 is a documented negative regulator of K-RTA that can be ascribed by the attachment of large negatively charged polymer onto K-RTA via PARP1's poly (ADP-ribose) polymerase activity. In agreement, shRNA-mediated depletion of O-GlcNAc transferase (OGT) in KSHV infected cells augmented viral reactivation and virus production that was accompanied by diminished K-RTA and PARP1 complexes. CONCLUSIONS KSHV latent-lytic switch K-RTA is modified by cellular O-GlcNAcylation, which imposes a negative effect on K-RTA transactivation activity. This inhibitory effect involves OGT and PARP1, two nutritional sensors recently emerging as chromatin modifiers. Thus, we speculate that the activity of K-RTA on its target genes is continuously checked and modulated by OGT and PARP1 in response to cellular metabolic state.
Collapse
Affiliation(s)
- Ying-Chieh Ko
- National Institute of Cancer Research, National Health Research Institutes, Miaoli County, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Liu PY, Hsieh TY, Liu ST, Chang YL, Lin WS, Wang WM, Huang SM. Zac1, an Sp1-like protein, regulates human p21WAF1/Cip1 gene expression in HeLa cells. Exp Cell Res 2011; 317:2925-37. [DOI: 10.1016/j.yexcr.2011.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 09/26/2011] [Accepted: 09/30/2011] [Indexed: 11/26/2022]
|
50
|
Waby JS, Bingle CD, Corfe BM. Post-translational control of sp-family transcription factors. Curr Genomics 2011; 9:301-11. [PMID: 19471608 PMCID: PMC2685645 DOI: 10.2174/138920208785133244] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/22/2022] Open
Abstract
Sp-family transcription factors are widely expressed in human tissues and involved in the regulation of many cellular processes and response to cellular microenvironment. These responses appear to be mediated by alterations in transcription factor affinity for DNA rather than altered protein level. How might such changes be effected? This review will identify the range of known post-translational modifications (PTMs) of Sp-factors and the sometimes conflicting literature about the roles of PTMs in regulating activity. We will speculate on the interaction between cell environment, chromatin microenvironment and the role of PTM in governing functionality of the proteins and the complexes to which they belong.
Collapse
Affiliation(s)
- J S Waby
- School of Medicine and Biomedical Sciences, University of Sheffield, Royal Hallamshire Hospital, Sheffield, S10 2JF, UK
| | | | | |
Collapse
|