1
|
Snyder LF, O’Brien EM, Zhao J, Liang J, Bruce BJ, Zhang Y, Zhu W, Cassier TJ, Schnicker NJ, Zhou X, Gordân R, He BZ. Divergence in a Eukaryotic Transcription Factor's co-TF Dependence Involves Multiple Intrinsically Disordered Regions Affecting Activation and Autoinhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.20.590343. [PMID: 39253425 PMCID: PMC11383300 DOI: 10.1101/2024.04.20.590343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Combinatorial control by multiple transcription factors (TFs) is a hallmark of eukaryotic gene regulation. Despite its prevalence and crucial roles in enhancing specificity and integrating information, the mechanisms behind why eukaryotic TFs depend on one another, and whether such interdependence evolves, are not well understood. We exploit natural variation in co-TF dependence in the yeast phosphate starvation (PHO) response to address this question. In the model yeast Saccharomyces cerevisiae, the main TF, Pho4, relies on the co-TF Pho2 to regulate ~28 genes. In a related yeast pathogen, Candida glabrata, its Pho4 exhibits significantly reduced Pho2 dependence and has an expanded target set of ~70 genes. Biochemical analyses showed C. glabrata Pho4 (CgPho4) binds to the same consensus motif with 3-4-fold higher affinity than ScPho4 does. A machine-learning-based prediction and yeast one-hybrid assay identified two Intrinsically Disordered Regions (IDRs) in CgPho4 that boost the activity of the main activation domain but showed little to no activity on their own. We also found evidence for autoinhibition behind the co-TF dependence in ScPho4. An IDR in ScPho4 next to its DNA binding domain was found to act as a double-edged sword: it both allows for enhanced activity with Pho2, and inhibits Pho4's activity without Pho2. This study provides a detailed molecular picture of how co-TF dependence is mediated and how its evolution, mainly driven by IDR divergence, can lead to significant rewiring of the regulatory network.
Collapse
Affiliation(s)
- Lindsey F. Snyder
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
| | | | - Jia Zhao
- Department of Biology, University of Iowa, Iowa City, IA
| | - Jinye Liang
- Department of Biology, University of Iowa, Iowa City, IA
| | - Baylee J. Bruce
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
| | - Yuning Zhang
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC
| | - Wei Zhu
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC
| | | | - Nicholas J. Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Xu Zhou
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Raluca Gordân
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC
- Department of Computer Science, Duke University, Durham, NC
- Department of Cell Biology, Duke University, Durham, NC
| | - Bin Z. He
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
- Department of Biology, University of Iowa, Iowa City, IA
| |
Collapse
|
2
|
Gruss MJ, O’Callaghan C, Donnellan M, Corsi AK. A Twist-Box domain of the C. elegans Twist homolog, HLH-8, plays a complex role in transcriptional regulation. Genetics 2023; 224:iyad066. [PMID: 37067863 PMCID: PMC10411555 DOI: 10.1093/genetics/iyad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
TWIST1 is a basic helix-loop-helix (bHLH) transcription factor in humans that functions in mesoderm differentiation. TWIST1 primarily regulates genes as a transcriptional repressor often through TWIST-Box domain-mediated protein-protein interactions. The TWIST-Box also can function as an activation domain requiring 3 conserved, equidistant amino acids (LXXXFXXXR). Autosomal dominant mutations in TWIST1, including 2 reported in these conserved amino acids (F187L and R191M), lead to craniofacial defects in Saethre-Chotzen syndrome (SCS). Caenorhabditis elegans has a single TWIST1 homolog, HLH-8, that functions in the differentiation of the muscles responsible for egg laying and defecation. Null alleles in hlh-8 lead to severely egg-laying defective and constipated animals due to defects in the corresponding muscles. TWIST1 and HLH-8 share sequence identity in their bHLH regions; however, the domain responsible for the transcriptional activity of HLH-8 is unknown. Sequence alignment suggests that HLH-8 has a TWIST-Box LXXXFXXXR motif; however, its function also is unknown. CRISPR/Cas9 genome editing was utilized to generate a domain deletion and several missense mutations, including those analogous to SCS patients, in the 3 conserved HLH-8 amino acids to investigate their functional role. The TWIST-Box alleles did not phenocopy hlh-8 null mutants. The strongest phenotype detected was a retentive (Ret) phenotype with late-stage embryos in the hermaphrodite uterus. Further, GFP reporters of HLH-8 downstream target genes (arg-1::gfp and egl-15::gfp) revealed tissue-specific, target-specific, and allele-specific defects. Overall, the TWIST-Box in HLH-8 is partially required for the protein's transcriptional activity, and the conserved amino acids contribute unequally to the domain's function.
Collapse
Affiliation(s)
- Michael J Gruss
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Colleen O’Callaghan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Molly Donnellan
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| | - Ann K Corsi
- Department of Biology, The Catholic University of America, 620 Michigan Ave., NE, Washington, D.C. 20064USA
| |
Collapse
|
3
|
Nucleosome Remodeling at the Yeast PHO8 and PHO84 Promoters without the Putatively Essential SWI/SNF Remodeler. Int J Mol Sci 2023; 24:ijms24054949. [PMID: 36902382 PMCID: PMC10003099 DOI: 10.3390/ijms24054949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
Chromatin remodeling by ATP-dependent remodeling enzymes is crucial for all genomic processes, like transcription or replication. Eukaryotes harbor many remodeler types, and it is unclear why a given chromatin transition requires more or less stringently one or several remodelers. As a classical example, removal of budding yeast PHO8 and PHO84 promoter nucleosomes upon physiological gene induction by phosphate starvation essentially requires the SWI/SNF remodeling complex. This dependency on SWI/SNF may indicate specificity in remodeler recruitment, in recognition of nucleosomes as remodeling substrate or in remodeling outcome. By in vivo chromatin analyses of wild type and mutant yeast under various PHO regulon induction conditions, we found that overexpression of the remodeler-recruiting transactivator Pho4 allowed removal of PHO8 promoter nucleosomes without SWI/SNF. For PHO84 promoter nucleosome removal in the absence of SWI/SNF, an intranucleosomal Pho4 site, which likely altered the remodeling outcome via factor binding competition, was required in addition to such overexpression. Therefore, an essential remodeler requirement under physiological conditions need not reflect substrate specificity, but may reflect specific recruitment and/or remodeling outcomes.
Collapse
|
4
|
Babu KSD, Manoharan P, Pandi G. Computational studies on Begomoviral AC2/C2 proteins. Bioinformation 2018; 14:294-303. [PMID: 30237675 PMCID: PMC6137562 DOI: 10.6026/97320630014294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/09/2018] [Accepted: 06/10/2018] [Indexed: 12/22/2022] Open
Abstract
Geminiviridae is a large family of circular, single stranded DNA viruses, which infects and causes devastating diseases on economically important crops. They are subdivided into nine genera. Members of the genus begomovirus encode a pathogenic protein called AC2/C2 which interacts that inactivates many plant proteins and trans-activates a number of host genes via the C-terminal transactivation domain. Hence, a sequence analysis on C-terminal region of AC2/C2 was completed. Analysis of 124 bipartite and 463 mono partite begomo viral AC2/C2 proteins revealed major differences in protein length, composition and position of acidic, aromatic and hydrophobic residues. Secondary structure analysis of AC2/C2 revealed the possible formation of C-terminal α-helix, which is similar to the acidic activation domain of many transcriptional activator proteins. Previous studies demonstrated that AC2 utilizes conserved late element (CLE) for the transactivation of viral genes and genome-wide mapping of same consensus in A. thaliana yielded 122 promoters with exact CLE consensus sequence. Analysis of protein interaction network for 106 CLE containing genes, 87 AC2 trans activated genes and 10 AC2 interacting proteins revealed a possible regulation of hundreds of host proteins which helps begomoviruses to produce a successful viral infection.
Collapse
Affiliation(s)
| | - Prabu Manoharan
- Center of Excellence in Bioinformatics, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- Department of Biotechnology (DDE), Madurai Kamaraj University, Madurai, India
| | - Gopal Pandi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| |
Collapse
|
5
|
Korber P, Barbaric S. The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res 2014; 42:10888-902. [PMID: 25190457 PMCID: PMC4176169 DOI: 10.1093/nar/gku784] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chromatin dynamics crucially contributes to gene regulation. Studies of the yeast PHO5 promoter were key to establish this nowadays accepted view and continuously provide mechanistic insight in chromatin remodeling and promoter regulation, both on single locus as well as on systems level. The PHO5 promoter is a context independent chromatin switch module where in the repressed state positioned nucleosomes occlude transcription factor sites such that nucleosome remodeling is a prerequisite for and not consequence of induced gene transcription. This massive chromatin transition from positioned nucleosomes to an extensive hypersensitive site, together with respective transitions at the co-regulated PHO8 and PHO84 promoters, became a prime model for dissecting how remodelers, histone modifiers and chaperones co-operate in nucleosome remodeling upon gene induction. This revealed a surprisingly complex cofactor network at the PHO5 promoter, including five remodeler ATPases (SWI/SNF, RSC, INO80, Isw1, Chd1), and demonstrated for the first time histone eviction in trans as remodeling mode in vivo. Recently, the PHO5 promoter and the whole PHO regulon were harnessed for quantitative analyses and computational modeling of remodeling, transcription factor binding and promoter input-output relations such that this rewarding single-locus model becomes a paradigm also for theoretical and systems approaches to gene regulatory networks.
Collapse
Affiliation(s)
- Philipp Korber
- Adolf-Butenandt-Institute, Molecular Biology, University of Munich, Munich 80336, Germany
| | - Slobodan Barbaric
- Faculty of Food Technology and Biotechnology, Laboratory of Biochemistry, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
6
|
Smale ST, Tarakhovsky A, Natoli G. Chromatin contributions to the regulation of innate immunity. Annu Rev Immunol 2014; 32:489-511. [PMID: 24555473 DOI: 10.1146/annurev-immunol-031210-101303] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A fundamental property of cells of the innate immune system is their ability to elicit a transcriptional response to a microbial stimulus or danger signal with a high degree of cell type and stimulus specificity. The selective response activates effector pathways to control the insult and plays a central role in regulating adaptive immunity through the differential regulation of cytokine genes. Selectivity is dictated by signaling pathways and their transcription factor targets. However, a growing body of evidence supports models in which different subsets of genes exhibit distinct chromatin features that play active roles in shaping the response. Chromatin also participates in innate memory mechanisms that can promote tolerance to a stimulus or prime cells for a more robust response. These findings have generated interest in the capacity to modulate chromatin regulators with small-molecule compounds for the treatment of diseases associated with innate or adaptive immunity.
Collapse
Affiliation(s)
- Stephen T Smale
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095;
| | | | | |
Collapse
|
7
|
Abstract
Current model for circadian rhythms is wrong both theoretically and practically. A new model, called yin yang model, is proposed to explain the mechanism of circadian rhythms. The yin yang model separate circadian activities in a circadian system into yin (night activities) and yang (day activities) and a circadian clock into a day clock and a night clock. The day clock is the product of night activities, but it promotes day activities; the night clock is the product of day activities, but it promotes night activities. The clock maintains redox or energy homeostasis of the internal environment and allows temporal separations between biological processes with opposite impacts on the internal environment of a circadian system.
Collapse
Affiliation(s)
- HONGTAO MIN
- Department of Biology, Texas A & M University, College Station, Texas 77843-3258, USA
| |
Collapse
|
8
|
Mao C, Brown CR, Griesenbeck J, Boeger H. Occlusion of regulatory sequences by promoter nucleosomes in vivo. PLoS One 2011; 6:e17521. [PMID: 21408617 PMCID: PMC3048331 DOI: 10.1371/journal.pone.0017521] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/03/2011] [Indexed: 01/30/2023] Open
Abstract
Nucleosomes are believed to inhibit DNA binding by transcription factors. Theoretical attempts to understand the significance of nucleosomes in gene expression and regulation are based upon this assumption. However, nucleosomal inhibition of transcription factor binding to DNA is not complete. Rather, access to nucleosomal DNA depends on a number of factors, including the stereochemistry of transcription factor-DNA interaction, the in vivo kinetics of thermal fluctuations in nucleosome structure, and the intracellular concentration of the transcription factor. In vitro binding studies must therefore be complemented with in vivo measurements. The inducible PHO5 promoter of yeast has played a prominent role in this discussion. It bears two binding sites for the transcriptional activator Pho4, which at the repressed promoter are positioned within a nucleosome and in the linker region between two nucleosomes, respectively. Earlier studies suggested that the nucleosomal binding site is inaccessible to Pho4 binding in the absence of chromatin remodeling. However, this notion has been challenged by several recent reports. We therefore have reanalyzed transcription factor binding to the PHO5 promoter in vivo, using ‘chromatin endogenous cleavage’ (ChEC). Our results unambiguously demonstrate that nucleosomes effectively interfere with the binding of Pho4 and other critical transcription factors to regulatory sequences of the PHO5 promoter. Our data furthermore suggest that Pho4 recruits the TATA box binding protein to the PHO5 promoter.
Collapse
Affiliation(s)
- Changhui Mao
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Christopher R. Brown
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Joachim Griesenbeck
- Department of Biochemistry III, University of Regensburg, Regensburg, Germany
| | - Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
9
|
Du JX, McConnell BB, Yang VW. A small ubiquitin-related modifier-interacting motif functions as the transcriptional activation domain of Krüppel-like factor 4. J Biol Chem 2010; 285:28298-308. [PMID: 20584900 PMCID: PMC2934694 DOI: 10.1074/jbc.m110.101717] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 06/15/2010] [Indexed: 11/06/2022] Open
Abstract
The zinc finger transcription factor, Krüppel-like factor 4 (KLF4), regulates numerous biological processes, including proliferation, differentiation, and embryonic stem cell self-renewal. Although the DNA sequence to which KLF4 binds is established, the mechanism by which KLF4 controls transcription is not well defined. Small ubiquitin-related modifier (SUMO) is an important regulator of transcription. Here we show that KLF4 is both SUMOylated at a single lysine residue and physically interacts with SUMO-1 in a region that matches an acidic and hydrophobic residue-rich SUMO-interacting motif (SIM) consensus. The SIM in KLF4 is required for transactivation of target promoters in a SUMO-1-dependent manner. Mutation of either the acidic or hydrophobic residues in the SIM significantly impairs the ability of KLF4 to interact with SUMO-1, activate transcription, and inhibit cell proliferation. Our study provides direct evidence that SIM in KLF4 functions as a transcriptional activation domain. A survey of transcription factor sequences reveals that established transactivation domains of many transcription factors contain sequences highly related to SIM. These results, therefore, illustrate a novel mechanism by which SUMO interaction modulates the activity of transcription factors.
Collapse
Affiliation(s)
- James X. Du
- From the Division of Digestive Diseases, Department of Medicine, and
| | - Beth B. McConnell
- From the Division of Digestive Diseases, Department of Medicine, and
| | - Vincent W. Yang
- From the Division of Digestive Diseases, Department of Medicine, and
- the Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322
| |
Collapse
|
10
|
Janbandhu VC, Singh AK, Mukherji A, Kumar V. p65 Negatively regulates transcription of the cyclin E gene. J Biol Chem 2010; 285:17453-64. [PMID: 20385564 DOI: 10.1074/jbc.m109.058974] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
NF-kappaB family members play a pivotal role in many cellular and organismal functions, including the cell cycle. As an activator of cyclin D1 and p21(Waf1) genes, NF-kappaB has been regarded as a critical modulator of cell cycle. To study the involvement of NF-kappaB in G(1)/S phase regulation, the levels of selected transcriptional regulators were monitored following overexpression of NF-kappaB or its physiological induction by tumor necrosis factor-alpha. Cyclin E gene was identified as a major transcriptional target of NF-kappaB. Recruitment of NF-kappaB to the cyclin E promoter was correlated with the transrepression of cyclin E gene. Ligation-mediated PCR and micrococcal nuclease-Southern assays suggested the nucleosomal nature of this region while chromatin immunoprecipitation analysis confirmed the exchange of cofactors following tumor necrosis factor-alpha treatment or release from serum starvation. There was a progressive reduction in cyclin E transcription along with the accumulation of catalytically inactive cyclin E-cdk2 complexes and arrest of cells in G(1)/S-phase. Thus, our study clearly establishes NF-kappaB as a negative regulator of cell cycle through transcriptional repression of cyclin E.
Collapse
Affiliation(s)
- Vaibhao C Janbandhu
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
11
|
Boeger H, Griesenbeck J, Kornberg RD. Nucleosome retention and the stochastic nature of promoter chromatin remodeling for transcription. Cell 2008; 133:716-26. [PMID: 18485878 PMCID: PMC2409070 DOI: 10.1016/j.cell.2008.02.051] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Revised: 01/13/2008] [Accepted: 02/29/2008] [Indexed: 11/24/2022]
Abstract
The rate-limiting step of transcriptional activation in eukaryotes, and thus the critical point for gene regulation, is unknown. Combining biochemical analyses of the chromatin transition at the transcriptionally induced PHO5 promoter in yeast with modeling based on a small number of simple assumptions, we demonstrate that random removal and reformation of promoter nucleosomes can account for stochastic and kinetic properties of PHO5 expression. Our analysis suggests that the disassembly of promoter nucleosomes is rate limiting for PHO5 expression, and supports a model for the underlying mechanism of promoter chromatin remodeling, which appears to conserve a single nucleosome on the promoter at all times.
Collapse
Affiliation(s)
- Hinrich Boeger
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA.
| | | | | |
Collapse
|
12
|
Piskacek S, Gregor M, Nemethova M, Grabner M, Kovarik P, Piskacek M. Nine-amino-acid transactivation domain: Establishment and prediction utilities. Genomics 2007; 89:756-68. [PMID: 17467953 DOI: 10.1016/j.ygeno.2007.02.003] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 11/23/2022]
Abstract
Here we describe the establishment and prediction utilities for a novel nine-amino-acid transactivation domain, 9aa TAD, that is common to the transactivation domains of a large number of yeast and animal transcription factors. We show that the 9aa TAD motif is required for the function of the transactivation domain of Gal4 and the related transcription factors Oaf1 and Pip2. The 9aa TAD possesses an autonomous transactivation activity in yeast and mammalian cells. Using sequence alignment and experimental data we derived a pattern that can be used for 9aa TAD prediction. The pattern allows the identification of 9aa TAD in other Gal4 family members or unrelated yeast, animal, and viral transcription factors. Thus, the 9aa TAD represents the smallest known denominator for a broad range of transcription factors. The wide occurrence of the 9aa TAD suggests that this domain mediates conserved interactions with general transcriptional cofactors. A computational search for the 9aa TAD is available online from National EMBnet-Node Austria at http://www.at.embnet.org/toolbox/9aatad/.
Collapse
Affiliation(s)
- Simona Piskacek
- Simopharm, Max F. Perutz Laboratories, University of Vienna, Dr. Bohrgasse 9, A-1030 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
13
|
Jessen WJ, Hoose SA, Kilgore JA, Kladde MP. Active PHO5 chromatin encompasses variable numbers of nucleosomes at individual promoters. Nat Struct Mol Biol 2006; 13:256-63. [PMID: 16491089 DOI: 10.1038/nsmb1062] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Accepted: 12/29/2005] [Indexed: 01/08/2023]
Abstract
Transcriptional activation is often associated with chromatin remodeling. However, little is known about the dynamics of remodeling of nucleosome arrays in vivo. Upon induction of Saccharomyces cerevisiae PHO5, a novel kinetic assay of DNA methyltransferase accessibility showed that nucleosomes adjacent to the histone-free upstream activating sequence (UASp1) are disrupted earlier and at higher frequency in the cell population than are those more distal. Individually cloned molecules, each representing the chromatin state of a full promoter from a single cell, revealed multiple promoter classes with either no remodeling or variable numbers of disrupted nucleosomes. Individual promoters in the remodeled fraction were highly enriched for contiguous blocks of disrupted nucleosomes, the majority of which overlapped the UAS region. These results support a probabilistic model in which chromatin remodeling at PHO5 spreads from sites of transactivator association with DNA and attenuates with distance.
Collapse
Affiliation(s)
- Walter J Jessen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas 77843-2128, USA
| | | | | | | |
Collapse
|
14
|
Gardocki ME, Bakewell M, Kamath D, Robinson K, Borovicka K, Lopes JM. Genomic analysis of PIS1 gene expression. EUKARYOTIC CELL 2005; 4:604-14. [PMID: 15755922 PMCID: PMC1087795 DOI: 10.1128/ec.4.3.604-614.2005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Saccharomyces cerevisiae PIS1 gene is essential and required for the final step in the de novo synthesis of phosphatidylinositol. Transcription of the PIS1 gene is uncoupled from the factors that regulate other yeast phospholipid biosynthetic genes. Most of the phospholipid biosynthetic genes are regulated in response to inositol and choline via a regulatory circuit that includes the Ino2p:Ino4p activator complex and the Opi1p repressor. PIS1 is regulated in response to carbon source and anaerobic growth conditions. Both of these regulatory responses are modest, which is not entirely surprising since PIS1 is essential. However, even modest regulation of PIS1 expression has been shown to affect phosphatidylinositol metabolism and to affect cell cycle progression. This prompted the present study, which employed a genomic screen, database mining, and more traditional promoter analysis to identify genes that affect PIS1 expression. A screen of the viable yeast deletion set identified 120 genes that affect expression of a PIS1-lacZ reporter. The gene set included several peroxisomal genes, silencing genes, and transcription factors. Factors suggested by database mining, such as Pho2 and Yfl044c, were also found to affect PIS1-lacZ expression. A PIS1 promoter deletion study identified an upstream regulatory sequence element that was required for carbon source regulation located downstream of three previously defined upstream activation sequence elements. Collectively, these studies demonstrate how a collection of genomic and traditional strategies can be implemented to identify a set of genes that affect the regulation of an essential gene.
Collapse
Affiliation(s)
- Mary E Gardocki
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI 48202, USA
| | | | | | | | | | | |
Collapse
|
15
|
Gardocki ME, Jani N, Lopes JM. Phosphatidylinositol biosynthesis: biochemistry and regulation. Biochim Biophys Acta Mol Cell Biol Lipids 2005; 1735:89-100. [PMID: 15967713 DOI: 10.1016/j.bbalip.2005.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Revised: 05/14/2005] [Accepted: 05/19/2005] [Indexed: 12/22/2022]
Abstract
Phosphatidylinositol (PI) is a ubiquitous membrane lipid in eukaryotes. It is becoming increasingly obvious that PI and its metabolites play a myriad of very diverse roles in eukaryotic cells. The Saccharomyces cerevisiae PIS1 gene is essential and encodes PI synthase, which is required for the synthesis of PI. Recently, PIS1 expression was found to be regulated in response to carbon source and oxygen availability. It is particularly significant that the promoter elements required for these responses are conserved evolutionarily throughout the Saccharomyces genus. In addition, several genome-wide strategies coupled with more traditional screens suggest that several other factors regulate PIS1 expression. The impact of regulating PIS1 expression on PI synthesis will be discussed along with the possible role(s) that this may have on diseases such as cancer.
Collapse
Affiliation(s)
- Mary E Gardocki
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit MI 48202, USA
| | | | | |
Collapse
|
16
|
Mathieu M, Nikolaev I, Scazzocchio C, Felenbok B. Patterns of nucleosomal organization in the alc regulon of Aspergillus nidulans: roles of the AlcR transcriptional activator and the CreA global repressor. Mol Microbiol 2005; 56:535-48. [PMID: 15813742 DOI: 10.1111/j.1365-2958.2005.04559.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have studied the chromatin organization of three promoters of the alc regulon of Aspergillus nidulans. No positioned nucleosomes are seen in the aldA (aldehyde dehydrogenase) promoter under any physiological condition tested by us. In the alcA (alcohol dehydrogenase I) and alcR (coding for the pathway-specific transcription factor) promoters, a pattern of positioned nucleosomes is seen under non-induced and non-induced repressed conditions. While each of these promoters shows a specific pattern of chromatin restructuring, in both cases induction results in loss of nucleosome positioning. Glucose repression in the presence of inducer results in a specific pattern of partial positioning in the alcA and alcR promoters. Loss of nucleosome positioning depends absolutely on the AlcR protein and it is very unlikely to be a passive result of the induction of transcription. In an alcR loss-of-function background and in strains carrying mutations of the respective AlcR binding sites of the alcA and alcR promoters, nucleosomes are fully positioned under all growth conditions. Analysis of mutant AlcR proteins establishes that all domains needed for transcriptional activation and chromatin restructuring are included within the first 241 residues. The results suggest a two-step process, one step resulting in chromatin restructuring, a second one in transcriptional activation. Partial positioning upon glucose repression shows a specific pattern that depends on the CreA global repressor. An alcR loss-of-function mutation is epistatic to a creA loss-of-function mutation, showing that AlcR does not act by negating a nucleosome positioning activity of CreA.
Collapse
Affiliation(s)
- Martine Mathieu
- Institut de Génétique et Microbiologie, Université Paris-Sud, UMR8621 CNRS, Centre d'Orsay, 91405 Orsay Cedex, France.
| | | | | | | |
Collapse
|
17
|
Brettingham-Moore KH, Rao S, Juelich T, Shannon MF, Holloway AF. GM-CSF promoter chromatin remodelling and gene transcription display distinct signal and transcription factor requirements. Nucleic Acids Res 2005; 33:225-34. [PMID: 15647505 PMCID: PMC546149 DOI: 10.1093/nar/gki161] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony stimulating factor (GM-CSF) plays a key role in myeloid cell function and is rapidly and transiently expressed in T cells in response to immune or inflammatory stimuli. Induction of GM-CSF gene expression is accompanied by changes in chromatin structure across the proximal promoter region of the gene. We show that the promoter remodelling and subsequent gene transcription occurs with distinct signal and transcription factor requirements. Activation of the protein kinase C (PKC) signalling pathway is sufficient to induce changes in chromatin structure across the promoter, but both the PKC and calcium signalling pathways are required for efficient gene transcription. Although NFAT transcription factors contribute to GM-CSF gene transcription, they are not required for promoter remodelling. However, the presence of the nuclear factor-κB transcription factor, c-Rel, in the nucleus is strongly correlated with and required for the events of chromatin remodelling.
Collapse
Affiliation(s)
| | - Sudha Rao
- Division of Immunology and Genetics, John Curtin School of Medical Research, Australian National UniversityACT, Australia
| | - Torsten Juelich
- Division of Molecular Biosciences, John Curtin School of Medical Research, Australian National UniversityACT, Australia
| | - M. Frances Shannon
- Division of Molecular Biosciences, John Curtin School of Medical Research, Australian National UniversityACT, Australia
| | - Adele F. Holloway
- To whom correspondence should be addressed. Tel: +61 0 3 62262670; Fax: +61 03 62262703;
| |
Collapse
|
18
|
Martinez-Campa C, Politis P, Moreau JL, Kent N, Goodall J, Mellor J, Goding CR. Precise Nucleosome Positioning and the TATA Box Dictate Requirements for the Histone H4 Tail and the Bromodomain Factor Bdf1. Mol Cell 2004; 15:69-81. [PMID: 15225549 DOI: 10.1016/j.molcel.2004.05.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2003] [Revised: 04/02/2004] [Accepted: 04/28/2004] [Indexed: 11/24/2022]
Abstract
Acetylation of histone tails plays a key role in chromatin dynamics and is associated with the potential for gene expression. We show here that a 2-3 bp mispositioning of the nucleosome covering the TATA box at PHO5 induces a dependency on the acetylatable lysine residues of the histone H4 N-terminal region and on the TFIID-associated bromodomain factor Bdf1. This dependency arises either through fusion of the PHO5 promoter to a lacZ reporter or by mutation of the TATA box in the natural gene. The results suggest that promoters in which the TATA box is either absent or poorly accessible on the surface of a nucleosome may compensate by using Bdf1 bromodomains and acetylated H4 tails to anchor TFIID to the promoter during the initial stages of transcription activation. We propose that nucleosome positioning at the nucleotide level provides a subtle, but highly effective, mechanism for gene regulation.
Collapse
Affiliation(s)
- Carlos Martinez-Campa
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
19
|
Reinke H, Hörz W. Anatomy of a hypersensitive site. ACTA ACUST UNITED AC 2004; 1677:24-9. [PMID: 15020042 DOI: 10.1016/j.bbaexp.2003.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2003] [Accepted: 09/10/2003] [Indexed: 01/09/2023]
Abstract
The 600-bp accessible region at the activated PHO5 promoter in S. cerevisiae has become a paradigm for hypersensitive sites. In this review, we summarize the various experimental strategies used to characterize chromatin at the active promoter and point out their virtues and their limitations. We describe the properties of chromatin at the active PHO5 promoter and what we currently know about the transition from the inactive to the active state. The implications for generating a hypersensitive region in chromatin are discussed.
Collapse
Affiliation(s)
- Hans Reinke
- Adolf-Butenandt-Institut, Molekularbiologie, Universität München, Schillerstr 44, D-80336 Munich, Germany
| | | |
Collapse
|
20
|
Byrne M, Miller N, Springer M, O'Shea EK. A distal, high-affinity binding site on the cyclin-CDK substrate Pho4 is important for its phosphorylation and regulation. J Mol Biol 2004; 335:57-70. [PMID: 14659740 DOI: 10.1016/j.jmb.2003.10.035] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cyclins and cyclin-dependent kinases (CDKs) are key components of signaling pathways essential for cell growth and survival. The cyclin-CDK Pho80-Pho85 inactivates the transcription factor Pho4 in budding yeast by phosphorylating it on five sites. We isolated seven single amino acid substitutions outside of the phosphorylation sites that cause Pho4 to be constitutively active. The substitutions decrease the amount of Pho4 phosphorylation in vivo, and they increase the apparent K(M) of the in vitro phosphorylation reaction by an order of magnitude but do not alter k(cat) substantially. These data suggest that the substituted residues are part of a cyclin-CDK-binding site that is distal to the phosphorylation sites. Further analysis revealed that all of Pho4 variants were phosphorylated by Pho80-Pho85 in a more distributive manner than the wild-type protein, further supporting the idea that binding at a distal, high-affinity binding site is important in determining the processivity of Pho4 phosphorylation. In addition, computational modeling of the Pho4 phosphorylation reactions shows that the K(D) of binding between the Pho4 mutants and Pho80-Pho85 increases, confirming that the mutations are located in a relatively high-affinity "docking site" for the kinase. Interestingly, the K(D) derived from the in vitro data correlates well with the strength of the in vivo phenotypes, demonstrating that the in vitro data are relevant to the in vivo regulation of Pho4.
Collapse
Affiliation(s)
- Meghan Byrne
- Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, 600 16th Street, Genentech Hall Room S472D, San Francisco, CA 94143-2240, USA
| | | | | | | |
Collapse
|
21
|
Springer M, Wykoff DD, Miller N, O'Shea EK. Partially phosphorylated Pho4 activates transcription of a subset of phosphate-responsive genes. PLoS Biol 2003; 1:E28. [PMID: 14624238 PMCID: PMC261874 DOI: 10.1371/journal.pbio.0000028] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Accepted: 08/18/2003] [Indexed: 11/25/2022] Open
Abstract
A cell's ability to generate different responses to different levels of stimulus is an important component of an adaptive environmental response. Transcriptional responses are frequently controlled by transcription factors regulated by phosphorylation. We demonstrate that differential phosphorylation of the budding yeast transcription factor Pho4 contributes to differential gene expression. When yeast cells are grown in high-phosphate growth medium, Pho4 is phosphorylated on four critical residues by the cyclin-CDK complex Pho80-Pho85 and is inactivated. When yeast cells are starved for phosphate, Pho4 is dephosphorylated and fully active. In intermediate-phosphate conditions, a form of Pho4 preferentially phosphorylated on one of the four sites accumulates and activates transcription of a subset of phosphate-responsive genes. This Pho4 phosphoform binds differentially to phosphate-responsive promoters and helps to trigger differential gene expression. Our results demonstrate that three transcriptional outputs can be generated by a pathway whose regulation is controlled by one kinase, Pho80-Pho85, and one transcription factor, Pho4. Differential phosphorylation of Pho4 by Pho80-Pho85 produces phosphorylated forms of Pho4 that differ in their ability to activate transcription, contributing to multiple outputs.
Collapse
MESH Headings
- Blotting, Northern
- Blotting, Western
- Chromatin Immunoprecipitation
- Culture Media/chemistry
- Culture Media/metabolism
- Cyclin-Dependent Kinases/genetics
- Cyclin-Dependent Kinases/physiology
- Cyclins/genetics
- Cyclins/physiology
- DNA, Complementary/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Microscopy, Fluorescence
- Models, Biological
- Models, Genetic
- Molecular Sequence Data
- Oligonucleotide Array Sequence Analysis
- Phosphates/chemistry
- Phosphopeptides/chemistry
- Phosphorylation
- Promoter Regions, Genetic
- Protein Binding
- Repressor Proteins/genetics
- Repressor Proteins/physiology
- Saccharomyces cerevisiae/metabolism
- Saccharomyces cerevisiae Proteins/genetics
- Saccharomyces cerevisiae Proteins/physiology
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription Factors/physiology
- Transcription, Genetic
Collapse
Affiliation(s)
- Michael Springer
- 1Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
| | - Dennis D Wykoff
- 1Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
| | - Nicole Miller
- 1Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
| | - Erin K O'Shea
- 1Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of CaliforniaSan Francisco, San Francisco, CaliforniaUnited States of America
| |
Collapse
|
22
|
Guo Z, Boekhoudt GH, Boss JM. Role of the intronic enhancer in tumor necrosis factor-mediated induction of manganous superoxide dismutase. J Biol Chem 2003; 278:23570-8. [PMID: 12684509 DOI: 10.1074/jbc.m303431200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Manganous superoxide dismutase (Mn-SOD), a tumor necrosis factor (TNF)-inducible gene product, plays an important role in removing superoxide anions produced inside mitochondria. Two regulatory regions, the proximal promoter region (PPR), which is upstream from the transcription initiation site, and the TNF-responsive element (TNFRE), which is inside intron 2, are responsible for Mn-SOD expression. To understand how each of these regions contributes to the transcription of Mn-SOD, quantitative reverse transcription-PCR, chromatin immunoprecipitations, and in vivo nuclease sensitivity assays were performed on the murine Mn-SOD gene. These assays demonstrate that Sp1 and nuclear factor (NF)-kappaB p65 are required for Mn-SOD induction by TNF. Sp1 bound the PPR constitutively, whereas NF-kappaB p65 and C/EBP-beta bound the TNFRE only after TNF treatment. Binding of C/EBP-beta to the TNFRE was dependent on the presence of NF-kappaB p65. The chromatin structure within the TNFRE became more accessible to nuclease digestion after TNF treatment. This accessibility required Sp1 and NF-kappaB p65. Treatment of cells with an inhibitor of histone deacetylation, or transient transfection with coactivator-expressing plasmids, enhanced the expression of Mn-SOD. NF-kappaB p65 binding was required for acetylation of histones H3 and H4 at the PPR and the TNFRE. Together, these data suggest communication between the PPR and the TNFRE which involves chromatin remodeling and histone acetylation during the induction process of Mn-SOD in response to TNF.
Collapse
Affiliation(s)
- Zhu Guo
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
23
|
Morse RH. Getting into chromatin: how do transcription factors get past the histones? Biochem Cell Biol 2003; 81:101-12. [PMID: 12897843 DOI: 10.1139/o03-039] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Transcriptional activators and the general transcription machinery must gain access to DNA that in eukaryotes may be packaged into nucleosomes. In this review, I discuss this problem from the standpoint of the types of chromatin structures that these DNA-binding proteins may encounter, and the mechanisms by which they may contend with various chromatin structures. The discussion includes consideration of experiments in which chromatin structure is manipulated in vivo to confront activators with nucleosomal binding sites, and the roles of nucleosome dynamics and activation domains in facilitating access to such sites. Finally, the role of activators in facilitating access of the general transcriptional machinery to sites in chromatin is discussed.
Collapse
Affiliation(s)
- Randall H Morse
- Wadsworth Center, New York State Department of Health and Department of Biomedical Sciences, University at Albany School of Public Health, 12201-2002, USA.
| |
Collapse
|
24
|
Dietz M, Heyken WT, Hoppen J, Geburtig S, Schüller HJ. TFIIB and subunits of the SAGA complex are involved in transcriptional activation of phospholipid biosynthetic genes by the regulatory protein Ino2 in the yeast Saccharomyces cerevisiae. Mol Microbiol 2003; 48:1119-30. [PMID: 12753200 DOI: 10.1046/j.1365-2958.2003.03501.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In the yeast Saccharomyces cerevisiae, genes involved in phospholipid biosynthesis are activated by ICRE (inositol/choline-responsive element) up-stream motifs and the corresponding heterodimeric binding factor, Ino2 + Ino4. Both Ino2 and Ino4 contain basic helix-loop-helix (bHLH) domains required for ICRE binding, whereas transcriptional activation is mediated exclusively by Ino2. In this work, we describe a molecular analysis of functional minimal domains responsible for specific DNA recognition and transcriptional activation (TAD1 and TAD2). We also define the importance of individual amino acids within the more important activation domain TAD1. Random mutagenesis at five amino acid positions showed the importance of acidic as well as hydrophobic residues within this minimal TAD. We also investigated the contribution of known general transcription factors and co-activators for Ino2-dependent gene activation. Although an ada5 single mutant and a gal11 paf1 double mutant were severely affected, a partial reduction in activation was found for gcn5 and srb2. Ino2 interacts physically with the basal transcription factor Sua7 (TFIIB of yeast). Interestingly, interaction is mediated by the HLH dimerization domain of Ino2 and by two non-overlapping domains within Sua7. Thus, Sua7 may compete with Ino4 for binding to the Ino2 activator, creating the possibility of positive and negative influence of Sua7 on ICRE-dependent gene expression.
Collapse
Affiliation(s)
- Martin Dietz
- Institut für Mikrobiologie, Abteilung Genetik und Biochemie, Ernst-Moritz-Arndt Universität Greifswald, Jahnstr 15a, D-17487 Greifswald, Germany
| | | | | | | | | |
Collapse
|
25
|
Braastad CD, Han Z, Hendrickson EA. Constitutive DNase I hypersensitivity of p53-regulated promoters. J Biol Chem 2003; 278:8261-8. [PMID: 12475992 DOI: 10.1074/jbc.m204256200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ability of p53 to alter, at the transcriptional level, the gene expression of downstream targets is critical for its role as a tumor suppressor. Most models of p53 activation postulate the stepwise recruitment by p53 of coactivators, histone acetyltransferases, and/or chromatin remodeling factors to a promoter region to facilitate the subsequent access of the general transcriptional machinery required for transcriptional induction. We demonstrate here, however, that the promoter regions for the p53 target genes, p21, 14-3-3sigma, and KARP-1, exist in a constitutively open conformation that is readily accessible to DNase I. This conformation was not altered by DNA damage or by whether p53 was present or absent in the cell. In contrast, p53 response elements, which resided outside the immediate promoter regions, existed within DNase I-resistant chromatin domains. Thus, p53 activation of downstream target genes occurs without p53 inducing chromatin alterations detectable by DNase I accessibility at either the promoter or the response element. As such, these data support models of p53 activation that do not require extensive chromatin alterations to support cognate gene expression.
Collapse
Affiliation(s)
- Corey D Braastad
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
26
|
Pyerin W, Ackermann K. The genes encoding human protein kinase CK2 and their functional links. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2003; 74:239-73. [PMID: 14510078 DOI: 10.1016/s0079-6603(03)01015-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Walter Pyerin
- Biochemische Zellphysiologie (B0200), Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | | |
Collapse
|
27
|
Wang T, Lafuse WP, Takeda K, Akira S, Zwilling BS. Rapid chromatin remodeling of Toll-like receptor 2 promoter during infection of macrophages with Mycobacterium avium. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:795-801. [PMID: 12097382 DOI: 10.4049/jimmunol.169.2.795] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously reported that NF-kappa B and stimulating factor 1 elements within the proximal mouse Toll-like receptor 2 (TLR2) promoter region are required for the transcriptional activation of TLR2 expression following infection with Mycobacterium avium. In the present study, we found that a rapid increase in both DNase I sensitivity and restriction enzyme accessibility at the TLR2 promoter region occurred following infection with M. avium. Increase in restriction enzyme accessibility at the TLR2 promoter region covering the NF-kappa B and stimulating factor 1 elements was associated with the induction of TLR2 expression at the mRNA level. Furthermore, the increase in restriction enzyme accessibility at the TLR2 promoter region did not appear to result from binding of NF-kappa B, but rather depended on a TLR2-myeloid differentiation factor 88 signaling pathway. Together our results indicate that chromatin remodeling occurs at TLR2 promoter region following infection with M. avium, allowing the access of transcription factors to initiate the transcription of TLR2.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Antigens, Differentiation/physiology
- Cells, Cultured
- Chromatin/immunology
- Chromatin/metabolism
- DNA Restriction Enzymes/metabolism
- Deoxyribonuclease EcoRI/metabolism
- Deoxyribonuclease I/metabolism
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Drosophila Proteins
- Gene Expression Regulation/immunology
- Macrophages/enzymology
- Macrophages/immunology
- Macrophages/metabolism
- Macrophages/microbiology
- Membrane Glycoproteins/biosynthesis
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mycobacterium avium/immunology
- Myeloid Differentiation Factor 88
- NF-kappa B/metabolism
- Promoter Regions, Genetic/immunology
- Protein Binding/immunology
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, Immunologic/physiology
- Toll-Like Receptor 2
- Toll-Like Receptors
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Microbiology, College of Biological Sciences, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
28
|
Neely KE, Hassan AH, Brown CE, Howe L, Workman JL. Transcription activator interactions with multiple SWI/SNF subunits. Mol Cell Biol 2002; 22:1615-25. [PMID: 11865042 PMCID: PMC135607 DOI: 10.1128/mcb.22.6.1615-1625.2002] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2001] [Revised: 10/05/2001] [Accepted: 12/04/2001] [Indexed: 11/20/2022] Open
Abstract
We have previously shown that the yeast SWI/SNF complex stimulates in vitro transcription from chromatin templates in an ATP-dependent manner. SWI/SNF function in this regard requires the presence of an activator with which it can interact directly, linking activator recruitment of SWI/SNF to transcriptional stimulation. In this study, we determine the SWI/SNF subunits that mediate its interaction with activators. Using a photo-cross-linking label transfer strategy, we show that the Snf5, Swi1, and Swi2/Snf2 subunits are contacted by the yeast acidic activators, Gcn4 and Hap4, in the context of the intact native SWI/SNF complex. In addition, we show that the same three subunits can interact individually with acidic activation domains, indicating that each subunit contributes to binding activators. Furthermore, mutations that reduce the activation potential of these activators also diminish its interaction with each of these SWI/SNF subunits. Thus, three distinct subunits of the SWI/SNF complex contribute to its interactions with activation domains.
Collapse
Affiliation(s)
- Kristen E Neely
- Department of Biochemistry and Molecular Biology, Howard Hughes Medical Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | |
Collapse
|
29
|
Jones LC, Whitlock JP. Dioxin-inducible transactivation in a chromosomal setting. Analysis of the acidic domain of the Ah receptor. J Biol Chem 2001; 276:25037-42. [PMID: 11350970 DOI: 10.1074/jbc.m102910200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We analyzed the transactivation function of the acidic segment of the Ah receptor (amino acids 515-583) by reconstituting AhR-defective mouse hepatoma cells with mutants. Our data reveal that both hydrophobic and acidic residues are important for transactivation and that these residues are clustered in two regions of the acidic segment of AhR. Both regions are crucial for function, because disruption of either one substantially impairs transactivation of the chromosomal CYP1A1 target gene. Neither region contains an amino acid motif that resembles those reported for other acidic activation domains. Furthermore, proline substitutions in both regions do not impair transactivation in vivo, a finding that implies that alpha-helix formation is not required for function.
Collapse
Affiliation(s)
- L C Jones
- Division of Hematology and Oncology, Cedars Sinai Medical Center, UCLA School of Medicine, Los Angeles, CA 90048, USA
| | | |
Collapse
|
30
|
Bergstrom DA, Tapscott SJ. Molecular distinction between specification and differentiation in the myogenic basic helix-loop-helix transcription factor family. Mol Cell Biol 2001; 21:2404-12. [PMID: 11259589 PMCID: PMC86873 DOI: 10.1128/mcb.21.7.2404-2412.2001] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The myogenic basic helix-loop-helix (bHLH) proteins regulate both skeletal muscle specification and differentiation: MyoD and Myf5 establish the muscle lineage, whereas myogenin mediates differentiation. Previously, we demonstrated that MyoD was more efficient than myogenin at initiating the expression of skeletal muscle genes, and in this study we present the molecular basis for this difference. A conserved amphipathic alpha-helix in the carboxy terminus of the myogenic bHLH proteins has distinct activities in MyoD and myogenin: the MyoD helix facilitates the initiation of endogenous gene expression, whereas the myogenin helix functions as a general transcriptional activation domain. Thus, the alternate use of a similar motif for gene initiation and activation provides a molecular basis for the distinction between specification and differentiation within the myogenic bHLH gene family.
Collapse
Affiliation(s)
- D A Bergstrom
- Program in Developmental Biology, Division of Human Biology, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, Washington 98108-1024, USA
| | | |
Collapse
|
31
|
Munsterkötter M, Barbaric S, Hörz W. Transcriptional regulation of the yeast PHO8 promoter in comparison to the coregulated PHO5 promoter. J Biol Chem 2000; 275:22678-85. [PMID: 10801809 DOI: 10.1074/jbc.m001409200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of the PHO8 and PHO5 genes that encode a nonspecific alkaline and acid phosphatase, respectively, is regulated in response to the P(i) concentration in the medium by the same transcription factors. Upon induction by phosphate starvation, both promoters undergo characteristic chromatin remodeling, yet the extent of remodeling at the PHO8 promoter is significantly lower than at PHO5. Despite the coordinate regulation of the two promoters, the PHO8 promoter is almost 10 times weaker than PHO5. Here we show that of two Pho4 binding sites that had been previously mapped at the PHO8 promoter in vitro, only the high affinity one, UASp2, is functional in vivo. Activation of the PHO8 promoter is partially Pho2-dependent. However, unlike at PHO5, Pho4 can bind strongly to its binding site in the absence of Pho2 and remodel chromatin in a Pho2-independent manner. Replacement of the inactive UASp1 element by the UASp1 element from the PHO5 promoter results in more extensive chromatin remodeling and a concomitant 2-fold increase in promoter activity. In contrast, replacement of the high affinity UASp2 site with the corresponding site from PHO5 precludes chromatin remodeling completely and as a consequence promoter activation, despite efficient binding of Pho4 to this site. Deletion of the promoter region normally covered by nucleosomes -3 and -2 results in a 2-fold increase in promoter activity, further supporting a repressive role of these nucleosomes. These data show that there can be strong binding of Pho4 to a UAS element without any chromatin remodeling and promoter activation. The close correlation between promoter activity and the extent of chromatin disruption strongly suggests that the low level of PHO8 induction in comparison with PHO5 is partly due to the inability of Pho4 to achieve complete chromatin remodeling at this promoter.
Collapse
Affiliation(s)
- M Munsterkötter
- Adolf-Butenandt-Institut, Molekularbiologie, Universität München, Schillerstrasse 44, 80336 München, Germany
| | | | | |
Collapse
|
32
|
Then Bergh F, Flinn EM, Svaren J, Wright AP, Hörz W. Comparison of nucleosome remodeling by the yeast transcription factor Pho4 and the glucocorticoid receptor. J Biol Chem 2000; 275:9035-42. [PMID: 10722753 DOI: 10.1074/jbc.275.12.9035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chromatin reorganization of the PHO5 and murine mammary tumor virus (MMTV) promoters is triggered by binding of either Pho4 or the glucocorticoid receptor (GR), respectively. In order to compare the ability of Pho4 and GR to remodel chromatin and activate transcription, hybrid promoter constructs were created by insertion of the MMTV B nucleosome sequence into the PHO5 promoter and then transformed into a yeast strain expressing GR. Activation of either Pho4 (by phosphate depletion) or GR (by hormone addition) resulted in only slight induction of hybrid promoter activity. However, simultaneous activation of both Pho4 and GR resulted in synergistic activation to levels exceeding that of the wild type PHO5 promoter. Under these conditions, Pho4 completely disrupted the nucleosome containing its binding site. In contrast, GR had little effect on the stability of the MMTV B nucleosome. A minimal transactivation domain of the GR fused to the Pho4 DNA-binding domain is capable of efficiently disrupting the nucleosome with a Pho4-binding site, whereas the complementary hybrid protein (Pho4 activation domain, GR DNA-binding domain) does not labilize the B nucleosome. Therefore, we conclude that significant activation by Pho4 requires nucleosome disruption, whereas equivalent transcriptional activation by GR is not accompanied by overt perturbation of nucleosome structure. Our results show that the DNA-binding domains of the two factors play critical roles in determining how chromatin structure is modified during promoter activation.
Collapse
Affiliation(s)
- F Then Bergh
- Institut für Physiologische Chemie, Universität München, Schillerstrasse 44, D-80336 München, Sweden
| | | | | | | | | |
Collapse
|
33
|
Di Mauro E, Kendrew SG, Caserta M. Two distinct nucleosome alterations characterize chromatin remodeling at the Saccharomyces cerevisiae ADH2 promoter. J Biol Chem 2000; 275:7612-8. [PMID: 10713069 DOI: 10.1074/jbc.275.11.7612] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucose depletion derepresses the Saccharomyces cerevisiae ADH2 gene; this metabolic change is accompanied by chromatin structural modifications in the promoter region. We show that the ADR6/SWI1 gene is not necessary for derepression of the wild type chromosomal ADH2, whereas the transcription factor Adr1p, which regulates several S. cerevisiae functions, plays a major role in driving nucleosome reconfiguration and ADH2 expression. When we tested the effect of individual domains of the regulatory protein Adr1p on the chromatin structure of ADH2, a remodeling consisting of at least two steps was observed. Adr1p derivatives were analyzed in derepressing conditions, showing that the Adr1p DNA binding domain alone causes an alteration in chromatin organization in the absence of transcription. This alteration differs from the remodeling observed in the presence of the Adr1p activation domain when the promoter is transcriptionally active.
Collapse
Affiliation(s)
- E Di Mauro
- Centro di Studio per gli Acidi Nucleici, Consiglio Nazionale delle Ricerche, Università "La Sapienza," P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | |
Collapse
|
34
|
Sheldon LA, Smith CL, Bodwell JE, Munck AU, Hager GL. A ligand binding domain mutation in the mouse glucocorticoid receptor functionally links chromatin remodeling and transcription initiation. Mol Cell Biol 1999; 19:8146-57. [PMID: 10567540 PMCID: PMC84899 DOI: 10.1128/mcb.19.12.8146] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We utilized the mouse mammary tumor virus (MMTV) long terminal repeat (LTR) in vivo to understand how the interaction of the glucocorticoid receptor (GR) with a nucleosome-assembled promoter allows access of factors required for the transition from a repressed promoter to a derepressed, transcriptionally competent promoter. A mutation (C644G) in the ligand binding domain (LBD) of the mouse GR has provided information regarding the steps required in the derepression/activation process and in the functional significance of the two major transcriptional activation domains, AF1 and AF2. The mutant GR activates transcription from a transiently transfected promoter that has a disordered nucleosomal structure, though significantly less well than the wild-type GR. With an integrated, replicated promoter, which is assembled in an ordered nucleosomal array, the mutant GR does not activate transcription, and it fails to induce chromatin remodeling of the MMTV LTR promoter, as indicated by nuclease accessibility assays. Together, these findings support a two-step model for the transition of a nucleosome-assembled, repressed promoter to its transcriptionally active, derepressed form. In addition, we find that the C-terminal GR mutation is dominant over the transcription activation function of the N-terminal GR activation domain. These findings suggest that the primary activation function of the C-terminal activation domain is different from the function of the N-terminal activation domain and that it is required for derepression of the chromatin-repressed MMTV promoter.
Collapse
Affiliation(s)
- L A Sheldon
- Department of Physiology, Dartmouth Medical School, Lebanon, New Hampshire 03756, USA. Lynn.A.Sheldon.@Dartmouth.edu
| | | | | | | | | |
Collapse
|
35
|
Weinmann AS, Plevy SE, Smale ST. Rapid and selective remodeling of a positioned nucleosome during the induction of IL-12 p40 transcription. Immunity 1999; 11:665-75. [PMID: 10626889 DOI: 10.1016/s1074-7613(00)80141-7] [Citation(s) in RCA: 150] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleosomes are important for gene regulation, but comprehensive studies of nucleosome positioning, remodeling, and transcription factor binding at inducible mammalian promoters have not been reported. We have analyzed the IL-12 p40 promoter, which is induced in macrophages by bacterial products. High-resolution micrococcal nuclease analyses revealed that a positioned nucleosome, nucleosome 1, spans the promoter, with three positioned nucleosomes further upstream. Upon activation, nucleosome 1 was rapidly and selectively remodeled in a protein synthesis-dependent manner. In primary macrophages, IFNgamma synergistically enhanced p40 expression, but little effect on remodeling or promoter occupancy was observed. These results suggest that remodeling complexes are selectively targeted to a single, promoter-encompassing nucleosome and that IFNgamma influences an event that is independent or downstream of remodeling.
Collapse
Affiliation(s)
- A S Weinmann
- Howard Hughes Medical Institute, Department of Microbiology, Immunology, and Molecular Genetics, University of California, 90095-1662, USA
| | | | | |
Collapse
|
36
|
McDowell JC, Dean A. Structural and functional cross-talk between a distant enhancer and the epsilon-globin gene promoter shows interdependence of the two elements in chromatin. Mol Cell Biol 1999; 19:7600-9. [PMID: 10523648 PMCID: PMC84785 DOI: 10.1128/mcb.19.11.7600] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the requirements for enhancer-promoter communication by using the human beta-globin locus control region (LCR) DNase I-hypersensitive site 2 (HS2) enhancer and the epsilon-globin gene in chromatinized minichromosomes in erythroid cells. Activation of globin genes during development is accompanied by localized alterations of chromatin structure, and CACCC binding factors and GATA-1, which interact with both globin promoters and the LCR, are believed to be critical for globin gene transcription activation. We found that an HS2 element mutated in its GATA motif failed to remodel the epsilon-globin promoter or activate transcription yet HS2 nuclease accessibility did not change. Accessibility and transcription were reduced at promoters with mutated GATA-1 or CACCC sites. Strikingly, these mutations also resulted in reduced accessibility at HS2. In the absence of a globin gene, HS2 is similarly resistant to nuclease digestion. In contrast to observations in Saccharomyces cerevisiae, HS2-dependent promoter remodeling was diminished when we mutated the TATA box, crippling transcription. This mutation also reduced HS2 accessibility. The results indicate that the epsilon-globin promoter and HS2 interact both structurally and functionally and that both upstream activators and the basal transcription apparatus contribute to the interaction. Further, at least in this instance, transcription activation and promoter remodeling by a distant enhancer are not separable.
Collapse
Affiliation(s)
- J C McDowell
- Laboratory of Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-2715, USA
| | | |
Collapse
|
37
|
Komeili A, O'Shea EK. Roles of phosphorylation sites in regulating activity of the transcription factor Pho4. Science 1999; 284:977-80. [PMID: 10320381 DOI: 10.1126/science.284.5416.977] [Citation(s) in RCA: 259] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Transcription factors are often phosphorylated at multiple sites. Here it is shown that multiple phosphorylation sites on the budding yeast transcription factor Pho4 play distinct and separable roles in regulating the factor's activity. Phosphorylation of Pho4 at two sites promotes the factor's nuclear export and phosphorylation at a third site inhibits its nuclear import. Phosphorylation of a fourth site blocks the interaction of Pho4 with the transcription factor Pho2. Multiple phosphorylation sites provide overlapping and partially redundant layers of regulation that function to efficiently control the activity of Pho4.
Collapse
Affiliation(s)
- A Komeili
- University of California-San Francisco, Department of Biochemistry and Biophysics, 513 Parnassus Avenue, San Francisco, CA 94143-0448, USA
| | | |
Collapse
|
38
|
Abstract
A yeast mutant was isolated encoding a single amino acid substitution [serine-53 --> proline (S53P)] in transcription factor TFIIB that impairs activation of the PHO5 gene in response to phosphate starvation. This effect is activation-specific because S53P did not affect the uninduced level of PHO5 expression, yet is not specific to PHO5 because Adr1-mediated activation of the ADH2 gene also was impaired by S53P. Pho4, the principal activator of PHO5, directly interacted with TFIIB in vitro, and this interaction was impaired by the S53P replacement. Furthermore, Pho4 induced a conformational change in TFIIB, detected by enhanced sensitivity to V8 protease. The S53P replacement also impaired activation of a lexA(op)-lacZ reporter by a LexA fusion protein to the activation domain of Adr1, thereby indicating that the transcriptional effect on ADH2 expression is specific to the activation function of Adr1. These results define an activation-specific role for TFIIB in vivo and suggest that certain activators induce a conformational change in TFIIB as part of their mechanism of transcriptional stimulation.
Collapse
Affiliation(s)
- W H Wu
- Department of Biochemistry, Division of Nucleic Acids Enzymology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854-5635, USA
| | | |
Collapse
|
39
|
Stafford GA, Morse RH. Mutations in the AF-2/hormone-binding domain of the chimeric activator GAL4.estrogen receptor.VP16 inhibit hormone-dependent transcriptional activation and chromatin remodeling in yeast. J Biol Chem 1998; 273:34240-6. [PMID: 9852087 DOI: 10.1074/jbc.273.51.34240] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GAL4.estrogen receptor.VP16 (GAL4.ER.VP16), which contains the GAL4 DNA-binding domain, the human ER hormone binding (AF-2) domain, and the VP16 activation domain, functions as a hormone-dependent transcriptional activator in yeast (Louvion, J.-F., Havaux-Copf, B., and Picard, D. (1993) Gene (Amst.) 131, 129-134). Previously, we showed that this activator can remodel chromatin in yeast in a hormone-dependent manner. In this work, we show that a weakened VP16 activation domain in GAL4.ER.VP16 still allows hormone-dependent chromatin remodeling, but mutations in the AF-2 domain that abolish activity in the native ER also eliminate the ability of GAL4.ER.VP16 to activate transcription and to remodel chromatin. These findings suggest that an important role of the AF-2 domain in the native ER is to mask the activation potential of the AF-1 activation domain in the unliganded state; upon ligand activation, a conformational change releases AF-2-mediated repression and transcriptional activation ensues. We also show that the AF-2 domain, although inactive at simple promoters on its own in yeast, can enhance transcription by the MCM1 activator in hormone-dependent manner, consistent with its having a role in activation as well as repression in the native ER.
Collapse
Affiliation(s)
- G A Stafford
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, and State University of New York School of Public Health, Albany, New York 12201-2002, USA
| | | |
Collapse
|