1
|
Sarvepalli S, Pasika SR, Verma V, Thumma A, Bolla S, Nukala PK, Butreddy A, Bolla PK. A Review on the Stability Challenges of Advanced Biologic Therapeutics. Pharmaceutics 2025; 17:550. [PMID: 40430843 PMCID: PMC12114724 DOI: 10.3390/pharmaceutics17050550] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/29/2025] Open
Abstract
Advanced biotherapeutic systems such as gene therapy, mRNA lipid nanoparticles, antibody-drug conjugates, fusion proteins, and cell therapy have proven to be promising platforms for delivering targeted biologic therapeutics. Preserving the intrinsic stability of these advanced therapeutics is essential to maintain their innate structure, functionality, and shelf life. Nevertheless, various challenges and obstacles arise during formulation development and throughout the storage period due to their complex nature and sensitivity to various stress factors. Key stability concerns include physical degradation and chemical instability due to various factors such as fluctuations in pH and temperature, which results in conformational and colloidal instabilities of the biologics, adversely affecting their quality and therapeutic efficacy. This review emphasizes key stability issues associated with these advanced biotherapeutic systems and approaches to identify and overcome them. In gene therapy, the brittleness of viral vectors and gene encapsulation limits their stability, requiring the use of stabilizers, excipients, and lyophilization. Keeping cells viable throughout the whole cell therapy process, from culture to final formulation, is still a major difficulty. In mRNA therapeutics, stabilization strategies such as the optimization of mRNA nucleotides and lipid compositions are used to address the instability of both the mRNA and lipid nanoparticles. Monoclonal antibodies are colloidally and conformationally unstable. Hence, buffers and stabilizers are useful to maintain stability. Although fusion proteins and monoclonal antibodies share structural similarities, they show a similar pattern of instability. Antibody-drug conjugates possess issues with conjugation and linker stability. This review outlines the stability issues associated with advanced biotherapeutics and provides insights into the approaches to address these challenges.
Collapse
Affiliation(s)
- Sruthi Sarvepalli
- College of Pharmacy and Health Sciences, St John’s University, Queens, New York, NY 11439, USA; (S.S.); (P.K.N.)
| | - Shashank Reddy Pasika
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research—Raebareli (NIPER-R), Raebareli 226002, India;
| | - Vartika Verma
- Laboratory of Translational Research in Nanomedicines, Lifecare Innovations Private Limited, Lucknow 226021, India;
| | - Anusha Thumma
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Sandeep Bolla
- Department of Statistical Programming, Fortrea, Durham, NC 27709, USA;
| | - Pavan Kumar Nukala
- College of Pharmacy and Health Sciences, St John’s University, Queens, New York, NY 11439, USA; (S.S.); (P.K.N.)
| | - Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Pradeep Kumar Bolla
- Department of Biomedical Engineering, College of Engineering, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
2
|
Kojima ML, Hoppe C, Giraldez AJ. The maternal-to-zygotic transition: reprogramming of the cytoplasm and nucleus. Nat Rev Genet 2025; 26:245-267. [PMID: 39587307 PMCID: PMC11928286 DOI: 10.1038/s41576-024-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2024] [Indexed: 11/27/2024]
Abstract
A fertilized egg is initially transcriptionally silent and relies on maternally provided factors to initiate development. For embryonic development to proceed, the oocyte-inherited cytoplasm and the nuclear chromatin need to be reprogrammed to create a permissive environment for zygotic genome activation (ZGA). During this maternal-to-zygotic transition (MZT), which is conserved in metazoans, transient totipotency is induced and zygotic transcription is initiated to form the blueprint for future development. Recent technological advances have enhanced our understanding of MZT regulation, revealing common themes across species and leading to new fundamental insights about transcription, mRNA decay and translation.
Collapse
Affiliation(s)
- Mina L Kojima
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hoppe
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA.
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
3
|
Yamazaki H, Furuichi M, Katagiri M, Kajitani R, Itoh T, Chiba K. Recycling of Uridylated mRNAs in Starfish Embryos. Biomolecules 2024; 14:1610. [PMID: 39766317 PMCID: PMC11674185 DOI: 10.3390/biom14121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/11/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
In eukaryotes, mRNAs with long poly(A) tails are translationally active, but deadenylation and uridylation of these tails generally cause mRNA degradation. However, the fate of uridylated mRNAs that are not degraded quickly remains obscure. Here, using tail-seq and microinjection of the 3' region of mRNA, we report that some mRNAs in starfish are re-polyadenylated to be translationally active after deadenylation and uridylation. In oocytes, uridylated maternal cyclin B mRNAs are stable without decay, and they are polyadenylated to be translated after hormonal stimulation to resume meiosis, whereas they are deadenylated and re-uridylated at the blastula stage, followed by decay. Similarly, deadenylated and uridylated maternal ribosomal protein mRNAs, Rps29 and Rpl27a, were stable and inactive after hormonal stimulation, but they had been polyadenylated and active before hormonal stimulation. At the morula stage, uridylated maternal ribosomal protein mRNAs were re-polyadenylated, rendering them translationally active. These results indicate that uridylated mRNAs in starfish exist in a poised state, allowing them to be recycled or decayed.
Collapse
Affiliation(s)
- Haruka Yamazaki
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| | - Megumi Furuichi
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| | - Mikoto Katagiri
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| | - Rei Kajitani
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8550, Japan; (R.K.); (T.I.)
| | - Takehiko Itoh
- School of Life Science and Technology, Institute of Science Tokyo, Meguro-ku, Tokyo 152-8550, Japan; (R.K.); (T.I.)
| | - Kazuyoshi Chiba
- Department of Biological Sciences, Ochanomizu University, Bunkyo-ku, Tokyo 112-8610, Japan (M.K.)
| |
Collapse
|
4
|
Lee K, Cho K, Morey R, Cook-Andersen H. An extended wave of global mRNA deadenylation sets up a switch in translation regulation across the mammalian oocyte-to-embryo transition. Cell Rep 2024; 43:113710. [PMID: 38306272 PMCID: PMC11034814 DOI: 10.1016/j.celrep.2024.113710] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 02/04/2024] Open
Abstract
Without new transcription, gene expression across the oocyte-to-embryo transition (OET) relies instead on regulation of mRNA poly(A) tails to control translation. However, how tail dynamics shape translation across the OET in mammals remains unclear. We perform long-read RNA sequencing to uncover poly(A) tail lengths across the mouse OET and, incorporating published ribosome profiling data, provide an integrated, transcriptome-wide analysis of poly(A) tails and translation across the entire transition. We uncover an extended wave of global deadenylation during fertilization in which short-tailed, oocyte-deposited mRNAs are translationally activated without polyadenylation through resistance to deadenylation. Subsequently, in the embryo, mRNAs are readenylated and translated in a surge of global polyadenylation. We further identify regulation of poly(A) tail length at the isoform level and stage-specific enrichment of mRNA sequence motifs among regulated transcripts. These data provide insight into the stage-specific mechanisms of poly(A) tail regulation that orchestrate gene expression from oocyte to embryo in mammals.
Collapse
Affiliation(s)
- Katherine Lee
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Robert Morey
- Department of Pathology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
5
|
Lorenzo-Orts L, Strobl M, Steinmetz B, Leesch F, Pribitzer C, Roehsner J, Schutzbier M, Dürnberger G, Pauli A. eIF4E1b is a non-canonical eIF4E protecting maternal dormant mRNAs. EMBO Rep 2024; 25:404-427. [PMID: 38177902 PMCID: PMC10883267 DOI: 10.1038/s44319-023-00006-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 01/06/2024] Open
Abstract
Maternal mRNAs are essential for protein synthesis during oogenesis and early embryogenesis. To adapt translation to specific needs during development, maternal mRNAs are translationally repressed by shortening the polyA tails. While mRNA deadenylation is associated with decapping and degradation in somatic cells, maternal mRNAs with short polyA tails are stable. Here we report that the germline-specific eIF4E paralog, eIF4E1b, is essential for zebrafish oogenesis. eIF4E1b localizes to P-bodies in zebrafish embryos and binds to mRNAs with reported short or no polyA tails, including histone mRNAs. Loss of eIF4E1b results in reduced histone mRNA levels in early gonads, consistent with a role in mRNA storage. Using mouse and human eIF4E1Bs (in vitro) and zebrafish eIF4E1b (in vivo), we show that unlike canonical eIF4Es, eIF4E1b does not interact with eIF4G to initiate translation. Instead, eIF4E1b interacts with the translational repressor eIF4ENIF1, which is required for eIF4E1b localization to P-bodies. Our study is consistent with an important role of eIF4E1b in regulating mRNA dormancy and provides new insights into fundamental post-transcriptional regulatory principles governing early vertebrate development.
Collapse
Affiliation(s)
- Laura Lorenzo-Orts
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria.
| | - Marcus Strobl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Benjamin Steinmetz
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093, Zurich, Switzerland
| | - Friederike Leesch
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Carina Pribitzer
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Josef Roehsner
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Michael Schutzbier
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Gerhard Dürnberger
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030, Vienna, Austria.
| |
Collapse
|
6
|
Brothers WR, Fakim H, Kajjo S, Fabian MR. P-bodies directly regulate MARF1-mediated mRNA decay in human cells. Nucleic Acids Res 2022; 50:7623-7636. [PMID: 35801873 PMCID: PMC9303261 DOI: 10.1093/nar/gkac557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 11/12/2022] Open
Abstract
Processing bodies (P-bodies) are ribonucleoprotein granules that contain mRNAs, RNA-binding proteins and effectors of mRNA turnover. While P-bodies have been reported to contain translationally repressed mRNAs, a causative role for P-bodies in regulating mRNA decay has yet to be established. Enhancer of decapping protein 4 (EDC4) is a core P-body component that interacts with multiple mRNA decay factors, including the mRNA decapping (DCP2) and decay (XRN1) enzymes. EDC4 also associates with the RNA endonuclease MARF1, an interaction that antagonizes the decay of MARF1-targeted mRNAs. How EDC4 interacts with MARF1 and how it represses MARF1 activity is unclear. In this study, we show that human MARF1 and XRN1 interact with EDC4 using analogous conserved short linear motifs in a mutually exclusive manner. While the EDC4–MARF1 interaction is required for EDC4 to inhibit MARF1 activity, our data indicate that the interaction with EDC4 alone is not sufficient. Importantly, we show that P-body architecture plays a critical role in antagonizing MARF1-mediated mRNA decay. Taken together, our study suggests that P-bodies can directly regulate mRNA turnover by sequestering an mRNA decay enzyme and preventing it from interfacing with and degrading targeted mRNAs.
Collapse
Affiliation(s)
- William R Brothers
- Lady David Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| | - Hana Fakim
- Lady David Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| | - Sam Kajjo
- Lady David Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada
| | - Marc R Fabian
- Lady David Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, H3T 1E2, Canada.,Department of Biochemistry, McGill University Montreal, Quebec, H3A 1A3, Canada.,Gerald Bronfman Department of Oncology, McGill University Montreal, Quebec, H3A 1G5, Canada
| |
Collapse
|
7
|
Xiang K, Bartel DP. The molecular basis of coupling between poly(A)-tail length and translational efficiency. eLife 2021; 10:66493. [PMID: 34213414 PMCID: PMC8253595 DOI: 10.7554/elife.66493] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/21/2021] [Indexed: 01/10/2023] Open
Abstract
In animal oocytes and early embryos, mRNA poly(A)-tail length strongly influences translational efficiency (TE), but later in development this coupling between tail length and TE disappears. Here, we elucidate how this coupling is first established and why it disappears. Overexpressing cytoplasmic poly(A)-binding protein (PABPC) in Xenopus oocytes specifically improved translation of short-tailed mRNAs, thereby diminishing coupling between tail length and TE. Thus, strong coupling requires limiting PABPC, implying that in coupled systems longer-tail mRNAs better compete for limiting PABPC. In addition to expressing excess PABPC, post-embryonic mammalian cell lines had two other properties that prevented strong coupling: terminal-uridylation-dependent destabilization of mRNAs lacking bound PABPC, and a regulatory regime wherein PABPC contributes minimally to TE. Thus, these results revealed three fundamental mechanistic requirements for coupling and defined the context-dependent functions for PABPC, which promotes TE but not mRNA stability in coupled systems and mRNA stability but not TE in uncoupled systems. Cells are microscopic biological factories that are constantly creating new proteins. To do so, a cell must first convert its master genetic blueprint, the DNA, into strands of messenger RNA or mRNA. These strands are subsequently translated to make proteins. Cells have two ways to adjust the number of proteins they generate so they do not produce too many or too few: by changing how many mRNA molecules are available for translation, and by regulating how efficiently they translate these mRNA molecules into proteins. In animals, both unfertilized eggs and early-stage embryos lack the ability to create or destroy mRNAs, and consequently cannot adjust the number of mRNA molecules available for translation. These cells can therefore only regulate how efficiently each mRNA is translated. They do this by changing the length of the so-called poly(A) tail at the end of each mRNA molecule, which is made up of a long stretch of repeating adenosine nucleotides. The mRNAs with longer poly(A) tails are translated more efficiently than those with shorter poly(A) tails. However, this difference disappears in older embryos, when both long and short poly(A) tails are translated with equal efficiency, and it is largely unknown why. To find out more, Xiang and Bartel studied frog eggs, and discovered that artificially raising levels of a protein that binds poly(A) tails, also known as PABPC, improved the translation of short-tailed mRNAs to create a situation in which both short- and long-tailed mRNAs were translated with near-equal efficiency. This suggested that short- and long-tailed mRNAs compete for limited amounts of the translation-enhancing PABPC, and that long-tailed mRNAs are better at it than short-tailed mRNAs. Further investigation revealed that eggs also had to establish the right conditions for PABPC to enhance translation and had to protect mRNAs not associated with PABPC from being destroyed before they could be translated. Overall, Xiang and Bartel found that in eggs and early embryos, PABPC and poly(A) tails enhanced the translation of mRNAs but did not influence their stability, whereas later in development, they enhanced mRNA stability but not translation. This research provides new insights into how protein production is controlled at different stages of animal development, from unfertilized eggs to older embryos. Understanding how this process is regulated during normal development is crucial for gaining insights into how it can become dysfunctional and cause disease. These findings may therefore have important implications for research into areas such as infertility, reproductive medicine and rare genetic diseases.
Collapse
Affiliation(s)
- Kehui Xiang
- Howard Hughes Medical Institute, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, United States.,Whitehead Institute for Biomedical Research, Cambridge, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, United States
| |
Collapse
|
8
|
Vindry C, Weil D, Standart N. Pat1 RNA-binding proteins: Multitasking shuttling proteins. WILEY INTERDISCIPLINARY REVIEWS-RNA 2019; 10:e1557. [PMID: 31231973 DOI: 10.1002/wrna.1557] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/02/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Post-transcriptional regulation of gene expression is largely achieved at the level of splicing in the nucleus, and translation and mRNA decay in the cytosol. While the regulation may be global, through the direct inhibition of central factors, such as the spliceosome, translation initiation factors and mRNA decay enzymes, in many instances transcripts bearing specific sequences or particular features are regulated by RNA-binding factors which mobilize or impede recruitment of these machineries. This review focuses on the Pat1 family of RNA-binding proteins, conserved from yeast to man, that enhance the removal of the 5' cap by the decapping enzyme Dcp1/2, leading to mRNA decay and also have roles in translational repression. Like Dcp1/2, other decapping coactivators, including DDX6 and Edc3, and translational repressor proteins, Pat1 proteins are enriched in cytoplasmic P-bodies, which have a principal role in mRNA storage. They also concentrate in nuclear Cajal-bodies and splicing speckles and in man, impact splice site choice in some pre-mRNAs. Pivotal to these functions is the association of Pat1 proteins with distinct heptameric Lsm complexes: the cytosolic Pat1/Lsm1-7 complex mediates mRNA decay and the nuclear Pat1/Lsm2-8 complex alternative splicing. This dual role of human Pat1b illustrates the power of paralogous complexes to impact distinct processes in separate compartments. The review highlights our recent findings that Pat1b mediates the decay of AU-rich mRNAs, which are particularly enriched in P-bodies, unlike the decapping activator DDX6, which acts on GC-rich mRNAs, that tend to be excluded from P-bodies, and discuss the implications for mRNA decay pathways. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNRNA Processing > Splicing Regulation/Alternative Splicing Translation > Translation Regulation.
Collapse
Affiliation(s)
- Caroline Vindry
- Centre International de Recherche en Infectiologie, CIRI, Lyon, France
| | - Dominique Weil
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire de Biologie du Développement, Paris, France
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
10
|
Wang M, Ly M, Lugowski A, Laver JD, Lipshitz HD, Smibert CA, Rissland OS. ME31B globally represses maternal mRNAs by two distinct mechanisms during the Drosophila maternal-to-zygotic transition. eLife 2017; 6:27891. [PMID: 28875934 PMCID: PMC5779226 DOI: 10.7554/elife.27891] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/04/2017] [Indexed: 12/27/2022] Open
Abstract
In animal embryos, control of development is passed from exclusively maternal gene products to those encoded by the embryonic genome in a process referred to as the maternal-to-zygotic transition (MZT). We show that the RNA-binding protein, ME31B, binds to and represses the expression of thousands of maternal mRNAs during the Drosophila MZT. However, ME31B carries out repression in different ways during different phases of the MZT. Early, it represses translation while, later, its binding leads to mRNA destruction, most likely as a consequence of translational repression in the context of robust mRNA decay. In a process dependent on the PNG kinase, levels of ME31B and its partners, Cup and Trailer Hitch (TRAL), decrease by over 10-fold during the MZT, leading to a change in the composition of mRNA-protein complexes. We propose that ME31B is a global repressor whose regulatory impact changes based on its biological context.
Collapse
Affiliation(s)
- Miranda Wang
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Michael Ly
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada
| | - Andrew Lugowski
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - John D Laver
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Craig A Smibert
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Olivia S Rissland
- Molecular Medicine Program, The Hospital for Sick Children Research Institute, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, United States.,RNA Bioscience Initiative, University of Colorado Denver School of Medicine, Aurora, United States
| |
Collapse
|
11
|
MacLennan M, García-Cañadas M, Reichmann J, Khazina E, Wagner G, Playfoot CJ, Salvador-Palomeque C, Mann AR, Peressini P, Sanchez L, Dobie K, Read D, Hung CC, Eskeland R, Meehan RR, Weichenrieder O, García-Pérez JL, Adams IR. Mobilization of LINE-1 retrotransposons is restricted by Tex19.1 in mouse embryonic stem cells. eLife 2017; 6:e26152. [PMID: 28806172 PMCID: PMC5570191 DOI: 10.7554/elife.26152] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022] Open
Abstract
Mobilization of retrotransposons to new genomic locations is a significant driver of mammalian genome evolution, but these mutagenic events can also cause genetic disorders. In humans, retrotransposon mobilization is mediated primarily by proteins encoded by LINE-1 (L1) retrotransposons, which mobilize in pluripotent cells early in development. Here we show that TEX19.1, which is induced by developmentally programmed DNA hypomethylation, can directly interact with the L1-encoded protein L1-ORF1p, stimulate its polyubiquitylation and degradation, and restrict L1 mobilization. We also show that TEX19.1 likely acts, at least in part, through promoting the activity of the E3 ubiquitin ligase UBR2 towards L1-ORF1p. Moreover, loss of Tex19.1 increases L1-ORF1p levels and L1 mobilization in pluripotent mouse embryonic stem cells, implying that Tex19.1 prevents de novo retrotransposition in the pluripotent phase of the germline cycle. These data show that post-translational regulation of L1 retrotransposons plays a key role in maintaining trans-generational genome stability in mammals.
Collapse
Affiliation(s)
- Marie MacLennan
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Marta García-Cañadas
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Judith Reichmann
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Elena Khazina
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Gabriele Wagner
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Christopher J Playfoot
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Carmen Salvador-Palomeque
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Abigail R Mann
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Paula Peressini
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Laura Sanchez
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Karen Dobie
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - David Read
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Chao-Chun Hung
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Ragnhild Eskeland
- Department of
Biosciences, University of Oslo,
Oslo,
Norway
- Norwegian Center for
Stem Cell Research, Department of Immunology, Oslo
University Hospital, Oslo, Norway
| | - Richard R Meehan
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| | - Oliver Weichenrieder
- Department of
Biochemistry, Max Planck Institute for Developmental
Biology, Tübingen, Germany
| | - Jose Luis García-Pérez
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
- Centro de Genómica e
Investigación Oncológica (GENYO), Pfizer-Universidad de
Granada-Junta de Andalucía, PTS Granada, Granada,
Spain
| | - Ian R Adams
- MRC Human Genetics Unit,
MRC Institute of Genetics and Molecular Medicine,
University of Edinburgh, Edinburgh, United
Kingdom
| |
Collapse
|
12
|
Svoboda P, Fulka H, Malik R. Clearance of Parental Products. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:489-535. [DOI: 10.1007/978-3-319-46095-6_10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
CPEB and miR-15/16 Co-Regulate Translation of Cyclin E1 mRNA during Xenopus Oocyte Maturation. PLoS One 2016; 11:e0146792. [PMID: 26829217 PMCID: PMC4734764 DOI: 10.1371/journal.pone.0146792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/22/2015] [Indexed: 01/07/2023] Open
Abstract
Cell cycle transitions spanning meiotic maturation of the Xenopus oocyte and early embryogenesis are tightly regulated at the level of stored inactive maternal mRNA. We investigated here the translational control of cyclin E1, required for metaphase II arrest of the unfertilised egg and the initiation of S phase in the early embryo. We show that the cyclin E1 mRNA is regulated by both cytoplasmic polyadenylation elements (CPEs) and two miR-15/16 target sites within its 3’UTR. Moreover, we provide evidence that maternal miR-15/16 microRNAs co-immunoprecipitate with CPE-binding protein (CPEB), and that CPEB interacts with the RISC component Ago2. Experiments using competitor RNA and mutated cyclin E1 3’UTRs suggest cooperation of the regulatory elements to sustain repression of the cyclin E1 mRNA during early stages of maturation when CPEB becomes limiting and cytoplasmic polyadenylation of repressed mRNAs begins. Importantly, injection of anti-miR-15/16 LNA results in the early polyadenylation of endogenous cyclin E1 mRNA during meiotic maturation, and an acceleration of GVBD, altogether strongly suggesting that the proximal CPEB and miRNP complexes act to mutually stabilise each other. We conclude that miR-15/16 and CPEB co-regulate cyclin E1 mRNA. This is the first demonstration of the co-operation of these two pathways.
Collapse
|
14
|
Yartseva V, Giraldez AJ. The Maternal-to-Zygotic Transition During Vertebrate Development: A Model for Reprogramming. Curr Top Dev Biol 2015; 113:191-232. [PMID: 26358874 DOI: 10.1016/bs.ctdb.2015.07.020] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cellular transitions occur at all stages of organismal life from conception to adult regeneration. Changing cellular state involves three main features: activating gene expression necessary to install the new cellular state, modifying the chromatin status to stabilize the new gene expression program, and removing existing gene products to clear out the previous cellular program. The maternal-to-zygotic transition (MZT) is one of the most profound changes in the life of an organism. It involves gene expression remodeling at all levels, including the active clearance of the maternal oocyte program to adopt the embryonic totipotency. In this chapter, we provide an overview of molecular mechanisms driving maternal mRNA clearance during the MZT, describe the developmental consequences of losing components of this gene regulation, and illustrate how remodeling of gene expression during the MZT is common to other cellular transitions with parallels to cellular reprogramming.
Collapse
Affiliation(s)
- Valeria Yartseva
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA.
| | - Antonio J Giraldez
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut, USA; Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, USA.
| |
Collapse
|
15
|
Ayache J, Bénard M, Ernoult-Lange M, Minshall N, Standart N, Kress M, Weil D. P-body assembly requires DDX6 repression complexes rather than decay or Ataxin2/2L complexes. Mol Biol Cell 2015; 26:2579-95. [PMID: 25995375 PMCID: PMC4501357 DOI: 10.1091/mbc.e15-03-0136] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 01/04/2023] Open
Abstract
P-bodies are cytoplasmic ribonucleoprotein granules involved in posttranscriptional regulation. DDX6 is a key component of their assembly in human cells. This DEAD-box RNA helicase is known to be associated with various complexes, including the decapping complex, the CPEB repression complex, RISC, and the CCR4/NOT complex. To understand which DDX6 complexes are required for P-body assembly, we analyzed the DDX6 interactome using the tandem-affinity purification methodology coupled to mass spectrometry. Three complexes were prominent: the decapping complex, a CPEB-like complex, and an Ataxin2/Ataxin2L complex. The exon junction complex was also found, suggesting DDX6 binding to newly exported mRNAs. Finally, some DDX6 was associated with polysomes, as previously reported in yeast. Despite its high enrichment in P-bodies, most DDX6 is localized out of P-bodies. Of the three complexes, only the decapping and CPEB-like complexes were recruited into P-bodies. Investigation of P-body assembly in various conditions allowed us to distinguish required proteins from those that are dispensable or participate only in specific conditions. Three proteins were required in all tested conditions: DDX6, 4E-T, and LSM14A. These results reveal the variety of pathways of P-body assembly, which all nevertheless share three key factors connecting P-body assembly to repression.
Collapse
Affiliation(s)
- Jessica Ayache
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Marianne Bénard
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Michèle Ernoult-Lange
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Michel Kress
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| | - Dominique Weil
- UPMC Université de Paris 06, Institut de Biologie Paris-Seine, CNRS UMR-7622, F-75005 Paris, France
| |
Collapse
|
16
|
Kubacka D, Miguel RN, Minshall N, Darzynkiewicz E, Standart N, Zuberek J. Distinct features of cap binding by eIF4E1b proteins. J Mol Biol 2014; 427:387-405. [PMID: 25463438 PMCID: PMC4306533 DOI: 10.1016/j.jmb.2014.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 11/05/2014] [Accepted: 11/10/2014] [Indexed: 02/06/2023]
Abstract
eIF4E1b, closely related to the canonical translation initiation factor 4E (eIF4E1a), cap-binding protein is highly expressed in mouse, Xenopus and zebrafish oocytes. We have previously characterized eIF4E1b as a component of the CPEB mRNP translation repressor complex along with the eIF4E-binding protein 4E-Transporter, the Xp54/DDX6 RNA helicase and additional RNA-binding proteins. eIF4E1b exhibited only very weak interactions with m7GTP-Sepharose and, rather than binding eIF4G, interacted with 4E-T. Here we undertook a detailed examination of both Xenopus and human eIF4E1b interactions with cap analogues using fluorescence titration and homology modeling. The predicted structure of eIF4E1b maintains the α + β fold characteristic of eIF4E proteins and its cap-binding pocket is similarly arranged by critical amino acids: Trp56, Trp102, Glu103, Trp166, Arg112, Arg157 and Lys162 and residues of the C-terminal loop. However, we demonstrate that eIF4E1b is 3-fold less well able to bind the cap than eIF4E1a, both proteins being highly stimulated by methylation at N7 of guanine. Moreover, eIF4E1b proteins are distinguishable from eIF4E1a by a set of conserved amino acid substitutions, several of which are located near to cap-binding residues. Indeed, eIF4E1b possesses several distinct features, namely, enhancement of cap binding by a benzyl group at N7 position of guanine, a reduced response to increasing length of the phosphate chain and increased binding to a cap separated by a linker from Sepharose, suggesting differences in the arrangement of the protein's core. In agreement, mutagenesis of the amino acids differentiating eIF4E1b from eIF4E1a reduces cap binding by eIF4E1a 2-fold, demonstrating their role in modulating cap binding. Sequence analysis of vertebrate eIF4E1a and eIF4E1b proteins identified a set of conserved substitutions, including those near to cap-binding residues. The fluorescence titration assay revealed that human and Xenopus eIF4E1b have 3-fold lower affinity for m7GTP than the eIF4E1a proteins. Additional distinct features of cap binding by eIF4E1b suggest differences in the arrangement of the protein's core and its C-terminal loop. Mutagenesis of the distinguishing amino acids reduced cap binding by eIF4E1a 2-fold, demonstrating their role in modulating affinity to m7GTP.
Collapse
Affiliation(s)
- Dorota Kubacka
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-089, Poland.
| | - Ricardo Núñez Miguel
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Nicola Minshall
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-089, Poland; Centre of New Technologies, University of Warsaw, Warsaw 02-089, Poland.
| | - Nancy Standart
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK.
| | - Joanna Zuberek
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw 02-089, Poland.
| |
Collapse
|
17
|
Kumar P, Sweeney TR, Skabkin MA, Skabkina OV, Hellen CUT, Pestova TV. Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5'-terminal regions of cap0-, cap1- and 5'ppp- mRNAs. Nucleic Acids Res 2013; 42:3228-45. [PMID: 24371270 PMCID: PMC3950709 DOI: 10.1093/nar/gkt1321] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ribosomal recruitment of cellular mRNAs depends on binding of eIF4F to the mRNA's 5'-terminal 'cap'. The minimal 'cap0' consists of N7-methylguanosine linked to the first nucleotide via a 5'-5' triphosphate (ppp) bridge. Cap0 is further modified by 2'-O-methylation of the next two riboses, yielding 'cap1' (m7GpppNmN) and 'cap2' (m7GpppNmNm). However, some viral RNAs lack 2'-O-methylation, whereas others contain only ppp- at their 5'-end. Interferon-induced proteins with tetratricopeptide repeats (IFITs) are highly expressed effectors of innate immunity that inhibit viral replication by incompletely understood mechanisms. Here, we investigated the ability of IFIT family members to interact with cap1-, cap0- and 5'ppp- mRNAs and inhibit their translation. IFIT1 and IFIT1B showed very high affinity to cap-proximal regions of cap0-mRNAs (K1/2,app ∼9 to 23 nM). The 2'-O-methylation abrogated IFIT1/mRNA interaction, whereas IFIT1B retained the ability to bind cap1-mRNA, albeit with reduced affinity (K1/2,app ∼450 nM). The 5'-terminal regions of 5'ppp-mRNAs were recognized by IFIT5 (K1/2,app ∼400 nM). The activity of individual IFITs in inhibiting initiation on a specific mRNA was determined by their ability to interact with its 5'-terminal region: IFIT1 and IFIT1B efficiently outcompeted eIF4F and abrogated initiation on cap0-mRNAs, whereas inhibition on cap1- and 5'ppp- mRNAs by IFIT1B and IFIT5 was weaker and required higher protein concentrations.
Collapse
Affiliation(s)
- Parimal Kumar
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | | | | | |
Collapse
|
18
|
Ma J, Flemr M, Strnad H, Svoboda P, Schultz RM. Maternally recruited DCP1A and DCP2 contribute to messenger RNA degradation during oocyte maturation and genome activation in mouse. Biol Reprod 2013; 88:11. [PMID: 23136299 DOI: 10.1095/biolreprod.112.105312] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The oocyte-to-zygote transition entails transforming a highly differentiated oocyte into totipotent blastomeres and represents one of the earliest obstacles that must be successfully hurdled for continued development. Degradation of maternal mRNAs, which likely lies at the heart of this transition, is characterized by a transition from mRNA stability to instability during oocyte maturation. Although phosphorylation of the oocyte-specific RNA-binding protein MSY2 during maturation is implicated in making maternal mRNAs more susceptible to degradation, mechanisms underlying mRNA degradation during oocyte maturation remain poorly understood. We report that DCP1A and DCP2, proteins responsible for decapping mRNA, are encoded by maternal mRNAs recruited for translation during maturation via cytoplasmic polyadenylation elements located in their 3' untranslated regions. Both DCP1A and DCP2 are phosphorylated during maturation, with CDC2A being the kinase likely responsible for both, although MAPK may be involved in DCP1A phosphorylation. Inhibiting accumulation of DCP1A and DCP2 by RNA interference or morpholinos decreases not only degradation of mRNAs during meiotic maturation but also transcription of the zygotic genome. The results indicate that maternally recruited DCP1A and DCP2 are critical players in the transition from mRNA stability to instability during meiotic maturation and that proper maternal mRNA degradation must be successful to execute the oocyte-to-zygote transition.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
19
|
Embryonic poly(A)-binding protein (ePAB) phosphorylation is required for Xenopus oocyte maturation. Biochem J 2012; 445:93-100. [PMID: 22497250 DOI: 10.1042/bj20120304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Oocyte maturation and early embryonic development require the cytoplasmic polyadenylation and concomitant translational activation of stored maternal mRNAs. ePAB [embryonic poly(A)-binding protein, also known as ePABP and PABPc1-like] is a multifunctional post-transcriptional regulator that binds to poly(A) tails. In the present study we find that ePAB is a dynamically modified phosphoprotein in Xenopus laevis oocytes and show by mutation that phosphorylation at a four residue cluster is required for oocyte maturation. We further demonstrate that these phosphorylations are critical for cytoplasmic polyadenylation, but not for ePAB's inherent ability to promote translation. Our results provide the first insight into the role of post-translational modifications in regulating PABP protein activity in vivo.
Collapse
|
20
|
Carroll JS, Munchel SE, Weis K. The DExD/H box ATPase Dhh1 functions in translational repression, mRNA decay, and processing body dynamics. ACTA ACUST UNITED AC 2011; 194:527-37. [PMID: 21844211 PMCID: PMC3160580 DOI: 10.1083/jcb.201007151] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Dhh1 is a critical determinant in whether mRNAs are translated, stored, or decayed. Translation, storage, and degradation of messenger ribonucleic acids (mRNAs) are key steps in the posttranscriptional control of gene expression, but how mRNAs transit between these processes remains poorly understood. In this paper, we functionally characterized the DExD/H box adenosine triphosphatase (ATPase) Dhh1, a critical regulator of the cytoplasmic fate of mRNAs. Using mRNA tethering experiments in yeast, we showed that Dhh1 was sufficient to move an mRNA from an active state to translational repression. In actively dividing cells, translational repression was followed by mRNA decay; however, deleting components of the 5′–3′ decay pathway uncoupled these processes. Whereas Dhh1’s ATPase activity was not required to induce translational inhibition and mRNA decay when directly tethered to an mRNA, ATP hydrolysis regulated processing body dynamics and the release of Dhh1 from these RNA–protein granules. Our results place Dhh1 at the interface of translation and decay controlling whether an mRNA is translated, stored, or decayed.
Collapse
Affiliation(s)
- Johanna S Carroll
- Department of Molecular and Cell Biology, Division of Cell and Developmental Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
21
|
Smith RW, Anderson RC, Smith JW, Brook M, Richardson WA, Gray NK. DAZAP1, an RNA-binding protein required for development and spermatogenesis, can regulate mRNA translation. RNA (NEW YORK, N.Y.) 2011; 17:1282-95. [PMID: 21576381 PMCID: PMC3138565 DOI: 10.1261/rna.2717711] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 04/01/2011] [Indexed: 05/30/2023]
Abstract
DAZ-associated protein 1 (DAZAP1) is an RNA-binding protein required for normal growth, development, and fertility in mice. However, its molecular functions have not been elucidated. Here we find that Xenopus laevis and human DAZAP1, which are each expressed as short and long forms, act as mRNA-specific activators of translation in a manner that is sensitive to the number of binding sites present within the 3' UTR. Domain mapping suggests that this conserved function is mainly associated with C-terminal regions of DAZAP1. Interestingly, we find that the expression of xDAZAP1 and its polysome association are developmentally controlled, the latter suggesting that the translational activator function of DAZAP1 is regulated. However, ERK phosphorylation of DAZAP1, which can alter protein interactions with its C terminus, does not play a role in regulating its ability to participate in translational complexes. Since relatively few mRNA-specific activators have been identified, we explored the mechanism by which DAZAP1 activates translation. By utilizing reporter mRNAs with internal ribosome entry sites, we establish that DAZAP1 stimulates translation initiation. Importantly, this activity is not dependent on the recognition of the 5' cap by initiation factors, showing that it functions downstream from this frequently regulated event, but is modulated by changes in the adenylation status of mRNAs. This suggests a function in the formation of "end-to-end" complexes, which are important for efficient initiation, which we show to be independent of a direct interaction with the bridging protein eIF4G.
Collapse
Affiliation(s)
- Richard W.P. Smith
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Ross C. Anderson
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Joel W.S. Smith
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Matthew Brook
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - William A. Richardson
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| | - Nicola K. Gray
- MRC Centre for Reproductive Health/MRC Human Reproductive Sciences Unit, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh EH4 2XU, Scotland, United Kingdom
| |
Collapse
|
22
|
Pat1 proteins: a life in translation, translation repression and mRNA decay. Biochem Soc Trans 2011; 38:1602-7. [PMID: 21118134 DOI: 10.1042/bst0381602] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pat1 proteins are conserved across eukaryotes. Vertebrates have evolved two Pat1 proteins paralogues, whereas invertebrates and yeast only possess one such protein. Despite their lack of known domains or motifs, Pat1 proteins are involved in several key post-transcriptional mechanisms of gene expression control. In yeast, Pat1p interacts with translating mRNPs (messenger ribonucleoproteins), and is responsible for translational repression and decapping activation, ultimately leading to mRNP degradation. Drosophila HPat and human Pat1b (PatL1) proteins also have conserved roles in the 5'→3' mRNA decay pathway. Consistent with their functions in silencing gene expression, Pat1 proteins localize to P-bodies (processing bodies) in yeast, Drosophila, Caenorhabditis elegans and human cells. Altogether, Pat1 proteins may act as scaffold proteins allowing the sequential binding of repression and decay factors on mRNPs, eventually leading to their degradation. In the present mini-review, we present the current knowledge on Pat1 proteins in the context of their multiple functions in post-transcriptional control.
Collapse
|
23
|
Marnef A, Maldonado M, Bugaut A, Balasubramanian S, Kress M, Weil D, Standart N. Distinct functions of maternal and somatic Pat1 protein paralogs. RNA (NEW YORK, N.Y.) 2010; 16:2094-107. [PMID: 20826699 PMCID: PMC2957050 DOI: 10.1261/rna.2295410] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/05/2010] [Indexed: 05/15/2023]
Abstract
We previously identified Xenopus Pat1a (P100) as a member of the maternal CPEB RNP complex, whose components resemble those of P-(rocessing) bodies, and which is implicated in translational control in Xenopus oocytes. Database searches have identified Pat1a proteins in other vertebrates, as well as paralogous Pat1b proteins. Here we characterize Pat1 proteins, which have no readily discernable sequence features, in Xenopus oocytes, eggs, and early embryos and in human tissue culture cells. xPat1a and 1b have essentially mutually exclusive expression patterns in oogenesis and embryogenesis. xPat1a is degraded during meiotic maturation, via PEST-like regions, while xPat1b mRNA is translationally activated at GVBD by cytoplasmic polyadenylation. Pat1 proteins bind RNA in vitro, via a central domain, with a preference for G-rich sequences, including the NRAS 5' UTR G-quadruplex-forming sequence. When tethered to reporter mRNA, both Pat proteins repress translation in oocytes. Indeed, both epitope-tagged proteins interact with the same components of the CPEB RNP complex, including CPEB, Xp54, eIF4E1b, Rap55B, and ePAB. However, examining endogenous protein interactions, we find that in oocytes only xPat1a is a bona fide component of the CPEB RNP, and that xPat1b resides in a separate large complex. In tissue culture cells, hPat1b localizes to P-bodies, while mPat1a-GFP is either found weakly in P-bodies or disperses P-bodies in a dominant-negative fashion. Altogether we conclude that Pat1a and Pat1b proteins have distinct functions, mediated in separate complexes. Pat1a is a translational repressor in oocytes in a CPEB-containing complex, and Pat1b is a component of P-bodies in somatic cells.
Collapse
Affiliation(s)
- Aline Marnef
- Department of Biochemistry, University of Cambridge, Cambridge CB21QW, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
24
|
Minshall N, Allison R, Marnef A, Wilczynska A, Standart N. Translational control assessed using the tethered function assay in Xenopus oocytes. Methods 2010; 51:165-9. [PMID: 20188836 DOI: 10.1016/j.ymeth.2010.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 02/18/2010] [Accepted: 02/20/2010] [Indexed: 10/19/2022] Open
Abstract
The tethered function assay is a method designed to address the role of an RNA-binding protein upon the metabolism of a reporter RNA. The basis of this assay is to artificially tether a test protein to a reporter mRNA by employing an unrelated bacteriophage MS2 or lambda N RNA-protein interaction, and to assess the effects of the test protein on the reporter RNA. In this chapter, we first discuss the principles and validity of the tethered function approach, drawing on appropriate examples from several cell types and of many proteins that regulate RNA in a variety of processes, including RNA processing (splicing, polyadenylation/deadenylation, decay), localisation and protein synthesis. Secondly, we will focus on the use of this approach to monitor translational activation and repression in Xenopus oocytes, giving a detailed protocol, and discussing possible optimizations we have explored.
Collapse
Affiliation(s)
- Nicola Minshall
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, UK
| | | | | | | | | |
Collapse
|
25
|
Kramer S, Queiroz R, Ellis L, Hoheisel JD, Clayton C, Carrington M. The RNA helicase DHH1 is central to the correct expression of many developmentally regulated mRNAs in trypanosomes. J Cell Sci 2010; 123:699-711. [PMID: 20124414 PMCID: PMC2823576 DOI: 10.1242/jcs.058511] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2009] [Indexed: 01/17/2023] Open
Abstract
In trypanosomes, the predominant mechanisms of regulation of gene expression are post-transcriptional. The DEAD-box RNA helicase DHH1 was identified in a screen for gene products that are necessary for the instability of the GPI-PLC mRNA in insect-stage trypanosomes. Expression of an ATPase-deficient dhh1 mutant caused a rapid growth arrest associated with a decrease in polysomes, an increase in P-bodies and a slight decrease in average mRNA levels. However, the effect of dhh1 mutant expression on both turnover and translational repression of mRNAs was selective. Whereas there was little effect on the stability of constitutive mRNAs, the control of a large cohort of developmentally regulated mRNAs was reversed; many mRNAs normally downregulated in insect-stage trypanosomes were stabilized and many mRNAs normally upregulated decreased in level. One stabilised mRNA, ISG75, was characterised further. Despite the overall decrease in polysomes, the proportion of the ISG75 mRNA in polysomes was unchanged and the result was ISG75 protein accumulation. Our data show that specific mRNAs can escape DHH1-mediated translational repression. In trypanosomes, DHH1 has a selective role in determining the levels of developmentally regulated mRNAs.
Collapse
Affiliation(s)
- Susanne Kramer
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Rafael Queiroz
- ZMBH, Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | - Louise Ellis
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Jörg D. Hoheisel
- Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany
| | | | - Mark Carrington
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
26
|
Maresca V, Flori E, Bellei B, Aspite N, Kovacs D, Picardo M. MC1R stimulation by alpha-MSH induces catalase and promotes its re-distribution to the cell periphery and dendrites. Pigment Cell Melanoma Res 2010; 23:263-75. [PMID: 20067588 DOI: 10.1111/j.1755-148x.2010.00673.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrated a direct correlation between melanogenic and catalase activities on in vitro and ex vivo models. Here, we investigated whether the stimulation of Melanocortin-1 Receptor (MC1R) could influence catalase expression, activity and cellular localization. For this purpose, we treated B16-F0 melanoma cells with alpha-Melanocyte Stimulating Hormone (alpha-MSH) and we showed a rapid induction of catalase through a cAMP/PKA-dependent, microphthalmia-associated transcription factor (MITF) independent mechanism, acting at post-transcriptional level. Moreover, alpha-MSH promoted a partial re-distribution of catalase to the cell periphery and dendrites. This work strengthens the correlation between melanogenesis and anti-oxidants, demonstrating the induction of catalase in response to a melanogenic stimulation, such as alpha-MSH-dependent MC1R activation. Moreover, this study highlights catalase regulatory mechanisms poorly known, and attributes to alpha-MSH a protective role in defending melanocytes, and possibly keratinocytes, not only on the basis of its pigmentary action, but also for its capacity to stimulate a quick anti-oxidant defence.
Collapse
Affiliation(s)
- Vittoria Maresca
- Laboratorio di Fisiopatologia Cutanea e Biologia Molecolare-Centro di Metabolomica, San Gallicano Dermatologic Institute IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The 7-methylguanosine cap added to the 5′ end of mRNA is essential for efficient gene expression and cell viability. Methylation of the guanosine cap is necessary for the translation of most cellular mRNAs in all eukaryotic organisms in which it has been investigated. In some experimental systems, cap methylation has also been demonstrated to promote transcription, splicing, polyadenylation and nuclear export of mRNA. The present review discusses how the 7-methylguanosine cap is synthesized by cellular enzymes, the impact that the 7-methylguanosine cap has on biological processes, and how the mRNA cap methylation reaction is regulated.
Collapse
|
28
|
Minshall N, Kress M, Weil D, Standart N. Role of p54 RNA helicase activity and its C-terminal domain in translational repression, P-body localization and assembly. Mol Biol Cell 2009; 20:2464-72. [PMID: 19297524 DOI: 10.1091/mbc.e09-01-0035] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The RNA helicase p54 (DDX6, Dhh1, Me31B, Cgh-1, RCK) is a prototypic component of P-(rocessing) bodies in cells ranging from yeast to human. Previously, we have shown that it is also a component of the large cytoplasmic polyadenylation element-binding protein translation repressor complex in Xenopus oocytes and that when tethered to the 3' untranslated region, Xp54 represses reporter mRNA translation. Here, we examine the role of the p54 helicase activity in translational repression and in P-body formation. Mutagenesis of conserved p54 helicase motifs activates translation in the tethered function assay, reduces accumulation of p54 in P-bodies in HeLa cells, and inhibits its capacity to assemble P-bodies in p54-depleted cells. Similar results were obtained in four helicase motifs implicated in ATP binding and in coupling ATPase and RNA binding activities. This is accompanied by changes in the interaction of the mutant p54 with the oocyte repressor complex components. Surprisingly, the C-terminal D2 domain alone is sufficient for translational repression and complete accumulation in P-bodies, although it is deficient for P-body assembly. We propose a novel RNA helicase model, in which the D2 domain acts as a protein binding platform and the ATPase/helicase activity allows protein complex remodeling that dictates the balance between repressors and an activator of translation.
Collapse
Affiliation(s)
- Nicola Minshall
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom
| | | | | | | |
Collapse
|
29
|
Standart N, Minshall N. Translational control in early development: CPEB, P-bodies and germinal granules. Biochem Soc Trans 2008; 36:671-6. [PMID: 18631138 DOI: 10.1042/bst0360671] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Selective protein synthesis in oocytes, eggs and early embryos of many organisms drives several critical aspects of early development, including meiotic maturation and entry into mitosis, establishment of embryonic axes and cell fate determination. mRNA-binding proteins which (usually) recognize 3'-UTR (untranslated region) elements in target mRNAs influence the recruitment of the small ribosomal subunit to the 5' cap. Probably the best studied such protein is CPEB (cytoplasmic polyadenylation element-binding protein), which represses translation in the oocyte in a cap-dependent manner, and activates translation in the meiotically maturing egg, via cytoplasmic polyadenylation. Co-immunoprecipitation and gel-filtration assays revealed that CPEB in Xenopus oocytes is in a very large RNP (ribonucleoprotein) complex and interacts with other RNA-binding proteins including Xp54 RNA helicase, Pat1, RAP55 (RNA-associated protein 55) and FRGY2 (frog germ cell-specific Y-box protein 2), as well as the eIF4E (eukaryotic initiation factor 4E)-binding protein 4E-T (eIF4E-transporter) and an ovary-specific eIF4E1b, which binds the cap weakly. Functional tests which implicate 4E-T and eIF4E1b in translational repression in oocytes led us to propose a model for the specific inhibition of translation of a target mRNA by a weak cap-binding protein. The components of the CPEB RNP complex are common to P-bodies (processing bodies), neuronal granules and germinal granules, suggesting that a highly conserved 'masking' complex operates in early development, neurons and somatic cells.
Collapse
Affiliation(s)
- Nancy Standart
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
30
|
Wang YY, Charlesworth A, Byrd SM, Gregerson R, MacNicol MC, MacNicol AM. A novel mRNA 3' untranslated region translational control sequence regulates Xenopus Wee1 mRNA translation. Dev Biol 2008; 317:454-66. [PMID: 18395197 PMCID: PMC2562724 DOI: 10.1016/j.ydbio.2008.02.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 02/14/2008] [Accepted: 02/15/2008] [Indexed: 11/16/2022]
Abstract
Cell cycle progression during oocyte maturation requires the strict temporal regulation of maternal mRNA translation. The intrinsic basis of this temporal control has not been fully elucidated but appears to involve distinct mRNA 3' UTR regulatory elements. In this study, we identify a novel translational control sequence (TCS) that exerts repression of target mRNAs in immature oocytes of the frog, Xenopus laevis, and can direct early cytoplasmic polyadenylation and translational activation during oocyte maturation. The TCS is functionally distinct from the previously characterized Musashi/polyadenylation response element (PRE) and the cytoplasmic polyadenylation element (CPE). We report that TCS elements exert translational repression in both the Wee1 mRNA 3' UTR and the pericentriolar material-1 (Pcm-1) mRNA 3' UTR in immature oocytes. During oocyte maturation, TCS function directs the early translational activation of the Pcm-1 mRNA. By contrast, we demonstrate that CPE sequences flanking the TCS elements in the Wee1 3' UTR suppress the ability of the TCS to direct early translational activation. Our results indicate that a functional hierarchy exists between these distinct 3' UTR regulatory elements to control the timing of maternal mRNA translational activation during oocyte maturation.
Collapse
Affiliation(s)
- Yi Ying Wang
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Slot 814, 4301 W. Markham St., Little Rock, AR 72205, USA
| | - Amanda Charlesworth
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 814, 4301 W. Markham St., Little Rock, AR 72205, USA
- The Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 814, 4301 W. Markham St., Little Rock, AR 72205, USA
| | - Shannon M. Byrd
- Committee on Developmental Biology, The University of Chicago, Chicago, IL, USA
| | | | - Melanie C. MacNicol
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 814, 4301 W. Markham St., Little Rock, AR 72205, USA
- The Center for Translational Neuroscience, University of Arkansas for Medical Sciences, Slot 814, 4301 W. Markham St., Little Rock, AR 72205, USA
| | - Angus M. MacNicol
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Slot 814, 4301 W. Markham St., Little Rock, AR 72205, USA
- Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Slot 814, 4301 W. Markham St., Little Rock, AR 72205, USA
- The Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Slot 814, 4301 W. Markham St., Little Rock, AR 72205, USA
| |
Collapse
|
31
|
Roles of LEF-4 and PTP/BVP RNA triphosphatases in processing of baculovirus late mRNAs. J Virol 2008; 82:5573-83. [PMID: 18385232 DOI: 10.1128/jvi.00058-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The baculovirus Autographa californica nucleopolyhedrovirus encodes two proteins with RNA triphosphatase activity. Late expression factor LEF-4, which is an essential gene, is a component of the RNA polymerase and also encodes the RNA capping enzyme guanylyltransferase. PTP/BVP is also an RNA triphosphatase, but is not essential for viral replication, possibly because its activity is redundant to that of LEF-4. To elucidate the role of these proteins in mRNA cap formation, a mutant virus that lacked both RNA triphosphatase activities was constructed. Infection studies revealed that the double-mutant virus was viable and normal with respect to the production of budded virus. Pulse-labeling studies and immunoblot analyses showed that late gene expression in the double mutant was equivalent to that in the wild type, while polyhedrin expression was slightly reduced. Direct analysis of the mRNA cap structure indicated no alteration of cap processing in the double mutant. Together, these results reveal that baculoviruses replicate and express their late genes at normal levels in the absence of its two different types of RNA triphosphatases.
Collapse
|
32
|
Zamudio JR, Mittra B, Foldynová-Trantírková S, Zeiner GM, Lukes J, Bujnicki JM, Sturm NR, Campbell DA. The 2'-O-ribose methyltransferase for cap 1 of spliced leader RNA and U1 small nuclear RNA in Trypanosoma brucei. Mol Cell Biol 2007; 27:6084-92. [PMID: 17606627 PMCID: PMC1952150 DOI: 10.1128/mcb.00647-07] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
mRNA cap 1 2'-O-ribose methylation is a widespread modification that is implicated in processing, trafficking, and translational control in eukaryotic systems. The eukaryotic enzyme has yet to be identified. In kinetoplastid flagellates trans-splicing of spliced leader (SL) to polycistronic precursors conveys a hypermethylated cap 4, including a cap 0 m7G and seven additional methylations on the first 4 nucleotides, to all nuclear mRNAs. We report the first eukaryotic cap 1 2'-O-ribose methyltransferase, TbMTr1, a member of a conserved family of viral and eukaryotic enzymes. Recombinant TbMTr1 methylates the ribose of the first nucleotide of an m7G-capped substrate. Knockdowns and null mutants of TbMTr1 in Trypanosoma brucei grow normally, with loss of 2'-O-ribose methylation at cap 1 on substrate SL RNA and U1 small nuclear RNA. TbMTr1-null cells have an accumulation of cap 0 substrate without further methylation, while spliced mRNA is modified efficiently at position 4 in the absence of 2'-O-ribose methylation at position 1; downstream cap 4 methylations are independent of cap 1. Based on TbMTr1-green fluorescent protein localization, 2'-O-ribose methylation at position 1 occurs in the nucleus. Accumulation of 3'-extended SL RNA substrate indicates a delay in processing and suggests a synergistic role for cap 1 in maturation.
Collapse
Affiliation(s)
- Jesse R Zamudio
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, 609 Charles E. Young Drive East, University of California at Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Schmidt M, Grief J, Feierabend J. Mode of translational activation of the catalase (cat1) mRNA of rye leaves (Secale cereale L.) and its control through blue light and reactive oxygen. PLANTA 2006; 223:835-46. [PMID: 16341707 DOI: 10.1007/s00425-005-0125-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 09/02/2005] [Indexed: 05/05/2023]
Abstract
The enzyme catalase (EC 1.11.1.6) is inactivated by light and must be continuously replaced by new synthesis in order to maintain a constant enzyme activity in leaves. In winter rye leaves (Secale cereale L.) posttranscriptional mechanisms determine the rate of new catalase synthesis, including a light-controlled reversible modification of the catalase cat1 mRNA by methylation which greatly enhanced its translation efficiency. The specificity and regulation of this mRNA activation were further investigated. The translation efficiency of the rye cat1 mRNA was much more enhanced by N-7 methylation of the cap than that of an lhcb transcript. Investigations with truncated rye cat1 mRNAs indicated that the translational enhancement resulting from N-7 cap methylation did not require the presence of specific sequences of cat1 5'- and 3'-untranslated regions. Translational activation of the cat1 mRNA in rye leaves was independent of photosynthesis and most effectively induced by blue light. Peroxides (H(2)O(2), tertiary butyl hydroperoxide) and conditions enforcing an H(2)O(2) accumulation in the leaves (aminotriazole, paraquat) also caused an activation of the cat1 mRNA. A search for further signalling systems controlling the replenishment of inactivated catalase in light suggested that an inositol-1,4,5-triphosphate-mediated liberation of Ca(2+) from internal stores and a protein phosphatase played some role. However, these signalling systems did not affect the activation of the cat1 mRNA. After removal of Ca(2+) by EGTA the cat1 mRNA was rapidly degraded.
Collapse
Affiliation(s)
- Matthias Schmidt
- Fachbereich Biowissenschaften, Goethe-Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
34
|
Abstract
RNA-binding proteins play a major part in the control of gene expression during early development. At this stage, the majority of regulation occurs at the levels of translation and RNA localization. These processes are, in general, mediated by RNA-binding proteins interacting with specific sequence motifs in the 3'-untranslated regions of their target RNAs. Although initial work concentrated on the analysis of these sequences and their trans-acting factors, we are now beginning to gain an understanding of the mechanisms by which some of these proteins function. In this review, we will describe a number of different families of RNA-binding proteins, grouping them together on the basis of common regulatory strategies, and emphasizing the recurrent themes that occur, both across different species and as a response to different biological problems.
Collapse
|
35
|
Collier B, Gorgoni B, Loveridge C, Cooke HJ, Gray NK. The DAZL family proteins are PABP-binding proteins that regulate translation in germ cells. EMBO J 2005; 24:2656-66. [PMID: 16001084 PMCID: PMC1176464 DOI: 10.1038/sj.emboj.7600738] [Citation(s) in RCA: 177] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 06/10/2005] [Indexed: 11/09/2022] Open
Abstract
DAZL proteins are germ-cell-specific RNA-binding proteins essential for gametogenesis. The precise molecular role of these proteins in germ-cell development remains enigmatic; however, they appear to function in the cytoplasm. In order to directly address the function of vertebrate DAZL proteins, we have used Xenopus laevis oocytes as a model system. Here we demonstrate that members of this family, including Xdazl, mouse Dazl, human DAZL, human DAZ and human BOULE, have the ability to stimulate translation and function at the level of translation initiation. We show that DAZL proteins interact with poly(A)-binding proteins (PABPs), which are critical for the initiation of translation. Mapping and tethered function experiments suggest that these interactions are physiologically important. This leads to an attractive hypothesis whereby DAZL proteins activate translationally silent mRNAs during germ cell development through the direct recruitment of PABPs.
Collapse
Affiliation(s)
- Brian Collier
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Barbara Gorgoni
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Carolyn Loveridge
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Howard J Cooke
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Nicola K Gray
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, UK. Tel.: +44 131 3322471; Fax: +44 131 4678456; E-mail:
| |
Collapse
|
36
|
Wilkie GS, Gautier P, Lawson D, Gray NK. Embryonic poly(A)-binding protein stimulates translation in germ cells. Mol Cell Biol 2005; 25:2060-71. [PMID: 15713657 PMCID: PMC549382 DOI: 10.1128/mcb.25.5.2060-2071.2005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of poly(A)-binding protein 1 (PABP1) in poly(A)-mediated translation has been extensively characterized. Recently, Xenopus laevis oocytes and early embryos were shown to contain a novel poly(A)-binding protein, ePABP, which has not been described in other organisms. ePABP was identified as a protein that binds AU-rich sequences and prevents shortening of poly(A) tails. Here, we show that ePABP is also expressed in X. laevis testis, suggesting a more general role for ePABP in gametogenesis. We find that ePABP is conserved throughout vertebrates and that mouse and X. laevis cells have similar tissue-specific ePABP expression patterns. Furthermore, we directly assess the role of ePABP in translation. We show that ePABP is associated with polysomes and can activate the translation of reporter mRNAs in vivo. Despite its relative divergence from PABP1, we find that ePABP has similar functional domains and can bind to several PABP1 partners, suggesting that they may use similar mechanisms to activate translation. In addition, we find that PABP1 and ePABP can interact, suggesting that these proteins may be bound simultaneously to the same mRNA. Finally, we show that the activity of both PABP1 and ePABP increases during oocyte maturation, when many mRNAs undergo polyadenylation.
Collapse
Affiliation(s)
- Gavin S Wilkie
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, EH4 2XU Edinburgh, Scotland, United Kingdom
| | | | | | | |
Collapse
|
37
|
The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106365] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Schmidt M, Dehne S, Feierabend J. Post-transcriptional mechanisms control catalase synthesis during its light-induced turnover in rye leaves through the availability of the hemin cofactor and reversible changes of the translation efficiency of mRNA. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 31:601-613. [PMID: 12207650 DOI: 10.1046/j.1365-313x.2002.01382.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The enzyme catalase is light-sensitive. In leaves, losses caused by photoinactivation are replaced by new enzyme and the rate of de novo synthesis must be rapidly and flexibly attuned to fluctuating light conditions. In mature rye leaves, post-transcriptional mechanisms were shown to control the rate of catalase synthesis. The amount of the leaf catalase (CAT-1) transcript did not increase with light intensity, but was even higher after dark exposure of light-grown leaves. Initiation was apparently not limiting translation in the dark, as the association of the Cat1 mRNA with polysomes did not change notably under different light conditions. By analysing the translation of catalase polypeptides in cell-free systems with poly(A)+ RNA from leaves or with mRNA transcribed from a Cat1-containing cDNA clone, two mechanisms of post-transcriptional control were identified. First, translation of catalase depended on the presence of hemin. In leaves, the availability of hemin may signal the extent of catalase degradation as the hemin of the inactivated enzyme is recycled. Second, the translation efficiency of the Cat1 transcripts was reversibly modulated in a dose-dependent manner by the light intensity to which leaves were exposed, prior to extraction. The Cat1 mRNA from light-exposed leaves was translated much more efficiently than mRNA from dark-exposed leaves. The increase of its translation activity in vivo was not blocked by cordycepin but was suppressed by methylation inhibitors, indicating a reversible modification of pre-existing mRNA by methylation. Translation of in vitro synthesized Cat1 mRNA required a methylated cap (m7GpppG), but was virtually below detection when it contained an unmethylated cap (GpppG).
Collapse
Affiliation(s)
- Matthias Schmidt
- Botanisches Institut, Goethe-Universität, PO Box 11 19 32, D-60054 Frankfurt am Main, Germany
| | | | | |
Collapse
|
39
|
Dickson KS, Thompson SR, Gray NK, Wickens M. Poly(A) polymerase and the regulation of cytoplasmic polyadenylation. J Biol Chem 2001; 276:41810-6. [PMID: 11551905 DOI: 10.1074/jbc.m103030200] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Translational activation in oocytes and embryos is often regulated via increases in poly(A) length. Cleavage and polyadenylation specificity factor (CPSF), cytoplasmic polyadenylation element binding protein (CPEB), and poly(A) polymerase (PAP) have each been implicated in cytoplasmic polyadenylation in Xenopus laevis oocytes. Cytoplasmic polyadenylation activity first appears in vertebrate oocytes during meiotic maturation. Data presented here shows that complexes containing both CPSF and CPEB are present in extracts of X. laevis oocytes prepared before or after meiotic maturation. Assessment of a variety of RNA sequences as polyadenylation substrates indicates that the sequence specificity of polyadenylation in egg extracts is comparable to that observed with highly purified mammalian CPSF and recombinant PAP. The two in vitro systems exhibit a sequence specificity that is similar, but not identical, to that observed in vivo, as assessed by injection of the same RNAs into the oocyte. These findings imply that CPSFs intrinsic RNA sequence preferences are sufficient to account for the specificity of cytoplasmic polyadenylation of some mRNAs. We discuss the hypothesis that CPSF is required for all polyadenylation reactions, but that the polyadenylation of some mRNAs may require additional factors such as CPEB. To test the consequences of PAP binding to mRNAs in vivo, PAP was tethered to a reporter mRNA in resting oocytes using MS2 coat protein. Tethered PAP catalyzed polyadenylation and stimulated translation approximately 40-fold; stimulation was exclusively cis-acting, but was independent of a CPE and AAUAAA. Both polyadenylation and translational stimulation required PAPs catalytic core, but did not require the putative CPSF interaction domain of PAP. These results demonstrate that premature recruitment of PAP can cause precocious polyadenylation and translational stimulation in the resting oocyte, and can be interpreted to suggest that the role of other factors is to deliver PAP to the mRNA.
Collapse
Affiliation(s)
- K S Dickson
- Department of Biochemistry, College of Agriculture and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
40
|
Abstract
The regulated translation of messenger RNA is essential for cell-cycle progression, establishment of the body plan during early development, and modulation of key activities in the central nervous system. Cytoplasmic polyadenylation, which is one mechanism of controlling translation, is driven by CPEB--a highly conserved, sequence-specific RNA-binding protein that binds to the cytoplasmic polyadenylation element, and modulates translational repression and mRNA localization. What are the features and functions of this multifaceted protein?
Collapse
Affiliation(s)
- R Mendez
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | |
Collapse
|
41
|
Palancade B, Bellier S, Almouzni G, Bensaude O. Incomplete RNA polymerase II phosphorylation in Xenopus laevis early embryos. J Cell Sci 2001; 114:2483-9. [PMID: 11559756 DOI: 10.1242/jcs.114.13.2483] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of RNA polymerase II largest subunit on its C-terminal domain (CTD) heptapeptide repeats has been shown to play a key role in the regulation of mRNA synthesis and processing. In many higher metazoans, early embryos do not synthesise mRNAs during the first cell cycles following fertilisation. Transcription resumes and becomes an absolute requirement for development after several cell cycles characteristic of each species. Therefore, CTD phosphorylation has been investigated during early development of the African clawed-frog Xenopus laevis. Fertilisation is shown to trigger an abrupt dephosphorylation of the CTD. Phosphorylation of the CTD resumes concurrently with the mid-blastula transition (MBT). Both are advanced with polyspermy and increased temperatures; they do not occur when replication is impaired with aphidicolin. In Xenopus laevis somatic cells, a set of monoclonal antibodies defined distinct phosphoepitopes on the CTD. Two of them were absent before the MBT indicating that the CTD lacks the phosphorylation at the serine-2 position of the heptapeptide. The possible contribution of RNA polymerase II phosphorylation to the developmental-regulation of maternal mRNA processing in embryos is discussed.
Collapse
Affiliation(s)
- B Palancade
- Génétique Moléculaire, UMR 8541 CNRS, Ecole Normale Supérieure, 46 rue d'Ulm, 75230 Paris Cedex 05, France
| | | | | | | |
Collapse
|
42
|
Copeland PR, Wormington M. The mechanism and regulation of deadenylation: identification and characterization of Xenopus PARN. RNA (NEW YORK, N.Y.) 2001; 7:875-86. [PMID: 11424938 PMCID: PMC1370141 DOI: 10.1017/s1355838201010020] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In Xenopus oocytes, the deadenylation of a specific class of maternal mRNAs results in their translational repression. Here we report the purification, characterization, and molecular cloning of the Xenopus poly(A) ribonuclease (xPARN). xPARN copurifies with two polypeptides of 62 kDa and 74 kDa, and we provide evidence that the 62-kDa protein is a proteolytic product of the 74-kDa protein. We have isolated the full-length xPARN cDNA, which contains the tripartite exonuclease domain conserved among RNase D family members, a putative RNA recognition motif, and a domain found in minichromosome maintenance proteins. Characterization of the xPARN enzyme shows that it is a poly(A)-specific 3' exonuclease but does not require an A residue at the 3' end. However, the addition of 25 nonadenylate residues at the 3' terminus, or a 3' terminal phosphate is inhibitory. Western analysis shows that xPARN is expressed throughout early development, suggesting that it may participate in the translational silencing and destabilization of maternal mRNAs during both oocyte maturation and embryogenesis. In addition, microinjection experiments demonstrate that xPARN can be activated in the oocyte nucleus in the absence of cytoplasmic components and that nuclear export of deadenylated RNA is impeded. Based on the poly(A) binding activity of xPARN in the absence of catalysis, a model for substrate specificity is proposed.
Collapse
Affiliation(s)
- P R Copeland
- Department of Biology, University of Virginia, Charlottesville 22903, USA.
| | | |
Collapse
|
43
|
Reverte CG, Ahearn MD, Hake LE. CPEB degradation during Xenopus oocyte maturation requires a PEST domain and the 26S proteasome. Dev Biol 2001; 231:447-58. [PMID: 11237472 DOI: 10.1006/dbio.2001.0153] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoplasmic poly(A) elongation is widely utilized during the early development of many organisms as a mechanism for translational activation. Targeting of mRNAs for this mechanism requires the presence of a U-rich element, the cytoplasmic polyadenylation element (CPE), and its binding protein, CPEB. Blocking cytoplasmic polyadenylation by interfering with the CPE or CPEB prevents the translational activation of mRNAs that are crucial for oocyte maturation. The CPE sequence and CPEB are also important for translational repression of mRNAs stored in the Xenopus oocyte during oogenesis. To understand the contribution of protein metabolism to these two roles for CPEB, we have examined the mechanisms influencing the expression of CPEB during oogenesis and oocyte maturation. Through a comparison of CPEB mRNA levels, protein synthesis, and accumulation, we find that CPEB is synthesized during oogenesis and stockpiled in the oocyte. Minimal synthesis of CPEB, <3.6%, occurs during oocyte maturation. In late oocyte maturation, 75% of CPEB is degraded coincident with germinal vesicle breakdown. Using proteasome and ubiquitination inhibitors, we demonstrate that CPEB degradation occurs via the proteasome pathway, most likely through ubiquitin-conjugated intermediates. In addition, we demonstrate that degradation requires a 14 amino acid PEST domain.
Collapse
Affiliation(s)
- C G Reverte
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | |
Collapse
|
44
|
Charlesworth A, Welk J, MacNicol AM. The temporal control of Wee1 mRNA translation during Xenopus oocyte maturation is regulated by cytoplasmic polyadenylation elements within the 3'-untranslated region. Dev Biol 2000; 227:706-19. [PMID: 11071785 DOI: 10.1006/dbio.2000.9922] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Wee1 protein tyrosine kinase is a key regulator of cell cycle progression. Wee1 activity is necessary for the control of the first embryonic cell cycle following the fertilization of meiotically mature Xenopus oocytes. Wee1 mRNA is present in immature oocytes, but Wee1 protein does not accumulate in immature oocytes or during the early stages of progesterone-stimulated maturation. This delay in Wee1 translation is critical since premature Wee1 protein accumulation has been shown to inhibit oocyte maturation. In this study we provide evidence that Wee1 protein accumulation is regulated at the level of mRNA translation. This translational control is directed by sequences within the Wee1 mRNA 3'-untranslated region (3' UTR). Specifically, cytoplasmic polyadenylation element (CPE) sequences within the Wee1 3' UTR are necessary for full translational repression in immature oocytes. Our data further indicate that while CPE-independent mechanisms may regulate the levels of Wee1 protein accumulation during progesterone-stimulated oocyte maturation, the timing of Wee1 mRNA translational induction is directed through a CPE-dependent mechanism.
Collapse
Affiliation(s)
- A Charlesworth
- Department of Medicine, Committee on Developmental Biology, Ben May Institute for Cancer Research, The University of Chicago, 5841 S. Maryland Avenue, Chicago, Illinois 60637, USA
| | | | | |
Collapse
|
45
|
Gray NK, Coller JM, Dickson KS, Wickens M. Multiple portions of poly(A)-binding protein stimulate translation in vivo. EMBO J 2000; 19:4723-33. [PMID: 10970864 PMCID: PMC302064 DOI: 10.1093/emboj/19.17.4723] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2000] [Revised: 07/07/2000] [Accepted: 07/12/2000] [Indexed: 11/13/2022] Open
Abstract
Translational stimulation of mRNAs during early development is often accompanied by increases in poly(A) tail length. Poly(A)-binding protein (PAB) is an evolutionarily conserved protein that binds to the poly(A) tails of eukaryotic mRNAs. We examined PAB's role in living cells, using both Xenopus laevis oocytes and Saccharomyces cerevisiae, by tethering it to the 3'-untranslated region of reporter mRNAs. Tethered PAB stimulates translation in vivo. Neither a poly(A) tail nor PAB's poly(A)-binding activity is required. Multiple domains of PAB act redundantly in oocytes to stimulate translation: the interaction of RNA recognition motifs (RRMs) 1 and 2 with eukaryotic initiation factor-4G correlates with translational stimulation. Interaction with Paip-1 is insufficient for stimulation. RRMs 3 and 4 also stimulate, but bind neither factor. The regions of tethered PAB required in yeast to stimulate translation and stabilize mRNAs differ, implying that the two functions are distinct. Our results establish that oocytes contain the machinery necessary to support PAB-mediated translation and suggest that PAB may be an important participant in translational regulation during early development.
Collapse
Affiliation(s)
- N K Gray
- Department of Biochemistry, 433 Babcock Drive, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
46
|
Gingras AC, Raught B, Sonenberg N. eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu Rev Biochem 2000; 68:913-63. [PMID: 10872469 DOI: 10.1146/annurev.biochem.68.1.913] [Citation(s) in RCA: 1645] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eukaryotic translation initiation factor 4F (eIF4F) is a protein complex that mediates recruitment of ribosomes to mRNA. This event is the rate-limiting step for translation under most circumstances and a primary target for translational control. Functions of the constituent proteins of eIF4F include recognition of the mRNA 5' cap structure (eIF4E), delivery of an RNA helicase to the 5' region (eIF4A), bridging of the mRNA and the ribosome (eIF4G), and circularization of the mRNA via interaction with poly(A)-binding protein (eIF4G). eIF4 activity is regulated by transcription, phosphorylation, inhibitory proteins, and proteolytic cleavage. Extracellular stimuli evoke changes in phosphorylation that influence eIF4F activity, especially through the phosphoinositide 3-kinase (PI3K) and Ras signaling pathways. Viral infection and cellular stresses also affect eIF4F function. The recent determination of the structure of eIF4E at atomic resolution has provided insight about how translation is initiated and regulated. Evidence suggests that eIF4F is also implicated in malignancy and apoptosis.
Collapse
Affiliation(s)
- A C Gingras
- Department of Biochemistry McGill University, Montréal, Québec, Canada.
| | | | | |
Collapse
|
47
|
Gillian AL, Schmechel SC, Livny J, Schiff LA, Nibert ML. Reovirus protein sigmaNS binds in multiple copies to single-stranded RNA and shares properties with single-stranded DNA binding proteins. J Virol 2000; 74:5939-48. [PMID: 10846075 PMCID: PMC112090 DOI: 10.1128/jvi.74.13.5939-5948.2000] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/1999] [Accepted: 04/05/2000] [Indexed: 11/20/2022] Open
Abstract
Reovirus nonstructural protein sigmaNS interacts with reovirus plus-strand RNAs in infected cells, but little is known about the nature of those interactions or their roles in viral replication. In this study, a recombinant form of sigmaNS was analyzed for in vitro binding to nucleic acids using gel mobility shift assays. Multiple units of sigmaNS bound to single-stranded RNA molecules with positive cooperativity and with each unit covering about 25 nucleotides at saturation. The sigmaNS protein did not bind preferentially to reovirus RNA over nonreovirus RNA in competition experiments but did bind preferentially to single-stranded over double-stranded nucleic acids and with a slight preference for RNA over DNA. In addition, sigmaNS bound to single-stranded RNA to which a 19-base DNA oligonucleotide was hybridized at either end or near the middle. When present in saturative amounts, sigmaNS displaced this oligonucleotide from the partial duplex. The strand displacement activity did not require ATP hydrolysis and was inhibited by MgCl(2), distinguishing it from a classical ATP-dependent helicase. These properties of sigmaNS are similar to those of single-stranded DNA binding proteins that are known to participate in genomic DNA replication, suggesting a related role for sigmaNS in replication of the reovirus RNA genome.
Collapse
Affiliation(s)
- A L Gillian
- Department of Biochemistry and Institute for Molecular Virology, The College of Agricultural and Life Sciences, University of Wisconsin-Madison, 53706, USA
| | | | | | | | | |
Collapse
|
48
|
Miller AJ, Zhou JJ. Xenopus oocytes as an expression system for plant transporters. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1465:343-58. [PMID: 10748264 DOI: 10.1016/s0005-2736(00)00148-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The Xenopus oocyte provides a powerful system for the expression and characterisation of plant membrane proteins. Many different types of plant membrane proteins have been expressed and characterised using this system. As there are already several general reviews on the methodology for oocyte expression of channel proteins, we have summarised the particular advantages and disadvantages of using the system for the characterisation of plant cotransporter proteins. As an example of how the system can be used to identify transporters, we describe evidence for a low affinity nitrate transporter in oocytes injected with poly(A) RNA extracted from nitrate-induced barley roots. Furthermore, we describe evidence that the expression of some transporters in oocytes can modify the properties of endogenous membrane proteins. We conclude that although care must be taken in the interpretation of results and in choosing appropriate controls for experiments, oocyte expression is an excellent tool which will have an important role in characterising plant membrane proteins.
Collapse
Affiliation(s)
- A J Miller
- Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, UK.
| | | |
Collapse
|
49
|
Barkoff AF, Dickson KS, Gray NK, Wickens M. Translational control of cyclin B1 mRNA during meiotic maturation: coordinated repression and cytoplasmic polyadenylation. Dev Biol 2000; 220:97-109. [PMID: 10720434 DOI: 10.1006/dbio.2000.9613] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational control is prominent during meiotic maturation and early development. In this report, we investigate a mode of translational repression in Xenopus laevis oocytes, focusing on the mRNA encoding cyclin B1. Translation of cyclin B1 mRNA is relatively inactive in the oocyte and increases dramatically during meiotic maturation. We show, by injection of synthetic mRNAs, that the cis-acting sequences responsible for repression of cyclin B1 mRNA reside within its 3'UTR. Repression can be saturated by increasing the concentration of reporter mRNA injected, suggesting that the cyclin B1 3'UTR sequences provide a binding site for a trans-acting repressor. The sequences that direct repression overlap and include cytoplasmic polyadenylation elements (CPEs), sequences known to promote cytoplasmic polyadenylation. However, the presence of a CPE per se appears insufficient to cause repression, as other mRNAs that contain CPEs are not translationally repressed. We demonstrate that relief of repression and cytoplasmic polyadenylation are intimately linked. Repressing elements do not override the stimulatory effect of a long poly(A) tail, and polyadenylation of cyclin B1 mRNA is required for its translational recruitment. Our results suggest that translational recruitment of endogenous cyclin B1 mRNA is a collaborative effect of derepression and poly(A) addition. We discuss several molecular mechanisms that might underlie this collaboration.
Collapse
Affiliation(s)
- A F Barkoff
- Department of Biochemistry, University of Wisconsin, 433 Babcock Drive, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Poly(A) tail removal is often the initial and rate-limiting step in mRNA decay and is also responsible for translational silencing of maternal mRNAs during oocyte maturation and early development. Here we report that deadenylation in HeLa cell extracts and by a purified mammalian poly(A)-specific exoribonuclease, PARN (previously designated deadenylating nuclease, DAN), is stimulated by the presence of an m(7)-guanosine cap on substrate RNAs. Known cap-binding proteins, such as eIF4E and the nuclear cap-binding complex, are not detectable in the enzyme preparation, and PARN itself binds to m(7)GTP-Sepharose and is eluted specifically with the cap analog m(7)GTP. Xenopus PARN is known to catalyze mRNA deadenylation during oocyte maturation. The enzyme is depleted from oocyte extract with m(7)GTP-Sepharose, can be photocross-linked to the m(7)GpppG cap and deadenylates m(7)GpppG-capped RNAs more efficiently than ApppG-capped RNAs both in vitro and in vivo. These data provide additional evidence that PARN is responsible for deadenylation during oocyte maturation and suggest that interactions between 5' cap and 3' poly(A) tail may integrate translational efficiency with mRNA stability.
Collapse
Affiliation(s)
- E Dehlin
- Institut für Biochemie, Universität Halle-Wittenberg, D-06099 Halle
| | | | | | | |
Collapse
|