1
|
Protacio RU, Davidson MK, Malone EG, Helmlinger D, Smith JR, Gibney PA, Wahls WP. Agar lot-specific inhibition in the plating efficiency of yeast spores and cells. G3 (BETHESDA, MD.) 2024; 14:jkae229. [PMID: 39312221 PMCID: PMC11631513 DOI: 10.1093/g3journal/jkae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 12/11/2024]
Abstract
The fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae are highly diverged (530 mya), single-celled, model eukaryotic organisms. Scientists employ mating, meiosis, and the plating of ascospores and cells to generate strains with novel genotypes and to discover biological processes. Our three laboratories encountered independently sudden-onset, major impediments to such research. Spore suspensions and vegetative cells no longer plated effectively on minimal media. By systematically analyzing multiple different media components from multiple different suppliers, we identified the source of the problem. Specific lots of agar were toxic. We report that this sporadic toxicity affects independently the agar stocks of multiple vendors, has occurred repeatedly over at least three decades, and extends to species in highly diverged taxa. Interestingly, the inhibitory effects displayed variable penetrance and were attenuated on rich media. Consequently, quality control checks that use only rich media can provide false assurances on the quality of the agar. Lastly, we describe likely sources of the toxicity and we provide specific guidance for quality control measures that should be applied by all vendors as preconditions for their sale of agar.
Collapse
Affiliation(s)
- Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Emory G Malone
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Dominique Helmlinger
- Centre de Recherche en Biologie Cellulaire de Montpellier, CNRS, University of Montpellier, 34293 Montpellier Cedex 05, France
| | - Jeremy R Smith
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Patrick A Gibney
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| |
Collapse
|
2
|
Protacio RU, Dixon S, Davidson MK, Wahls WP. Creating Meiotic Recombination-Regulating DNA Sites by SpEDIT in Fission Yeast Reveals Inefficiencies, Target-Site Duplications, and Ectopic Insertions. Biomolecules 2024; 14:1016. [PMID: 39199403 PMCID: PMC11352267 DOI: 10.3390/biom14081016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Recombination hotspot-activating DNA sites (e.g., M26, CCAAT, Oligo-C) and their binding proteins (e.g., Atf1-Pcr1 heterodimer; Php2-Php3-Php5 complex, Rst2, Prdm9) regulate the distribution of Spo11 (Rec12)-initiated meiotic recombination. We sought to create 14 different candidate regulatory DNA sites via bp substitutions in the ade6 gene of Schizosaccharomyces pombe. We used a fission yeast-optimized CRISPR-Cas9 system (SpEDIT) and 196 bp-long dsDNA templates with centrally located bp substitutions designed to ablate the genomic PAM site, create specific 15 bp-long DNA sequences, and introduce a stop codon. After co-transformation with a plasmid that encoded both the guide RNA and Cas9 enzyme, about one-third of colonies had a phenotype diagnostic for DNA sequence changes at ade6. PCR diagnostics and DNA sequencing revealed a diverse collection of alterations at the target locus, including: (A) complete or (B) partial template-directed substitutions; (C) non-homologous end joinings; (D) duplications; (E) bp mutations, and (F) insertions of ectopic DNA. We concluded that SpEDIT can be used successfully to generate a diverse collection of DNA sequence elements within a reporter gene of interest. However, its utility is complicated by low efficiency, incomplete template-directed repair events, and undesired alterations to the target locus.
Collapse
Affiliation(s)
| | | | | | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA; (R.U.P.); (M.K.D.)
| |
Collapse
|
3
|
Davidson MK, Protacio RU, Helmlinger D, Wahls WP. Laboratory horror stories: Poison in the agars. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597796. [PMID: 38895319 PMCID: PMC11185651 DOI: 10.1101/2024.06.06.597796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The fission yeast Schizosaccharomyces pombe is a single-celled eukaryote that can be cultured as a haploid or as a diploid. Scientists employ mating, meiosis, and the plating of ascospores and cells to generate strains with novel genotypes and to discover biological processes. Our two laboratories encountered independently sudden-onset, major impediments to such research. Spore suspensions and vegetative cells no longer plated effectively on minimal media. By systematically analyzing multiple different media components from multiple different suppliers, we identified the source of the problem. Specific lots of agar, from different suppliers, were toxic. Interestingly, the inhibitory effect was attenuated on rich media. Consequently, quality control checks that use only rich media can provide false assurances on the quality of the agar. Lastly, we describe likely sources of the toxicity and we provide specific guidance for quality control measures that should be applied by all vendors as preconditions for their sale of agar.
Collapse
Affiliation(s)
- Mari K. Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Reine U. Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Dominique Helmlinger
- Centre de Recherche en Biologie Cellulaire de Montpellier, University of Montpellier, CNRS, 1919 Route de Mende, 34293, Montpellier Cedex 05, France
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| |
Collapse
|
4
|
Tsuruta Y, Senmatsu S, Oe H, Hoffman CS, Hirota K. Metabolic stress-induced long ncRNA transcription governs the formation of meiotic DNA breaks in the fission yeast fbp1 gene. PLoS One 2024; 19:e0294191. [PMID: 38252660 PMCID: PMC10802949 DOI: 10.1371/journal.pone.0294191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/26/2023] [Indexed: 01/24/2024] Open
Abstract
Meiotic recombination is a pivotal process that ensures faithful chromosome segregation and contributes to the generation of genetic diversity in offspring, which is initiated by the formation of double-strand breaks (DSBs). The distribution of meiotic DSBs is not uniform and is clustered at hotspots, which can be affected by environmental conditions. Here, we show that non-coding RNA (ncRNA) transcription creates meiotic DSBs through local chromatin remodeling in the fission yeast fbp1 gene. The fbp1 gene is activated upon glucose starvation stress, in which a cascade of ncRNA-transcription in the fbp1 upstream region converts the chromatin configuration into an open structure, leading to the subsequent binding of transcription factors. We examined the distribution of meiotic DSBs around the fbp1 upstream region in the presence and absence of glucose and observed several new DSBs after chromatin conversion under glucose starvation conditions. Moreover, these DSBs disappeared when cis-elements required for ncRNA transcription were mutated. These results indicate that ncRNA transcription creates meiotic DSBs in response to stress conditions in the fbp1 upstream region. This study addressed part of a long-standing unresolved mechanism underlying meiotic recombination plasticity in response to environmental fluctuation.
Collapse
Affiliation(s)
- Yusuke Tsuruta
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Satoshi Senmatsu
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Hana Oe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| | - Charles S. Hoffman
- Biology Department, Boston College, Chestnut Hill, MA, United States of America
| | - Kouji Hirota
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji-shi, Tokyo, Japan
| |
Collapse
|
5
|
Li Y, Li Y, Lu H, Sun T, Gao J, Zhang J, Shen Q, Yu Z. The bZIP transcription factor ATF1 regulates blue light and oxidative stress responses in Trichoderma guizhouense. MLIFE 2023; 2:365-377. [PMID: 38818272 PMCID: PMC10989065 DOI: 10.1002/mlf2.12089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/23/2023] [Accepted: 09/17/2023] [Indexed: 06/01/2024]
Abstract
In several filamentous fungi, incident light and environmental stress signaling share the mitogen-activated protein kinase (MAPK) HOG (SAK) pathway. It has been revealed that short-term illumination with blue light triggers the activation of the HOG pathway in Trichoderma spp. In this study, we demonstrate the crucial role of the basic leucine zipper transcription factor ATF1 in blue light responses and signaling downstream of the MAPK HOG1 in Trichoderma guizhouense. The lack of ATF1 severely impaired photoconidiation and delayed vegetative growth and conidial germination. Upon blue light or H2O2 stimuli, HOG1 interacted with ATF1 in the nucleus. Genome-wide transcriptome analyses revealed that 61.8% (509 out of 824) and 85.2% (702 out of 824) of blue light-regulated genes depended on ATF1 and HOG1, respectively, of which 58.4% (481 out of 824) were regulated by both of them. Our results also show that blue light promoted conidial germination and HOG1 and ATF1 played opposite roles in controlling conidial germination in the dark. Additionally, the lack of ATF1 led to reduced oxidative stress resistance, probably because of the downregulation of catalase-encoding genes. Overall, our results demonstrate that ATF1 is the downstream component of HOG1 and is responsible for blue light responses, conidial germination, vegetative growth, and oxidative stress resistance in T. guizhouense.
Collapse
Affiliation(s)
- Yifan Li
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Yanshen Li
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Huanhong Lu
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Tingting Sun
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Jia Gao
- Department of MicrobiologyKarlsruhe Institute of Technology (KIT)—South Campus, Institute for Applied BiosciencesKarlsruheGermany
| | - Jian Zhang
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Qirong Shen
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| | - Zhenzhong Yu
- Nanjing Agricultural University, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic‐based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource UtilizationAgricultural Microbial Resources Protection and Germplasm Innovation and Utilization Center of Jiangsu ProvinceNanjingChina
| |
Collapse
|
6
|
Regulation Mechanisms of Meiotic Recombination Revealed from the Analysis of a Fission Yeast Recombination Hotspot ade6-M26. Biomolecules 2022; 12:biom12121761. [PMID: 36551189 PMCID: PMC9775316 DOI: 10.3390/biom12121761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Meiotic recombination is a pivotal event that ensures faithful chromosome segregation and creates genetic diversity in gametes. Meiotic recombination is initiated by programmed double-strand breaks (DSBs), which are catalyzed by the conserved Spo11 protein. Spo11 is an enzyme with structural similarity to topoisomerase II and induces DSBs through the nucleophilic attack of the phosphodiester bond by the hydroxy group of its tyrosine (Tyr) catalytic residue. DSBs caused by Spo11 are repaired by homologous recombination using homologous chromosomes as donors, resulting in crossovers/chiasmata, which ensure physical contact between homologous chromosomes. Thus, the site of meiotic recombination is determined by the site of the induced DSB on the chromosome. Meiotic recombination is not uniformly induced, and sites showing high recombination rates are referred to as recombination hotspots. In fission yeast, ade6-M26, a nonsense point mutation of ade6 is a well-characterized meiotic recombination hotspot caused by the heptanucleotide sequence 5'-ATGACGT-3' at the M26 mutation point. In this review, we summarize the meiotic recombination mechanisms revealed by the analysis of the fission ade6-M26 gene as a model system.
Collapse
|
7
|
Protacio RU, Davidson MK, Wahls WP. Adaptive Control of the Meiotic Recombination Landscape by DNA Site-dependent Hotspots With Implications for Evolution. Front Genet 2022; 13:947572. [PMID: 35812747 PMCID: PMC9257126 DOI: 10.3389/fgene.2022.947572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/01/2022] [Indexed: 02/04/2023] Open
Abstract
Meiosis is an essential component of the sexual life cycle in eukaryotes. The independent assortment of chromosomes in meiosis increases genetic diversity at the level of whole chromosomes and meiotic recombination increases genetic diversity within chromosomes. The resulting variability fuels evolution. Interestingly, global mapping of recombination in diverse taxa revealed dramatic changes in its frequency distribution between closely related species, subspecies, and even isolated populations of the same species. New insight into mechanisms for these evolutionarily rapid changes has come from analyses of environmentally induced plasticity of recombination in fission yeast. Many different DNA sites, and where identified their binding/activator proteins, control the positioning of recombination at hotspots. Each different class of hotspots functions as an independently controlled rheostat that modulates rates of recombination over a broad dynamic range in response to changing conditions. Together, this independent modulation can rapidly and dramatically alter the global frequency distribution of recombination. This process likely contributes substantially to (i.e., can largely explain) evolutionarily rapid, Prdm9-independent changes in the recombination landscape. Moreover, the precise control mechanisms allow cells to dynamically favor or disfavor newly arising combinations of linked alleles in response to changing extracellular and intracellular conditions, which has striking implications for the impacts of meiotic recombination on evolution.
Collapse
|
8
|
Protacio RU, Mukiza TO, Davidson MK, Wahls WP. Molecular mechanisms for environmentally induced and evolutionarily rapid redistribution (plasticity) of meiotic recombination. Genetics 2022; 220:iyab212. [PMID: 34888655 PMCID: PMC9097252 DOI: 10.1093/genetics/iyab212] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/15/2021] [Indexed: 02/04/2023] Open
Abstract
It has long been known (circa 1917) that environmental conditions, as well as speciation, can affect dramatically the frequency distribution of Spo11/Rec12-dependent meiotic recombination. Here, by analyzing DNA sequence-dependent meiotic recombination hotspots in the fission yeast Schizosaccharomyces pombe, we reveal a molecular basis for these phenomena. The impacts of changing environmental conditions (temperature, nutrients, and osmolarity) on local rates of recombination are mediated directly by DNA site-dependent hotspots (M26, CCAAT, and Oligo-C). This control is exerted through environmental condition-responsive signal transduction networks (involving Atf1, Pcr1, Php2, Php3, Php5, and Rst2). Strikingly, individual hotspots modulate rates of recombination over a very broad dynamic range in response to changing conditions. They can range from being quiescent to being highly proficient at promoting activity of the basal recombination machinery (Spo11/Rec12 complex). Moreover, each different class of hotspot functions as an independently controlled rheostat; a condition that increases the activity of one class can decrease the activity of another class. Together, the independent modulation of recombination rates by each different class of DNA site-dependent hotspots (of which there are many) provides a molecular mechanism for highly dynamic, large-scale changes in the global frequency distribution of meiotic recombination. Because hotspot-activating DNA sites discovered in fission yeast are conserved functionally in other species, this process can also explain the previously enigmatic, Prdm9-independent, evolutionarily rapid changes in hotspot usage between closely related species, subspecies, and isolated populations of the same species.
Collapse
Affiliation(s)
- Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Tresor O Mukiza
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| |
Collapse
|
9
|
Leiter É, Emri T, Pákozdi K, Hornok L, Pócsi I. The impact of bZIP Atf1ortholog global regulators in fungi. Appl Microbiol Biotechnol 2021; 105:5769-5783. [PMID: 34302199 PMCID: PMC8390427 DOI: 10.1007/s00253-021-11431-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Regulation of signal transduction pathways is crucial for the maintenance of cellular homeostasis and organismal development in fungi. Transcription factors are key elements of this regulatory network. The basic-region leucine zipper (bZIP) domain of the bZIP-type transcription factors is responsible for DNA binding while their leucine zipper structural motifs are suitable for dimerization with each other facilitiating the formation of homodimeric or heterodimeric bZIP proteins. This review highlights recent knowledge on the function of fungal orthologs of the Schizosaccharomyces pombe Atf1, Aspergillus nidulans AtfA, and Fusarium verticillioides FvAtfA, bZIP-type transcription factors with a special focus on pathogenic species. We demonstrate that fungal Atf1-AtfA-FvAtfA orthologs play an important role in vegetative growth, sexual and asexual development, stress response, secondary metabolite production, and virulence both in human pathogens, including Aspergillus fumigatus, Mucor circinelloides, Penicillium marneffei, and Cryptococcus neoformans and plant pathogens, like Fusarium ssp., Magnaporthe oryzae, Claviceps purpurea, Botrytis cinerea, and Verticillium dahliae. KEY POINTS: • Atf1 orthologs play crucial role in the growth and development of fungi. • Atf1 orthologs orchestrate environmental stress response of fungi. • Secondary metabolite production and virulence are coordinated by Atf1 orthologs.
Collapse
Affiliation(s)
- Éva Leiter
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary.
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary
| | - Klaudia Pákozdi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary
| | - László Hornok
- Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, University of Debrecen, P.O. Box 63, Debrecen, H-4010, Hungary
| |
Collapse
|
10
|
Mukiza TO, Protacio RU, Davidson MK, Steiner WW, Wahls WP. Diverse DNA Sequence Motifs Activate Meiotic Recombination Hotspots Through a Common Chromatin Remodeling Pathway. Genetics 2019; 213:789-803. [PMID: 31511300 PMCID: PMC6827382 DOI: 10.1534/genetics.119.302679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
In meiosis, multiple different DNA sequence motifs help to position homologous recombination at hotspots in the genome. How do the seemingly disparate cis-acting regulatory modules each promote locally the activity of the basal recombination machinery? We defined molecular mechanisms of action for five different hotspot-activating DNA motifs (M26, CCAAT, Oligo-C, 4095, 4156) located independently at the same site within the ade6 locus of the fission yeast Schizosaccharomyces pombe Each motif promoted meiotic recombination (i.e., is active) within this context, and this activity required the respective binding proteins (transcription factors Atf1, Pcr1, Php2, Php3, Php5, Rst2). High-resolution analyses of chromatin structure by nucleosome scanning assays revealed that each motif triggers the displacement of nucleosomes surrounding the hotspot motif in meiosis. This chromatin remodeling required the respective sequence-specific binding proteins, was constitutive for two motifs, and was enhanced meiotically for three others. Hotspot activity of each motif strongly required the ATP-dependent chromatin remodeling enzyme Snf22 (Snf2/Swi2), with lesser dependence on Gcn5, Mst2, and Hrp3. These findings support a model in which most meiotic recombination hotspots are positioned by the binding of transcription factors to their respective DNA sites. The functional redundancy of multiple, sequence-specific protein-DNA complexes converges upon shared chromatin remodeling pathways that help provide the basal recombination machinery (Spo11/Rec12 complex) access to its DNA substrates within chromatin.
Collapse
Affiliation(s)
- Tresor O Mukiza
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| | - Walter W Steiner
- Department of Biology, Niagara University, Lewiston, New York 14109
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205-7199
| |
Collapse
|
11
|
Storey AJ, Wang HP, Protacio RU, Davidson MK, Tackett AJ, Wahls WP. Chromatin-mediated regulators of meiotic recombination revealed by proteomics of a recombination hotspot. Epigenetics Chromatin 2018; 11:64. [PMID: 30373637 PMCID: PMC6205778 DOI: 10.1186/s13072-018-0233-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/20/2018] [Indexed: 11/14/2022] Open
Abstract
Background Meiotic recombination hotspots control the frequency and distribution of Spo11 (Rec12)-initiated recombination in the genome. Recombination occurs within and is regulated in part by chromatin structure, but relatively few of the many chromatin remodeling factors and histone posttranslational modifications (PTMs) have been interrogated for a role in the process. Results We developed a chromatin affinity purification and mass spectrometry-based approach to identify proteins and histone PTMs that regulate recombination hotspots. Small (4.2 kbp) minichromosomes (MiniCs) bearing the fission yeast ade6-M26 hotspot or a basal recombination control were purified approximately 100,000-fold under native conditions from meiosis; then, associated proteins and histone PTMs were identified by mass spectrometry. Proteins and PTMs enriched at the hotspot included known regulators (Atf1, Pcr1, Mst2, Snf22, H3K14ac), validating the approach. The abundance of individual histones varied dynamically during meiotic progression in hotspot versus basal control MiniCs, as did a subset of 34 different histone PTMs, implicating these as potential regulators. Measurements of basal and hotspot recombination in null mutants confirmed that additional, hotspot-enriched proteins are bona fide regulators of hotspot activation within the genome. These chromatin-mediated regulators include histone H2A-H2B and H3-H4 chaperones (Nap1, Hip1/Hir1), subunits of the Ino80 complex (Arp5, Arp8), a DNA helicase/E3 ubiquitin ligase (Rrp2), components of a Swi2/Snf2 family remodeling complex (Swr1, Swc2), and a nucleosome evictor (Fft3/Fun30). Conclusions Overall, our findings indicate that a remarkably diverse collection of chromatin remodeling factors and histone PTMs participate in designating where meiotic recombination occurs in the genome, and they provide new insight into molecular mechanisms of the process. Electronic supplementary material The online version of this article (10.1186/s13072-018-0233-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aaron J Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Hsin-Ping Wang
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Reine U Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Alan J Tackett
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciencs, 4301 West Markham Street (Slot 516), Little Rock, AR, 72205-7199, USA.
| |
Collapse
|
12
|
Stevison LS, Sefick S, Rushton C, Graze RM. Recombination rate plasticity: revealing mechanisms by design. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160459. [PMID: 29109222 PMCID: PMC5698621 DOI: 10.1098/rstb.2016.0459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit 'plastic' responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscuraThis article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Laurie S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Stephen Sefick
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chase Rushton
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rita M Graze
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
13
|
Protacio RU, Storey AJ, Davidson MK, Wahls WP. Nonsense codon suppression in fission yeast due to mutations of tRNA(Ser.11) and translation release factor Sup35 (eRF3). Curr Genet 2015; 61:165-73. [PMID: 25519804 PMCID: PMC4393767 DOI: 10.1007/s00294-014-0465-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
Abstract
In the fission yeast Schizosaccharomyces pombe, sup9 mutations can suppress the termination of translation at nonsense (stop) codons. We localized sup9 physically to the spctrnaser.11 locus and confirmed that one allele (sup9-UGA) alters the anticodon of a serine tRNA. We also found that another purported allele is not allelic. Instead, strains with that suppressor (renamed sup35-F592S) have a single base pair substitution (T1775C) that introduces an amino acid substitution in the Sup35 protein (Sup35-F592S). Reduced functionality of Sup35 (eRF3), the ubiquitous guanine nucleotide-responsive translation release factor of eukaryotes, increases read-through of stop codons. Tetrad dissection revealed that suppression is tightly linked to (inseparable from) the sup35-F592S mutation and that there are no additional extragenic modifiers. The Mendelian inheritance indicates that the Sup35-F592S protein does not adopt an infectious amyloid state ([PSI (+)] prion) to affect suppression, consistent with recent evidence that fission yeast Sup35 does not form prions. We also report that sup9-UGA and sup35-F592S exhibit different strengths of suppression for opal stop codons of ade6-M26 and ade6-M375. We discuss possible mechanisms for the variation in suppressibility exhibited by the two alleles.
Collapse
Affiliation(s)
- Reine U. Protacio
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Aaron J. Storey
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Mari K. Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA
| |
Collapse
|
14
|
De Storme N, Geelen D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. PLANT, CELL & ENVIRONMENT 2014; 37:1-18. [PMID: 23731015 PMCID: PMC4280902 DOI: 10.1111/pce.12142] [Citation(s) in RCA: 272] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 05/18/2023]
Abstract
In plants, male reproductive development is extremely sensitive to adverse climatic environments and (a)biotic stress. Upon exposure to stress, male gametophytic organs often show morphological, structural and metabolic alterations that typically lead to meiotic defects or premature spore abortion and male reproductive sterility. Depending on the type of stress involved (e.g. heat, cold, drought) and the duration of stress exposure, the underlying cellular defect is highly variable and either involves cytoskeletal alterations, tapetal irregularities, altered sugar utilization, aberrations in auxin metabolism, accumulation of reactive oxygen species (ROS; oxidative stress) or the ectopic induction of programmed cell death (PCD). In this review, we present the critically stress-sensitive stages of male sporogenesis (meiosis) and male gametogenesis (microspore development), and discuss the corresponding biological processes involved and the resulting alterations in male reproduction. In addition, this review also provides insights into the molecular and/or hormonal regulation of the environmental stress sensitivity of male reproduction and outlines putative interaction(s) between the different processes involved.
Collapse
Affiliation(s)
- Nico De Storme
- Department of Plant Production, Faculty of Bioscience Engineering, University of Ghent, Coupure Links, 653, B-9000, Ghent, Belgium
| | | |
Collapse
|
15
|
A stress-activated, p38 mitogen-activated protein kinase-ATF/CREB pathway regulates posttranscriptional, sequence-dependent decay of target RNAs. Mol Cell Biol 2013; 33:3026-35. [PMID: 23732911 DOI: 10.1128/mcb.00349-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Broadly conserved, mitogen-activated/stress-activated protein kinases (MAPK/SAPK) of the p38 family regulate multiple cellular processes. They transduce signals via dimeric, basic leucine zipper (bZIP) transcription factors of the ATF/CREB family (such as Atf2, Fos, and Jun) to regulate the transcription of target genes. We report additional mechanisms for gene regulation by such pathways exerted through RNA stability controls. The Spc1 (Sty1/Phh1) kinase-regulated Atf1-Pcr1 (Mts1-Mts2) heterodimer of the fission yeast Schizosaccharomyces pombe controls the stress-induced, posttranscriptional stability and decay of sets of target RNAs. Whole transcriptome RNA sequencing data revealed that decay is associated nonrandomly with transcripts that contain an M26 sequence motif. Moreover, the ablation of an M26 sequence motif in a target mRNA is sufficient to block its stress-induced loss. Conversely, engineered M26 motifs can render a stable mRNA into one that is targeted for decay. This stress-activated RNA decay (SARD) provides a mechanism for reducing the expression of target genes without shutting off transcription itself. Thus, a single p38-ATF/CREB signal transduction pathway can coordinately induce (promote transcription and RNA stability) and repress (promote RNA decay) transcript levels for distinct sets of genes, as is required for developmental decisions in response to stress and other stimuli.
Collapse
|
16
|
Wahls WP, Davidson MK. New paradigms for conserved, multifactorial, cis-acting regulation of meiotic recombination. Nucleic Acids Res 2012; 40:9983-9. [PMID: 22904082 PMCID: PMC3488224 DOI: 10.1093/nar/gks761] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
How do cells position the Spo11 (Rec12)-dependent initiation of meiotic recombination at hotspots? The mechanisms are poorly understood and a prevailing view is that they differ substantially between phylogenetic groups. However, recent work discovered that individual species have multiple different DNA sequence-specific, protein–DNA complexes that regulate (and are essential for the activation of) recombination hotspots. The cis-acting elements function combinatorially with documented examples of synergism, antagonism and redundancy. Furthermore, we provide evidence that all currently well-defined modules of this multifactorial, cis-acting regulation are conserved functionally between taxa whose latest common ancestor occurred more than 1 billion years ago. Functionally conserved components include the ATF/CREB-family heterodimer Atf1-Pcr1 and its CRE-like DNA site M26, the CCAAT-box-binding complex Php2-Php3-Php5 and the CCAAT-box, and the zinc-finger protein Rst2 and its Oligo-C motif. The newfound multiplicity, functional redundancy and conservation of cis-acting controls constitute a paradigm shift with broad implications. They provide compelling evidence that most meiotic recombination is, like transcription, regulated by sequence-specific protein–DNA complexes. And the new findings provide important mechanistic insight, such as a solution to the conundrum that Prdm9 is a ‘master regulator’ of—yet is dispensable for—hotspot activity in mammals.
Collapse
Affiliation(s)
- Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | | |
Collapse
|
17
|
Sansó M, Vargas-Pérez I, García P, Ayté J, Hidalgo E. Nuclear roles and regulation of chromatin structure by the stress-dependent MAP kinase Sty1 of Schizosaccharomyces pombe. Mol Microbiol 2011; 82:542-54. [DOI: 10.1111/j.1365-2958.2011.07851.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
18
|
Nucleosomal organization of replication origins and meiotic recombination hotspots in fission yeast. EMBO J 2011; 31:124-37. [PMID: 21989386 DOI: 10.1038/emboj.2011.350] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 08/31/2011] [Indexed: 12/17/2022] Open
Abstract
In Schizosaccharomyces pombe, DNA replication origins (ORIs) and meiotic recombination hotspots lack consensus sequences and show a bias towards mapping to large intergenic regions (IGRs). To explore whether this preference depended on underlying chromatin features, we have generated genome-wide nucleosome profiles during mitosis and meiosis. We have found that meiotic double-strand break sites (DSBs) colocalize with nucleosome-depleted regions (NDRs) and that large IGRs include clusters of NDRs that overlap with almost half of all DSBs. By contrast, ORIs do not colocalize with NDRs and they are regulated independently of DSBs. Physical relocation of NDRs at ectopic loci or modification of their genomic distribution during meiosis was paralleled by the generation of new DSB sites. Over 80% of all meiotic DSBs colocalize with NDRs that are also present during mitosis, indicating that the recombination pattern is largely dependent on constitutive properties of the genome and, to a lesser extent, on the transcriptional profile during meiosis. The organization of ORIs and of DSBs regions in S. pombe reveals similarities and differences relative to Saccharomyces cerevisiae.
Collapse
|
19
|
Morita T, Yamada T, Yamada S, Matsumoto K, Ohta K. Fission yeast ATF/CREB family protein Atf21 plays important roles in production of normal spores. Genes Cells 2010; 16:217-30. [PMID: 21199192 DOI: 10.1111/j.1365-2443.2010.01480.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activating transcription factor/cAMP response element binding protein (ATF/CREB) family transcription factors play central roles in maintaining cellular homeostasis. They are activated in response to environmental stimuli, bind to CRE sequences in the promoters of stress-response genes and regulate transcription. Although ATF/CREB proteins are widely conserved among most eukaryotes, their characteristics are highly diverse. Here, we investigated the functions of a fission yeast ATF/CREB protein Atf21 to find out its unique properties. We show that Atf21 is dispensable for the adaptive response to several stresses such as nitrogen starvation and for meiotic events including nuclear divisions. However, spores derived from atf21Δ mutants are not as mature as wild-type ones and are unable to form colonies under nutrition-rich conditions. Furthermore, we demonstrate that the Atf21 protein, which is scarce in early meiosis, gradually accumulates as meiosis proceeds; it reaches maximum levels approximately 8 h after nitrogen starvation and is present during germination. These results suggest that Atf21 is expressed and functions long after nitrogen starvation. Given that other well-characterized fission yeast ATF/CREB proteins Atf1 and Pcr1 accumulate and function promptly upon exposure to environmental stresses, we propose that Atf21 is a distinct member of the ATF/CREB family in fission yeast.
Collapse
Affiliation(s)
- Tomohiko Morita
- The Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | | | | | | | | |
Collapse
|
20
|
Eshaghi M, Lee JH, Zhu L, Poon SY, Li J, Cho KH, Chu Z, Karuturi RKM, Liu J. Genomic binding profiling of the fission yeast stress-activated MAPK Sty1 and the bZIP transcriptional activator Atf1 in response to H2O2. PLoS One 2010; 5:e11620. [PMID: 20661279 PMCID: PMC2905393 DOI: 10.1371/journal.pone.0011620] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/18/2010] [Indexed: 11/19/2022] Open
Abstract
Background The evolutionally conserved MAPK Sty1 and bZIP transcriptional activator Atf1 are known to play a pivotal role in response to the reactive oxygen species in S. pombe. However, it is unclear whether all of the H2O2-induced genes are directly regulated by the Sty1-Atf1 pathway and involved in growth fitness under H2O2-induced stress conditions. Methodology/Principal Findings Here we present the study on ChIP-chip mapping of the genomic binding sites for Sty1, Atf1, and the Atf1's binding partner Pcr1; the genome-wide transcriptional profiling of the atf1 and pcr1 strains in response to H2O2; and the phenotypic assessment of ∼90 Atf1/Pcr1-bound or unbound genes for growth fitness under H2O2 conditions. ChIP-chip analysis shows that Atf1 and Pcr1 binding sites are overlapped in the genome and constitutively present before H2O2 stress. On the other hand, Sty1 recruitment primarily occurs at the Atf1/Pcr1 binding sites and is induced by H2O2. We found that Atf1/Pcr1 is clearly responsible for the high-level transcriptional response to H2O2. Furthermore, phenotypic assessment indicates that among the H2O2-induced genes, Atf1/Pcr1-bound genes exhibit a higher likelihood of functional requirement for growth fitness under the stress condition than the Atf1/Pcr1-unbound genes do. Notably, we found that the Atf1/Pcr1-bound genes regardless of their responsiveness to H2O2 show a high probability of requirement for growth fitness. Conclusion/Significance Together, our analyses on global mapping of protein binding sites, genome-wide transcriptional profiling, and phenotypic assessment provide insight into mechanisms for global transcriptional regulation by the Sty1-Atf1 pathway in response to H2O2-induced reactive oxygen species.
Collapse
Affiliation(s)
- Majid Eshaghi
- Systems Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Jong Hoon Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Lei Zhu
- Systems Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Suk Yean Poon
- Systems Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Juntao Li
- Computational and Mathematical Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Kwang-Hyun Cho
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Zhaoqing Chu
- Systems Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - R. Krishna M. Karuturi
- Computational and Mathematical Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
| | - Jianhua Liu
- Systems Biology, Genome Institute of Singapore, Singapore, Republic of Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- * E-mail:
| |
Collapse
|
21
|
Wahls WP, Davidson MK. Discrete DNA sites regulate global distribution of meiotic recombination. Trends Genet 2010; 26:202-8. [PMID: 20381894 DOI: 10.1016/j.tig.2010.02.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/18/2022]
Abstract
Homologous recombination is induced to high levels in meiosis, is initiated by Spo11-catalyzed DNA double-strand breaks (DSBs) and is clustered at hotspots that regulate its positioning in the genome. Recombination is required for proper chromosome segregation in meiosis and defects in its frequency or positioning cause chromosome mis-segregation and, consequently, congenital birth defects such as Down's syndrome. Therefore, elucidating how meiotic recombination is positioned is of fundamental and biomedical interest. Our integration of historical and contemporary advances in the field, plus the re-analysis of published microarray data on the genome-wide distribution of recombination supports a unifying model for such regulation. We posit that discrete DNA sequence motifs position and regulate essentially all recombination across the genome, in much the same way that DNA sites position and regulate transcription. Moreover, we illustrate the use of overlapping mechanisms for the regulation of transcription and meiotic recombination. Bound transcription factors induce histone modifications that position recombination at hotspots.
Collapse
Affiliation(s)
- Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 West Markham Street (slot 516), Little Rock, AR 72205-7199, USA.
| | | |
Collapse
|
22
|
Gao J, Davidson MK, Wahls WP. Phosphorylation-independent regulation of Atf1-promoted meiotic recombination by stress-activated, p38 kinase Spc1 of fission yeast. PLoS One 2009; 4:e5533. [PMID: 19436749 PMCID: PMC2677671 DOI: 10.1371/journal.pone.0005533] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 03/29/2009] [Indexed: 11/23/2022] Open
Abstract
Background Stress-activated protein kinases regulate multiple cellular responses to a wide variety of intracellular and extracellular conditions. The conserved, multifunctional, ATF/CREB protein Atf1 (Mts1, Gad7) of fission yeast binds to CRE-like (M26) DNA sites. Atf1 is phosphorylated by the conserved, p38-family kinase Spc1 (Sty1, Phh1) and is required for many Spc1-dependent stress responses, efficient sexual differentiation, and activation of Rec12 (Spo11)-dependent meiotic recombination hotspots like ade6-M26. Methodology/Principal Findings We sought to define mechanisms by which Spc1 regulates Atf1 function at the ade6-M26 hotspot. The Spc1 kinase was essential for hotspot activity, but dispensable for basal recombination. Unexpectedly, a protein lacking all eleven MAPK phospho-acceptor sites and detectable phosphorylation (Atf1-11M) was fully proficient for hotspot recombination. Furthermore, tethering of Atf1 to ade6 in the chromosome by a heterologous DNA binding domain bypassed the requirement for Spc1 in promoting recombination. Conclusions/Significance The Spc1 protein kinase regulates the pathway of Atf1-promoted recombination at or before the point where Atf1 binds to chromosomes, and this pathway regulation is independent of the phosphorylation status of Atf1. Since basal recombination is Spc1-independent, the principal function of the Spc1 kinase in meiotic recombination is to correctly position Atf1-promoted recombination at hotspots along chromosomes. We also propose new hypotheses on regulatory mechanisms for shared (e.g., DNA binding) and distinct (e.g., osmoregulatory vs. recombinogenic) activities of multifunctional, stress-activated protein Atf1.
Collapse
Affiliation(s)
- Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Mari K. Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
23
|
Wahls WP, Davidson MK. Low-copy episomal vector pFY20 and high-saturation coverage genomic libraries for the fission yeast Schizosaccharomyces pombe. Yeast 2008; 25:643-50. [PMID: 18613214 DOI: 10.1002/yea.1605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In fission yeast, as in many organisms, episomally replicating plasmid DNA molecules can be used for a wide variety of applications. However, replicating plasmids described previously are each propagated at a high copy number per cell. Plasmid fission yeast twenty (pFY20) contains the ura4(+) gene for positive and negative selection, an origin of replication (ars1) and a stability element (stb). Although this plasmid does not have a centromere, it is propagated with a copy number of about two plasmids per haploid genome equivalent and it is transmitted with relatively high fidelity in mitosis and meiosis. This low-copy vector is useful for screens and mutational studies where overexpression (e.g. from high copy plasmids) is undesirable. We therefore constructed multiple partial-digest, size-fractionated, fission yeast genomic DNA libraries in pFY20 and in the cloning vector pBluescript KS(+). These libraries have sufficient complexity (average of 2100 genome equivalents each) for saturation screening by complementation, plasmid shuffle or hybridization.
Collapse
Affiliation(s)
- Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | |
Collapse
|
24
|
Wahls WP, Siegel ER, Davidson MK. Meiotic recombination hotspots of fission yeast are directed to loci that express non-coding RNA. PLoS One 2008; 3:e2887. [PMID: 18682829 PMCID: PMC2483352 DOI: 10.1371/journal.pone.0002887] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Accepted: 07/15/2008] [Indexed: 11/19/2022] Open
Abstract
Background Polyadenylated, mRNA-like transcripts with no coding potential are abundant in eukaryotes, but the functions of these long non-coding RNAs (ncRNAs) are enigmatic. In meiosis, Rec12 (Spo11) catalyzes the formation of dsDNA breaks (DSBs) that initiate homologous recombination. Most meiotic recombination is positioned at hotspots, but knowledge of the mechanisms is nebulous. In the fission yeast genome DSBs are located within 194 prominent peaks separated on average by 65-kbp intervals of DNA that are largely free of DSBs. Methodology/Principal Findings We compared the genome-wide distribution of DSB peaks to that of polyadenylated ncRNA molecules of the prl class. DSB peaks map to ncRNA loci that may be situated within ORFs, near the boundaries of ORFs and intergenic regions, or most often within intergenic regions. Unconditional statistical tests revealed that this colocalization is non-random and robust (P≤5.5×10−8). Furthermore, we tested and rejected the hypothesis that the ncRNA loci and DSB peaks localize preferentially, but independently, to a third entity on the chromosomes. Conclusions/Significance Meiotic DSB hotspots are directed to loci that express polyadenylated ncRNAs. This reveals an unexpected, possibly unitary mechanism for what directs meiotic recombination to hotspots. It also reveals a likely biological function for enigmatic ncRNAs. We propose specific mechanisms by which ncRNA molecules, or some aspect of RNA metabolism associated with ncRNA loci, help to position recombination protein complexes at DSB hotspots within chromosomes.
Collapse
Affiliation(s)
- Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America.
| | | | | |
Collapse
|
25
|
Reiter W, Watt S, Dawson K, Lawrence CL, Bähler J, Jones N, Wilkinson CR. Fission yeast MAP kinase Sty1 is recruited to stress-induced genes. J Biol Chem 2008; 283:9945-56. [PMID: 18252721 PMCID: PMC3668131 DOI: 10.1074/jbc.m710428200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The stress-induced expression of many fission yeast genes is dependent upon the Sty1 mitogen-activated protein kinase (MAPK) and Atf1 transcription factor. Atf1 is phosphorylated by Sty1 yet this phosphorylation is not required for stress-induced gene expression, suggesting another mechanism exists whereby Sty1 activates transcription. Here we show that Sty1 associates with Atf1-dependent genes and is recruited to both their promoters and coding regions. This occurs in response to various stress conditions coincident with the kinetics of the activation of Sty1. Association with promoters is not a consequence of increased nuclear accumulation of Sty1 nor does it require the phosphorylation of Atf1. However, recruitment is completely abolished in a mutant lacking Sty1 kinase activity. Both Atf1 and its binding partner Pcr1 are required for association of Sty1 with Atf1-dependent promoters, suggesting that this heterodimer must be intact for optimal recruitment of the MAPK. However, many Atf1-dependent genes are still expressed in a pcr1Delta mutant but with significantly delayed kinetics, thus providing an explanation for the relatively mild stress sensitivity displayed by pcr1Delta. Consistent with this delay, Sty1 and Atf1 cannot be detected at these promoters in this condition, suggesting that their association with chromatin is weak or transient in the absence of Pcr1.
Collapse
Affiliation(s)
- Wolfgang Reiter
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Stephen Watt
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Keren Dawson
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Clare L. Lawrence
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Jürg Bähler
- Cancer Research UK Fission Yeast Functional Genomics Group, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1HH, UK
| | - Nic Jones
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| | - Caroline R.M. Wilkinson
- Paterson Institute for Cancer Research, University of Manchester, Wilmslow Road, Manchester, M20 4BX, UK
| |
Collapse
|
26
|
Gao J, Davidson MK, Wahls WP. Distinct regions of ATF/CREB proteins Atf1 and Pcr1 control recombination hotspot ade6-M26 and the osmotic stress response. Nucleic Acids Res 2008; 36:2838-51. [PMID: 18375981 PMCID: PMC2396409 DOI: 10.1093/nar/gkn037] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The Atf1 protein of Schizosaccharomyces pombe contains a bZIP (DNA-binding/protein dimerization) domain characteristic of ATF/CREB proteins, but no other functional domains or clear homologs have been reported. Atf1-containing, bZIP protein dimers bind to CRE-like DNA sites, regulate numerous stress responses, and activate meiotic recombination at hotspots like ade6–M26. We defined systematically the organization of Atf1 and its heterodimer partner Pcr1, which is required for a subset of Atf1-dependent functions. Surprisingly, only the bZIP domain of Pcr1 is required for hotspot activity and tethering of Atf1 to ade6 promotes recombination in the absence of its bZIP domain and the Pcr1 protein. Therefore the recombination–activation domain of Atf1-Pcr1 heterodimer resides exclusively in Atf1, and Pcr1 confers DNA-binding site specificity in vivo. Atf1 has a modular organization in which distinct regions affect differentially the osmotic stress response (OSA) and meiotic recombination (HRA, HRR). The HRA and HRR regions are necessary and sufficient to activate and repress recombination, respectively. Moreover, Atf1 defines a family of conserved proteins with discrete sequence motifs in the functional domains (OSA, HRA, HRR, bZIP). These findings reveal the functional organization of Atf1 and Pcr1, and illustrate several mechanisms by which bZIP proteins can regulate multiple, seemingly disparate activities.
Collapse
Affiliation(s)
- Jun Gao
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205-7199, USA
| | | | | |
Collapse
|
27
|
Transcription factors Pcr1 and Atf1 have distinct roles in stress- and Sty1-dependent gene regulation. EUKARYOTIC CELL 2008; 7:826-35. [PMID: 18375616 DOI: 10.1128/ec.00465-07] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mitogen-activated protein kinase Sty1 is essential for the regulation of transcriptional responses that promote cell survival in response to different types of environmental stimuli in Schizosaccharomyces pombe. Upon stress activation, Sty1 reversibly accumulates in the nucleus, where it stimulates gene expression via the Atf1 transcription factor. The Atf1 protein forms a heterodimer with Pcr1, but the specific role of this association is controversial. We have carried out a comparative analysis of strains lacking these proteins individually. We demonstrate that Atf1 and Pcr1 have similar but not identical roles in S. pombe, since cells lacking Pcr1 do not share all the phenotypes reported for Deltaatf1 cells. Northern blot and microarray analyses demonstrate that the responses to specific stresses of cells lacking either Pcr1 or Atf1 do not fully overlap, and even though most Atf1-dependent genes induced by osmotic stress are also Pcr1 dependent, a subset of genes require only the presence of Atf1 for their induction. Whereas binding of Atf1 to most stress-dependent genes requires the presence of Pcr1, we demonstrate here that Atf1 can bind to the Pcr1-independent promoters in a Deltapcr1 strain in vivo. Furthermore, these analyses show that both proteins have a global repressive effect on stress-dependent and stress-independent genes.
Collapse
|
28
|
Vivancos AP, Jara M, Zuin A, Sansó M, Hidalgo E. Oxidative stress in Schizosaccharomyces pombe: different H2O2 levels, different response pathways. Mol Genet Genomics 2006; 276:495-502. [PMID: 17043891 DOI: 10.1007/s00438-006-0175-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2006] [Accepted: 09/20/2006] [Indexed: 01/27/2023]
Abstract
Schizosaccharomyces pombe triggers different signalling pathways depending on the severity of the oxidative stress exerted, the main ones being the Pap1 and the Sty1 pathways. The Pap1 transcription factor is more sensitive to hydrogen peroxide (H(2)O(2)) than the MAP kinase Sty1 pathway, and is designed to induce adaptation, rather than survival, responses. The peroxiredoxin Tpx1 acts as a H(2)O(2) sensor and the upstream activator of the Pap1 pathway. Therefore, sensitivity to H(2)O(2) depends on this thioredoxin peroxidase. In order to achieve maximal activation of the MAP kinase pathway, the concentration of H(2)O(2) needs to be at least fivefold higher than that to fully activate Pap1. Tpx1 is a H(2)O(2) scavenger, thus its peroxidase activity is essential for aerobic growth. As described for other eukaryotic peroxiredoxins, high doses of H(2)O(2) temporarily inactivate Tpx1 and delay Pap1 activation, whereas the Sty1 pathway remains fully functional under these conditions. As part of the Sty1-dependent transcriptional response, the expression of Srx1 is induced and this reductase re-activates the over-oxidised Tpx1. Therefore, the antioxidant pathways of the fission yeast are perfectly designed so that the transcriptional programs triggered by the different signalling pathways never overlap.
Collapse
Affiliation(s)
- Ana P Vivancos
- Cell Signalling Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 80, Barcelona, 08003, Spain
| | | | | | | | | |
Collapse
|
29
|
Kaur J, Sebastian J, Siddiqi I. The Arabidopsis-mei2-like genes play a role in meiosis and vegetative growth in Arabidopsis. THE PLANT CELL 2006; 18:545-59. [PMID: 16473967 PMCID: PMC1383632 DOI: 10.1105/tpc.105.039156] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The Arabidopsis-mei2-Like (AML) genes comprise a five-member gene family related to the mei2 gene, which is a master regulator of meiosis in Schizosaccharomyces pombe and encodes an RNA binding protein. We have analyzed the AML genes to assess their role in plant meiosis and development. All five AML genes were expressed in both vegetative and reproductive tissues. Analysis of AML1-AML5 expression at the cellular level indicated a closely similar expression pattern. In the inflorescence, expression was concentrated in the shoot apical meristem, young buds, and reproductive organ primordia. Within the reproductive organs, strong expression was observed in meiocytes and developing gametes. Functional analysis using RNA interference (RNAi) and combinations of insertion alleles revealed a role for the AML genes in meiosis, with RNAi lines and specific multiple mutant combinations displaying sterility and a range of defects in meiotic chromosome behavior. Defects in seedling growth were also observed at low penetrance. These results indicate that the AML genes play a role in meiosis as well as in vegetative growth and reveal conservation in the genetic mechanisms controlling meiosis in yeast and plants.
Collapse
Affiliation(s)
- Jagreet Kaur
- Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | | | | |
Collapse
|
30
|
Steiner WW, Smith GR. Natural meiotic recombination hot spots in the Schizosaccharomyces pombe genome successfully predicted from the simple sequence motif M26. Mol Cell Biol 2005; 25:9054-62. [PMID: 16199881 PMCID: PMC1265782 DOI: 10.1128/mcb.25.20.9054-9062.2005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 07/11/2005] [Accepted: 07/22/2005] [Indexed: 11/20/2022] Open
Abstract
The M26 hot spot of meiotic recombination in Schizosaccharomyces pombe is the eukaryotic hot spot most thoroughly investigated at the nucleotide level. The minimum sequence required for M26 activity was previously determined to be 5'-ATGACGT-3'. Originally identified by a mutant allele, ade6-M26, the M26 heptamer sequence occurs in the wild-type S. pombe genome approximately 300 times, but it has been unclear whether any of these are active hot spots. Recently, we showed that the M26 heptamer forms part of a larger consensus sequence, which is significantly more active than the heptamer alone. We used this expanded sequence as a guide to identify a smaller number of sites most likely to be active hot spots. Ten of the 15 sites tested showed meiotic DNA breaks, a hallmark of recombination hot spots, within 1 kb of the M26 sequence. Among those 10 sites, one occurred within a gene, cds1(+), and hot spot activity of this site was confirmed genetically. These results are, to our knowledge, the first demonstration in any organism of a simple, defined nucleotide sequence accurately predicting the locations of natural meiotic recombination hot spots. M26 may be the first example among a diverse group of simple sequences that determine the distribution, and hence predictability, of meiotic recombination hot spots in eukaryotic genomes.
Collapse
Affiliation(s)
- Walter W Steiner
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA.
| | | |
Collapse
|
31
|
Pryce DW, Lorenz A, Smirnova JB, Loidl J, McFarlane RJ. Differential activation of M26-containing meiotic recombination hot spots in Schizosaccharomyces pombe. Genetics 2005; 170:95-106. [PMID: 15744055 PMCID: PMC1449712 DOI: 10.1534/genetics.104.036301] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 02/04/2005] [Indexed: 11/18/2022] Open
Abstract
Certain genomic loci, termed hot spots, are predisposed to undergo genetic recombination during meiosis at higher levels relative to the rest of the genome. The factors that specify hot-spot potential are not well understood. The M26 hot spot of Schizosaccharomyces pombe is dependent on certain trans activators and a specific nucleotide sequence, which can function as a hot spot in a position- and orientation-independent fashion within ade6. In this report we demonstrate that a linear element (LE) component, Rec10, has a function that is required for activation of some, but not all, M26-containing hot spots and from this we propose that, with respect to hot-spot activity, there are three classes of M26-containing sequences. We demonstrate that the localized sequence context in which the M26 heptamer is embedded is a major factor governing whether or not this Rec10 function is required for full hot-spot activation. Furthermore, we show that the rec10-144 mutant, which is defective in full activation of ade6-M26, but proficient for activation of other M26-containing hot spots, is also defective in the formation of LEs, suggesting an intimate link between higher-order chromatin structure and local influences on hot-spot activation.
Collapse
Affiliation(s)
- David W Pryce
- North West Cancer Research Fund Institute, University of Wales Bangor, UK
| | | | | | | | | |
Collapse
|
32
|
Jeong HT, Ozoe F, Tanaka K, Nakagawa T, Matsuda H, Kawamukai M. A novel gene, msa1, inhibits sexual differentiation in Schizosaccharomyces pombe. Genetics 2005; 167:77-91. [PMID: 15166138 PMCID: PMC1470851 DOI: 10.1534/genetics.167.1.77] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sexual differentiation in the fission yeast Schizosaccharomyces pombe is triggered by nutrient starvation or by the presence of mating pheromones. We identified a novel gene, msa1, which encodes a 533-aa putative RNA-binding protein that inhibits sexual differentiation. Disruption of the msa1 gene caused cells to hypersporulate. Intracellular levels of msa1 RNA and Msa1 protein diminished after several hours of nitrogen starvation. Genetic analysis suggested that the function of msa1 is independent of the cAMP pathway and stress-responsive pathway. Deletion of the ras1 gene in diploid cells inhibited sporulation and in haploid cells decreased expression of mating-pheromone-induced genes such as mei2, mam2, ste11, and rep1; simultaneous deletion of msa1 reversed both phenotypes. Overexpression of msa1 decreased activated Ras1(Val17)-induced expression of mam2. Phenotypic hypersporulation was similar between cells with deletion of only rad24 and both msa1 and rad24, but simultaneous deletion of msa1 and msa2/nrd1 additively increased hypersporulation. Therefore, we suggest that the primary function of Msa1 is to negatively regulate sexual differentiation by controlling the expression of Ste11-regulated genes, possibly through the pheromone-signaling pathway.
Collapse
Affiliation(s)
- Hee Tae Jeong
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Matsue 690-8504, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Davidson MK, Shandilya HK, Hirota K, Ohta K, Wahls WP. Atf1-Pcr1-M26 complex links stress-activated MAPK and cAMP-dependent protein kinase pathways via chromatin remodeling of cgs2+. J Biol Chem 2004; 279:50857-63. [PMID: 15448137 PMCID: PMC3141327 DOI: 10.1074/jbc.m409079200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although co-ordinate interaction between different signal transduction pathways is essential for developmental decisions, interpathway connections are often obscured and difficult to identify due to cross-talk. Here signals from the fission yeast stress-activated MAPK Spc1 are shown to regulate Cgs2, a negative regulator of the cAMP-dependent protein kinase (protein kinase A) pathway. Pathway integration is achieved via Spc1-dependent binding of Atf1-Pcr1 heterodimer to an M26 DNA site in the cgs2+ promoter, which remodels chromatin to regulate expression of cgs2+ and targets downstream of protein kinase A. This direct interpathway connection co-ordinates signals of nitrogen and carbon source depletion to affect a G0 cell-cycle checkpoint and sexual differentiation. The Atf1-Pcr1-M26 complex-dependent chromatin remodeling provides a molecular mechanism whereby Atf1-Pcr1 heterodimer can function differentially as either a transcriptional activator, or as a transcriptional repressor, or as an inducer of meiotic recombination. We also show that the Atf1-Pcr1-M26 complex functions as both an inducer and repressor of chromatin remodeling, which provides a way for various chromatin remodeling-dependent effector functions to be regulated.
Collapse
Affiliation(s)
- Mari K. Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Harish K. Shandilya
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Kouji Hirota
- Genetic Dynamics Research Unit Laboratory, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
| | - Kunihiro Ohta
- Genetic Dynamics Research Unit Laboratory, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
| | - Wayne P. Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- To whom correspondence should be addressed: Dept. of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, 4301 W. Markham Street (slot 516), Little Rock, AR 72205-7199. Tel.: 501-686-5787; Fax: 501-526-7008;
| |
Collapse
|
34
|
Prusty R, Keil RL. SCH9, a putative protein kinase from Saccharomyces cerevisiae, affects HOT1 -stimulated recombination. Mol Genet Genomics 2004; 272:264-74. [PMID: 15349770 DOI: 10.1007/s00438-004-1049-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
HOT1 is a mitotic recombination hotspot derived from yeast rDNA. To further study HOT1 function, trans-acting H OT1 recombination mutants (hrm) that alter hotspot activity were isolated. hrm2-1 mutants have decreased HOT1 activity and grow slowly. The HRM2 gene was cloned and found to be identical to SCH9, a gene that affects a growth-control mechanism that is partially redundant with the cAMP-dependent protein kinase A (PKA) pathway. Deletion of SCH9 decreases HOT1 and rDNA recombination but not other mitotic exchange. Although high levels of RNA polymerase I transcription initiated at HOT1 are required for its recombination-stimulating activity, sch9 mutations do not affect transcription initiated within HOT1. Thus, transcription is necessary but not sufficient for HOT1 activity. TPK1, which encodes a catalytic subunit of PKA, is a multicopy suppressor of the recombination and growth defects of sch9 mutants, suggesting that increased PKA activity compensates for SCH9 loss. RAS2( val19), which codes for a hyperactive RAS protein and increases PKA activity, suppresses both phenotypic defects of sch9 mutants. In contrast to TPK1 and RAS2(val19), the gene for split zinc finger protein 1 (SFP1) on a multicopy vector suppresses only the growth defects of sch9 mutants, indicating that growth and HOT1 functions of Sch9p are separable. Sch9p may affect signal transduction pathways which regulate proteins that are specifically required for HOT1-stimulated exchange.
Collapse
Affiliation(s)
- R Prusty
- Department of Biochemistry and Molecular Biology, Milton S. Hershey Medical Center, Pennsylvania State University, Hershey, PA 17033, USA
| | | |
Collapse
|
35
|
Davidson MK, Young NP, Glick GG, Wahls WP. Meiotic chromosome segregation mutants identified by insertional mutagenesis of fission yeast Schizosaccharomyces pombe; tandem-repeat, single-site integrations. Nucleic Acids Res 2004; 32:4400-10. [PMID: 15316103 PMCID: PMC514387 DOI: 10.1093/nar/gkh767] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Identification of genes required for segregation of chromosomes in meiosis (scm) is difficult because in most organisms high-fidelity chromosome segregation is essential to produce viable meiotic products. The biology of fission yeast Schizosaccharomyces pombe facilitates identification of such genes. Insertional mutagenesis was achieved by electroporation of linear ura4+ DNA into cells harboring a ura4 deletion. Approximately 1000 stable transformants were screened individually for the production of elevated frequencies of aneuploid spore colonies. Twenty-two candidates were subjected to a secondary screen for cytological defects. Five mutants exhibited significant levels of aberrant meiotic chromosome segregation, but were proficient for mating and completion of meiosis. Each mutant's phenotype cosegregated with its respective ura4+ transgene. The mutations were recessive and defined five complementation groups, revealing five distinct genes (scm1, scm2, scm3, scm4 and scm5). Southern blotting revealed single-site integration in each transformant, indicating that insertional mutagenesis is useful for generating single-locus scm mutations linked to a selectable marker. The transgene insertion points were refractory to analysis by inverse-PCR. Molecular and real-time PCR analyses revealed the presence of multiple, truncated copies of ura4+ at each integration site. Thus, electroporation-mediated insertional mutagenesis in S.pombe is preceded by exonucleolytic processing and concatomerization of the transforming DNA.
Collapse
Affiliation(s)
- Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
36
|
Yamada T, Mizuno KI, Hirota K, Kon N, Wahls WP, Hartsuiker E, Murofushi H, Shibata T, Ohta K. Roles of histone acetylation and chromatin remodeling factor in a meiotic recombination hotspot. EMBO J 2004; 23:1792-803. [PMID: 14988732 PMCID: PMC394230 DOI: 10.1038/sj.emboj.7600138] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2003] [Accepted: 02/02/2004] [Indexed: 12/31/2022] Open
Abstract
Histone acetyltransferases (HATs) and ATP-dependent chromatin remodeling factors (ADCRs) are involved in selective gene regulation via modulation of local chromatin configuration. Activation of the recombination hotspot ade6-M26 of Schizosaccharomyces pombe is mediated by a cAMP responsive element (CRE)-like sequence, M26, and a heterodimeric ATF/CREB transcription factor, Atf1.Pcr1. Chromatin remodeling occurs meiotically around M26. We examined the roles of HATs and ADCRs in chromatin remodeling around M26. Histones H3 and H4 around M26 were hyperacetylated in an M26- and Atf1-dependent manner early in meiosis. SpGcn5, the S. pombe homolog of Gcn5p, was required for the majority of histone H3 acetylation around M26 in vivo. Deletion of gcn5+ caused a significant delay in chromatin remodeling but only partial reduction of M26 meiotic recombination frequency. The snf22+ (a Swi2/Snf2-ADCR homologue) deletion and snf22+ gcn5+ double deletion abolished chromatin remodeling and significant reduction of meiotic recombination around M26. These results suggest that HATs and ADCRs cooperatively alter local chromatin structure, as in selective transcription activation, to activate meiotic recombination at M26 in a site-specific manner.
Collapse
Affiliation(s)
- Takatomi Yamada
- Genetic Dynamics Research Unit-Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular & Molecular Biology Laboratory, RIKEN/CREST of the JST, Wako, Saitama, Japan
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ken-ichi Mizuno
- Genetic Dynamics Research Unit-Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular & Molecular Biology Laboratory, RIKEN/CREST of the JST, Wako, Saitama, Japan
| | - Kouji Hirota
- Genetic Dynamics Research Unit-Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular & Molecular Biology Laboratory, RIKEN/CREST of the JST, Wako, Saitama, Japan
| | - Ning Kon
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Edgar Hartsuiker
- Genome Damage and Stability Centre, University of Sussex, Falmer Brighton, UK
| | - Hiromu Murofushi
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takehiko Shibata
- Cellular & Molecular Biology Laboratory, RIKEN/CREST of the JST, Wako, Saitama, Japan
| | - Kunihiro Ohta
- Genetic Dynamics Research Unit-Laboratory, RIKEN, Wako, Saitama, Japan
- Cellular & Molecular Biology Laboratory, RIKEN/CREST of the JST, Wako, Saitama, Japan
| |
Collapse
|
37
|
Hirota K, Hasemi T, Yamada T, Mizuno KI, Hoffman CS, Shibata T, Ohta K. Fission yeast global repressors regulate the specificity of chromatin alteration in response to distinct environmental stresses. Nucleic Acids Res 2004; 32:855-62. [PMID: 14762213 PMCID: PMC373364 DOI: 10.1093/nar/gkh251] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The specific induction of genes in response to distinct environmental stress is vital for all eukaryotes. To study the mechanisms that result in selective gene responses, we examined the role of the fission yeast Tup1 family repressors in chromatin regulation. We found that chromatin structure around a cAMP-responsive element (CRE)-like sequence in ade6-M26 that is bound by Atf1.Pcr1 transcriptional activation was altered in response to osmotic stress but not to heat and oxidative stresses. Such chromatin structure alteration occurred later than the Atf1 phosphorylation but correlated well with stress-induced transcriptional activation at ade6-M26. This chromatin structure alteration required components for the stress-activated protein kinase (SAPK) cascade and both subunits of the M26-binding CREB/ATF-type protein Atf1.Pcr1. Cation stress and glucose starvation selectively caused chromatin structure alteration around CRE-like sequences in cta3(+) and fbp1(+) promoters, respectively, in correlation with transcriptional activation. However, the tup11Delta tup12Delta double deletion mutants lost the selectivity of stress responses of chromatin structure and transcriptional regulation of cta3(+) and fbp1(+). These data indicate that the Tup1-like repressors regulate the chromatin structure to ensure the specificity of gene activation in response to particular stresses. Such a role for these proteins may serve as a paradigm for the regulation of stress response in higher eukaryotes.
Collapse
MESH Headings
- Activating Transcription Factor 1
- Cations/pharmacology
- Chromatin/drug effects
- Chromatin/genetics
- Chromatin/metabolism
- Chromatin Assembly and Disassembly/drug effects
- Environment
- Gene Expression Regulation, Fungal/drug effects
- Genes, Fungal/genetics
- Glucose/pharmacology
- Hot Temperature
- Mitogen-Activated Protein Kinase Kinases/metabolism
- Mutation/genetics
- Nitrogen/deficiency
- Nitrogen/pharmacology
- Osmotic Pressure/drug effects
- Oxidative Stress
- Phosphoproteins/genetics
- Phosphoproteins/metabolism
- Promoter Regions, Genetic/genetics
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombination, Genetic/genetics
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Schizosaccharomyces/drug effects
- Schizosaccharomyces/genetics
- Schizosaccharomyces/metabolism
- Schizosaccharomyces pombe Proteins/genetics
- Schizosaccharomyces pombe Proteins/metabolism
- Signal Transduction/drug effects
- Substrate Specificity
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Transcriptional Activation
Collapse
Affiliation(s)
- Kouji Hirota
- Genetic Dynamics Research Unit-Laboratory, RIKEN (Institute of Physical and Chemical Research), Wako-shi, Saitama 351-0198, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Asp E, Sunnerhagen P. Mkp1 and Mkp2, two MAPKAP-kinase homologues in Schizosaccharomyces pombe, interact with the MAP kinase Sty1. Mol Genet Genomics 2003; 268:585-97. [PMID: 12589433 DOI: 10.1007/s00438-002-0786-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2002] [Accepted: 11/08/2002] [Indexed: 11/29/2022]
Abstract
Mkp1 ( MAPKAP kinase Schizosaccharomyces pombe 1) and Mkp2 are two members from fission yeast of the sub-class of putative MAPK-activated protein kinases in yeasts, the other known members being Rck1 and Rck2 from Saccharomyces cerevisiae. The Mkp1 protein is readily co-immunoprecipitated with Sty1 from S. pombe extracts; Mkp2 shows a weaker interaction with Sty1. In mkp1 mutants, conjugation and meiosis proceed more readily and rapidly than in wild-type cells, in analogy to what was previously found for S. cerevisiae rck1 mutants. Conversely, overexpression of mkp1(+) delays meiosis. Mkp1 is phosphorylated in vivo in a sty1(+)-dependent manner; this modification is removed when cells are starved for nitrogen, a condition that is conducive to entry into stationary phase and meiosis. Overexpression of mkp1(+), like a sty1 mutation, also causes vegetative cells to elongate. The level of Mkp1 phosphorylation drops as cells enter mitosis. We have localised Mkp1 to the cytoplasm, excluded from the nucleus, in vegetative cells. The Mkp1 protein accumulates in zygotic asci and is concentrated within spores. The mkp2(+) gene has no noticeable impact on meiosis. Mkp2 is excluded from the nucleus in vegetative cells, and is concentrated at the septa of dividing cells. Mkp2 does not accumulate in meiotic cells.
Collapse
Affiliation(s)
- E Asp
- Department of Cell and Molecular Biology, Lundberg Laboratory, Göteborg University, P.O. Box 462, 405 30, Göteborg, Sweden
| | | |
Collapse
|
39
|
Sharif WD, Glick GG, Davidson MK, Wahls WP. Distinct functions of S. pombe Rec12 (Spo11) protein and Rec12-dependent crossover recombination (chiasmata) in meiosis I; and a requirement for Rec12 in meiosis II. CELL & CHROMOSOME 2002; 1:1. [PMID: 12437782 PMCID: PMC131009 DOI: 10.1186/1475-9268-1-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2002] [Accepted: 09/19/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND: In most organisms proper reductional chromosome segregation during meiosis I is strongly correlated with the presence of crossover recombination structures (chiasmata); recombination deficient mutants lack crossovers and suffer meiosis I nondisjunction. We report that these functions are separable in the fission yeast Schizosaccharomyces pombe. RESULTS: Intron mapping and expression studies confirmed that Rec12 is a member of the Spo11/Top6A topoisomerase family required for the formation of meiotic dsDNA breaks and recombination. rec12-117, rec12-D15 (null), and rec12-Y98F (active site) mutants lacked most crossover recombination and chromosomes segregated abnormally to generate aneuploid meiotic products. Since S. pombe contains only three chromosome pairs, many of those aneuploid products were viable. The types of aberrant chromosome segregation were inferred from the inheritance patterns of centromere linked markers in diploid meiotic products. The rec12-117 and rec12-D15 mutants manifest segregation errors during both meiosis I and meiosis II. Remarkably, the rec12-Y98F (active site) mutant exhibited essentially normal meiosis I segregation patterns, but still exhibited meiosis II segregation errors. CONCLUSIONS: Rec12 is a 345 amino acid protein required for most crossover recombination and for chiasmatic segregation of chromosomes during meiosis I. Rec12 also participates in a backup distributive (achiasmatic) system of chromosome segregation during meiosis I. In addition, catalytically-active Rec12 mediates some signal that is required for faithful equational segregation of chromosomes during meiosis II.
Collapse
Affiliation(s)
- Wallace D Sharif
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Gloria G Glick
- Vanderbilt University School of Medicine Nashville, TN 37232-0146, USA
| | - Mari K Davidson
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Wayne P Wahls
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
40
|
Greenall A, Hadcroft AP, Malakasi P, Jones N, Morgan BA, Hoffman CS, Whitehall SK. Role of fission yeast Tup1-like repressors and Prr1 transcription factor in response to salt stress. Mol Biol Cell 2002; 13:2977-89. [PMID: 12221110 PMCID: PMC124137 DOI: 10.1091/mbc.01-12-0568] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Schizosaccharomyces pombe, the Sty1 mitogen-activated protein kinase and the Atf1 transcription factor control transcriptional induction in response to elevated salt concentrations. Herein, we demonstrate that two repressors, Tup11 and Tup12, and the Prr1 transcription factor also function in the response to salt shock. We find that deletion of both tup genes together results in hypersensitivity to elevated cation concentrations (K(+) and Ca(2+)) and we identify cta3(+), which encodes an intracellular cation transporter, as a novel stress gene whose expression is positively controlled by the Sty1 pathway and negatively regulated by Tup repressors. The expression of cta3(+) is maintained at low levels by the Tup repressors, and relief from repression requires the Sty1, Atf1, and Prr1. Prr1 is also required for KCl-mediated induction of several other Sty1-dependent genes such as gpx1(+) and ctt1(+). Surprisingly, the KCl-mediated induction of cta3(+) expression occurs independently of Sty1 in a tup11Delta tup12Delta mutant and so the Tup repressors link induction to the Sty1 pathway. We also report that in contrast to a number of other Sty1- and Atf1-dependent genes, the expression of cta3(+) is induced only by high salt concentrations. However, in the absence of the Tup repressors this specificity is lost and a range of stresses induces cta3(+) expression.
Collapse
Affiliation(s)
- Amanda Greenall
- School of Biochemistry and Genetics, University of Newcastle upon Tyne, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The ade6-M26 allele of Schizosaccharomyces pombe creates a well-defined meiotic recombination hot spot that requires a specific sequence, 5'-ATGACGT-3', and the Atf1*Pcr1 transcription factor for activity. We find that M26 stimulates the formation of meiosis-specific double-strand DNA breaks at multiple sites surrounding M26. Like hot spot activity, breakage requires the M26 heptamer, Pcr1, and the general recombination factor Rec12. When the M26 heptamer is moved to new positions within ade6, new break sites are observed spanning approximately 0.5-2 kb around the moved heptamer. Break frequency is strongly correlated with recombination frequency for these alleles. The occurrence of breaks at M26 suggests mechanistic similarities to hot spots in the distantly related yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Walter W Steiner
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, Seattle, WA 98109, USA
| | | | | |
Collapse
|
42
|
Mizuno K, Hasemi T, Ubukata T, Yamada T, Lehmann E, Kohli J, Watanabe Y, Iino Y, Yamamoto M, Fox ME, Smith GR, Murofushi H, Shibata T, Ohta K. Counteracting regulation of chromatin remodeling at a fission yeast cAMP response element-related recombination hotspot by stress-activated protein kinase, cAMP-dependent kinase and meiosis regulators. Genetics 2001; 159:1467-78. [PMID: 11779789 PMCID: PMC1461918 DOI: 10.1093/genetics/159.4.1467] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In fission yeast, an ATF/CREB-family transcription factor Atf1-Pcr1 plays important roles in the activation of early meiotic processes via the stress-activated protein kinase (SAPK) and the cAMP-dependent protein kinase (PKA) pathways. In addition, Atf1-Pcr1 binds to a cAMP responsive element (CRE)-like sequence at the site of the ade6-M26 mutation, which results in local enhancement of meiotic recombination and chromatin remodeling. Here we studied the roles of meiosis-inducing signal transduction pathways in M26 chromatin remodeling. Chromatin analysis revealed that persistent activation of PKA in meiosis inhibited M26 chromatin remodeling, suggesting that the PKA pathway represses M26 chromatin remodeling. The SAPK pathway activated M26 chromatin remodeling, since mutants lacking a component of this pathway, the Wis1 or Spc1/Sty1 kinases, had no M26 chromatin remodeling. M26 chromatin remodeling also required the meiosis regulators Mei2 and Mei3 but not the subsequently acting regulators Sme2 and Mei4, suggesting that induction of M26 chromatin remodeling needs meiosis-inducing signals before premeiotic DNA replication. Similar meiotic chromatin remodeling occurred meiotically around natural M26 heptamer sequences. These results demonstrate the coordinated action of genetic and physiological factors required to remodel chromatin in preparation for high levels of meiotic recombination and eukaryotic cellular differentiation.
Collapse
Affiliation(s)
- K Mizuno
- Genetic Dynamics Research Unit-Laboratory, RIKEN (The Institute of Physical and Chemical Research), Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Davis L, Smith GR. Meiotic recombination and chromosome segregation in Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 2001; 98:8395-402. [PMID: 11459981 PMCID: PMC37449 DOI: 10.1073/pnas.121005598] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In most organisms homologous recombination is vital for the proper segregation of chromosomes during meiosis, the formation of haploid sex cells from diploid precursors. This review compares meiotic recombination and chromosome segregation in the fission yeast Schizosaccharomyces pombe and the distantly related budding yeast Saccharomyces cerevisiae, two especially tractable microorganisms. Certain features, such as the occurrence of DNA breaks associated with recombination, appear similar, suggesting that these features may be common in eukaryotes. Other features, such as the role of these breaks and the ability of chromosomes to segregate faithfully in the absence of recombination, appear different, suggesting multiple solutions to the problems faced in meiosis.
Collapse
Affiliation(s)
- L Davis
- Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, A1-162, Seattle, WA 98109-1024, USA
| | | |
Collapse
|
44
|
Janoo RT, Neely LA, Braun BR, Whitehall SK, Hoffman CS. Transcriptional regulators of the Schizosaccharomyces pombe fbp1 gene include two redundant Tup1p-like corepressors and the CCAAT binding factor activation complex. Genetics 2001; 157:1205-15. [PMID: 11238405 PMCID: PMC1461578 DOI: 10.1093/genetics/157.3.1205] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Schizosaccharomyces pombe fbp1 gene, which encodes fructose-1,6-bis-phosphatase, is transcriptionally repressed by glucose through the activation of the cAMP-dependent protein kinase A (PKA) and transcriptionally activated by glucose starvation through the activation of a mitogen-activated protein kinase (MAPK). To identify transcriptional regulators acting downstream from or in parallel to PKA, we screened an adh-driven cDNA plasmid library for genes that increase fbp1 transcription in a strain with elevated PKA activity. Two such clones express amino-terminally truncated forms of the S. pombe tup12 protein that resembles the Saccharomyces cerevisiae Tup1p global corepressor. These clones appear to act as dominant negative alleles. Deletion of both tup12 and the closely related tup11 gene causes a 100-fold increase in fbp1-lacZ expression, indicating that tup11 and tup12 are redundant negative regulators of fbp1 transcription. In strains lacking tup11 and tup12, the atf1-pcr1 transcriptional activator continues to play a central role in fbp1-lacZ expression; however, spc1 MAPK phosphorylation of atf1 is no longer essential for its activation. We discuss possible models for the role of tup11- and tup12-mediated repression with respect to signaling from the MAPK and PKA pathways. A third clone identified in our screen expresses the php5 protein subunit of the CCAAT-binding factor (CBF). Deletion of php5 reduces fbp1 expression under both repressed and derepressed conditions. The CBF appears to act in parallel to atf1-pcr1, although it is unclear whether or not CBF activity is regulated by PKA.
Collapse
Affiliation(s)
- R T Janoo
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | |
Collapse
|
45
|
Neely LA, Hoffman CS. Protein kinase A and mitogen-activated protein kinase pathways antagonistically regulate fission yeast fbp1 transcription by employing different modes of action at two upstream activation sites. Mol Cell Biol 2000; 20:6426-34. [PMID: 10938120 PMCID: PMC86118 DOI: 10.1128/mcb.20.17.6426-6434.2000] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A significant challenge to our understanding of eukaryotic transcriptional regulation is to determine how multiple signal transduction pathways converge on a single promoter to regulate transcription in divergent fashions. To study this, we have investigated the transcriptional regulation of the Schizosaccharomyces pombe fbp1 gene that is repressed by a cyclic AMP (cAMP)-dependent protein kinase A (PKA) pathway and is activated by a stress-activated mitogen-activated protein kinase (MAPK) pathway. In this study, we identified and characterized two cis-acting elements in the fbp1 promoter required for activation of fbp1 transcription. Upstream activation site 1 (UAS1), located approximately 900 bp from the transcriptional start site, resembles a cAMP response element (CRE) that is the binding site for the atf1-pcr1 heterodimeric transcriptional activator. Binding of this activator to UAS1 is positively regulated by the MAPK pathway and negatively regulated by PKA. UAS2, located approximately 250 bp from the transcriptional start site, resembles a Saccharomyces cerevisiae stress response element. UAS2 is bound by transcriptional activators and repressors regulated by both the PKA and MAPK pathways, although atf1 itself is not present in these complexes. Transcriptional regulation of fbp1 promoter constructs containing only UAS1 or UAS2 confirms that the PKA and MAPK regulation is targeted to both sites. We conclude that the PKA and MAPK signal transduction pathways regulate fbp1 transcription at UAS1 and UAS2, but that the antagonistic interactions between these pathways involve different mechanisms at each site.
Collapse
Affiliation(s)
- L A Neely
- Department of Biology, Boston College, Massachusetts 02467, USA
| | | |
Collapse
|
46
|
Fox ME, Yamada T, Ohta K, Smith GR. A family of cAMP-response-element-related DNA sequences with meiotic recombination hotspot activity in Schizosaccharomyces pombe. Genetics 2000; 156:59-68. [PMID: 10978275 PMCID: PMC1461235 DOI: 10.1093/genetics/156.1.59] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The heptamer sequence ATGACGT is essential for activity of the M26 meiotic recombination hotspot in the ade6 gene of Schizosaccharomyces pombe. Hotspot activity is associated with binding of the heterodimeric transcription factor Atf1.Pcr1 to M26. We have found that the sequences (C/T/G) TGACGT also bound Atf1.Pcr1 and acted as meiotic hotspots, but unlike M26 they must be followed by A or C for Atf1.Pcr1 binding and hotspot activity. The basis of the hotspot activity of CTGACGTA (ade6-3013) appears to be identical to that of M26: hotspot activity of both sequences was abolished in cells mutant for atf1, pcr1, spc1, or wis1 and was undetectable in mitotic recombination and in meiotic recombination when located on a plasmid. Both hotspot sequences were sites of micrococcal nuclease hypersensitivity in meiotic chromatin, suggesting that they create an open chromatin structure during meiosis at the site of the hotspots. The newly identified hotspot sequences (C/T/G)TGACGT(A/C) and M26 are closely related to the cAMP response element (CRE) consensus sequence for binding of cAMP-responsive transcription factors such as Atf1.Pcr1, suggesting a link between transcription and meiotic recombination. These results significantly expand the list of identified sequences with meiotic recombination hotspot activity in S. pombe from a single sequence to a family of CRE-related sequences.
Collapse
Affiliation(s)
- M E Fox
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | |
Collapse
|
47
|
Garcia-Gimeno MA, Struhl K. Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to stress. Mol Cell Biol 2000; 20:4340-9. [PMID: 10825197 PMCID: PMC85801 DOI: 10.1128/mcb.20.12.4340-4349.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the family of ATF/CREB transcriptional regulators consists of a repressor, Acr1 (Sko1), and two activators, Aca1 and Aca2. The AP-1 factor Gen4 does not activate transcription through ATF/CREB sites in vivo even though it binds these sites in vitro. Unlike ATF/CREB activators in other species, Aca1- and Aca2-dependent transcription is not affected by protein kinase A or by stress, and Aca1 and Aca2 are not required for Hog1-dependent salt induction of transcription through an optimal ATF/CREB site. Aca2 is important for a variety of biological functions including growth on nonoptimal carbon sources, and Aca2-dependent activation is modestly regulated by carbon source. Strains lacking Aca1 are phenotypically normal, but overexpression of Aca1 suppresses some defects associated with the loss of Aca2, indicating a functional overlap between Aca1 and Aca2. Acr1 represses transcription both by recruiting the Cyc8-Tup1 corepressor and by directly competing with Aca1 and Aca2 for target sites. Acr1 does not fully account for osmotic regulation through ATF/CREB sites, and a novel Hog1-dependent activator(s) that is not a bZIP protein is required for ATF/CREB site activation in response to high salt. In addition, Acr1 does not affect a number of phenotypes that arise from loss of Aca2. Thus, members of the S. cerevisiae ATF/CREB family have overlapping, but distinct, biological functions and target genes.
Collapse
Affiliation(s)
- M A Garcia-Gimeno
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|