1
|
Wen S, Li X, Lv X, Liu K, Ren J, Zhai J, Song Y. Current progress on innate immune evasion mediated by N pro protein of pestiviruses. Front Immunol 2023; 14:1136051. [PMID: 37090696 PMCID: PMC10115221 DOI: 10.3389/fimmu.2023.1136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
Interferon (IFN), the most effective antiviral cytokine, is involved in innate and adaptive immune responses and is essential to the host defense against virus invasion. Once the host was infected by pathogens, the pathogen-associated molecular patterns (PAMPs) were recognized by the host pattern recognition receptors (PRRs), which activates interferon regulatory transcription factors (IRFs) and nuclear factor-kappa B (NF-κB) signal transduction pathway to induce IFN expression. Pathogens have acquired many strategies to escape the IFN-mediated antiviral immune response. Pestiviruses cause massive economic losses in the livestock industry worldwide every year. The immune escape strategies acquired by pestiviruses during evolution are among the major difficulties in its control. Previous experiments indicated that Erns, as an envelope glycoprotein unique to pestiviruses with RNase activity, could cleave viral ss- and dsRNAs, therefore inhibiting the host IFN production induced by viral ss- and dsRNAs. In contrast, Npro, the other envelope glycoprotein unique to pestiviruses, mainly stimulates the degradation of transcription factor IRF-3 to confront the IFN response. This review mainly summarized the current progress on mechanisms mediated by Npro of pestiviruses to antagonize IFN production.
Collapse
Affiliation(s)
- Shubo Wen
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Xintong Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiangyu Lv
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Kai Liu
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Beef Cattle Disease Control and Engineering Technology Research Center, Inner Mongolia Autonomous Region, Tongliao, China
| | - Jingqiang Ren
- Wenzhou Key Laboratory for Virology and Immunology, Institute of Virology, Wenzhou University, Zhejiang, Wenzhou, China
| | - Jingbo Zhai
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Yang Song
- Preventive Veterinary Laboratory, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Zoonose Prevention and Control, Universities of Inner Mongolia Autonomous Region, Tongliao, China
| |
Collapse
|
2
|
Liu Y, Trnka MJ, He L, Burlingame AL, Correia MA. In-Cell Chemical Crosslinking Identifies Hotspots for SQSTM-1/p62-IκBα Interaction That Underscore a Critical Role of p62 in Limiting NF-κB Activation Through IκBα Stabilization. Mol Cell Proteomics 2023; 22:100495. [PMID: 36634736 PMCID: PMC9947424 DOI: 10.1016/j.mcpro.2023.100495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
We have previously documented that in liver cells, the multifunctional protein scaffold p62/SQSTM1 is closely associated with IκBα, an inhibitor of the transcriptional activator NF-κB. Such an intimate p62-IκBα association we now document leads to a marked 18-fold proteolytic IκBα-stabilization, enabling its nuclear entry and termination of the NF-κB-activation cycle. In p62-/--cells, such termination is abrogated resulting in the nuclear persistence and prolonged activation of NF-κB following inflammatory stimuli. Utilizing various approaches both classic (structural deletion, site-directed mutagenesis) as well as novel (in-cell chemical crosslinking), coupled with proteomic analyses, we have defined the precise structural hotspots of p62-IκBα association. Accordingly, we have identified such IκBα hotspots to reside around N-terminal (K38, K47, and K67) and C-terminal (K238/C239) residues in its fifth ankyrin repeat domain. These sites interact with two hotspots in p62: One in its PB-1 subdomain around K13, and the other comprised of a positively charged patch (R183/R186/K187/K189) between its ZZ- and TB-subdomains. APEX proximity analyses upon IκBα-cotransfection of cells with and without p62 have enabled the characterization of the p62 influence on IκBα-protein-protein interactions. Interestingly, consistent with p62's capacity to proteolytically stabilize IκBα, its presence greatly impaired IκBα's interactions with various 20S/26S proteasomal subunits. Furthermore, consistent with p62 interaction with IκBα on an interface opposite to that of its NF-κB-interacting interface, p62 failed to significantly affect IκBα-NF-κB interactions. These collective findings together with the known dynamic p62 nucleocytoplasmic shuttling leads us to speculate that it may be involved in "piggy-back" nuclear transport of IκBα following its NF-κB-elicited transcriptional activation and de novo synthesis, required for termination of the NF-κB-activation cycle. Consequently, mice carrying a liver-specific deletion of p62-residues 68 to 252 reveal age-dependent-enhanced liver inflammation. Our findings reveal yet another mode of p62-mediated pathophysiologically relevant regulation of NF-κB.
Collapse
Affiliation(s)
- Yi Liu
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - Michael J Trnka
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Liang He
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA
| | - A L Burlingame
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA
| | - Maria Almira Correia
- Department of Cellular & Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA; The Liver Center, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
3
|
Wang X, Peng H, Huang Y, Kong W, Cui Q, Du J, Jin H. Post-translational Modifications of IκBα: The State of the Art. Front Cell Dev Biol 2020; 8:574706. [PMID: 33224945 PMCID: PMC7674170 DOI: 10.3389/fcell.2020.574706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) signaling pathway regulates a variety of biological functions in the body, and its abnormal activation contributes to the pathogenesis of many diseases, such as cardiovascular and respiratory diseases and cancers. Therefore, to ensure physiological homeostasis of body systems, this pathway is strictly regulated by IκBα transcription, IκBα synthesis, and the IκBα-dependent nuclear transport of NF-κB. Particularly, the post-translational modifications of IκBα including phosphorylation, ubiquitination, SUMOylation, glutathionylation and hydroxylation are crucial in the abovementioned regulatory process. Because of the importance of the NF-κB pathway in maintaining body homeostasis, understanding the post-translational modifications of IκBα can not only provide deeper insights into the regulation of NF-κB pathway but also contribute to the development of new drug targets and biomarkers for the diseases.
Collapse
Affiliation(s)
- Xiuli Wang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Hanlin Peng
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Qinghua Cui
- Department of Biomedical Informatics, Centre for Noncoding RNA Medicine, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
4
|
|
5
|
Partial liquid ventilation–induced mild hypothermia improves the lung function and alleviates the inflammatory response during acute respiratory distress syndrome in canines. Biomed Pharmacother 2019; 118:109344. [PMID: 31545246 PMCID: PMC9386951 DOI: 10.1016/j.biopha.2019.109344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/29/2022] Open
|
6
|
Ugidos N, Mena J, Baquero S, Alloza I, Azkargorta M, Elortza F, Vandenbroeck K. Interactome of the Autoimmune Risk Protein ANKRD55. Front Immunol 2019; 10:2067. [PMID: 31620119 PMCID: PMC6759997 DOI: 10.3389/fimmu.2019.02067] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/15/2019] [Indexed: 01/03/2023] Open
Abstract
The ankyrin repeat domain-55 (ANKRD55) gene contains intronic single nucleotide polymorphisms (SNPs) associated with risk to contract multiple sclerosis, rheumatoid arthritis or other autoimmune disorders. Risk alleles of these SNPs are associated with higher levels of ANKRD55 in CD4+ T cells. The biological function of ANKRD55 is unknown, but given that ankyrin repeat domains constitute one of the most common protein-protein interaction platforms in nature, it is likely to function in complex with other proteins. Thus, identification of its protein interactomes may provide clues. We identified ANKRD55 interactomes via recombinant overexpression in HEK293 or HeLa cells and mass spectrometry. One hundred forty-eight specifically interacting proteins were found in total protein extracts and 22 in extracts of sucrose gradient-purified nuclei. Bioinformatic analysis suggested that the ANKRD55-protein partners from total protein extracts were related to nucleotide and ATP binding, enriched in nuclear transport terms and associated with cell cycle and RNA, lipid and amino acid metabolism. The enrichment analysis of the ANKRD55-protein partners from nuclear extracts is related to sumoylation, RNA binding, processes associated with cell cycle, RNA transport, nucleotide and ATP binding. The interaction between overexpressed ANKRD55 isoform 001 and endogenous RPS3, the cohesins SMC1A and SMC3, CLTC, PRKDC, VIM, β-tubulin isoforms, and 14-3-3 isoforms were validated by western blot, reverse immunoprecipitaton and/or confocal microscopy. We also identified three phosphorylation sites in ANKRD55, with S436 exhibiting the highest score as likely 14-3-3 binding phosphosite. Our study suggests that ANKRD55 may exert function(s) in the formation or architecture of multiple protein complexes, and is regulated by (de)phosphorylation reactions. Based on interactome and subcellular localization analysis, ANKRD55 is likely transported into the nucleus by the classical nuclear import pathway and is involved in mitosis, probably via effects associated with mitotic spindle dynamics.
Collapse
Affiliation(s)
- Nerea Ugidos
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Jorge Mena
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Sara Baquero
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Iraide Alloza
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, CIBERehd, ProteoRed-ISCIII, Derio, Spain
| | - Koen Vandenbroeck
- Neurogenomiks Group, Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
PI3K-AKT-mTOR and NFκB Pathways in Ovarian Cancer: Implications for Targeted Therapeutics. Cancers (Basel) 2019; 11:cancers11070949. [PMID: 31284467 PMCID: PMC6679095 DOI: 10.3390/cancers11070949] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/10/2019] [Accepted: 06/30/2019] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy in the United States, with an estimated 22,530 new cases and 13,980 deaths in 2019. Recent studies have indicated that the phosphoinositol 3 kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), as well as the nuclear factor-κ light chain enhancer of activated B cells (NFκB) pathways are highly mutated and/or hyper-activated in a majority of ovarian cancer patients, and are associated with advanced grade and stage disease and poor prognosis. In this review, we will investigate PI3K/AKT/mTOR and their interconnection with NFκB pathway in ovarian cancer cells.
Collapse
|
8
|
Humphries JE, Deneckere LE. Characterization of a Toll-like receptor (TLR) signaling pathway in Biomphalaria glabrata and its potential regulation by NF-kappaB. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:118-129. [PMID: 29746981 DOI: 10.1016/j.dci.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 05/03/2018] [Indexed: 05/16/2023]
|
9
|
Evans SM, Rodino KG, Adcox HE, Carlyon JA. Orientia tsutsugamushi uses two Ank effectors to modulate NF-κB p65 nuclear transport and inhibit NF-κB transcriptional activation. PLoS Pathog 2018; 14:e1007023. [PMID: 29734393 PMCID: PMC5957444 DOI: 10.1371/journal.ppat.1007023] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 05/17/2018] [Accepted: 04/11/2018] [Indexed: 01/05/2023] Open
Abstract
Orientia tsutsugamushi causes scrub typhus, a potentially fatal infection that threatens over one billion people. Nuclear translocation of the transcription factor, NF-κB, is the central initiating cellular event in the antimicrobial response. Here, we report that NF-κB p65 nuclear accumulation and NF-κB-dependent transcription are inhibited in O. tsutsugamushi infected HeLa cells and/or primary macrophages, even in the presence of TNFα. The bacterium modulates p65 subcellular localization by neither degrading it nor inhibiting IκBα degradation. Rather, it exploits host exportin 1 to mediate p65 nuclear export, as this phenomenon is leptomycin B-sensitive. O. tsutsugamushi antagonizes NF-κB-activated transcription even when exportin 1 is inhibited and NF-κB consequently remains in the nucleus. Two ankyrin repeat-containing effectors (Anks), Ank1 and Ank6, each of which possess a C-terminal F-box and exhibit 58.5% amino acid identity, are linked to the pathogen's ability to modulate NF-κB. When ectopically expressed, both translocate to the nucleus, abrogate NF-κB-activated transcription in an exportin 1-independent manner, and pronouncedly reduce TNFα-induced p65 nuclear levels by exportin 1-dependent means. Flag-tagged Ank 1 and Ank6 co-immunoprecipitate p65 and exportin 1. Both also bind importin β1, a host protein that is essential for the classical nuclear import pathway. Importazole, which blocks importin β1 activity, abrogates Ank1 and Ank6 nuclear translocation. The Ank1 and Ank6 regions that bind importin β1 also mediate their transport into the nucleus. Yet, these regions are distinct from those that bind p65/exportin 1. The Ank1 and Ank6 F-box and the region that lies between it and the ankyrin repeat domain are essential for blocking p65 nuclear accumulation. These data reveal a novel mechanism by which O. tsutsugamushi modulates the activity and nuclear transport of NF-κB p65 and identify the first microbial proteins that co-opt both importin β1 and exportin 1 to antagonize a critical arm of the antimicrobial response.
Collapse
Affiliation(s)
- Sean M. Evans
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| | - Kyle G. Rodino
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| | - Haley E. Adcox
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| | - Jason A. Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
10
|
Mouihate A, Al-Hashash H, Rakhshani-Moghadam S, Kalakh S. Impact of prenatal immune challenge on the demyelination injury during adulthood. CNS Neurosci Ther 2017; 23:724-735. [PMID: 28718218 DOI: 10.1111/cns.12718] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/20/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022] Open
Abstract
AIM Brain inflammation is associated with several brain diseases such as multiple sclerosis (MS), a disease characterized by demyelination. Whether prenatal immune challenge affects demyelination-induced inflammation in the white matter during adulthood is unclear. In the present study, we used a well-established experimental model of focal demyelination to assess whether prenatal immune challenge affects demyelination-induced inflammation. METHODS Pregnant rats were injected with either lipopolysaccharide (100 μg/kg, ip) or pyrogen-free saline. A 2 μL solution of the gliotoxin ethidium bromide (0.04%) was stereotaxically infused into the corpus callosum of adult male offspring. The extent of demyelination lesion was assessed using Luxol fast blue (LFB) staining. Oligodendrocyte precursor cells, mature oligodendrocytes, markers of cellular gliosis, and inflammation were monitored in the vicinity of the demyelination lesion area. RESULTS Prenatal lipopolysaccharide reduced the size of the demyelination lesion during adulthood. This reduced lesion was associated with enhanced density of mature oligodendrocytes and reduced density of microglial cells in the vicinity of the demyelination lesion. Such reduction in microglial cell density was accompanied by a reduced activation of the nuclear factor κB signaling pathway. CONCLUSION These data strongly suggest that prenatal immune challenge dampens the extent of demyelination during adulthood likely by reprogramming the local brain inflammatory response to demyelinating insults.
Collapse
Affiliation(s)
- Abdeslam Mouihate
- Faculty of Medicine, Department of Physiology, Kuwait University, Safat, Kuwait
| | - Hessah Al-Hashash
- Faculty of Medicine, Department of Physiology, Kuwait University, Safat, Kuwait
| | | | - Samah Kalakh
- Faculty of Medicine, Department of Physiology, Kuwait University, Safat, Kuwait
| |
Collapse
|
11
|
BCA2/Rabring7 Interferes with HIV-1 Proviral Transcription by Enhancing the SUMOylation of IκBα. J Virol 2017; 91:JVI.02098-16. [PMID: 28122985 PMCID: PMC5375697 DOI: 10.1128/jvi.02098-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/18/2017] [Indexed: 12/18/2022] Open
Abstract
BCA2/Rabring7 is a BST2 cofactor that promotes the lysosomal degradation of trapped HIV-1 virions but also functions as a BST2-independent anti-HIV factor by targeting Gag for lysosomal degradation. Since many antiviral factors regulate the NF-κB innate signaling pathway, we investigated whether BCA2 is also connected to this proinflammatory cascade. Here, we show for the first time that BCA2 is induced by NF-κB-activating proinflammatory cytokines and that upregulation of BCA2 provides regulatory negative feedback on NF-κB. Specifically, BCA2 serves as an E3 SUMO ligase in the SUMOylation of IκBα, which in turn enhances the sequestration of NF-κB components in the cytoplasm. Since HIV-1 utilizes NF-κB to promote proviral transcription, the BCA2-mediated inhibition of NF-κB significantly decreases the transcriptional activity of HIV-1 (up to 4.4-fold in CD4+ T cells). Therefore, our findings indicate that BCA2 poses an additional barrier to HIV-1 infection: not only does BCA2 prevent assembly and release of nascent virions, it also significantly restricts HIV-1 transcription by inhibiting the NF-κB pathway.IMPORTANCE Understanding the interactions between HIV-1 and its host cells is highly relevant to the design of new drugs aimed at eliminating HIV-1 from infected individuals. We have previously shown that BCA2, a cofactor of BST2 in the restriction of HIV-1, also prevents virion assembly in a BST2-independent manner. In this study, we found that BCA2 negatively regulates the NF-κB pathway-a signaling cascade necessary for HIV-1 replication and infectivity-which in turn detrimentally affects proviral transcription and virus propagation. Thus, our results indicate that, besides its previously described functions as an antiviral factor, BCA2 poses an additional barrier to HIV-1 replication at the transcriptional level.
Collapse
|
12
|
Time-lapse imaging of p65 and IκBα translocation kinetics following Ca 2+-induced neuronal injury reveals biphasic translocation kinetics in surviving neurons. Mol Cell Neurosci 2017; 80:148-158. [PMID: 28238890 DOI: 10.1016/j.mcn.2017.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 02/01/2017] [Accepted: 02/21/2017] [Indexed: 12/19/2022] Open
Abstract
The transcription factor nuclear factor-κB (NF-κB) regulates neuronal differentiation, plasticity and survival. It is well established that excitatory neurotransmitters such as glutamate control NF-κB activity. Glutamate receptor overactivation is also involved in ischemic- and seizure-induced neuronal injury and neurodegeneration. However, little is known at the single cell-level how NF-κB signaling relates to neuronal survival during excitotoxic injury. We found that silencing of p65/NF-κB delayed N-methyl-d-aspartate (NMDA)-induced excitotoxic injury in hippocampal neurons, suggesting a functional role of p65 in excitotoxicity. Time-lapse imaging of p65 and its inhibitor IκBα using GFP and Cerulean fusion proteins revealed specific patterns of excitotoxic NF-κB activation. Nuclear translocation of p65 began on average 8±3min following 15min of NMDA treatment and was observed in up to two thirds of hippocampal neurons. Nuclear translocation of IκBα preceded that of p65 suggesting independent translocation processes. In surviving neurons, the onset of p65 nuclear export correlated with mitochondrial membrane potential recovery. Dying neurons exhibited persistent nuclear accumulation of p65-eGFP until plasma membrane permeabilization. Our data demonstrate an important role for p65 activation kinetics in neuronal cell death decisions following excitotoxic injury.
Collapse
|
13
|
Korwek Z, Tudelska K, Nałęcz-Jawecki P, Czerkies M, Prus W, Markiewicz J, Kochańczyk M, Lipniacki T. Importins promote high-frequency NF-κB oscillations increasing information channel capacity. Biol Direct 2016; 11:61. [PMID: 27835978 PMCID: PMC5106790 DOI: 10.1186/s13062-016-0164-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 10/29/2016] [Indexed: 12/18/2022] Open
Abstract
Background Importins and exportins influence gene expression by enabling nucleocytoplasmic shuttling of transcription factors. A key transcription factor of innate immunity, NF-κB, is sequestered in the cytoplasm by its inhibitor, IκBα, which masks nuclear localization sequence of NF-κB. In response to TNFα or LPS, IκBα is degraded, which allows importins to bind NF-κB and shepherd it across nuclear pores. NF-κB nuclear activity is terminated when newly synthesized IκBα enters the nucleus, binds NF-κB and exportin which directs the complex to the cytoplasm. Although importins/exportins are known to regulate spatiotemporal kinetics of NF-κB and other transcription factors governing innate immunity, the mechanistic details of these interactions have not been elucidated and mathematically modelled. Results Based on our quantitative experimental data, we pursue NF-κB system modelling by explicitly including NF-κB–importin and IκBα–exportin binding to show that the competition between importins and IκBα enables NF-κB nuclear translocation despite high levels of IκBα. These interactions reduce the effective relaxation time and allow the NF-κB regulatory pathway to respond to recurrent TNFα pulses of 45-min period, which is about twice shorter than the characteristic period of NF-κB oscillations. By stochastic simulations of model dynamics we demonstrate that randomly appearing, short TNFα pulses can be converted to essentially digital pulses of NF-κB activity, provided that intervals between input pulses are not shorter than 1 h. Conclusions By including interactions involving importin-α and exportin we bring the modelling of spatiotemporal kinetics of transcription factors to a more mechanistic level. Basing on the analysis of the pursued model we estimated the information transmission rate of the NF-κB pathway as 1 bit per hour. Reviewers This article was reviewed by Marek Kimmel, James Faeder and William Hlavacek. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0164-z) contains supplementary material.
Collapse
Affiliation(s)
- Zbigniew Korwek
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Tudelska
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Nałęcz-Jawecki
- College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences, University of Warsaw, Warsaw, Poland
| | - Maciej Czerkies
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Wiktor Prus
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Markiewicz
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Marek Kochańczyk
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz Lipniacki
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
14
|
Fagerlund R, Behar M, Fortmann KT, Lin YE, Vargas JD, Hoffmann A. Anatomy of a negative feedback loop: the case of IκBα. J R Soc Interface 2016; 12:0262. [PMID: 26311312 DOI: 10.1098/rsif.2015.0262] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The magnitude, duration and oscillation of cellular signalling pathway responses are often limited by negative feedback loops, defined as an 'activator-induced inhibitor' regulatory motif. Within the NFκB signalling pathway, a key negative feedback regulator is IκBα. We show here that, contrary to current understanding, NFκB-inducible expression is not sufficient for providing effective negative feedback. We then employ computational simulations of NFκB signalling to identify IκBα molecular properties that are critical for proper negative feedback control and test the resulting predictions in biochemical and single-cell live-imaging studies. We identified nuclear import and nuclear export of IκBα and the IκBα-NFκB complex, as well as the free IκBα half-life, as key determinants of post-induction repression of NFκB and the potential for subsequent reactivation. Our work emphasizes that negative feedback is an emergent systems property determined by multiple molecular and biophysical properties in addition to the required 'activator-induced inhibitor' relationship.
Collapse
Affiliation(s)
- Riku Fagerlund
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Marcelo Behar
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Karen T Fortmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Y Eason Lin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Jesse D Vargas
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| | - Alexander Hoffmann
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Mitchell S, Vargas J, Hoffmann A. Signaling via the NFκB system. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:227-41. [PMID: 26990581 DOI: 10.1002/wsbm.1331] [Citation(s) in RCA: 726] [Impact Index Per Article: 80.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 12/25/2022]
Abstract
The nuclear factor kappa B (NFκB) family of transcription factors is a key regulator of immune development, immune responses, inflammation, and cancer. The NFκB signaling system (defined by the interactions between NFκB dimers, IκB regulators, and IKK complexes) is responsive to a number of stimuli, and upon ligand-receptor engagement, distinct cellular outcomes, appropriate to the specific signal received, are set into motion. After almost three decades of study, many signaling mechanisms are well understood, rendering them amenable to mathematical modeling, which can reveal deeper insights about the regulatory design principles. While other reviews have focused on upstream, receptor proximal signaling (Hayden MS, Ghosh S. Signaling to NF-κB. Genes Dev 2004, 18:2195-2224; Verstrepen L, Bekaert T, Chau TL, Tavernier J, Chariot A, Beyaert R. TLR-4, IL-1R and TNF-R signaling to NF-κB: variations on a common theme. Cell Mol Life Sci 2008, 65:2964-2978), and advances through computational modeling (Basak S, Behar M, Hoffmann A. Lessons from mathematically modeling the NF-κB pathway. Immunol Rev 2012, 246:221-238; Williams R, Timmis J, Qwarnstrom E. Computational models of the NF-KB signalling pathway. Computation 2014, 2:131), in this review we aim to summarize the current understanding of the NFκB signaling system itself, the molecular mechanisms, and systems properties that are key to its diverse biological functions, and we discuss remaining questions in the field. WIREs Syst Biol Med 2016, 8:227-241. doi: 10.1002/wsbm.1331 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Simon Mitchell
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse Vargas
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexander Hoffmann
- Department of Microbiology, Immunology, and Molecular Genetics, and Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
16
|
Abstract
Mammalian glutaminases catalyze the stoichiometric conversion of L-glutamine to L-glutamate and ammonium ions. In brain, glutaminase is considered the prevailing pathway for synthesis of the neurotransmitter pool of glutamate. Besides neurotransmission, the products of glutaminase reaction also fulfill crucial roles in energy and metabolic homeostasis in mammalian brain. In the last years, new functional roles for brain glutaminases are being uncovered by using functional genomic and proteomic approaches. Glutaminases may act as multifunctional proteins able to perform different tasks: the discovery of multiple transcript variants in neurons and glial cells, novel extramitochondrial localizations, and isoform-specific proteininteracting partners strongly support possible moonlighting functions for these proteins. In this chapter, we present a critical account of essential works on brain glutaminase 80 years after its discovery. We will highlight the impact of recent findings and thoughts in the context of the glutamate/glutamine brain homeostasis.
Collapse
|
17
|
Rennoll-Bankert KE, Garcia-Garcia JC, Sinclair SH, Dumler JS. Chromatin-bound bacterial effector ankyrin A recruits histone deacetylase 1 and modifies host gene expression. Cell Microbiol 2015; 17:1640-52. [PMID: 25996657 DOI: 10.1111/cmi.12461] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/11/2015] [Accepted: 05/17/2015] [Indexed: 11/29/2022]
Abstract
Control of host epigenetics is becoming evident as a mechanism by which symbionts and pathogens survive. Anaplasma phagocytophilum, an obligate intracellular bacterium, down-regulates multiple host defence genes where histone deacetylase 1 (HDAC1) binds and histone 3 is deacetylated at their promoters, including the NADPH oxidase component, CYBB. How HDAC1 is targeted to defence gene promoters is unknown. Ankyrin A (AnkA), an A. phagocytophilum type IV secretion system effector, enters the granulocyte nucleus, binds stretches of AT-rich DNA and alters transcription of antimicrobial defence genes, including down-regulation of CYBB. Here we found AnkA binds to a predicted matrix attachment region in the proximal CYBB promoter. Using the CYBB promoter as a model of cis-gene silencing, we interrogated the mechanism of AnkA-mediated CYBB repression. The N-terminus of AnkA was critical for nuclear localization, the central ANK repeats and C-terminus were important for DNA binding, and most promoter activity localized to the central ANK repeats. Furthermore, a direct interaction between AnkA and HDAC1 was detected at the CYBB promoter, and was critical for AnkA-mediated CYBB repression. This novel microbial manipulation of host chromatin and gene expression provides important evidence of the direct effects that prokaryotic nuclear effectors can exert over host transcription and function.
Collapse
Affiliation(s)
- Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | | - Sara H Sinclair
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Stephen Dumler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA.,Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Chen CW, Wu MS, Huang YJ, Lin PW, Shih CJ, Lin FP, Chang CY. Iridovirus CARD Protein Inhibits Apoptosis through Intrinsic and Extrinsic Pathways. PLoS One 2015; 10:e0129071. [PMID: 26047333 PMCID: PMC4457926 DOI: 10.1371/journal.pone.0129071] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 05/04/2015] [Indexed: 01/01/2023] Open
Abstract
Grouper iridovirus (GIV) belongs to the genus Ranavirus of the family Iridoviridae; the genomes of such viruses contain an anti-apoptotic caspase recruitment domain (CARD) gene. The GIV-CARD gene encodes a protein of 91 amino acids with a molecular mass of 10,505 Daltons, and shows high similarity to other viral CARD genes and human ICEBERG. In this study, we used Northern blot to demonstrate that GIV-CARD transcription begins at 4 h post-infection; furthermore, we report that its transcription is completely inhibited by cycloheximide but not by aphidicolin, indicating that GIV-CARD is an early gene. GIV-CARD-EGFP and GIV-CARD-FLAG recombinant proteins were observed to translocate from the cytoplasm into the nucleus, but no obvious nuclear localization sequence was observed within GIV-CARD. RNA interference-mediated knockdown of GIV-CARD in GK cells infected with GIV inhibited expression of GIV-CARD and five other viral genes during the early stages of infection, and also reduced GIV infection ability. Immunostaining was performed to show that apoptosis was effectively inhibited in cells expressing GIV-CARD. HeLa cells irradiated with UV or treated with anti-Fas antibody will undergo apoptosis through the intrinsic and extrinsic pathways, respectively. However, over-expression of recombinant GIV-CARD protein in HeLa cells inhibited apoptosis induced by mitochondrial and death receptor signaling. Finally, we report that expression of GIV-CARD in HeLa cells significantly reduced the activities of caspase-8 and -9 following apoptosis triggered by anti-Fas antibody. Taken together, these results demonstrate that GIV-CARD inhibits apoptosis through both intrinsic and extrinsic pathways.
Collapse
Affiliation(s)
- Chien-Wen Chen
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Ming-Shan Wu
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Yi-Jen Huang
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Pei-Wen Lin
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chueh-Ju Shih
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
| | - Fu-Pang Lin
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chi-Yao Chang
- Molecular Genetics Laboratory, Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan
- Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- * E-mail:
| |
Collapse
|
19
|
Pazarentzos E, Mahul-Mellier AL, Datler C, Chaisaklert W, Hwang MS, Kroon J, Qize D, Osborne F, Al-Rubaish A, Al-Ali A, Mazarakis ND, Aboagye EO, Grimm S. IκΒα inhibits apoptosis at the outer mitochondrial membrane independently of NF-κB retention. EMBO J 2014; 33:2814-28. [PMID: 25361605 PMCID: PMC4282558 DOI: 10.15252/embj.201488183] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 09/15/2014] [Accepted: 10/08/2014] [Indexed: 02/06/2023] Open
Abstract
IκBα resides in the cytosol where it retains the inducible transcription factor NF-κB. We show that IκBα also localises to the outer mitochondrial membrane (OMM) to inhibit apoptosis. This effect is especially pronounced in tumour cells with constitutively active NF-κB that accumulate high amounts of mitochondrial IκBα as a NF-κB target gene. 3T3 IκBα(-/-) cells also become protected from apoptosis when IκBα is specifically reconstituted at the OMM. Using various IκBα mutants, we demonstrate that apoptosis inhibition and NF-κB inhibition can be functionally and structurally separated. At mitochondria, IκBα stabilises the complex of VDAC1 and hexokinase II (HKII), thereby preventing Bax recruitment to VDAC1 and the release of cytochrome c for apoptosis induction. When IκBα is reduced in tumour cells with constitutively active NF-κB, they show an enhanced response to anticancer treatment in an in vivo xenograft tumour model. Our results reveal the unexpected activity of IκBα in guarding the integrity of the OMM against apoptosis induction and open possibilities for more specific interference in tumours with deregulated NF-κB.
Collapse
Affiliation(s)
| | | | - Christoph Datler
- Division of Experimental Medicine, Imperial College London, London, UK
| | | | - Ming-Shih Hwang
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Jan Kroon
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Ding Qize
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Foy Osborne
- Division of Experimental Medicine, Imperial College London, London, UK
| | - Abdullah Al-Rubaish
- Prince Mohammed Center for Research & Consultation Studies, College of Medicine, University of Dammam, Dammam, Saudi Arabia
| | - Amein Al-Ali
- Prince Mohammed Center for Research & Consultation Studies, College of Medicine, University of Dammam, Dammam, Saudi Arabia
| | | | - Eric O Aboagye
- MRC Clinical Sciences Centre, Imperial College London, London, UK
| | - Stefan Grimm
- Division of Experimental Medicine, Imperial College London, London, UK
| |
Collapse
|
20
|
Lu M, Zak J, Chen S, Sanchez-Pulido L, Severson DT, Endicott J, Ponting CP, Schofield CJ, Lu X. A code for RanGDP binding in ankyrin repeats defines a nuclear import pathway. Cell 2014; 157:1130-45. [PMID: 24855949 DOI: 10.1016/j.cell.2014.05.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 01/22/2014] [Accepted: 03/13/2014] [Indexed: 01/23/2023]
Abstract
Regulation of nuclear import is fundamental to eukaryotic biology. The majority of nuclear import pathways are mediated by importin-cargo interactions. Yet not all nuclear proteins interact with importins, necessitating the identification of a general importin-independent nuclear import pathway. Here, we identify a code that determines importin-independent nuclear import of ankyrin repeats (ARs), a structural motif found in over 250 human proteins with diverse functions. AR-containing proteins (ARPs) with a hydrophobic residue at the 13th position of two consecutive ARs bind RanGDP efficiently, and consequently enter the nucleus. This code, experimentally tested in 17 ARPs, predicts the nuclear-cytoplasmic localization of over 150 annotated human ARPs with high accuracy and is acquired by the most common familial melanoma-associated CDKN2A mutation, leading to nuclear accumulation of mutant p16ink4a. The RaDAR (RanGDP/AR) pathway represents a general importin-independent nuclear import pathway and is frequently used by AR-containing transcriptional regulators, especially those regulating NF-κB/p53.
Collapse
Affiliation(s)
- Min Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jaroslav Zak
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Shuo Chen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Luis Sanchez-Pulido
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - David T Severson
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Jane Endicott
- Northern Institute for Cancer Research, University of Newcastle, Newcastle, NE2 4HH, UK
| | - Chris P Ponting
- MRC Functional Genomics Unit, Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Christopher J Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|
21
|
Gao R, Huang Y, Huang X, Guan L, Wei S, Zhou Y, Qin Q. Molecular cloning and characterization of two types of IκBα orthologues in orange-spotted grouper, Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2014; 38:101-110. [PMID: 24594011 DOI: 10.1016/j.fsi.2014.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/19/2014] [Accepted: 02/23/2014] [Indexed: 06/03/2023]
Abstract
Inhibitors of kappa B (IκBs) are the members of primary regulators of NF-κB, which can inhibit NF-κB activity by blocking the NF-κB in an inactive state in the cytoplasm. In this study, two types of IκBα orthologues (EcIκBαA and EcIκBαB) from orange-spotted grouper, Epinephelus coioides, were cloned and characterized. EcIκBαA and EcIκBαB encoded putative proteins containing 308 and 318 amino acids, which shared 59% and 53% identity to IκBαA and IκBαB of Danio rerio, respectively. Amino acid sequence alignment showed that both EcIκBαA and EcIκBαB contained a conserved degradation motif DSGLDS in the N-terminal region and a PEST sequence in the C-terminal region. In addition, EcIκBαA and EcIκBαB contained 5 and 6 ankyrin repeats, respectively. The genomic DNA of EcIκBαA and EcIκBαB consisted of 6 exons and 5 introns. Both of their transcripts were widely distributed in different tissues, and the expression levels were different in response to various stimuli, including lipopolysaccharide (LPS), Vibrio alginolyticus and Singapore grouper iridovirus (SGIV). Dual-luciferase reporter assay suggested that both EcIκBαA and EcIκBαB were able to inhibit Ecc-Rel and Ecp65 induced NF-κB promoter activity in grouper spleen (GS) cells. Subcellular localization analysis showed that EcIκBαB was present predominantly in the cytoplasm, while EcIκBαA was distributed throughout both the nucleus and the cytoplasm. Furthermore, overexpression of EcIκBαA and EcIκBαB in GS cells inhibited the viral gene transcriptions of MCP, ORF019 and ORF162 of SGIV. Taken together, our findings suggested that both EcIκBαA and EcIκBαB were involved in grouper innate immunity against virus.
Collapse
Affiliation(s)
- Ren Gao
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Youhua Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Xiaohong Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Liya Guan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Shina Wei
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yongcan Zhou
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, China.
| | - Qiwei Qin
- State Key Laboratory Breeding Base for Sustainable Exploitation of Tropical Biotic Resources, College of Marine Science, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.
| |
Collapse
|
22
|
Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS Pathog 2014; 10:e1003960. [PMID: 24586164 PMCID: PMC3930590 DOI: 10.1371/journal.ppat.1003960] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 01/14/2014] [Indexed: 01/04/2023] Open
Abstract
Viral infection triggers an early host response through activation of pattern recognition receptors, including Toll-like receptors (TLR). TLR signaling cascades induce production of type I interferons and proinflammatory cytokines involved in establishing an anti-viral state as well as in orchestrating ensuing adaptive immunity. To allow infection, replication, and persistence, (herpes)viruses employ ingenious strategies to evade host immunity. The human gamma-herpesvirus Epstein-Barr virus (EBV) is a large, enveloped DNA virus persistently carried by more than 90% of adults worldwide. It is the causative agent of infectious mononucleosis and is associated with several malignant tumors. EBV activates TLRs, including TLR2, TLR3, and TLR9. Interestingly, both the expression of and signaling by TLRs is attenuated during productive EBV infection. Ubiquitination plays an important role in regulating TLR signaling and is controlled by ubiquitin ligases and deubiquitinases (DUBs). The EBV genome encodes three proteins reported to exert in vitro deubiquitinase activity. Using active site-directed probes, we show that one of these putative DUBs, the conserved herpesvirus large tegument protein BPLF1, acts as a functional DUB in EBV-producing B cells. The BPLF1 enzyme is expressed during the late phase of lytic EBV infection and is incorporated into viral particles. The N-terminal part of the large BPLF1 protein contains the catalytic site for DUB activity and suppresses TLR-mediated activation of NF-κB at, or downstream of, the TRAF6 signaling intermediate. A catalytically inactive mutant of this EBV protein did not reduce NF-κB activation, indicating that DUB activity is essential for attenuating TLR signal transduction. Our combined results show that EBV employs deubiquitination of signaling intermediates in the TLR cascade as a mechanism to counteract innate anti-viral immunity of infected hosts. Epstein-Barr virus (EBV) is a human herpesvirus that persistently infects >90% of adults worldwide. One factor underlying the ability of EBV to establish such widespread and lifelong infections is its capacity to escape elimination by the human immune system. Among the first lines of defense against viral infection is the human Toll-like receptor (TLR) system. These receptors can detect the presence of viruses and initiate an intracellular protein signaling cascade that leads to the expression of immune response genes. The activation status of many proteins in this signaling cascade is regulated by the addition of ubiquitin tags. EBV has previously been reported to encode enzymes, called deubiquitinases (DUBs), which are capable of removing such ubiquitin tags from substrate proteins. In our study, we found that one of these enzymes, BPLF1, functions as an active DUB during EBV production in infected cells before being packaged into newly produced viral particles. Furthermore, our study provides insight into the way in which EBV can subvert the human immune response, as we show that BPLF1 can remove ubiquitin tags from proteins in the TLR signaling cascade. This inhibits TLR signaling and decreases the expression of immune response genes.
Collapse
|
23
|
Iosub-Amir A, Friedler A. Protein–protein interactions of ASPP2: an emerging therapeutic target. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00147h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ASPP2 induces apoptosis and is downregulated in many types of cancer, making it a promising target for anti-cancer drugs.
Collapse
Affiliation(s)
- Anat Iosub-Amir
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| | - Assaf Friedler
- Institute of Chemistry
- The Hebrew University of Jerusalem
- Safra Campus
- Jerusalem 91904, Israel
| |
Collapse
|
24
|
Li JZ, Chen X, Gong XL, Hu HY, Shi D, Lu YM, Qiu L, Lu F, Hu ZL, Zhang JP. Identification of a functional nuclear localization signal mediating nuclear import of the zinc finger transcription factor ZNF24. PLoS One 2013; 8:e79910. [PMID: 24224020 PMCID: PMC3815127 DOI: 10.1371/journal.pone.0079910] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 09/26/2013] [Indexed: 02/05/2023] Open
Abstract
ZNF24 is a member of the SCAN domain family of Krüppel-like zinc finger (ZF) transcription factors, which plays a critical role in cell proliferation and differentiation. However, how ZNF24 enters the nucleus in order to exert its function remains unclear since its nuclear localization signal(s) (NLS) has not been identified. Here, we generated a series of GFP-tagged deletion and point mutants and assessed their subcellular localization. Our results delimit the NLS to ZF1-2. Deletion of ZF1-2 caused cytoplasmic accumulation of ZNF24. Fusion of the ZF1-2 to green fluorescent protein (GFP) targeted GFP to the nucleus, demonstrating that the ZF1-2 is both necessary and sufficient for nuclear localization. ZNF24 containing histidine to leucine mutations that disrupt the structure of ZF1 or/and ZF2 retains appropriate nuclear localization, indicating that neither the tertiary structure of the zinc fingers nor specific DNA binding are necessary for nuclear localization. K286A and R290A mutation led to partial cytoplasmic accumulation. Co-immunoprecipitation demonstrated that ZNF24 interacted with importin-β and this interaction required the ZF motifs. The β-Catenin (CTNNB1) luciferase assays showed that the ZNF24 mutants defective in nuclear localization could not promote CTNNB1promoter activation as the wild-type ZNF24 did. Taken together, these results suggest that consecutive ZF1-2 is critical for the regulation of ZNF24 nuclear localization and its transactivation function.
Collapse
Affiliation(s)
- Jian-Zhong Li
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (JZL); (JPZ)
| | - Xia Chen
- Cancer Institute, Second Military Medical University, Shanghai, China
| | - Xue-Lian Gong
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- Department of Health Toxicology, Second Military Medical University, Shanghai, China
| | - Hong-Yuan Hu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Duo Shi
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Yi-Ming Lu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Lei Qiu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Fa Lu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Zhen-Lin Hu
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
| | - Jun-Ping Zhang
- Department of Biochemical Pharmacy, Second Military Medical University, Shanghai, China
- * E-mail: (JZL); (JPZ)
| |
Collapse
|
25
|
Su P, Liu X, Han Y, Zheng Z, Liu G, Li J, Li Q. Identification and characterization of a novel IκB-ε-like gene from lamprey (Lampetra japonica) with a role in immune response. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1146-1154. [PMID: 23916539 DOI: 10.1016/j.fsi.2013.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/02/2013] [Accepted: 07/14/2013] [Indexed: 06/02/2023]
Abstract
Nuclear factor of kappa B (NF-κB) is a stimuli-activated transcription factor, regulates the expression of a diverse array of genes. Inhibitor of kappa B-epsilon (IκB-ε) is an inhibitor of NF-κB, which retains NF-κB in an inactive state in the cytoplasm. Lampreys (Lampetra japonica) belong to the lowest class of vertebrates with little information about its IκBs. We have identified a cDNA sequence IκB-ε-like in the lamprey and the deduced amino acid sequence of IκB-ε-like. It contains a conserved DSGxxS motif and six consecutive ankyrin repeats, which are necessary for signal-induced degradation of the molecule. Phylogenetic analysis indicated it had high sequence homology with IκB-εs from other vertebrates. FACS analysis showed that IκB-ε-like located in cytoplasm of leukocytes. The degradation of IκB-ε-like could be observed in leukocytes of L. japonica stimulated with lipopolysaccharide. These results indicate that IκB-ε proteins are conserved across vertebrates and the NF-κB-like signaling pathway may exist in the oldest agnatha.
Collapse
Affiliation(s)
- Peng Su
- College of Life Science, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Koutsokeras A, Purkayastha N, Purkayashta N, Rigby A, Subang MC, Sclanders M, Vessillier S, Mullen L, Chernajovsky Y, Gould D. Generation of an efficiently secreted, cell penetrating NF-κB inhibitor. FASEB J 2013; 28:373-81. [PMID: 24072781 DOI: 10.1096/fj.13-236570] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Gene therapy is a powerful approach to treat disease locally. However, if the therapeutic target is intracellular, the therapeutic will be effective only in the cells where the therapeutic gene is delivered. We have engineered a fusion protein containing an intracellular inhibitor of the transcription factor NF-κB pathway that can be effectively secreted from producing cells. This fusion protein is cleaved extracellularly by metalloproteinases allowing release of a protein transduction domain (PTD) linked to the NF-κB inhibitor for translocation into neighboring cells. We show that engineered molecules can be efficiently secreted (>80%); are cleaved with matrix metalloprotease-1; inhibit NF-κB driven transcription in a biological assay with a human reporter cell line; and display significant inhibition in mouse paw inflammation models when delivered by lentivirus or secreting cells. No inhibition of NF-κB transcription or therapeutic effect was seen using molecules devoid of the PTD and NF-κB inhibitory domains. By creating a fusion protein with an endogenous secretion partner, we demonstrate a novel approach to efficiently secrete PTD-containing protein domains, overcoming previous limitations, and allowing for potent paracrine effects.
Collapse
Affiliation(s)
- Apostolos Koutsokeras
- 2Bone and Joint Research Unit, Queen Mary University of London, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Charterhouse Square, London EC1M 6BQ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kasthuri SR, Whang I, Navaneethaiyer U, Lim BS, Choi CY, Lee J. Molecular characterization and expression analysis of IκB from Haliotis discus discus. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1596-1604. [PMID: 23499215 DOI: 10.1016/j.fsi.2013.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 12/29/2012] [Accepted: 02/15/2013] [Indexed: 06/01/2023]
Abstract
Innate immune system relies on the recognition of pathogen associated molecular patterns present in the microbes by the pattern recognition receptors leading to the activation of signaling cascade and subsequent synthesis of cytokines. NF-κB is a major stimulus activated transcription factor, which regulates the expression of a diverse array of genes. IκB is an inhibitor of NF-κB, retaining NF-κB in an inactive state in the cytoplasm. In this study, we have reported the characterization of first abalone IκB (HdIκB). The cDNA possessed an ORF of 1200 bp coding for a protein of 400 amino acids with molecular mass of 45 kDa and isoelectric point of 4.7. HdIκB protein possessed a conserved phosphorylation site (58)DSGIFS(63) in the N-terminal region, six ankyrin repeats, and a PEST sequence in the C-terminal region. A casein kinase II phosphorylation site could also be observed in the PEST sequence. Constitutive expression of HdIκB revealed its physiological significance since NF-κB is known to be activated by various stimuli. Elevated expression of HdIκB transcripts could be observed in abalones challenged with various mitogens and live microbes. This novel characterization of abalone IκB would further be a positive approach in the affirmation of evolutionary conservation and significance of this protein as a repressor/inhibitor of a pleiotropic transcription factor like NF-κB.
Collapse
Affiliation(s)
- Saranya Revathy Kasthuri
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province, Republic of Korea
| | | | | | | | | | | |
Collapse
|
28
|
Lu M, Breyssens H, Salter V, Zhong S, Hu Y, Baer C, Ratnayaka I, Sullivan A, Brown NR, Endicott J, Knapp S, Kessler BM, Middleton MR, Siebold C, Jones EY, Sviderskaya EV, Cebon J, John T, Caballero OL, Goding CR, Lu X. Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear iASPP. Cancer Cell 2013; 23:618-33. [PMID: 23623661 DOI: 10.1016/j.ccr.2013.03.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 10/05/2012] [Accepted: 03/15/2013] [Indexed: 12/20/2022]
Abstract
Nearly 90% of human melanomas contain inactivated wild-type p53, the underlying mechanisms for which are not fully understood. Here, we identify that cyclin B1/CDK1-phosphorylates iASPP, which leads to the inhibition of iASPP dimerization, promotion of iASPP monomer nuclear entry, and exposure of its p53 binding sites, leading to increased p53 inhibition. Nuclear iASPP is enriched in melanoma metastasis and associates with poor patient survival. Most wild-type p53-expressing melanoma cell lines coexpress high levels of phosphorylated nuclear iASPP, MDM2, and cyclin B1. Inhibition of MDM2 and iASPP phosphorylation with small molecules induced p53-dependent apoptosis and growth suppression. Concurrent p53 reactivation and BRAFV600E inhibition achieved additive suppression in vivo, presenting an alternative for melanoma therapy.
Collapse
Affiliation(s)
- Min Lu
- Ludwig Institute for Cancer Research, University of Oxford, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
N terminus of ASPP2 binds to Ras and enhances Ras/Raf/MEK/ERK activation to promote oncogene-induced senescence. Proc Natl Acad Sci U S A 2012; 110:312-7. [PMID: 23248303 DOI: 10.1073/pnas.1201514110] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The ASPP2 (also known as 53BP2L) tumor suppressor is a proapoptotic member of a family of p53 binding proteins that functions in part by enhancing p53-dependent apoptosis via its C-terminal p53-binding domain. Mounting evidence also suggests that ASPP2 harbors important nonapoptotic p53-independent functions. Structural studies identify a small G protein Ras-association domain in the ASPP2 N terminus. Because Ras-induced senescence is a barrier to tumor formation in normal cells, we investigated whether ASPP2 could bind Ras and stimulate the protein kinase Raf/MEK/ERK signaling cascade. We now show that ASPP2 binds to Ras-GTP at the plasma membrane and stimulates Ras-induced signaling and pERK1/2 levels via promoting Ras-GTP loading, B-Raf/C-Raf dimerization, and C-Raf phosphorylation. These functions require the ASPP2 N terminus because BBP (also known as 53BP2S), an alternatively spliced ASPP2 isoform lacking the N terminus, was defective in binding Ras-GTP and stimulating Raf/MEK/ERK signaling. Decreased ASPP2 levels attenuated H-RasV12-induced senescence in normal human fibroblasts and neonatal human epidermal keratinocytes. Together, our results reveal a mechanism for ASPP2 tumor suppressor function via direct interaction with Ras-GTP to stimulate Ras-induced senescence in nontransformed human cells.
Collapse
|
30
|
Pal D, Sur S, Mandal S, Das S, Panda CK. Regular black tea habit could reduce tobacco associated ROS generation and DNA damage in oral mucosa of normal population. Food Chem Toxicol 2012; 50:2996-3003. [PMID: 22705326 DOI: 10.1016/j.fct.2012.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 05/17/2012] [Accepted: 06/03/2012] [Indexed: 01/28/2023]
Abstract
Tobacco and tea habit are very common in world wide. In the present study, an attempt was made to evaluate the effect of regular drinking of black tea on reactive oxygen species (ROS) generation and DNA damage in buccal cells of normal subjects with or without tobacco habit. Expression of ROS associated proteins IκB, NF-κB as well as DNA repair associated proteins p53, MLH1 were also analyzed. Exfoliated buccal cells were collected from 308 healthy individuals and classified according to age, tobacco and tea habits. In all age groups, comparatively high ROS level and significantly high DNA damage frequency were seen in individuals with tobacco habit than the subjects without tea and tobacco habits. Tea habit effectively lowered ROS level and restrict DNA damage in tobacco users irrespective of ages. The DNA damage seen in the subjects was not associated with apoptosis. Moreover, tea habit effectively lowered the expression of IκB, NF-κB, p53 and MLH1 in tobacco users in all age groups. It seems that regular black tea habit could have anti-genotoxic effect as revealed by reduced tobacco associated ROS generation and DNA damage in buccal cells.
Collapse
Affiliation(s)
- Debolina Pal
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | | | | | | | | |
Collapse
|
31
|
Hinz M, Arslan SÇ, Scheidereit C. It takes two to tango: IκBs, the multifunctional partners of NF-κB. Immunol Rev 2012; 246:59-76. [PMID: 22435547 DOI: 10.1111/j.1600-065x.2012.01102.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The inhibitory IκB proteins have been discovered as fundamental regulators of the inducible transcription factor nuclear factor-κB (NF-κB). As a generally excepted model, stimulus-dependent destruction of inhibitory IκBs and processing of precursor molecules, both promoted by components of the signal integrating IκB kinase complex, are the key events for the release of various NF-κB/Rel dimers and subsequent transcriptional activation. Intense research of more than 20 years provides evidence that the extending family of IκBs act not simply as reversible inhibitors of NF-κB activation but rather as a complex regulatory module, which assures feedback regulation of the NF-κB system and either can inhibit or promote transcriptional activity in a stimulus-dependent manner. Thus, IκB and NF-κB/Rel family proteins establish a complex interrelationship that allows modulated NF-κB-dependent transcription, tailored to the physiological environment.
Collapse
Affiliation(s)
- Michael Hinz
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | | | | |
Collapse
|
32
|
Vancurova I, Vancura A. Regulation and function of nuclear IκBα in inflammation and cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL IMMUNOLOGY 2012; 1:56-66. [PMID: 23885315 PMCID: PMC3714182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 05/15/2012] [Indexed: 06/02/2023]
Abstract
The nuclear translocation and accumulation of IκBα represents an important mechanism regulating transcription of NFκB-dependent pro-inflammatory and anti-apoptotic genes. The nuclear accumulation of IκBα can be induced by post-induction repression in stimulated cells, inhibition of the CRM1-dependent nuclear IκBα export by leptomycin B, and by the inhibition of the 26S proteasome. In addition, IκBα is constitutively localized in the nucleus of human neutrophils, likely contributing to the high rate of spontaneous apoptosis in these cells. In the nucleus, IκBα suppresses transcription of NFκB-dependent pro-inflammatory and anti-apoptotic genes, representing an attractive therapeutic target. However, the inhibition of NFκB-dependent genes by nuclear IκBα is promoter specific, and depends on the subunit composition of NFκB dimers and post-translational modifications of the recruited NFκB proteins. In addition, several recent studies have demonstrated an NFκB-independent role of the nuclear IκBα. In this review, we discuss the mechanisms leading to the nuclear accumulation of IκBα and its nuclear functions as potential targets for anti-inflammatory and anti-cancer therapies.
Collapse
Affiliation(s)
- Ivana Vancurova
- Department of Biological Sciences, St. John's University New York, NY 11439, USA
| | | |
Collapse
|
33
|
Regulation of nucleocytoplasmic shuttling of Bruton's tyrosine kinase (Btk) through a novel SH3-dependent interaction with ankyrin repeat domain 54 (ANKRD54). Mol Cell Biol 2012; 32:2440-53. [PMID: 22527282 DOI: 10.1128/mcb.06620-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bruton's tyrosine kinase (Btk), belonging to the Tec family of tyrosine kinases (TFKs), is essential for B-lymphocyte development. Abrogation of Btk signaling causes human X-linked agammaglobulinemia (XLA) and murine X-linked immunodeficiency (Xid). We employed affinity purification of Flag-tagged Btk, combined with tandem mass spectrometry, to capture and identify novel interacting proteins. We here characterize the interaction with ankryin repeat domain 54 protein (ANKRD54), also known as Lyn-interacting ankyrin repeat protein (Liar). While Btk is a nucleocytoplasmic protein, the Liar pool was found to shuttle at a higher rate than Btk. Importantly, our results suggest that Liar mediates nuclear export of both Btk and another TFK, Txk/Rlk. Liar-mediated Btk shuttling was enriched for activation loop, nonphosphorylated Btk and entirely dependent on Btk's SH3 domain. Liar also showed reduced binding to an aspartic acid phosphomimetic SH3 mutant. Three other investigated nucleus-located proteins, Abl, estrogen receptor β (ERβ), and transcription factor T-bet, were all unaffected by Liar. We mapped the interaction site to the C terminus of the Btk SH3 domain. A biotinylated, synthetic Btk peptide, ARDKNGQEGYIPSNYVTEAEDS, was sufficient for this interaction. Liar is the first protein identified that specifically influences the nucleocytoplasmic shuttling of Btk and Txk and belongs to a rare group of known proteins carrying out this activity in a Crm1-dependent manner.
Collapse
|
34
|
Kwak JH, Jung JK, Lee H. Nuclear factor-kappa B inhibitors; a patent review (2006-2010). Expert Opin Ther Pat 2012; 21:1897-910. [PMID: 22098320 DOI: 10.1517/13543776.2011.638285] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Nuclear factor (NF)-κB, as transcription factor, is linked to the expression of various genes and plays an essential role in immune and inflammatory responses. Abnormal NF-κB signaling results in human diseases, such as immune disorders, inflammation and various cancers. Therefore, regulation of NF-κB may treat or improve the symptoms in human disorders. AREAS COVERED This review provides information on recent NF-κB inhibitor-related patents from 2006 to 2010. The patents are explained and categorized by mechanism. The reader will gain an understanding of NF-κB function and the structure and biological activity of recently developed NF-κB inhibitors that may be new drug candidates. EXPERT OPINION NF-κB plays an essential role in the human body and thus regulation of NF-κB is very important for the treatment of diseases. Furthermore, patented compounds and peptides are available as lead compounds in drug development studies.
Collapse
Affiliation(s)
- Jae-Hwan Kwak
- Chungbuk National University, College of Pharmacy, Cheongju 361-763, Republic of Korea
| | | | | |
Collapse
|
35
|
Yazdani S, Karimfar MH, Imani Fooladi AA, Mirbagheri L, Ebrahimi M, Ghanei M, Nourani MR. Nuclear factor κB1/RelA mediates the inflammation and/or survival of human airway exposed to sulfur mustard. J Recept Signal Transduct Res 2012; 31:367-73. [PMID: 21929290 DOI: 10.3109/10799893.2011.602415] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Sulfur mustard (SM) is known as an effective chemical agent and was used in the 1980s during the Iran-Iraq war against Iranians. At the present time, there are more than 40,000 people suffering from pulmonary lesions due to mustard gas in Iran. Though much is known about the gross pathology of SM damage, the molecular and cellular basis for this pathology is not well understood. OBJECTIVE One of the most important protein groups involved in inflammatory responses is nuclear factor κB protein (NF-κB1) family. They belong to the category of DNA-binding protein factors necessary for transcription of many proinflammatory molecules. In our research, we examined the role of NF-κB1/RelA in the pathophysiology of the lung. MATERIALS AND METHODS We investigated 10 normal individuals and 20 SM induced patients. Expression of NF-κB1/RelA in controls and the SM exposed samples was measured by real-time polymerase chain reaction and localization of NF-κB1 protein was detected by immunohistochemistry staining. RESULTS Our results revealed that expression levels of NF-κB1 and RelA were upregulated 0.64-6.50 fold and 0.83-8.34 fold, respectively, in the SM exposed patients in comparison with control samples. DISCUSSION AND CONCLUSION As far as we know, this is the first finding of induction of NF-κB in patients exposed to SM. NF-κB1/RelA may play a major role in inflammation induced by mustard gas or even in cell survival in the bronchial wall of affected patients.
Collapse
Affiliation(s)
- Samaneh Yazdani
- Chemical Injury Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
36
|
Terry AJ, Chaplain MAJ. Spatio-temporal modelling of the NF-κB intracellular signalling pathway: the roles of diffusion, active transport, and cell geometry. J Theor Biol 2011; 290:7-26. [PMID: 21907212 DOI: 10.1016/j.jtbi.2011.08.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 07/01/2011] [Accepted: 08/27/2011] [Indexed: 11/26/2022]
Abstract
The nuclear factor kappa B (NF-κB) intracellular signalling pathway is central to many stressful, inflammatory, and innate immune responses. NF-κB proteins themselves are transcription factors for hundreds of genes. Experiments have shown that the NF-κB pathway can exhibit oscillatory dynamics-a negative feedback loop causes oscillatory nuclear-cytoplasmic translocation of NF-κB. Given that cell size and shape are known to influence intracellular signal transduction, we consider a spatio-temporal model of partial differential equations for the NF-κB pathway, where we model molecular movement by diffusion and, for several key species including NF-κB, by active transport as well. Through numerical simulations we find values for model parameters such that sustained oscillatory dynamics occur. Our spatial profiles and animations bear a striking resemblance to experimental images and movie clips employing fluorescent fusion proteins. We discover that oscillations in nuclear NF-κB may occur when active transport is across the nuclear membrane only, or when no species are subject to active transport. However, when active transport is across the nuclear membrane and NF-κB is additionally actively transported through the cytoplasm, oscillations are lost. Hence transport mechanisms in a cell will influence its response to activation of its NF-κB pathway. We also demonstrate that sustained oscillations in nuclear NF-κB are somewhat robust to changes in the shape of the cell, or the shape, location, and size of its nucleus, or the location of ribosomes. Yet if the cell is particularly flat or the nucleus sufficiently small, then oscillations are lost. Thus the geometry of a cell may partly determine its response to NF-κB activation. The NF-κB pathway is known to be constitutively active in several human cancers. Our spatially explicit modelling approach will allow us, in future work, to investigate targeted drug therapy of tumours.
Collapse
Affiliation(s)
- Alan J Terry
- Division of Mathematics, University of Dundee, Dundee, Scotland, UK.
| | | |
Collapse
|
37
|
Abstract
NF-κB (nuclear factor κB) controls diverse cellular processes and is frequently misregulated in chronic immune diseases or cancer. The activity of NF-κB is regulated by IκB (inhibitory κB) proteins which control nuclear-cytoplasmic shuttling and DNA binding of NF-κB. In the present paper, we describe a novel role for p65 as a critical regulator of the cellular localization and functions of NF-κB and its inhibitor IκBβ. In genetically modified p65-/- cells, the localization of ectopic p65 is not solely regulated by IκBα, but is largely dependent on the NLS (nuclear localization signal) and the NES (nuclear export signal) of p65. Furthermore, unlike IκBα, IκBβ does not contribute to the nuclear export of p65. In fact, the cellular localization and degradation of IκBβ is controlled by the p65-specific NLS and NES. The results of our present study also reveal that, in addition to stimulus-induced redistribution of NF-κB, changes in the constitutive localization of p65 and IκBβ specifically modulate activation of inflammatory genes. This is a consequence of differences in the DNA-binding activity and signal responsiveness between the nuclear and cytoplasmic NF-κB-IκBβ complexes. Taken together, the findings of the present study indicate that the p65 subunit controls transcriptional competence of NF-κB by regulating the NF-κB/IκBβ pathway.
Collapse
|
38
|
Characterization of the core elements of the NF-κB signaling pathway of the sea anemone Nematostella vectensis. Mol Cell Biol 2010; 31:1076-87. [PMID: 21189285 DOI: 10.1128/mcb.00927-10] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sea anemone Nematostella vectensis is the leading developmental and genomic model for the phylum Cnidaria, which includes anemones, hydras, jellyfish, and corals. In insects and vertebrates, the NF-κB pathway is required for cellular and organismal responses to various stresses, including pathogens and chemicals, as well as for several developmental processes. Herein, we have characterized proteins that comprise the core NF-κB pathway in Nematostella, including homologs of NF-κB, IκB, Bcl-3, and IκB kinase (IKK). We show that N. vectensis NF-κB (Nv-NF-κB) can bind to κB sites and activate transcription of reporter genes containing multimeric κB sites or the Nv-IκB promoter. Both Nv-IκB and Nv-Bcl-3 interact with Nv-NF-κB and block its ability to activate reporter gene expression. Nv-IKK is most similar to human IKKε/TBK kinases and, in vitro, can phosphorylate Ser47 of Nv-IκB. Nv-NF-κB is expressed in a subset of ectodermal cells in juvenile and adult Nematostella anemones. A bioinformatic analysis suggests that homologs of many mammalian NF-κB target genes are targets for Nv-NF-κB, including genes involved in apoptosis and responses to organic compounds and endogenous stimuli. These results indicate that NF-κB pathway proteins in Nematostella are similar to their vertebrate homologs, and these results also provide a framework for understanding the evolutionary origins of NF-κB signaling.
Collapse
|
39
|
Molecular cloning and characterization of twist gene in Bombyx mori. Mol Cell Biochem 2010; 348:69-76. [DOI: 10.1007/s11010-010-0639-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Accepted: 10/28/2010] [Indexed: 10/18/2022]
|
40
|
Valdehita A, Bajo AM, Fernández-Martínez AB, Arenas MI, Vacas E, Valenzuela P, Ruíz-Villaespesa A, Prieto JC, Carmena MJ. Nuclear localization of vasoactive intestinal peptide (VIP) receptors in human breast cancer. Peptides 2010; 31:2035-45. [PMID: 20691743 DOI: 10.1016/j.peptides.2010.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/28/2010] [Accepted: 07/28/2010] [Indexed: 12/12/2022]
Abstract
Vasoactive intestinal peptide (VIP) and its receptors (VPACs) are involved in proliferation, survival, and differentiation in human breast cancer cells. Its mechanism of action is traditionally thought to be through specific plasma membrane receptors. There is compelling evidence for a novel intracrine mode of genomic regulation by G-protein-coupled receptors (GPCRs) that implies both endocytosis and nuclear translocation of peripheral GPCR and/or the activation of nuclear-located GPCRs by endogenously-produced, non-secreted ligands. Regarding to VPAC receptors, which are GPCRs, there is only a report suggesting them as a dynamic system for signaling from plasma membrane and nuclear membrane complex. In this study, we show that VPAC(1) receptor is localized in cell nuclear fraction whereas VPAC(2) receptor presents an extranuclear localization and its protein expression is lower than that of VPAC(1) receptor in human breast tissue samples. Both receptors as well as VIP are overexpressed in breast cancer as compared to non-tumor tissue. Moreover, we report the markedly nuclear localization of VPAC(1) receptors in estrogen-dependent (T47D) and independent (MDA-MB-468) human breast cancer cell lines. VPAC(1) receptors are functional in plasma membrane and nucleus as shown by VIP stimulation of cAMP production in both cell lines. In addition, VIP increases its own intracellular and extracellular levels, and could be involved in the regulation of VPAC(1)-receptor traffic from the plasma membrane to the nucleus. These results support new concepts on function and regulation of nuclear GPCRs which could have an impact on development of new therapeutic drugs.
Collapse
Affiliation(s)
- Ana Valdehita
- Molecular Neuroendocrinology Unit, Department of Biochemistry and Molecular Biology, Alcalá University, 28871 Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Identification of a novel functional nuclear localization signal in the protein encoded by open reading frame 47 of Bombyx mori nucleopolyhedrovirus. Arch Virol 2010; 155:1943-50. [DOI: 10.1007/s00705-010-0782-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/30/2010] [Indexed: 10/19/2022]
|
42
|
Sottocornola R, Royer C, Vives V, Tordella L, Zhong S, Wang Y, Ratnayaka I, Shipman M, Cheung A, Gaston-Massuet C, Ferretti P, Molnár Z, Lu X. ASPP2 binds Par-3 and controls the polarity and proliferation of neural progenitors during CNS development. Dev Cell 2010; 19:126-37. [PMID: 20619750 DOI: 10.1016/j.devcel.2010.06.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 03/08/2010] [Accepted: 05/29/2010] [Indexed: 11/19/2022]
Abstract
Cell polarity plays a key role in the development of the central nervous system (CNS). Interestingly, disruption of cell polarity is seen in many cancers. ASPP2 is a haplo-insufficient tumor suppressor and an activator of the p53 family. In this study, we show that ASPP2 controls the polarity and proliferation of neural progenitors in vivo, leading to the formation of neuroblastic rosettes that resemble primitive neuroepithelial tumors. Consistent with its role in cell polarity, ASPP2 influences interkinetic nuclear migration and lamination during CNS development. Mechanistically, ASPP2 maintains the integrity of tight/adherens junctions. ASPP2 binds Par-3 and controls its apical/junctional localization without affecting its expression or Par-3/aPKC lambda binding. The junctional localization of ASPP2 and Par-3 is interdependent, suggesting that they are prime targets for each other. These results identify ASPP2 as a regulator of Par-3, which plays a key role in controlling cell proliferation, polarity, and tissue organization during CNS development.
Collapse
Affiliation(s)
- Roberta Sottocornola
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Old Road Campus Research Building, Headington, Oxford OX3 7DQ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Keutgens A, Zhang X, Shostak K, Robert I, Olivier S, Vanderplasschen A, Chapelle JP, Viatour P, Merville MP, Bex F, Gothot A, Chariot A. BCL-3 degradation involves its polyubiquitination through a FBW7-independent pathway and its binding to the proteasome subunit PSMB1. J Biol Chem 2010; 285:25831-40. [PMID: 20558726 DOI: 10.1074/jbc.m110.112128] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The oncogenic protein BCL-3 activates or represses gene transcription through binding with the NF-kappaB proteins p50 and p52 and is degraded through a phospho- and GSK3-dependent pathway. However, the mechanisms underlying its degradation remain poorly understood. Yeast two-hybrid analysis led to the identification of the proteasome subunit PSMB1 as a BCL-3-associated protein. The binding of BCL-3 to PSMB1 is required for its degradation through the proteasome. Indeed, PSMB1-depleted cells are defective in degrading polyubiquitinated BCL-3. The N-terminal part of BCL-3 includes lysines 13 and 26 required for the Lys(48)-linked polyubiquitination of BCL-3. Moreover, the E3 ligase FBW7, known to polyubiquitinate a variety of substrates phosphorylated by GSK3, is dispensable for BCL-3 degradation. Thus, our data defined a unique motif of BCL-3 that is needed for its recruitment to the proteasome and identified PSMB1 as a key protein required for the proteasome-mediated degradation of a nuclear and oncogenic IkappaB protein.
Collapse
Affiliation(s)
- Aurore Keutgens
- Interdisciplinary Cluster for Applied Genoproteomics, GIGA-Research, Unit of Medical Chemistry, Department of Infectious and Parasitic Diseases, Faculty of Veterinary Medicine, University of Liège, Sart-Tilman, 4000 Liège, Belgium
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Padhan K, Varma R. Immunological synapse: a multi-protein signalling cellular apparatus for controlling gene expression. Immunology 2010; 129:322-8. [PMID: 20409153 DOI: 10.1111/j.1365-2567.2009.03241.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The interaction of T cells with antigen-presenting cells is the hallmark of adaptive immunity. In vitro studies have described the formation of an immunological synapse between these cells, and intra-vital imaging has described in great detail the dynamics of these interactions. The immunological synapse has become a paradigm to study signals exchanged between the two cells. A wealth of information has been amassed regarding the localization of signalling molecules, their kinetics and the transcription factors they activate. We continue to discover mechanisms that cause receptors and signalling molecules to compartmentalize in the cell; however, the emerging challenge lies in understanding how the immunological synapse contributes to differentiation. Here, we review some of the transcription factors activated downstream of T-cell receptor signalling and discuss mechanisms by which antigen dose and affinity may influence differentiation. Antigen affinity might change the kind of transcription factors that are activated whereas antigen dose is likely to influence the temporal dynamics of the transcription factors. The immunological synapse is therefore likely to influence differentiation by modulating the trafficking of transcription factors and by promoting asymmetric cell division, an emerging concept.
Collapse
Affiliation(s)
- Kartika Padhan
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | |
Collapse
|
45
|
Jin B, Shen H, Lin S, Li JL, Chen Z, Griffin JD, Wu L. The mastermind-like 1 (MAML1) co-activator regulates constitutive NF-kappaB signaling and cell survival. J Biol Chem 2010; 285:14356-65. [PMID: 20231278 DOI: 10.1074/jbc.m109.078865] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nuclear factor-kappaB (NF-kappaB)-based signaling regulates diverse biological processes, and its deregulation is associated with various disorders including autoimmune diseases and cancer. Identification of novel factors that modulate NF-kappaB function is therefore of significant importance. The Mastermind-like 1 (MAML1) transcriptional co-activator regulates transcriptional activity in the Notch pathway and is emerging as a co-activator of other pathways. In this study, we found that MAML1 regulates NF-kappaB signaling via two mechanisms. First, MAML1 co-activates the NF-kappaB subunit RelA (p65) in NF-kappaB-dependent transcription. Second, MAML1 causes degradation of the inhibitor of NF-kappaB (IkappaBalpha). Maml1-deficient mouse embryonic fibroblasts showed impaired tumor necrosis factor-alpha (TNFalpha)-induced NF-kappaB responses. Moreover, MAML1 expression level directly influences cellular sensitivity to TNFalpha-induced cytotoxicity. In vivo, mice deficient in the Maml1 gene exhibited spontaneous cell death in the liver, with a large increase in the number of apoptotic hepatic cells. These findings indicate that MAML1 is a novel modulator for NF-kappaB signaling and regulates cellular survival.
Collapse
Affiliation(s)
- Baofeng Jin
- Department of Molecular Genetics and Microbiology, Shands Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
G-protein-coupled-receptor kinases mediate TNFα-induced NFκB signalling via direct interaction with and phosphorylation of IκBα. Biochem J 2009; 425:169-78. [PMID: 19796012 DOI: 10.1042/bj20090908] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor necrosis factor-α (TNFα) is a multifunctional cytokine involved in the pathophysiology of many chronic inflammatory diseases. TNFα activation of the nuclear factor κB (NFκB) signaling pathway particularly in macrophages has been implicated in many diseases. We demonstrate here that G-protein coupled receptor kinase-2 and 5 (GRK2 and 5) regulate TNFα-induced NFκB signaling in Raw264.7 macrophages. RNAi knockdown of GRK2 or 5 in macrophages significantly inhibits TNFα-induced IκBα phosphorylation and degradation, NFκB activation, and expression of the NFκB-regulated gene, macrophage inflammatory protein-1β. Consistent with these results, over-expression of GRK2 or 5 enhances TNFα-induced NFκB activity. In addition,we show that GRK2 and 5 interact with IκBα via the N-terminal domain of IκBα and that IκBα isa substrate for GRK2 and 5 in vitro. Furthermore, we also find that GRK5 but not GRK2 phosphorylates IκBα at the same amino acid residues (Ser32/36) as that of IKKβ. Interestingly,associated with these results, knockdown of IKKβ in Raw264.7 macrophages did not affect TNFα-induced IκBα phosphorylation. Taken together, these results demonstrate that both GRK2 and 5 are important and novel mediators of a non-traditional IκBα-NFκB signaling pathway.
Collapse
|
47
|
A unique sequence in the N-terminal regulatory region controls the nuclear localization of KLF8 by cooperating with the C-terminal zinc-fingers. Cell Res 2009; 19:1098-109. [PMID: 19488069 DOI: 10.1038/cr.2009.64] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Krüppel-like factor 8 (KLF8) transcription factor plays a critical role in cell cycle progression, oncogenic transformation, epithelial to mesenchymal transition and invasion. However, its nuclear localization signal(s) (NLS) has not been identified. KLF8 shares with other KLFs monopartite NLSs (mNLS) and C(2)H(2) zinc fingers (ZFs), both of which have been shown to be the NLSs for some other KLFs. In this report, using PCR-directed mutagenesis and immunofluorescent microscopy, we show that disruption of the mNLSs, deletion of any single ZF, or mutation of the Zn(2+)-binding or DNA-contacting motifs did not affect the nuclear localization of KLF8. Deletion of >1.5 ZFs from C-terminus, however, caused cytoplasmic accumulation of KLF8. Surprisingly, deletion of amino acid (aa) 151-200 region almost eliminated KLF8 from the nucleus. S165A, K171E or K171R mutation, or treatment with PKC inhibitor led to partial cytoplasmic accumulation. Co-immunoprecipitation demonstrated that KLF8 interacted with importin-beta and this interaction required the ZF motif. Deletion of aa 1-150 or 201-261 region alone did not alter the nuclear localization. BrdU incorporation and cyclin D1 promoter luciferase assays showed that the KLF8 mutants defective in nuclear localization could not promote DNA synthesis or cyclin D1 promoter activation as the wild-type KLF8 did. Taken together, these results suggest that KLF8 has two NLSs, one surrounding S165 and K171 and the other being two tandem ZFs, which are critical for the regulation of KLF8 nuclear localization and its cellular functions.
Collapse
|
48
|
Uhlmann-Schiffler H, Kiermayer S, Stahl H. The DEAD box protein Ddx42p modulates the function of ASPP2, a stimulator of apoptosis. Oncogene 2009; 28:2065-73. [PMID: 19377511 DOI: 10.1038/onc.2009.75] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ddx42p is a recently characterized mammalian DEAD box protein with unknown cellular function. We found that in human cells Ddx42p physically interacts with ASPP2, a major apoptosis inducer known to enhance p53 transactivation of proapoptotic genes. The proteins interact via a domain within the carboxy-terminal part of Ddx42p and a mid-amino-terminal sequence as well as the ankyrin-SH3 region of ASPP2. Overexpression of Ddx42p interferes with apoptosis induction by ASPP2, whereas Ddx42p knockdown reduces the survival rate of cultured human cells. In addition, ASPP2 is found in cytoplasm and nucleus at low Ddx42p level, and predominantly in cytoplasm at high concentration of Ddx42p, respectively. Our results show that Ddx42p is capable of modulating ASPP2 function.
Collapse
Affiliation(s)
- H Uhlmann-Schiffler
- Department of Medical Biochemistry and Molecular Biology, The Saarland University, Homburg, Germany.
| | | | | |
Collapse
|
49
|
Blanié S, Mortier J, Delverdier M, Bertagnoli S, Camus-Bouclainville C. M148R and M149R are two virulence factors for myxoma virus pathogenesis in the European rabbit. Vet Res 2008; 40:11. [PMID: 19019281 PMCID: PMC2695013 DOI: 10.1051/vetres:2008049] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 11/13/2008] [Indexed: 11/24/2022] Open
Abstract
Myxoma virus (MYXV), a member of the Poxviridae family, is the agent responsible for myxomatosis, a fatal disease in the European rabbit (Oryctolagus cuniculus). MYXV has a linear double-stranded DNA genome that encodes several factors important for evasion from the host immune system. Among them, four ankyrin (ANK) repeat proteins were identified: M148R, M149R, M150R and M-T5. To date, only M150R and M-T5 were studied and characterized as critical virulence factors. This article presents the first characterization of M148R and M149R. Green Fluorescent Protein (GFP) fusions allowed us to localize them in a viral context. Whereas M149R is only cytoplasmic, interestingly, M148R is in part located in the nucleolus, a unique feature for an ANK repeat poxviral protein. In order to evaluate their implication in viral pathogenicity, targeted M148R, M149R, or both deletions were constructed in the wild type T1 strain of myxoma virus. In vitro infection of rabbit and primate cultured cells as well as primary rabbit cells allowed us to conclude that M148R and M149R are not likely to be implicated in cell tropism or host range functions. However, in vivo experiments revealed that they are virulence factors since after infection of European rabbits with mutant viruses, a delay in the onset of clinical signs, an increase of survival time and a dramatic decrease in mortality rate were observed. Moreover, histological analysis suggests that M148R plays a role in the subversion of host inflammatory response by MYXV.
Collapse
|
50
|
Doceul V, Charleston B, Crooke H, Reid E, Powell PP, Seago J. The Npro product of classical swine fever virus interacts with IκBα, the NF-κB inhibitor. J Gen Virol 2008; 89:1881-1889. [DOI: 10.1099/vir.0.83643-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Classical swine fever virus(CSFV) belongs to the genusPestivirusand is the causative agent of classical swine fever, a haemorrhagic disease of pigs. The virus replicates in host cells without activating interferon (IFN) production and has been reported to be an antagonist of double-stranded RNA-induced apoptosis. The N-terminal protease (Npro) of CSFV is responsible for this evasion of the host innate immune response. In order to identify cellular proteins that interact with the Nproproduct of CSFV, a yeast two-hybrid screen of a human library was carried out, which identified IκBα, the inhibitor of NF-κB, a transcription factor involved in the control of apoptosis, the immune response and IFN production. The Npro–IκBαinteraction was confirmed using yeast two-hybrid analysis and additional co-precipitation assays. It was also shown that Nprolocalizes to both the cytoplasmic and nuclear compartments in stably transfected cells and in CSFV-infected cells. Following stimulation by tumour necrosis factor alpha, PK-15 cell lines expressing Nproexhibited transient nuclear accumulation of pIκBα, but no effect of CSFV infection on IκBαlocalization or NF-κB p65 activation was observed.
Collapse
Affiliation(s)
- Virginie Doceul
- BBSRC Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Bryan Charleston
- BBSRC Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Helen Crooke
- Veterinary Laboratories Agency, New Haw, Addlestone, Surrey KT15 3NB, UK
| | - Elizabeth Reid
- BBSRC Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Penny P. Powell
- BBSRC Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| | - Julian Seago
- BBSRC Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Surrey GU24 0NF, UK
| |
Collapse
|