1
|
Zafar K, Khan MZ, Amin I, Mukhtar Z, Zafar M, Mansoor S. Employing template-directed CRISPR-based editing of the OsALS gene to create herbicide tolerance in Basmati rice. AOB PLANTS 2023; 15:plac059. [PMID: 36873055 PMCID: PMC9977225 DOI: 10.1093/aobpla/plac059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Rice (Oryza sativa) is one of the primary food crops which contributes major portion of daily calorie intake. It is used as model crop for various genome editing studies. Basmati rice was also explored for establishing non-homologous end joining-based genome editing. But it was not clear whether homology-directed repair (HDR)-based genome editing can be done in Basmati rice. The current study was designed to establish HDR-based genome editing in Basmati rice to develop herbicide tolerance. There is severe weed spread when rice is grown via direct planted rice method in various countries to save labour and water resources. Therefore, the use of herbicides is necessary to control weeds. These herbicides can also affect cultivated rice which creates the need to develop herbicide-tolerant rice. In current study, we introduced a point mutation in Acetolactate Synthase gene to convert tryptophan to leucine at position 548. For this purpose, different constructs for HDR were tested with different RNA scaffold and orientation of repair templates. Out of four different architectures, the one having repair template identical to the target DNA strand precisely edited the target site. We successfully established template-directed CRISPR-Cas9 system in Super Basmati rice by detecting desired substitutions at the target site in Acetolactate Synthase locus. Moreover, this editing of Acetolactate Synthase gene resulted in the production of herbicide tolerance in Super Basmati rice. This study suggests that such type of HDR system can be used to precisely edit other genes for crop improvement.
Collapse
Affiliation(s)
| | - Muhammad Zuhaib Khan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | - Zahid Mukhtar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | - Mehak Zafar
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Constituent College of Pakistan Institute of Engineering and Applied Sciences, Jhang Road, Faisalabad 37000, Pakistan
| | | |
Collapse
|
2
|
Suzuki T, Takagi S, Hara T. Multiple Gene Transfer and All-In-One Conditional Knockout Systems in Mouse Embryonic Stem Cells for Analysis of Gene Function. Front Cell Dev Biol 2022; 10:870629. [PMID: 35419367 PMCID: PMC8995969 DOI: 10.3389/fcell.2022.870629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mouse embryonic stem cells (ESCs) are powerful tools for functional analysis of stem cell-related genes; however, complex gene manipulations, such as locus-targeted introduction of multiple genes and conditional gene knockout conditional knockout, are technically difficult. Here, we review recent advances in technologies aimed at generating cKO clones in ESCs, including two new methods developed in our laboratory: the simultaneous or sequential integration of multiple genes system for introducing an unlimited number of gene cassettes into a specific chromosomal locus using reciprocal recombinases; and the all-in-one cKO system, which enables introduction of an EGFP reporter expression cassette and FLAG-tagged gene of interest under an endogenous promoter. In addition, methods developed in other laboratories, including conventional approaches to establishment of cKO cell clones, inducible Cas9-mediated cKO generation, and cKO assisted by reporter construct, invertible gene-trap cassette, and conditional protein degradation. Finally, we discuss the advantages of each approach, as well as the remaining issues and challenges.
Collapse
Affiliation(s)
- Teruhiko Suzuki
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Satoko Takagi
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, Tokyo, Japan
| |
Collapse
|
3
|
Suzuki S, Chosa K, Barillà C, Yao M, Zuffardi O, Kai H, Shuto T, Suico MA, Kan YW, Sargent RG, Gruenert DC. Seamless Gene Correction in the Human Cystic Fibrosis Transmembrane Conductance Regulator Locus by Vector Replacement and Vector Insertion Events. Front Genome Ed 2022; 4:843885. [PMID: 35465025 PMCID: PMC9019469 DOI: 10.3389/fgeed.2022.843885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/07/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Gene correction via homology directed repair (HDR) in patient-derived induced pluripotent stem (iPS) cells for regenerative medicine are becoming a more realistic approach to develop personalized and mutation-specific therapeutic strategies due to current developments in gene editing and iPSC technology. Cystic fibrosis (CF) is the most common inherited disease in the Caucasian population, caused by mutations in the CF transmembrane conductance regulator (CFTR) gene. Since CF causes significant multi-organ damage and with over 2,000 reported CFTR mutations, CF patients could be one prominent population benefiting from gene and cell therapies. When considering gene-editing techniques for clinical applications, seamless gene corrections of the responsible mutations, restoring native "wildtype" DNA sequence without remnants of drug selectable markers or unwanted DNA sequence changes, would be the most desirable approach. Result: The studies reported here describe the seamless correction of the W1282X CFTR mutation using CRISPR/Cas9 nickases (Cas9n) in iPS cells derived from a CF patient homozygous for the W1282X Class I CFTR mutation. In addition to the expected HDR vector replacement product, we discovered another class of HDR products resulting from vector insertion events that created partial duplications of the CFTR exon 23 region. These vector insertion events were removed via intrachromosomal homologous recombination (IHR) enhanced by double nicking with CRISPR/Cas9n which resulted in the seamless correction of CFTR exon 23 in CF-iPS cells. Conclusion: We show here the removal of the drug resistance cassette and generation of seamless gene corrected cell lines by two independent processes: by treatment with the PiggyBac (PB) transposase in vector replacements or by IHR between the tandemly duplicated CFTR gene sequences.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Keisuke Chosa
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Cristina Barillà
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Michael Yao
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Orsetta Zuffardi
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Mary Ann Suico
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuet W. Kan
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Institutes for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - R. Geoffrey Sargent
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- GeneTether Inc., San Lorenzo, CA, United States
| | - Dieter C. Gruenert
- Department of Otolaryngology–Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, United States
- Institutes for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of Vermont College of Medicine, Burlington, VT, United States
| |
Collapse
|
4
|
Lan T, Que H, Luo M, Zhao X, Wei X. Genome editing via non-viral delivery platforms: current progress in personalized cancer therapy. Mol Cancer 2022; 21:71. [PMID: 35277177 PMCID: PMC8915502 DOI: 10.1186/s12943-022-01550-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/24/2022] [Indexed: 02/08/2023] Open
Abstract
Cancer is a severe disease that substantially jeopardizes global health. Although considerable efforts have been made to discover effective anti-cancer therapeutics, the cancer incidence and mortality are still growing. The personalized anti-cancer therapies present themselves as a promising solution for the dilemma because they could precisely destroy or fix the cancer targets based on the comprehensive genomic analyses. In addition, genome editing is an ideal way to implement personalized anti-cancer therapy because it allows the direct modification of pro-tumor genes as well as the generation of personalized anti-tumor immune cells. Furthermore, non-viral delivery system could effectively transport genome editing tools (GETs) into the cell nucleus with an appreciable safety profile. In this manuscript, the important attributes and recent progress of GETs will be discussed. Besides, the laboratory and clinical investigations that seek for the possibility of combining non-viral delivery systems with GETs for the treatment of cancer will be assessed in the scope of personalized therapy.
Collapse
Affiliation(s)
- Tianxia Lan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China
| | - Min Luo
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Sichuan, 610041, Chengdu, China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Sichuan, 610041, Chengdu, China.
| |
Collapse
|
5
|
Wilde JJ, Aida T, Del Rosario RCH, Kaiser T, Qi P, Wienisch M, Zhang Q, Colvin S, Feng G. Efficient embryonic homozygous gene conversion via RAD51-enhanced interhomolog repair. Cell 2021; 184:3267-3280.e18. [PMID: 34043941 PMCID: PMC8240950 DOI: 10.1016/j.cell.2021.04.035] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 03/03/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Searching for factors to improve knockin efficiency for therapeutic applications, biotechnology, and generation of non-human primate models of disease, we found that the strand exchange protein RAD51 can significantly increase Cas9-mediated homozygous knockin in mouse embryos through an interhomolog repair (IHR) mechanism. IHR is a hallmark of meiosis but only occurs at low frequencies in somatic cells, and its occurrence in zygotes is controversial. Using multiple approaches, we provide evidence for an endogenous IHR mechanism in the early embryo that can be enhanced by RAD51. This process can be harnessed to generate homozygotes from wild-type zygotes using exogenous donors and to convert heterozygous alleles into homozygous alleles without exogenous templates. Furthermore, we identify additional IHR-promoting factors and describe features of IHR events. Together, our findings show conclusive evidence for IHR in mouse embryos and describe an efficient method for enhanced gene conversion.
Collapse
Affiliation(s)
- Jonathan J Wilde
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA.
| | - Tomomi Aida
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Ricardo C H Del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tobias Kaiser
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Peimin Qi
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Martin Wienisch
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Qiangge Zhang
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Steven Colvin
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Guoping Feng
- Department of Brain & Cognitive Sciences, McGovern Institute for Brain Research, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
6
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
7
|
Chromosome Preference During Homologous Recombination Repair of DNA Double-Strand Breaks in Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:3773-3780. [PMID: 31519746 PMCID: PMC6829126 DOI: 10.1534/g3.119.400607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA double-strand breaks (DSBs) are especially toxic DNA lesions that, if left unrepaired, can lead to wide-ranging genomic instability. Of the pathways available to repair DSBs, the most accurate is homologous recombination (HR), where a homologous sequence is used as a donor template to restore genetic information at the break site. While much of the biochemical aspects of HR repair have been characterized, how the repair machinery locates and discriminates between potential homologous donor templates throughout the genome remains elusive. We use Drosophila melanogaster to investigate whether there is a preference between intrachromosomal and interhomolog donor sequences in mitotically dividing cells. Our results demonstrate that, although interhomolog HR is possible and frequent if another donor template is not available, intrachromosomal donor templates are highly preferred. This is true even if the interhomolog donor template is less diverged than the intrachromosomal donor template. Thus, despite the stringent requirements for homology, the chromosomal location of the donor template plays a more significant role in donor template choice.
Collapse
|
8
|
Pellenz S, Phelps M, Tang W, Hovde BT, Sinit RB, Fu W, Li H, Chen E, Monnat RJ. New Human Chromosomal Sites with "Safe Harbor" Potential for Targeted Transgene Insertion. Hum Gene Ther 2019; 30:814-828. [PMID: 30793977 PMCID: PMC6648220 DOI: 10.1089/hum.2018.169] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/18/2019] [Indexed: 01/31/2023] Open
Abstract
This study identified 35 new sites for targeted transgene insertion that have the potential to serve as new human genomic "safe harbor" sites (SHS). SHS potential for these 35 sites, located on 16 chromosomes, including both arms of the human X chromosome, and for the existing human SHS AAVS1, hROSA26, and CCR5 was assessed using eight different desirable, widely accepted criteria for SHS verifiable with human genomic data. Three representative newly identified sites on human chromosomes 2 and 4 were then experimentally validated by in vitro and in vivo cleavage-sensitivity tests, and analyzed for population-level and cell line-specific sequence variants that might confound site targeting. The highly ranked site on chromosome 4 (SHS231) was further characterized by targeted homology-dependent and -independent transgene insertion and expression in different human cell lines. The structure and fidelity of transgene insertions at this site were confirmed, together with analyses that demonstrated stable expression and function of transgene-encoded proteins, including fluorescent protein markers, selectable marker cassettes, and Cas9 protein variants. SHS-integrated transgene-encoded Cas9 proteins were shown to be capable of introducing a large (17 kb) gRNA-specified deletion in the PAX3/FOXO1 fusion oncogene in human rhabdomyosarcoma cells and as a Cas9-VPR fusion protein to upregulate expression of the muscle-specific transcription factor MYF5 in human rhabdomyosarcoma cells. An engineering "toolkit" was developed to enable easy use of the most extensively characterized of these new human sites, SHS231, located on the proximal long arm of chromosome 4. The target sites identified here have the potential to serve as additional human SHS to enable basic and clinical gene editing and genome-engineering applications.
Collapse
Affiliation(s)
- Stefan Pellenz
- Department of Pathology, University of Washington, Seattle, Washington
| | - Michael Phelps
- Department of Pathology, University of Washington, Seattle, Washington
| | - Weiliang Tang
- Department of Pathology, University of Washington, Seattle, Washington
| | - Blake T. Hovde
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Ryan B. Sinit
- Department of Pathology, University of Washington, Seattle, Washington
| | - Wenqing Fu
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Hui Li
- Department of Pathology, University of Washington, Seattle, Washington
| | - Eleanor Chen
- Department of Pathology, University of Washington, Seattle, Washington
| | - Raymond J. Monnat
- Department of Pathology, University of Washington, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
| |
Collapse
|
9
|
Porter SN, Levine RM, Pruett-Miller SM. A Practical Guide to Genome Editing Using Targeted Nuclease Technologies. Compr Physiol 2019; 9:665-714. [PMID: 30873595 DOI: 10.1002/cphy.c180022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Genome engineering using programmable nucleases is a rapidly evolving technique that enables precise genetic manipulations within complex genomes. Although this technology first surfaced with the creation of meganucleases, zinc finger nucleases, and transcription activator-like effector nucleases, CRISPR-Cas9 has been the most widely adopted platform because of its ease of use. This comprehensive review presents a basic overview of genome engineering and discusses the major technological advances in the field. In addition to nucleases, we discuss CRISPR-derived base editors and epigenetic modifiers. We also delve into practical applications of these tools, including creating custom-edited cell and animal models as well as performing genetic screens. Finally, we discuss the potential for therapeutic applications and ethical considerations related to employing this technology in humans. © 2019 American Physiological Society. Compr Physiol 9:665-714, 2019.
Collapse
Affiliation(s)
- Shaina N Porter
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Rachel M Levine
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Shondra M Pruett-Miller
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
10
|
Eguizabal C, Aran B, Chuva de Sousa Lopes SM, Geens M, Heindryckx B, Panula S, Popovic M, Vassena R, Veiga A. Two decades of embryonic stem cells: a historical overview. Hum Reprod Open 2019; 2019:hoy024. [PMID: 30895264 PMCID: PMC6396646 DOI: 10.1093/hropen/hoy024] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION How did the field of stem cell research develop in the years following the derivation of the first human embryonic stem cell (hESC) line? SUMMARY ANSWER Supported by the increasing number of clinical trials to date, significant technological advances in the past two decades have brought us ever closer to clinical therapies derived from pluripotent cells. WHAT IS KNOWN ALREADY Since their discovery 20 years ago, the use of human pluripotent stem cells has progressed tremendously from bench to bedside. Here, we provide a concise review of the main keystones of this journey and focus on ongoing clinical trials, while indicating the most relevant future research directions. STUDY DESIGN, SIZE, DURATION This is a historical narrative, including relevant publications in the field of pluripotent stem cells (PSC) derivation and differentiation, recounted both through scholarly research of published evidence and interviews of six pioneers who participated in some of the most relevant discoveries in the field. PARTICIPANTS/MATERIALS, SETTING, METHODS The authors all contributed by researching the literature and agreed upon body of works. Portions of the interviews of the field pioneers have been integrated into the review and have also been included in full for advanced reader interest. MAIN RESULTS AND THE ROLE OF CHANCE The stem cell field is ever expanding. We find that in the 20 years since the derivation of the first hESC lines, several relevant developments have shaped the pluripotent cell field, from the discovery of different states of pluripotency, the derivation of induced PSC, the refinement of differentiation protocols with several clinical trials underway, as well as the recent development of organoids. The challenge for the years to come will be to validate and refine PSCs for clinical use, from the production of highly defined cell populations in clinical grade conditions to the possibility of creating replacement organoids for functional, if not anatomical, function restoration. LIMITATIONS, REASONS FOR CAUTION This is a non-systematic review of current literature. Some references may have escaped the experts’ analysis due to the exceedingly diverse nature of the field. As the field of regenerative medicine is rapidly advancing, some of the most recent developments may have not been captured entirely. WIDER IMPLICATIONS OF THE FINDINGS The multi-disciplinary nature and tremendous potential of the stem cell field has important implications for basic as well as translational research. Recounting these activities will serve to provide an in-depth overview of the field, fostering a further understanding of human stem cell and developmental biology. The comprehensive overview of clinical trials and expert opinions included in this narrative may serve as a valuable scientific resource, supporting future efforts in translational approaches. STUDY FUNDING/COMPETING INTEREST(S) ESHRE provided funding for the authors’ on-site meeting and discussion during the preparation of this manuscript. S.M.C.S.L. is funded by the European Research Council Consolidator (ERC-CoG-725722-OVOGROWTH). M.P. is supported by the Special Research Fund, Bijzonder Onderzoeksfonds (BOF01D08114). M.G. is supported by the Methusalem grant of Vrije Universiteit Brussel, in the name of Prof. Karen Sermon and by Innovation by Science and Technology in Flanders (IWT, Project Number: 150042). A.V. and B.A. are supported by the Plataforma de Proteomica, Genotipado y Líneas Celulares (PT1770019/0015) (PRB3), Instituto de Salud Carlos III. Research grant to B.H. by the Research Foundation—Flanders (FWO) (FWO.KAN.2016.0005.01 and FWO.Project G051516N). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER Not applicable. ESHRE Pages are not externally peer reviewed. This article has been approved by the Executive Committee of ESHRE.
Collapse
Affiliation(s)
- C Eguizabal
- Cell Therapy and Stem Cell Group, Basque Center for Blood Transfusion and Human Tissues, Barrio Labeaga S/N, Galdakao, Spain
| | - B Aran
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Barcelona, Spain
| | - S M Chuva de Sousa Lopes
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, Leiden, The Netherlands.,Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - M Geens
- Research Group Reproduction and Genetics, Vrije Univeristeit Brussel, Laarbeeklaan 103, Jette (Brussels), Belgium
| | - B Heindryckx
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - S Panula
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - M Popovic
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | | | - A Veiga
- Barcelona Stem Cell Bank, Centre of Regenerative Medicine in Barcelona, Barcelona, Spain.,Dexeus Mujer, Hospital Universitari Dexeus, Barcelona, Spain
| |
Collapse
|
11
|
Zhang Y, Long C, Bassel-Duby R, Olson EN. Myoediting: Toward Prevention of Muscular Dystrophy by Therapeutic Genome Editing. Physiol Rev 2018; 98:1205-1240. [PMID: 29717930 PMCID: PMC6335101 DOI: 10.1152/physrev.00046.2017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/22/2017] [Accepted: 12/26/2017] [Indexed: 12/22/2022] Open
Abstract
Muscular dystrophies represent a large group of genetic disorders that significantly impair quality of life and often progress to premature death. There is no effective treatment for these debilitating diseases. Most therapies, developed to date, focus on alleviating the symptoms or targeting the secondary effects, while the underlying gene mutation is still present in the human genome. The discovery and application of programmable nucleases for site-specific DNA double-stranded breaks provides a powerful tool for precise genome engineering. In particular, the CRISPR/Cas system has revolutionized the genome editing field and is providing a new path for disease treatment by targeting the disease-causing genetic mutations. In this review, we provide a historical overview of genome-editing technologies, summarize the most recent advances, and discuss potential strategies and challenges for permanently correcting genetic mutations that cause muscular dystrophies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Chengzu Long
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| | - Eric N Olson
- Department of Molecular Biology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center , Dallas, Texas
| |
Collapse
|
12
|
High-throughput creation and functional profiling of DNA sequence variant libraries using CRISPR-Cas9 in yeast. Nat Biotechnol 2018; 36:540-546. [PMID: 29786095 PMCID: PMC5990468 DOI: 10.1038/nbt.4147] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 04/18/2018] [Indexed: 01/20/2023]
Abstract
Construction and characterization of large genetic variant libraries is essential for understanding genome function, but remains challenging. Here, we introduce a Cas9-based approach for generating pools of mutants with defined genetic alterations (deletions, substitutions, and insertions) with an efficiency of 80–100% in yeast, along with methods for tracking their fitness en masse. We demonstrate the utility of our approach by characterizing the DNA helicase SGS1 with small tiling deletion mutants that span the length of the protein and a series of point mutations against highly conserved residues in the protein. In addition, we created a genome-wide library targeting 315 poorly characterized small open reading frames (smORFs, <100 amino acids in length) scattered throughout the yeast genome, and assessed which are vital for growth under various environmental conditions. Our strategy allows fundamental biological questions to be investigated in a high-throughput manner with precision.
Collapse
|
13
|
Ma L, Wang Y, Wang H, Hu Y, Chen J, Tan T, Hu M, Liu X, Zhang R, Xing Y, Zhao Y, Hu X, Li N. Screen and Verification for Transgene Integration Sites in Pigs. Sci Rep 2018; 8:7433. [PMID: 29743638 PMCID: PMC5943519 DOI: 10.1038/s41598-018-24481-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 03/15/2018] [Indexed: 01/01/2023] Open
Abstract
Efficient transgene expression in recipient cells constitutes the primary step in gene therapy. However, random integration in host genome comprises too many uncertainties. Our study presents a strategy combining bioinformatics and functional verification to find transgene integration sites in pig genome. Using an in silico approach, we screen out two candidate sites, namely, Pifs302 and Pifs501, located in actively transcribed intergenic regions with low nucleosome formation potential and without potential non-coding RNAs. After CRISPR/Cas9-mediated site-specific integration on Pifs501, we detected high EGFP expression in different pig cell types and ubiquitous EGFP expression in diverse tissues of transgenic pigs without adversely affecting 600 kb neighboring gene expression. Promoters integrated on Pifs501 exhibit hypomethylated modification, which suggest a permissive epigenetic status of this locus. We establish a versatile master cell line on Pifs501, which allows us to achieve site-specific exchange of EGFP to Follistatin with Cre/loxP system conveniently. Through in vitro and in vivo functional assays, we demonstrate the effectiveness of this screening method, and take Pifs501 as a potential site for transgene insertion in pigs. We anticipate that Pifs501 will have useful applications in pig genome engineering, though the identification of genomic safe harbor should over long-term various functional studies.
Collapse
Affiliation(s)
- Linyuan Ma
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yuzhe Wang
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Haitao Wang
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yiqing Hu
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Jingyao Chen
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Tan Tan
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Man Hu
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Xiaojuan Liu
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Ran Zhang
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yiming Xing
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Yiqiang Zhao
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.
| | - Xiaoxiang Hu
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China
| | - Ning Li
- The State Key Laboratory for Agricultural Biotechnology, College of Biological Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
14
|
Woodard LE, Galvan DL, Wilson MH. Site-Directed Genome Modification with Engineered Zinc Finger Proteins. Synth Biol (Oxf) 2018. [DOI: 10.1002/9783527688104.ch3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Lauren E. Woodard
- Department of Veterans Affairs; Nashville TN 37212 USA
- Vanderbilt University Medical Center; Department of Medicine, Department of Pharmacology; Nashville TN 37232 USA
| | - Daniel L. Galvan
- University of Texas at MD Anderson Cancer Center; Section of Nephrology; Houston TX 77030 USA
| | - Matthew H. Wilson
- Department of Veterans Affairs; Nashville TN 37212 USA
- Vanderbilt University Medical Center; Department of Medicine, Department of Pharmacology; Nashville TN 37232 USA
| |
Collapse
|
15
|
Petersen B. Basics of genome editing technology and its application in livestock species. Reprod Domest Anim 2018; 52 Suppl 3:4-13. [PMID: 28815851 DOI: 10.1111/rda.13012] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the last decade, the research community has witnessed a blooming of targeted genome editing tools and applications. Novel programmable DNA nucleases such as zinc finger nucleases (ZFNs), transcription activator-like endonucleases (TALENs) and the clustered regularly interspaced short palindromic repeats/Cas9 system (CRISPR/Cas9) possess long recognition sites and are capable of cutting DNA in a very specific manner. These DNA nucleases mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination-based gene targeting, DNA nucleases, also referred to as Genome Editors (GEs), can increase the targeting rate around 10,000- to 100,000-fold. The successful application of different GEs has been shown in a myriad of different organisms, including insects, amphibians, plants, nematodes and several mammalian species, including human cells and embryos. In contrast to all other DNA nucleases, that rely on protein-DNA binding, CRISPR/Cas9 uses RNA to establish a specific binding of its DNA nuclease. Besides its capability to facilitate multiplexed genomic modifications in one shot, the CRISPR/Cas is much easier to design compared to all other DNA nucleases. Current results indicate that any DNA nuclease can be successfully employed in a broad range of organisms which renders them useful for improving the understanding of complex physiological systems such as reproduction, producing transgenic animals, including creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on DNA nucleases, their underlying mechanism and focuses on their application to edit the genome of livestock species.
Collapse
Affiliation(s)
- Bjoern Petersen
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, Neustadt am Rbge, Germany
| |
Collapse
|
16
|
Abstract
In the post-genomic era, the efficient exploitation of the available information for plant breeding is a pressing problem. The discoveries that DNA double-stranded breaks (DSBs) are both recombinagenic and mutagenic have fuelled the development of targetable zinc-finger nucleases (ZFNs), which act as molecular scissors for the induction of controlled DSBs. These powerful tools are used by researchers to accelerate mutagenesis of the normal gene loci toward the development of useful traits in plants. Seeds contain the embryo, which is a multicellular system representing a micrography of a plant. Therefore, they can serve as a foundation for applying targeted genome engineering techniques. The following single-step method describes how to deliver and express transiently ZFNs in tomato (Solanum lycopersicum) seeds using electroporation. Unlike methods that rely on tissue culture and plant regeneration after transformation, the direct delivery of ZFNs to seeds provides a high-throughput breeding technology for safe and site-specific mutagenesis. Tomato is a leading crop in the world and biotechnological advances in this species have great impact.
Collapse
Affiliation(s)
- Zoe Hilioti
- Institute of Applied Biosciences (INAB), CERTH, Thessaloniki, Greece.
| |
Collapse
|
17
|
Abstract
Recent exponential advances in genome sequencing and engineering technologies have enabled an unprecedented level of interrogation into the impact of DNA variation (genotype) on cellular function (phenotype). Furthermore, these advances have also prompted realistic discussion of writing and radically re-writing complex genomes. In this Perspective, we detail the motivation for large-scale engineering, discuss the progress made from such projects in bacteria and yeast and describe how various genome-engineering technologies will contribute to this effort. Finally, we describe the features of an ideal platform and provide a roadmap to facilitate the efficient writing of large genomes.
Collapse
Affiliation(s)
- Raj Chari
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, Massachusetts, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, 3 Blackfan Circle, Boston, Massachusetts, 02115, USA
| |
Collapse
|
18
|
Dramatic Improvement of CRISPR/Cas9 Editing in Candida albicans by Increased Single Guide RNA Expression. mSphere 2017; 2:mSphere00385-16. [PMID: 28435892 PMCID: PMC5397569 DOI: 10.1128/msphere.00385-16] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat system with CRISPR-associated protein 9 nuclease (CRISPR/Cas9) has emerged as a versatile tool for genome editing in Candida albicans. Mounting evidence from other model systems suggests that the intracellular levels of single guide RNA (sgRNA) limit the efficiency of Cas9-dependent DNA cleavage. Here, we tested this idea and describe a new means of sgRNA delivery that improves previously described methods by ~10-fold. The efficiency of Cas9/sgRNA-dependent cleavage and repair of a single-copy yeast enhanced monomeric red fluorescent protein (RFP) gene was measured as a function of various parameters that are hypothesized to affect sgRNA accumulation, including transcriptional and posttranscriptional processing. We analyzed different promoters (SNR52, ADH1, and tRNA), as well as different posttranscriptional RNA processing schemes that serve to generate or stabilize mature sgRNA with precise 5' and 3' ends. We compared the effects of flanking sgRNA with self-cleaving ribozymes or by tRNA, which is processed by endogenous RNases. These studies demonstrated that sgRNA flanked by a 5' tRNA and transcribed by a strong RNA polymerase II ADH1 promoter increased Cas9-dependent RFP mutations by 10-fold. Examination of double-strand-break (DSB) repair in strains hemizygous for RFP demonstrated that both homology-directed and nonhomologous end-joining pathways were used to repair breaks. Together, these results support the model that gRNA expression can be rate limiting for efficient CRISPR/Cas mutagenesis in C. albicans. IMPORTANCECandida albicans is an important human fungal pathogen. An understanding of fungal virulence factors has been slow because C. albicans is genetically intractable. The recent development of CRISPR/Cas in C. albicans (V. K. Vyas, M. I. Barrasa, G. R. Fink, Sci Adv 1:e1500248, 2015, https://doi.org/10.1126/sciadv.1500248) has the potential to circumvent this problem. However, as has been found in other organisms, CRISPR/Cas mutagenesis efficiency can be frustratingly variable. Here, we systematically examined parameters hypothesized to alter sgRNA intracellular levels in order to optimize CRISPR/Cas in C. albicans. Our most important conclusion is that increased sgRNA expression and maturation dramatically improve efficiency of CRISPR/Cas mutagenesis in C. albicans by ~10-fold. Thus, we anticipate that the modifications described here will further advance the application of CRISPR/Cas for genome editing in C. albicans.
Collapse
|
19
|
Qiu Z, Zhang Z, Roschke A, Varga T, Aplan PD. Generation of Gross Chromosomal Rearrangements by a Single Engineered DNA Double Strand Break. Sci Rep 2017; 7:43156. [PMID: 28225067 PMCID: PMC5320478 DOI: 10.1038/srep43156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/19/2017] [Indexed: 01/08/2023] Open
Abstract
Gross chromosomal rearrangements (GCRs), including translocations, inversions amplifications, and deletions, can be causal events leading to malignant transformation. GCRs are thought to be triggered by DNA double strand breaks (DSBs), which in turn can be spontaneous or induced by external agents (eg. cytotoxic chemotherapy, ionizing radiation). It has been shown that induction of DNA DSBs at two defined loci can produce stable balanced chromosomal translocations, however, a single engineered DNA DSB could not. Herein, we report that although a single engineered DNA DSB in H2AX “knockdown” cells did not generate GCRs, repair of a single engineered DNA DSB in fibroblasts that had ablated H2ax did produce clonal, stable GCRs, including balanced translocations and megabase-pair inversions. Upon correction of the H2ax deficiency, cells no longer generated GCRs following a single engineered DNA DSB. These findings demonstrate that clonal, stable GCRs can be produced by a single engineered DNA DSB in H2ax knockout cells, and that the production of these GCRs is ameliorated by H2ax expression.
Collapse
Affiliation(s)
- Zhijun Qiu
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhenhua Zhang
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Roschke
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamas Varga
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D Aplan
- Genetics Branch National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Raveux A, Vandormael-Pournin S, Cohen-Tannoudji M. Optimization of the production of knock-in alleles by CRISPR/Cas9 microinjection into the mouse zygote. Sci Rep 2017; 7:42661. [PMID: 28209967 PMCID: PMC5314402 DOI: 10.1038/srep42661] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/12/2017] [Indexed: 12/26/2022] Open
Abstract
Microinjection of the CRISPR/Cas9 system in zygotes is an efficient and comparatively fast method to generate genetically modified mice. So far, only few knock-in mice have been generated using this approach, and because no systematic study has been performed, parameters controlling the efficacy of CRISPR/Cas9-mediated targeted insertion are not fully established. Here, we evaluated the effect of several parameters on knock-in efficiency changing only one variable at a time. We found that knock-in efficiency was dependent on injected Cas9 mRNA and single-guide RNA concentrations and that cytoplasmic injection resulted in more genotypic complexity compared to pronuclear injection. Our results also indicated that injection into the pronucleus compared to the cytoplasm is preferable to generate knock-in alleles with an oligonucleotide or a circular plasmid. Finally, we showed that Cas9D10A nickase variant was less efficient than wild-type Cas9 for generating knock-in alleles and caused a higher rate of mosaicism. Thus, our study provides valuable information that will help to improve the future production of precise genetic modifications in mice.
Collapse
Affiliation(s)
- Aurélien Raveux
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015 Paris
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015 Paris
| | - Michel Cohen-Tannoudji
- Institut Pasteur, CNRS, Unité de Génétique Fonctionnelle de la Souris, UMR 3738, Department of Developmental & Stem Cell Biology, 25 rue du docteur Roux, F-75015 Paris
| |
Collapse
|
21
|
Butt H, Eid A, Ali Z, Atia MAM, Mokhtar MM, Hassan N, Lee CM, Bao G, Mahfouz MM. Efficient CRISPR/Cas9-Mediated Genome Editing Using a Chimeric Single-Guide RNA Molecule. FRONTIERS IN PLANT SCIENCE 2017; 8:1441. [PMID: 28883826 PMCID: PMC5573723 DOI: 10.3389/fpls.2017.01441] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/03/2017] [Indexed: 05/17/2023]
Abstract
The CRISPR/Cas9 system has been applied in diverse eukaryotic organisms for targeted mutagenesis. However, targeted gene editing is inefficient and requires the simultaneous delivery of a DNA template for homology-directed repair (HDR). Here, we used CRISPR/Cas9 to generate targeted double-strand breaks and to deliver an RNA repair template for HDR in rice (Oryza sativa). We used chimeric single-guide RNA (cgRNA) molecules carrying both sequences for target site specificity (to generate the double-strand breaks) and repair template sequences (to direct HDR), flanked by regions of homology to the target. Gene editing was more efficient in rice protoplasts using repair templates complementary to the non-target DNA strand, rather than the target strand. We applied this cgRNA repair method to generate herbicide resistance in rice, which showed that this cgRNA repair method can be used for targeted gene editing in plants. Our findings will facilitate applications in functional genomics and targeted improvement of crop traits.
Collapse
Affiliation(s)
- Haroon Butt
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Ayman Eid
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Zahir Ali
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Mohamed A. M. Atia
- Molecular Genetics and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Agricultural Research CenterGiza, Egypt
| | - Morad M. Mokhtar
- Molecular Genetics and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Agricultural Research CenterGiza, Egypt
| | - Norhan Hassan
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
| | - Ciaran M. Lee
- Department of Bioengineering, Rice University, HoustonTX, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, HoustonTX, United States
| | - Magdy M. Mahfouz
- Laboratory for Genome Engineering, Division of Biological Sciences, King Abdullah University of Science and TechnologyThuwal, Saudi Arabia
- *Correspondence: Magdy M. Mahfouz,
| |
Collapse
|
22
|
Plaza Reyes A, Lanner F. Towards a CRISPR view of early human development: applications, limitations and ethical concerns of genome editing in human embryos. Development 2017; 144:3-7. [DOI: 10.1242/dev.139683] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developmental biologists have become increasingly aware that the wealth of knowledge generated through genetic studies of pre-implantation mouse development might not easily be translated to the human embryo. Comparative studies have been fueled by recent technological advances in single-cell analysis, allowing in-depth analysis of the human embryo. This field could shortly gain more momentum as novel genome editing technologies might, for the first time, also allow functional genetic studies in the human embryo. In this Spotlight article, we summarize the CRISPR-Cas9 genome editing system and discuss its potential applications and limitations in human pre-implantation embryos, and the ethical considerations thereof.
Collapse
Affiliation(s)
- Alvaro Plaza Reyes
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm 14186, Sweden
| | - Fredrik Lanner
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, and Division of Obstetrics and Gynecology, Karolinska Universitetssjukhuset, Stockholm 14186, Sweden
| |
Collapse
|
23
|
Li M, Zhao L, Page-McCaw PS, Chen W. Zebrafish Genome Engineering Using the CRISPR-Cas9 System. Trends Genet 2016; 32:815-827. [PMID: 27836208 DOI: 10.1016/j.tig.2016.10.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 10/05/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022]
Abstract
Geneticists have long sought the ability to manipulate vertebrate genomes by directly altering the information encoded in specific genes. The recently discovered clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 endonuclease has the ability to bind single loci within vertebrate genomes and generate double-strand breaks (DSBs) at those sites. These DSBs induce an endogenous DSB repair response that results in small insertions or deletions at the targeted site. Alternatively, a template can be supplied, in which case homology-directed repair results in the generation of engineered alleles at the break site. These changes alter the function of the targeted gene facilitating the analysis of gene function. This tool has been widely adopted in the zebrafish model; we discuss the development of this system in the zebrafish and how it can be manipulated to facilitate genome engineering.
Collapse
Affiliation(s)
- Mingyu Li
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Liyuan Zhao
- Third Institute of Oceanography, State Oceanic Administration, Xiamen 361005, China
| | - Patrick S Page-McCaw
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Division of Nephrology and Hypertension, Vanderbilt Center for Kidney Disease, Vanderbilt University Medical Center, Nashville, TN.
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Vassena R, Heindryckx B, Peco R, Pennings G, Raya A, Sermon K, Veiga A. Genome engineering through CRISPR/Cas9 technology in the human germline and pluripotent stem cells. Hum Reprod Update 2016; 22:411-9. [PMID: 26932460 DOI: 10.1093/humupd/dmw005] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND With the recent development of CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 genome editing technology, the possibility to genetically manipulate the human germline (gametes and embryos) has become a distinct technical possibility. Although many technical challenges still need to be overcome in order to achieve adequate efficiency and precision of the technology in human embryos, the path leading to genome editing has never been simpler, more affordable, and widespread. OBJECTIVE AND RATIONALE In this narrative review we seek to understand the possible impact of CRISR/Cas9 technology on human reproduction from the technical and ethical point of view, and suggest a course of action for the scientific community. SEARCH METHODS This non-systematic review was carried out using Medline articles in English, as well as technical documents from the Human Fertilisation and Embryology Authority and reports in the media. The technical possibilities of the CRISPR/Cas9 technology with regard to human reproduction are analysed based on results obtained in model systems such as large animals and laboratory rodents. Further, the possibility of CRISPR/Cas9 use in the context of human reproduction, to modify embryos, germline cells, and pluripotent stem cells is reviewed based on the authors' expert opinion. Finally, the possible uses and consequences of CRISPR/cas9 gene editing in reproduction are analysed from the ethical point of view. OUTCOMES We identify critical technical and ethical issues that should deter from employing CRISPR/Cas9 based technologies in human reproduction until they are clarified. WIDER IMPLICATIONS Overcoming the numerous technical limitations currently associated with CRISPR/Cas9 mediated editing of the human germline will depend on intensive research that needs to be transparent and widely disseminated. Rather than a call to a generalized moratorium, or banning, of this type of research, efforts should be placed on establishing an open, international, collaborative and regulated research framework. Equally important, a societal discussion on the risks, benefits, and preferred applications of the new technology, including all relevant stakeholders, is urgently needed and should be promoted, and ultimately guide research priorities in this area.
Collapse
Affiliation(s)
- R Vassena
- Clínica EUGIN, Barcelona 08029, Spain
| | - B Heindryckx
- Ghent Fertility and Stem cell Team (G-FaST), Department for Reproductive Medicine, Ghent University Hospital, Ghent, Belgium
| | - R Peco
- Center for Regenerative Medicine in Barcelona (CMRB), 08003 Barcelona, Spain
| | - G Pennings
- Bioethics Institute Ghent (BIG), Faculty of Arts and Philosophy, Ghent University, Ghent, Belgium
| | - A Raya
- Center for Regenerative Medicine in Barcelona (CMRB), 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - K Sermon
- Research Group Reproduction and Genetics, Vrije Universiteit Brussel, Brussels, Belgium
| | - A Veiga
- Center for Regenerative Medicine in Barcelona (CMRB), 08003 Barcelona, Spain Reproductive Medicine Service, Hospital Universitari Quiron Dexeus, Barcelona, Spain
| |
Collapse
|
25
|
Jasin M, Haber JE. The democratization of gene editing: Insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst) 2016; 44:6-16. [PMID: 27261202 DOI: 10.1016/j.dnarep.2016.05.001] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DNA double-strand breaks (DSBs) are dangerous lesions that if not properly repaired can lead to genomic change or cell death. Organisms have developed several pathways and have many factors devoted to repairing DSBs, which broadly occurs by homologous recombination, which relies on an identical or homologous sequence to template repair, or nonhomologous end-joining. Much of our understanding of these repair mechanisms has come from the study of induced DNA cleavage by site-specific endonucleases. In addition to their biological role, these cellular pathways can be co-opted for gene editing to study gene function or for gene therapy or other applications. While the first gene editing experiments were done more than 20 years ago, the recent discovery of RNA-guided endonucleases has simplified approaches developed over the years to make gene editing an approach that is available to the entire biomedical research community. Here, we review DSB repair mechanisms and site-specific cleavage systems that have provided insight into these mechanisms and led to the current gene editing revolution.
Collapse
Affiliation(s)
- Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - James E Haber
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, 02454-9110, USA.
| |
Collapse
|
26
|
Perdoni C, Osborn MJ, Tolar J. Gene editing toward the use of autologous therapies in recessive dystrophic epidermolysis bullosa. Transl Res 2016; 168:50-58. [PMID: 26073463 PMCID: PMC4662628 DOI: 10.1016/j.trsl.2015.05.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/19/2015] [Indexed: 01/22/2023]
Abstract
Recessive dystrophic epidermolysis bullosa (RDEB) is a disease caused by mutations in the COL7A1 gene that result in absent or dysfunctional type VII collagen protein production. Clinically, RDEB manifests as early and severe chronic cutaneous blistering, damage to internal epithelium, an increased risk for squamous cell carcinoma, and an overall reduced life expectancy. Recent localized and systemic treatments have shown promise for lessening the disease severity in RDEB, but the concept of ex vivo therapy would allow a patient's own cells to be engineered to express functional type VII collagen. Here, we review gene delivery and editing platforms and their application toward the development of next-generation treatments designed to correct the causative genetic defects of RDEB.
Collapse
Affiliation(s)
- Christopher Perdoni
- Stem Cell Institute, University of Minnesota, Minneapolis, Minn; Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minn
| | - Mark J Osborn
- Stem Cell Institute, University of Minnesota, Minneapolis, Minn; Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minn
| | - Jakub Tolar
- Stem Cell Institute, University of Minnesota, Minneapolis, Minn; Division of Blood and Marrow Transplantation, Department of Pediatrics, University of Minnesota, Minneapolis, Minn.
| |
Collapse
|
27
|
|
28
|
Wang B, Li K, Wang A, Reiser M, Saunders T, Lockey RF, Wang JW. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. Biotechniques 2015; 59:201-2, 204, 206-8. [PMID: 26458548 DOI: 10.2144/000114339] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/27/2015] [Indexed: 11/23/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR) gene editing technique, based on the non-homologous end-joining (NHEJ) repair pathway, has been used to generate gene knock-outs with variable sizes of small insertion/deletions with high efficiency. More precise genome editing, either the insertion or deletion of a desired fragment, can be done by combining the homology-directed-repair (HDR) pathway with CRISPR cleavage. However, HDR-mediated gene knock-in experiments are typically inefficient, and there have been no reports of successful gene knock-in with DNA fragments larger than 4 kb. Here, we describe the targeted insertion of large DNA fragments (7.4 and 5.8 kb) into the genomes of mouse embryonic stem (ES) cells and zygotes, respectively, using the CRISPR/HDR technique without NHEJ inhibitors. Our data show that CRISPR/HDR without NHEJ inhibitors can result in highly efficient gene knock-in, equivalent to CRISPR/HDR with NHEJ inhibitors. Although NHEJ is the dominant repair pathway associated with CRISPR-mediated double-strand breaks (DSBs), and biallelic gene knock-ins are common, NHEJ and biallelic gene knock-ins were not detected. Our results demonstrate that efficient targeted insertion of large DNA fragments without NHEJ inhibitors is possible, a result that should stimulate interest in understanding the mechanisms of high efficiency CRISPR targeting in general.
Collapse
Affiliation(s)
- Bangmei Wang
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Kunyu Li
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Amy Wang
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| | - Michelle Reiser
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| | | | - Richard F Lockey
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL.,James A. Haley Veterans' Hospital, Tampa, FL
| | - Jia-Wang Wang
- Division of Allergy and Immunology, Department of Internal Medicine, University of South Florida Morsani College of Medicine, Tampa, FL
| |
Collapse
|
29
|
Abstract
Molecular scissors (MS), incl. Zinc Finger Nucleases (ZFN), Transcription-activator like endoncleases (TALENS) and meganucleases possess long recognition sites and are thus capable of cutting DNA in a very specific manner. These molecular scissors mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination based gene targeting, MS can increase the targeting rate 10,000-fold, and gene disruption via mutagenic DNA repair is stimulated at a similar frequency. The successful application of different MS has been shown in different organisms, including insects, amphibians, plants, nematodes, and mammals, including humans. Recently, another novel class of molecular scissors was described that uses RNAs to target a specific genomic site. The CRISPR/Cas9 system is capable of targeting even multiple genomic sites in one shot and thus could be superior to ZFNs or TALEN, especially by its easy design. MS can be successfully employed for improving the understanding of complex physiological systems, producing transgenic animals, incl. creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on molecular scissors, their underlying mechanism and focuses on new opportunities for generating genetically modified farm animals.
Collapse
|
30
|
Petersen B, Niemann H. Molecular scissors and their application in genetically modified farm animals. Transgenic Res 2015; 24:381-96. [DOI: 10.1007/s11248-015-9862-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/02/2015] [Indexed: 11/21/2022]
|
31
|
Advances in genetic modification of farm animals using zinc-finger nucleases (ZFN). Chromosome Res 2015; 23:7-15. [DOI: 10.1007/s10577-014-9451-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
32
|
Liu Q, Wang G, Chen Y, Li G, Yang D, Kang J. A miR-590/Acvr2a/Rad51b axis regulates DNA damage repair during mESC proliferation. Stem Cell Reports 2014; 3:1103-17. [PMID: 25458897 PMCID: PMC4264031 DOI: 10.1016/j.stemcr.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 11/23/2022] Open
Abstract
Embryonic stem cells (ESCs) enable rapid proliferation that also causes DNA damage. To maintain genomic stabilization during rapid proliferation, ESCs must have an efficient system to repress genotoxic stress. Here, we show that withdrawal of leukemia inhibitory factor (LIF), which maintains the self-renewal capability of mouse ESCs (mESCs), significantly inhibits the cell proliferation and DNA damage of mESCs and upregulates the expression of miR-590. miR-590 promotes single-strand break (SSB) and double-strand break (DSB) damage repair, thus slowing proliferation of mESCs without influencing stemness. miR-590 directly targets Activin receptor type 2a (Acvr2a) to mediate Activin signaling. We identified the homologous recombination-mediated repair (HRR) gene, Rad51b, as a downstream molecule of the miR-590/Acvr2a pathway regulating the SSB and DSB damage repair and cell cycle. Our study shows that a miR-590/Acvr2a/Rad51b signaling axis ensures the stabilization of mESCs by balancing DNA damage repair and rapid proliferation during self-renewal. miR-590 promotes DNA damage repair and slows proliferation by targeting Acvr2a miR-590/Acvr2a/Rad51b axis balances SSB and DSB damage repair in mESCs
Collapse
Affiliation(s)
- Qidong Liu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guiying Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Yafang Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Guoping Li
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Dandan Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China.
| |
Collapse
|
33
|
Byrne SM, Ortiz L, Mali P, Aach J, Church GM. Multi-kilobase homozygous targeted gene replacement in human induced pluripotent stem cells. Nucleic Acids Res 2014; 43:e21. [PMID: 25414332 PMCID: PMC4330342 DOI: 10.1093/nar/gku1246] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sequence-specific nucleases such as TALEN and the CRISPR/Cas9 system have so far been used to disrupt, correct or insert transgenes at precise locations in mammalian genomes. We demonstrate efficient ‘knock-in’ targeted replacement of multi-kilobase genes in human induced pluripotent stem cells (iPSC). Using a model system replacing endogenous human genes with their mouse counterpart, we performed a comprehensive study of targeting vector design parameters for homologous recombination. A 2.7 kilobase (kb) homozygous gene replacement was achieved in up to 11% of iPSC without selection. The optimal homology arm length was around 2 kb, with homology length being especially critical on the arm not adjacent to the cut site. Homologous sequence inside the cut sites was detrimental to targeting efficiency, consistent with a synthesis-dependent strand annealing (SDSA) mechanism. Using two nuclease sites, we observed a high degree of gene excisions and inversions, which sometimes occurred more frequently than indel mutations. While homozygous deletions of 86 kb were achieved with up to 8% frequency, deletion frequencies were not solely a function of nuclease activity and deletion size. Our results analyzing the optimal parameters for targeting vector design will inform future gene targeting efforts involving multi-kilobase gene segments, particularly in human iPSC.
Collapse
Affiliation(s)
- Susan M Byrne
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Luis Ortiz
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Prashant Mali
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - John Aach
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
34
|
Gilles AF, Averof M. Functional genetics for all: engineered nucleases, CRISPR and the gene editing revolution. EvoDevo 2014; 5:43. [PMID: 25699168 PMCID: PMC4332929 DOI: 10.1186/2041-9139-5-43] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 10/03/2014] [Indexed: 12/26/2022] Open
Abstract
Developmental biology, as all experimental science, is empowered by technological advances. The availability of genetic tools in some species - designated as model organisms - has driven their use as major platforms for understanding development, physiology and behavior. Extending these tools to a wider range of species determines whether (and how) we can experimentally approach developmental diversity and evolution. During the last two decades, comparative developmental biology (evo-devo) was marked by the introduction of gene knockdown and deep sequencing technologies that are applicable to a wide range of species. These approaches allowed us to test the developmental role of specific genes in diverse species, to study biological processes that are not accessible in established models and, in some cases, to conduct genome-wide screens that overcome the limitations of the candidate gene approach. The recent discovery of CRISPR/Cas as a means of precise alterations into the genome promises to revolutionize developmental genetics. In this review we describe the development of gene editing tools, from zinc-finger nucleases to TALENs and CRISPR, and examine their application in gene targeting, their limitations and the opportunities they present for evo-devo. We outline their use in gene knock-out and knock-in approaches, and in manipulating gene functions by directing molecular effectors to specific sites in the genome. The ease-of-use and efficiency of CRISPR in diverse species provide an opportunity to close the technology gap that exists between established model organisms and emerging genetically-tractable species.
Collapse
Affiliation(s)
- Anna F Gilles
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; BMIC graduate programme and Université Claude Bernard - Lyon 1, Lyon, France
| | - Michalis Averof
- Institut de Génomique Fonctionnelle de Lyon (IGFL), École Normale Supérieure de Lyon, 46 Allée d'Italie, Lyon, 69364 France ; Centre National de la Recherche Scientifique (CNRS), Lyon, France
| |
Collapse
|
35
|
Abstract
A method is presented to measure homologous recombination in mouse embryonic stem cells by both gene targeting and short-tract gene conversion of a double-strand break (DSB). A fluorescence-based reporter is first gene targeted to the Hprt locus in a quantifiable way. A homing endonuclease expression vector is then introduced to generate a DSB, the repair of which is also quantifiable.
Collapse
|
36
|
Wilson CJ. Rational protein design: developing next‐generation biological therapeutics and nanobiotechnological tools. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:330-41. [DOI: 10.1002/wnan.1310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 09/02/2014] [Indexed: 01/22/2023]
Affiliation(s)
- Corey J. Wilson
- Department of Chemical and Environmental EngineeringYale UniversityNew HavenCTUSA
- Department of Molecular Biochemistry and BiophysicsYale UniversityNew HavenCTUSA
- Department of Biomedical EngineeringYale UniversityNew HavenCTUSA
| |
Collapse
|
37
|
Zhang Y, Vanoli F, LaRocque JR, Krawczyk PM, Jasin M. Biallelic targeting of expressed genes in mouse embryonic stem cells using the Cas9 system. Methods 2014; 69:171-178. [PMID: 24929070 PMCID: PMC4405113 DOI: 10.1016/j.ymeth.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/24/2014] [Accepted: 05/12/2014] [Indexed: 12/27/2022] Open
Abstract
Gene targeting - homologous recombination between transfected DNA and a chromosomal locus - is greatly stimulated by a DNA break in the target locus. Recently, the RNA-guided Cas9 endonuclease, involved in bacterial adaptive immunity, has been modified to function in mammalian cells. Unlike other site-specific endonucleases whose specificity resides within a protein, the specificity of Cas9-mediated DNA cleavage is determined by a guide RNA (gRNA) containing an ∼20 nucleotide locus-specific RNA sequence, representing a major advance for versatile site-specific cleavage of the genome without protein engineering. This article provides a detailed method using the Cas9 system to target expressed genes in mouse embryonic stem cells. In this method, a promoterless marker flanked by short homology arms to the target locus is transfected into cells together with Cas9 and gRNA expression vectors. Importantly, biallelic gene knockout is obtained at high frequency by only one round of targeting using a single marker.
Collapse
Affiliation(s)
- Yu Zhang
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Fabio Vanoli
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| | - Jeannine R LaRocque
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
- Department of Human Science, Georgetown University Medical Center, 3700 Reservoir Rd. NW, Washington, DC 20057, USA
| | - Przemek M Krawczyk
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 USA
| |
Collapse
|
38
|
Concerted activities of distinct H4K20 methyltransferases at DNA double-strand breaks regulate 53BP1 nucleation and NHEJ-directed repair. Cell Rep 2014; 8:430-8. [PMID: 25001286 DOI: 10.1016/j.celrep.2014.06.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 12/28/2022] Open
Abstract
Although selective binding of 53BP1 to dimethylated histone H4 lysine 20 (H4K20me2) at DNA double-strand breaks (DSBs) is a necessary and pivotal determinant of nonhomologous end joining (NHEJ)-directed repair, the enzymes that generate H4K20me2 at DSBs were unclear. Here, we determined that the PR-Set7 monomethyltransferase (H4K20me1) regulates de novo H4K20 methylation at DSBs. Rapid recruitment of PR-Set7 to DSBs was dependent on the NHEJ Ku70 protein and necessary for NHEJ-directed repair. PR-Set7 monomethyltransferase activity was required, but insufficient, for H4K20me2 and 53BP1 nucleation at DSBs. We determined that PR-Set7-mediated H4K20me1 facilitates Suv4-20 methyltransferase recruitment and catalysis to generate H4K20me2 necessary for 53BP1 binding. The orchestrated and concerted activities of PR-Set7 and Suv4-20 were required for proficient 53BP1 nucleation and DSB repair. This report identifies PR-Set7 as an essential component of NHEJ and implicates PR-Set7 as a central determinant of NHEJ-directed repair early in mammalian DSB repair pathway choice.
Collapse
|
39
|
Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 2014; 5:3831. [PMID: 24871200 DOI: 10.1038/ncomms4831] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 04/08/2014] [Indexed: 02/07/2023] Open
Abstract
Diatoms, a major group of photosynthetic microalgae, have a high biotechnological potential that has not been fully exploited because of the paucity of available genetic tools. Here we demonstrate targeted and stable modifications of the genome of the marine diatom Phaeodactylum tricornutum, using both meganucleases and TALE nucleases. When nuclease-encoding constructs are co-transformed with a selectable marker, high frequencies of genome modifications are readily attained with 56 and 27% of the colonies exhibiting targeted mutagenesis or targeted gene insertion, respectively. The generation of an enhanced lipid-producing strain (45-fold increase in triacylglycerol accumulation) through the disruption of the UDP-glucose pyrophosphorylase gene exemplifies the power of genome engineering to harness diatoms for biofuel production.
Collapse
|
40
|
RNA-guided nucleases: a new era for engineering the genomes of model and nonmodel organisms. Genetics 2014; 195:303-8. [PMID: 24089463 DOI: 10.1534/genetics.113.155093] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
41
|
|
42
|
Katz SS, Gimble FS, Storici F. To nick or not to nick: comparison of I-SceI single- and double-strand break-induced recombination in yeast and human cells. PLoS One 2014; 9:e88840. [PMID: 24558436 PMCID: PMC3928301 DOI: 10.1371/journal.pone.0088840] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 01/14/2014] [Indexed: 11/19/2022] Open
Abstract
Genetic modification of a chromosomal locus to replace an existing dysfunctional allele with a corrected sequence can be accomplished through targeted gene correction using the cell's homologous recombination (HR) machinery. Gene targeting is stimulated by generation of a DNA double-strand break (DSB) at or near the site of correction, but repair of the break via non-homologous end-joining without using the homologous template can lead to deleterious genomic changes such as in/del mutations, or chromosomal rearrangements. By contrast, generation of a DNA single-strand break (SSB), or nick, can stimulate gene correction without the problems of DSB repair because the uncut DNA strand acts as a template to permit healing without alteration of genetic material. Here, we examine the ability of a nicking variant of the I-SceI endonuclease (K223I I-SceI) to stimulate gene targeting in yeast Saccharomyces cerevisiae and in human embryonic kidney (HEK-293) cells. K223I I-SceI is proficient in both yeast and human cells and promotes gene correction up to 12-fold. We show that K223I I-SceI-driven recombination follows a different mechanism than wild-type I-SceI-driven recombination, thus indicating that the initial DNA break that stimulates recombination is not a low-level DSB but a nick. We also demonstrate that K223I I-SceI efficiently elevates gene targeting at loci distant from the break site in yeast cells. These findings establish the capability of the I-SceI nickase to enhance recombination in yeast and human cells, strengthening the notion that nicking enzymes could be effective tools in gene correction strategies for applications in molecular biology, biotechnology, and gene therapy.
Collapse
Affiliation(s)
- Samantha S. Katz
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Frederick S. Gimble
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States of America
| | - Francesca Storici
- School of Biology, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
43
|
Stuckey S, Storici F. Genetic modification stimulated by the induction of a site-specific break distant from the locus of correction in haploid and diploid yeast Saccharomyces cerevisiae. Methods Mol Biol 2014; 1114:309-24. [PMID: 24557912 DOI: 10.1007/978-1-62703-761-7_20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Generation of a site-specific break at a genomic locus to stimulate homologous recombination (HR) is used in many organisms to efficiently target genes for various types of genetic modification. Additionally, a site-specific chromosomal break can be used to trigger HR at genomic regions distant from the break, thereby largely expanding the region available for introducing desired mutations. In contrast to the former approach, the latter presents an alternative way in which genes can be efficiently modified also when it is not possible or desirable to introduce a break in the vicinity of the targeting locus. This type of in vivo site-directed mutagenesis distant from a break can be accomplished in the yeast model organism Saccharomyces cerevisiae because the generation of a double-strand break (DSB) in yeast chromosomal DNA activates HR at long regions upstream and downstream from the break site. Here we provide a protocol for efficiently altering a yeast chromosomal locus following the induction of a DSB several kilobase pairs distant from the site of gene correction. The techniques described can be used in both diploid and haploid yeast strains, and we provide examples of the gene correction assays.
Collapse
Affiliation(s)
- Samantha Stuckey
- School of Biology, Georgia Institute of Technology, Atlanta, GA, USA
| | | |
Collapse
|
44
|
Dupuy A, Valton J, Leduc S, Armier J, Galetto R, Gouble A, Lebuhotel C, Stary A, Pâques F, Duchateau P, Sarasin A, Daboussi F. Targeted gene therapy of xeroderma pigmentosum cells using meganuclease and TALEN™. PLoS One 2013; 8:e78678. [PMID: 24236034 PMCID: PMC3827243 DOI: 10.1371/journal.pone.0078678] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/13/2013] [Indexed: 01/08/2023] Open
Abstract
Xeroderma pigmentosum group C (XP-C) is a rare human syndrome characterized by hypersensitivity to UV light and a dramatic predisposition to skin neoplasms. XP-C cells are deficient in the nucleotide excision repair (NER) pathway, a complex process involved in the recognition and removal of DNA lesions. Several XPC mutations have been described, including a founder mutation in North African patients involving the deletion of a TG dinucleotide (ΔTG) located in the middle of exon 9. This deletion leads to the expression of an inactive truncated XPC protein, normally involved in the first step of NER. New approaches used for gene correction are based on the ability of engineered nucleases such as Meganucleases, Zinc-Finger nucleases or TALE nucleases to accurately generate a double strand break at a specific locus and promote correction by homologous recombination through the insertion of an exogenous DNA repair matrix. Here, we describe the targeted correction of the ΔTG mutation in XP-C cells using engineered meganuclease and TALEN™. The methylated status of the XPC locus, known to inhibit both of these nuclease activities, led us to adapt our experimental design to optimize their in vivo efficacies. We show that demethylating treatment as well as the use of TALEN™ insensitive to CpG methylation enable successful correction of the ΔTG mutation. Such genetic correction leads to re-expression of the full-length XPC protein and to the recovery of NER capacity, attested by UV-C resistance of the corrected cells. Overall, we demonstrate that nuclease-based targeted approaches offer reliable and efficient strategies for gene correction.
Collapse
Affiliation(s)
- Aurélie Dupuy
- Cellectis S.A., Paris, France
- Unité mixte de recherche 8200, Institut Gustave Roussy, Villejuif, France
| | | | | | - Jacques Armier
- Unité mixte de recherche 8200, Institut Gustave Roussy, Villejuif, France
| | | | | | | | - Anne Stary
- Unité mixte de recherche 8200, Institut Gustave Roussy, Villejuif, France
| | | | | | - Alain Sarasin
- Unité mixte de recherche 8200, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
45
|
Eyquem J, Poirot L, Galetto R, Scharenberg AM, Smith J. Characterization of three loci for homologous gene targeting and transgene expression. Biotechnol Bioeng 2013; 110:2225-35. [DOI: 10.1002/bit.24892] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 02/26/2013] [Accepted: 03/01/2013] [Indexed: 12/31/2022]
|
46
|
Yau YY, Stewart CN. Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 2013; 13:36. [PMID: 23617583 PMCID: PMC3689633 DOI: 10.1186/1472-6750-13-36] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 03/05/2013] [Indexed: 02/07/2023] Open
Abstract
Selectable marker genes (SMGs) and selection agents are useful tools in the production of transgenic plants by selecting transformed cells from a matrix consisting of mostly untransformed cells. Most SMGs express protein products that confer antibiotic- or herbicide resistance traits, and typically reside in the end product of genetically-modified (GM) plants. The presence of these genes in GM plants, and subsequently in food, feed and the environment, are of concern and subject to special government regulation in many countries. The presence of SMGs in GM plants might also, in some cases, result in a metabolic burden for the host plants. Their use also prevents the re-use of the same SMG when a second transformation scheme is needed to be performed on the transgenic host. In recent years, several strategies have been developed to remove SMGs from GM products while retaining the transgenes of interest. This review describes the existing strategies for SMG removal, including the implementation of site specific recombination systems, TALENs and ZFNs. This review discusses the advantages and disadvantages of existing SMG-removal strategies and explores possible future research directions for SMG removal including emerging technologies for increased precision for genome modification.
Collapse
Affiliation(s)
- Yuan-Yeu Yau
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014, USA
| | - C Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
47
|
Engineered Zinc Finger Nucleases for Targeted Genome Editing. SITE-DIRECTED INSERTION OF TRANSGENES 2013. [DOI: 10.1007/978-94-007-4531-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
48
|
Ellis BL, Hirsch ML, Porter SN, Samulski RJ, Porteus MH. Zinc-finger nuclease-mediated gene correction using single AAV vector transduction and enhancement by Food and Drug Administration-approved drugs. Gene Ther 2013; 20:35-42. [PMID: 22257934 PMCID: PMC4957644 DOI: 10.1038/gt.2011.211] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 11/08/2022]
Abstract
An emerging strategy for the treatment of monogenic diseases uses genetic engineering to precisely correct the mutation(s) at the genome level. Recent advancements in this technology have demonstrated therapeutic levels of gene correction using a zinc-finger nuclease (ZFN)-induced DNA double-strand break in conjunction with an exogenous DNA donor substrate. This strategy requires efficient nucleic acid delivery and among viral vectors, recombinant adeno-associated virus (rAAV) has demonstrated clinical success without pathology. However, a major limitation of rAAV is the small DNA packaging capacity and to date, the use of rAAV for ZFN gene delivery has yet to be reported. Theoretically, an ideal situation is to deliver both ZFNs and the repair substrate in a single vector to avoid inefficient gene targeting and unwanted mutagenesis, both complications of a rAAV co-transduction strategy. Therefore, a rAAV format was generated in which a single polypeptide encodes the ZFN monomers connected by a ribosome skipping 2A peptide and furin cleavage sequence. On the basis of this arrangement, a DNA repair substrate of 750 nucleotides was also included in this vector. Efficient polypeptide processing to discrete ZFNs is demonstrated, as well as the ability of this single vector format to stimulate efficient gene targeting in a human cell line and mouse model derived fibroblasts. Additionally, we increased rAAV-mediated gene correction up to sixfold using a combination of Food and Drug Administration-approved drugs, which act at the level of AAV vector transduction. Collectively, these experiments demonstrate the ability to deliver ZFNs and a repair substrate by a single AAV vector and offer insights for the optimization of rAAV-mediated gene correction using drug therapy.
Collapse
Affiliation(s)
- BL Ellis
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - ML Hirsch
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - SN Porter
- Department of Pediatrics, Stanford Medical School, Stanford, CA, USA
| | - RJ Samulski
- UNC Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - MH Porteus
- Department of Pediatrics, Stanford Medical School, Stanford, CA, USA
| |
Collapse
|
49
|
Smith KR, Chan S, Harris J. Human germline genetic modification: scientific and bioethical perspectives. Arch Med Res 2012; 43:491-513. [PMID: 23072719 DOI: 10.1016/j.arcmed.2012.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 09/06/2012] [Indexed: 11/29/2022]
Abstract
The latest mammalian genetic modification technology offers efficient and reliable targeting of genomic sequences, in the guise of designer genetic recombination tools. These and other improvements in genetic engineering technology suggest that human germline genetic modification (HGGM) will become a safe and effective prospect in the relatively near future. Several substantive ethical objections have been raised against HGGM including claims of unacceptably high levels of risk, damage to the status of future persons, and violations of justice and autonomy. This paper critically reviews the latest GM science and discusses the key ethical objections to HGGM. We conclude that major benefits are likely to accrue through the use of safe and effective HGGM and that it would thus be unethical to take a precautionary stance against HGGM.
Collapse
Affiliation(s)
- Kevin R Smith
- School of Contemporary Sciences, Abertay University, Dundee, United Kingdom.
| | | | | |
Collapse
|
50
|
Smith AJ, Nelson NG, Oommen S, Hartjes KA, Folmes CD, Terzic A, Nelson TJ. Apoptotic susceptibility to DNA damage of pluripotent stem cells facilitates pharmacologic purging of teratoma risk. Stem Cells Transl Med 2012. [PMID: 23197662 DOI: 10.5966/sctm.2012-0066] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pluripotent stem cells have been the focus of bioengineering efforts designed to generate regenerative products, yet harnessing therapeutic capacity while minimizing risk of dysregulated growth remains a challenge. The risk of residual undifferentiated stem cells within a differentiated progenitor population requires a targeted approach to eliminate contaminating cells prior to delivery. In this study we aimed to validate a toxicity strategy that could selectively purge pluripotent stem cells in response to DNA damage and avoid risk of uncontrolled cell growth upon transplantation. Compared with somatic cell types, embryonic stem cells and induced pluripotent stem cells displayed hypersensitivity to apoptotic induction by genotoxic agents. Notably, hypersensitivity in pluripotent stem cells was stage-specific and consistently lost upon in vitro differentiation, with the mean half-maximal inhibitory concentration increasing nearly 2 orders of magnitude with tissue specification. Quantitative polymerase chain reaction and Western blotting demonstrated that the innate response was mediated through upregulation of the BH3-only protein Puma in both natural and induced pluripotent stem cells. Pretreatment with genotoxic etoposide purged hypersensitive pluripotent stem cells to yield a progenitor population refractory to teratoma formation upon transplantation. Collectively, this study exploits a hypersensitive apoptotic response to DNA damage within pluripotent stem cells to decrease risk of dysregulated growth and augment the safety profile of transplant-ready, bioengineered progenitor cells.
Collapse
Affiliation(s)
- Alyson J Smith
- Department of Medicine and Transplant Center, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|