1
|
Lee JH, Zou L, Yang R, Han J, Wan Q, Zhang X, El Baghdady S, Roman A, Elly C, Jin HS, Park Y, Croft M, Liu YC. The deubiquitinase CYLD controls protective immunity against helminth infection by regulation of Treg cell plasticity. J Allergy Clin Immunol 2020; 148:209-224.e9. [PMID: 33309741 DOI: 10.1016/j.jaci.2020.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Type 2 immunity can be modulated by regulatory T (Treg) cell activity. It has been suggested that the deubiquitinase cylindromatosis (CYLD) plays a role in the development or function of Treg cells, implying that it could be important for normal protective immunity, where type 2 responses are prevalent. OBJECTIVE We sought to investigate the role of CYLD in Treg cell function and TH2 cell immune responses under steady-state conditions and during helminth infection. METHODS Foxp3-restricted CYLD conditional knockout (KO) mice were examined in mouse models of allergen-induced airway inflammation and Nippostrongylus brasiliensis infection. We performed multiplex magnetic bead assays, flow cytometry, and quantitative PCR to understand how a lack of CYLD affected cytokine production, homing, and suppression in Treg cells. Target genes regulated by CYLD were identified and validated by microarray analysis, coimmunoprecipitation, short hairpin RNA knockdown, and transfection assays. RESULTS Treg cell-specific CYLD KO mice showed severe spontaneous pulmonary inflammation with increased migration of Treg cells into the lung. CYLD-deficient Treg cells furthermore produced high levels of IL-4 and failed to suppress allergen-induced lung inflammation. Supporting this, the conditional KO mice displayed enhanced protection against N brasiliensis infection by contributing to type 2 immunity. Treg cell conversion into IL-4-producing cells was due to augmented mitogen-activated protein kinase and nuclear factor κB signaling. Moreover, Scinderin, a member of the actin-binding gelsolin family, was highly upregulated in CYLD-deficient Treg cells, and controlled IL-4 production through forming complexes with mitogen-activated protein kinase kinase/extracellular receptor kinase. Correspondingly, both excessive IL-4 production in vivo and the protective role of CYLD-deficient Treg cells against N brasiliensis were reversed by Scinderin ablation. CONCLUSIONS Our findings indicate that CYLD controls type 2 immune responses by regulating Treg cell conversion into TH2 cell-like effector cells, which potentiates parasite resistance.
Collapse
Affiliation(s)
- Jee H Lee
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, Calif.
| | - Le Zou
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Runqing Yang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Jihye Han
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Qingqing Wan
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Xian Zhang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Sarah El Baghdady
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Andrea Roman
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Chris Elly
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif
| | - Hyung-Seung Jin
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Department of Convergence Medicine, ASAN Institute for Life Sciences, ASAN Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Yoon Park
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Immunology, La Jolla, Calif
| | - Yun-Cai Liu
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, Calif; Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Abstract
Gelsolin (GSN), one of the most abundant actin-binding proteins, is involved in cell motility, shape and metabolism. As a member of the GSN superfamily, GSN is a highly structured protein in eukaryotic cells that can be regulated by calcium concentration, intracellular pH, temperature and phosphatidylinositol-4,5-bisphosphate. GSN plays an important role in cellular mechanisms as well as in different cellular interactions. Because of its participation in immunologic processes and its interaction with different cells of the immune system, GSN is a potential candidate for various therapeutic applications. In this review, we summarise the structure of GSN as well as its regulating and functional roles, focusing on distinct diseases such as Alzheimer's disease, rheumatoid arthritis and cancer. A short overview of GSN as a therapeutic target in today's medicine is also provided.
Collapse
|
3
|
Wang Y, Galli M, Shade Silver A, Lee W, Song Y, Mei Y, Bachus C, Glogauer M, McCulloch CA. IL1β and TNFα promote RANKL-dependent adseverin expression and osteoclastogenesis. J Cell Sci 2018; 131:jcs.213967. [PMID: 29724913 DOI: 10.1242/jcs.213967] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 04/23/2018] [Indexed: 12/20/2022] Open
Abstract
Adseverin is an actin-binding protein involved in osteoclastogenesis, but its role in inflammation-induced bone loss is not well-defined. Here, we examined whether IL1β and TNFα regulate adseverin expression to control osteoclastogenesis in mouse primary monocytes and RAW264.7 cells. Adseverin was colocalized with subcortical actin filaments and was enriched in the fusopods of fusing cells. In precursor cells, adseverin overexpression boosted the formation of RANKL-induced multinucleated cells. Both IL1β and TNFα enhanced RANKL-dependent TRAcP activity by 1.6-fold and multinucleated cell formation (cells with ≥3 nuclei) by 2.6- and 3.3-fold, respectively. However, IL1β and TNFα did not enhance osteoclast formation in adseverin-knockdown cells. RANKL-dependent adseverin expression in bone marrow cells was increased by both IL1β (5.4-fold) and TNFα (3.3-fold). Luciferase assays demonstrated that this expression involved transcriptional regulation of the adseverin promoter. Activation of the promoter was restricted to a 1118 bp sequence containing an NF-κB binding site, upstream of the transcription start site. TNFα also promoted RANKL-induced osteoclast precursor cell migration. We conclude that IL1β and TNFα enhance RANKL-dependent expression of adseverin, which contributes to fusion processes in osteoclastogenesis.
Collapse
Affiliation(s)
- Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Matthew Galli
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Alexandra Shade Silver
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Wilson Lee
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Yushan Song
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Yixue Mei
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Carly Bachus
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| | - Christopher A McCulloch
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada, M5S 3E2
| |
Collapse
|
4
|
Qi W, Gao Y, Tian J, Jiang H. Adseverin knockdown inhibits osteoclastogenesis in RAW264.7 cells. Int J Mol Med 2014; 34:1483-91. [PMID: 25339151 PMCID: PMC4214352 DOI: 10.3892/ijmm.2014.1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 09/11/2014] [Indexed: 11/08/2022] Open
Abstract
Osteoclastogenesis is a complex process that is highly dependent on the dynamic regulation of the actin cytoskeleton. Adseverin (Ads), a member of the gelsolin superfamily of actin-binding proteins, regulates actin remodeling by severing and capping actin filaments. The objective of the present study was to characterize the role of Ads during osteoclastogenesis by assessing Ads expression and using a knockdown strategy. Immunoblot analyses were used to examine Ads expression during osteoclastogenesis. A stable Ads knockdown macrophage cell line was generated using a retroviral shRNA construct. Osteoclast differentiation was morphologically examined via cell staining with osteoclast specific markers and light microscopy. The results showed that Ads expression was significantly increased in response to receptor activator of nuclear factor-κB ligand during osteoclastogenesis, and Ads was highly expressed in mature osteoclasts. Ads-knockdown macrophages showed major osteoclastogenesis defects, most likely caused by a pre-osteoclast fusion defect. These results indicate that Ads deficiency in monocytes inhibits osteoclastogenesis. Thus, in future studies it could be noteworthy to investigate the function of Ads in bone marrow monocytes during osteoclastogenesis.
Collapse
Affiliation(s)
- Wenting Qi
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yan Gao
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jun Tian
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwei Jiang
- Department of Operative Dentistry and Endodontics, Guanghua School and Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
5
|
Hassanpour S, Jiang H, Wang Y, Kuiper JWP, Glogauer M. The actin binding protein adseverin regulates osteoclastogenesis. PLoS One 2014; 9:e109078. [PMID: 25275604 PMCID: PMC4183545 DOI: 10.1371/journal.pone.0109078] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 09/07/2014] [Indexed: 11/29/2022] Open
Abstract
Adseverin (Ads), a member of the Gelsolin superfamily of actin binding proteins, regulates the actin cytoskeleton architecture by severing and capping existing filamentous actin (F-actin) strands and nucleating the assembly of new F-actin filaments. Ads has been implicated in cellular secretion, exocytosis and has also been shown to regulate chondrogenesis and megakaryoblastic leukemia cell differentiation. Here we report for the first time that Ads is involved in regulating osteoclastogenesis (OCG). Ads is induced during OCG downstream of RANK-ligand (RANKL) stimulation and is highly expressed in mature osteoclasts. The D5 isoform of Ads is not involved in regulating OCG, as its expression is not induced in response to RANKL. Three clonal Ads knockdown RAW264.7 (RAW) macrophage cell lines with varying degrees of Ads expression and OCG deficiency were generated. The most drastic OCG defect was noted in the clonal cell line with the greatest degree of Ads knockdown as indicated by a lack of TRAcP staining and multinucleation. RNAi mediated knockdown of Ads in osteoclast precursors resulted in distinct morphological changes characterized by altered F-actin distribution and increased filopodia formation. Ads knockdown precursor cells experienced enhanced migration while fusion of knockdown precursors cells was limited. Transient reintroduction of de novo Ads back into the knockdown system was capable of rescuing TRAcP expression but not osteoclast multinucleation most likely due to the transient nature of Ads expression. This preliminary study allows us to conclude that Ads is a RANKL induced early regulator of OCG with a potential role in pre-osteoclast differentiation and fusion.
Collapse
Affiliation(s)
- Siavash Hassanpour
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Hongwei Jiang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, P. R. China
| | - Yongqiang Wang
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Johannes W. P. Kuiper
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Michael Glogauer
- Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
6
|
Itou T, Maldonado N, Yamada I, Goettsch C, Matsumoto J, Aikawa M, Singh S, Aikawa E. Cystathionine γ-lyase accelerates osteoclast differentiation: identification of a novel regulator of osteoclastogenesis by proteomic analysis. Arterioscler Thromb Vasc Biol 2013; 34:626-34. [PMID: 24357058 DOI: 10.1161/atvbaha.113.302576] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Clinical evidence has linked vascular calcification in advanced atherosclerotic plaques with overt cardiovascular disease and mortality. Bone resorbing monocyte-derived osteoclast-like cells are sparse in these plaques, indicating that their differentiation capability could be suppressed. Here, we seek to characterize the process of osteoclastogenesis by identifying novel regulators and pathways, with the aim of exploring possible strategies to reduce calcification. APPROACH AND RESULTS We used a quantitative mass spectrometry strategy, tandem mass tagging, to quantify changes in the proteome of osteoclast-like cells differentiated from RAW264.7 cells in response to, receptor activator of nuclear factor κ-B ligand induction, a common in vitro model for osteogenesis. More than 4000 proteins were quantified, of which 138 were identified as novel osteoclast-related proteins. We selected 5 proteins for subsequent analysis (cystathionine γ-lyase [Cth/CSE], EGF-like repeat and discoidin I-like domain-containing protein 3, integrin α FG-GAP repeat containing 3, adseverin, and serpinb6b) and show that gene expression levels are also increased. Further analysis of the CSE transcript profile reveals an early onset of an mRNA increase. Silencing of CSE by siRNA and dl-propargylglycine, a CSE inhibitor, attenuated receptor activator of nuclear factor κ-B ligand-induced tartrate-resistant acid phosphatase type 5 activity and pit formation, suggesting that CSE is a potent inducer of calcium resorption. Moreover, knockdown of CSE suppressed expression of osteoclast differentiation markers. CONCLUSIONS Our large-scale proteomics study identified novel candidate regulators or markers for osteoclastogenesis and demonstrated that CSE may act in early stages of osteoclastogenesis.
Collapse
Affiliation(s)
- Takahiro Itou
- From the Division of Cardiovascular Medicine, Center for Interdisciplinary Cardiovascular Sciences (T.I., N.M., I.Y., C.G., J.M., M.A., S.S., E.A.), Channing Division of Network Medicine (M.A.), and Division of Cardiovascular Medicine, Center for Excellence in Vascular Biology (M.A., E.A.), Brigham and Women's Hospital, Harvard Medical School, Boston, MA; and Kowa Company, Ltd, Tokyo, Japan (T.I., I.Y., J.M.)
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Dráber P, Sulimenko V, Dráberová E. Cytoskeleton in mast cell signaling. Front Immunol 2012; 3:130. [PMID: 22654883 PMCID: PMC3360219 DOI: 10.3389/fimmu.2012.00130] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/05/2012] [Indexed: 11/13/2022] Open
Abstract
Mast cell activation mediated by the high affinity receptor for IgE (FcεRI) is a key event in allergic response and inflammation. Other receptors on mast cells, as c-Kit for stem cell factor and G protein-coupled receptors (GPCRs) synergistically enhance the FcεRI-mediated release of inflammatory mediators. Activation of various signaling pathways in mast cells results in changes in cell morphology, adhesion to substrate, exocytosis, and migration. Reorganization of cytoskeleton is pivotal in all these processes. Cytoskeletal proteins also play an important role in initial stages of FcεRI and other surface receptors induced triggering. Highly dynamic microtubules formed by αβ-tubulin dimers as well as microfilaments build up from polymerized actin are affected in activated cells by kinases/phosphatases, Rho GTPases and changes in concentration of cytosolic Ca(2+). Also important are nucleation proteins; the γ-tubulin complexes in case of microtubules or Arp 2/3 complex with its nucleation promoting factors and formins in case of microfilaments. The dynamic nature of microtubules and microfilaments in activated cells depends on many associated/regulatory proteins. Changes in rigidity of activated mast cells reflect changes in intermediate filaments build up from vimentin. This review offers a critical appraisal of current knowledge on the role of cytoskeleton in mast cells signaling.
Collapse
Affiliation(s)
- Pavel Dráber
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Vadym Sulimenko
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Eduarda Dráberová
- Department of Biology of Cytoskeleton, Institute of Molecular Genetics, Academy of Sciences of the Czech RepublicPrague, Czech Republic
| |
Collapse
|
8
|
|
9
|
Jia S, Omelchenko M, Garland D, Vasiliou V, Kanungo J, Spencer M, Wolf Y, Koonin E, Piatigorsky J. Duplicated gelsolin family genes in zebrafish: a novel scinderin-like gene (scinla) encodes the major corneal crystallin. FASEB J 2007; 21:3318-28. [PMID: 17548429 PMCID: PMC6007973 DOI: 10.1096/fj.07-8172com] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We have previously identified a gelsolin-like protein (C/L-gelsolin) as a corneal crystallin in zebrafish. Here we show by phylogenetic analysis that there are at least six genes encoding gelsolin-like proteins based on their gelsolin domains in zebrafish: gsna and gsnb group with the vertebrate gelsolin gene, scina and scinb group with the scinderin (adseverin) gene, and scinla (C/L-gelsolin) and scinlb are novel scinderin-like genes. RT-PCR showed that scinla, scinlb, and gsnb are preferentially expressed in the adult cornea whereas gsna is expressed to a similar extent in cornea, lens, brain, and heart; scina and scinb expression were detectable only in whole zebrafish and not in these adult tissues. Quantitative RT-PCR and 2-dimensional polyacrylamide gel electrophoresis followed by MALDI/TOF mass spectroscopy confirmed high expression of beta-actin and scinla, moderate expression of scinlb, and very low expression of gsna and gsnb in the cornea. Finally, transgenic zebrafish carrying a green fluorescent protein reporter transgene driven by a 4 kb scinla promoter fragment showed expression in the cornea, snout, dorsal fin, and tail fin of 3-day-old zebrafish larvae. Our data suggest that scinla and scinlb are diverged paralogs of the vertebrate scinderin gene and show that scinla encodes the zebrafish corneal crystallin previously called C/L-gelsolin.
Collapse
Affiliation(s)
- Sujuan Jia
- Laboratory of Molecular and Developmental Biology, Bethesda, Maryland, USA
| | - Marina Omelchenko
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Donita Garland
- Laboratory of Retinal Cellular and Molecular Biology, National Eye Institute, Bethesda, Maryland, USA
| | - Vasilis Vasiliou
- University of Colorado Health Sciences Center, School of Pharmacy, University of Colorado, Denver, Colorado, USA
| | | | - Michael Spencer
- Laboratory of Molecular and Developmental Biology, Bethesda, Maryland, USA
| | - Yuri Wolf
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Eugene Koonin
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Joram Piatigorsky
- Laboratory of Molecular and Developmental Biology, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Nurminsky D, Magee C, Faverman L, Nurminskaya M. Regulation of chondrocyte differentiation by actin-severing protein adseverin. Dev Biol 2007; 302:427-37. [PMID: 17097081 PMCID: PMC3387683 DOI: 10.1016/j.ydbio.2006.09.052] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Revised: 09/25/2006] [Accepted: 09/29/2006] [Indexed: 11/28/2022]
Abstract
The importance of actin organization in controlling the chondrocyte phenotype is well established, but little is known about the cytoskeletal components regulating chondrocyte differentiation. Previously, we have observed up-regulation of an actin-binding gelsolin-like protein in hypertrophic chondrocytes. We have now identified it as adseverin (scinderin). Adseverin is drastically up-regulated during chondrocyte maturation, as shown by Northern blot analysis, in situ hybridization, and real-time RT-PCR. Its expression is positively regulated by PKC and MEK signaling as shown by inhibitory analyses. Over-expression of adseverin in non-hypertrophic chondrocytes causes rearrangement of the actin cytoskeleton, a change in cell morphology, a dramatic (3.5-fold) increase in cell volume, and up-regulation of Indian hedgehog (Ihh) and of collagen type X--all indicative of chondrocyte differentiation. These changes are mediated by ERK1/2 and p38 kinase pathways. Thus, adseverin-induced rearrangements of the actin cytoskeleton may mediate the PKC-dependent activation of p38 and Erk1/2 signaling pathways necessary for chondrocyte hypertrophy, as evidenced by changes in cell morphology, increase in cell size and expression of the chondrocyte maturation markers. These results demonstrate that interdependence of cytoskeletal organization and chondrogenic gene expression is regulated, at least in part, by actin-binding proteins such as adseverin.
Collapse
Affiliation(s)
- Dmitry Nurminsky
- Tufts University School of Medicine, Department of Anatomy and Cellular Biology, 136 Harrison Avenue Boston, MA 02111, USA
| | | | | | | |
Collapse
|
11
|
Ono S. Mechanism of depolymerization and severing of actin filaments and its significance in cytoskeletal dynamics. INTERNATIONAL REVIEW OF CYTOLOGY 2007; 258:1-82. [PMID: 17338919 DOI: 10.1016/s0074-7696(07)58001-0] [Citation(s) in RCA: 212] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The actin cytoskeleton is one of the major structural components of the cell. It often undergoes rapid reorganization and plays crucial roles in a number of dynamic cellular processes, including cell migration, cytokinesis, membrane trafficking, and morphogenesis. Actin monomers are polymerized into filaments under physiological conditions, but spontaneous depolymerization is too slow to maintain the fast actin filament dynamics observed in vivo. Gelsolin, actin-depolymerizing factor (ADF)/cofilin, and several other actin-severing/depolymerizing proteins can enhance disassembly of actin filaments and promote reorganization of the actin cytoskeleton. This review presents advances as well as a historical overview of studies on the biochemical activities and cellular functions of actin-severing/depolymerizing proteins.
Collapse
Affiliation(s)
- Shoichiro Ono
- Department of Pathology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Lambrechts A, Van Troys M, Ampe C. The actin cytoskeleton in normal and pathological cell motility. Int J Biochem Cell Biol 2005; 36:1890-909. [PMID: 15203104 DOI: 10.1016/j.biocel.2004.01.024] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2004] [Indexed: 11/20/2022]
Abstract
Cell motility is crucial for tissue formation and for development of organisms. Later on cell migration remains essential throughout the lifetime of the organism for wound healing and immune responses. The actin cytoskeleton is the cellular engine that drives cell motility downstream of a complex signal transduction cascade. The basic molecular machinery underlying the assembly and disassembly of actin filaments consists of a variety of actin binding proteins that regulate the dynamic behavior of the cytoskeleton in response to different signals. The multitude of proteins and regulatory mechanisms partaking in this system makes it vulnerable to mutations and alterations in expression levels that ultimately may cause diseases. The most familiar one is cancer that in later stages is characterized by active aberrant cell migration. Indeed tumor invasion and metastasis are increasingly being associated with deregulation of the actin system.
Collapse
Affiliation(s)
- Anja Lambrechts
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, A. Baertsoenkaai 3, B-9000 Gent, Belgium.
| | | | | |
Collapse
|
13
|
Ehre C, Rossi AH, Abdullah LH, De Pestel K, Hill S, Olsen JC, Davis CW. Barrier role of actin filaments in regulated mucin secretion from airway goblet cells. Am J Physiol Cell Physiol 2004; 288:C46-56. [PMID: 15342343 DOI: 10.1152/ajpcell.00397.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/G(q)-coupled P2Y(2) receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of beta- and gamma-actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of beta- or gamma-actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca(2+)-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis.
Collapse
Affiliation(s)
- Camille Ehre
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599-7248, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Rommelaere H, Waterschoot D, Neirynck K, Vandekerckhove J, Ampe C. Structural Plasticity of Functional Actin. Structure 2003; 11:1279-89. [PMID: 14527395 DOI: 10.1016/j.str.2003.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Actin is one of the most conserved and versatile proteins capable of forming homopolymers and interacting with numerous other proteins in the cell. We performed an alanine mutagenesis scan covering the entire beta-actin molecule. Somewhat surprisingly, the majority of the mutants were capable of reaching a stable conformation. We tested the ability of these mutants to bind to various actin binding proteins, thereby mapping different interfaces with actin. Additionally, we tested their ability to copolymerize with alpha-actin in order to localize regions in actin that contact neighboring protomers in the filament. Hereby, we could discriminate between two existing models for filamentous actin and our data strongly support the right-handed double-stranded helix model. We present data corroborating this model in vivo. Mutants defective in copolymerization do not colocalize with the actin cytoskeleton and some impair its normal function, thereby disturbing cell shape.
Collapse
Affiliation(s)
- Heidi Rommelaere
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Health Sciences, Ghent University, A. Baertsoenkaai 3, B-9000, Gent, Belgium.
| | | | | | | | | |
Collapse
|
15
|
Riley DE, Krieger JN. Diverse eukaryotic transcripts suggest short tandem repeats have cellular functions. Biochem Biophys Res Commun 2002; 298:581-6. [PMID: 12408991 DOI: 10.1016/s0006-291x(02)02509-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Previously thought "junk" DNA, short tandem repeats consisting of (GATA)n, or its compliment, were found in varied metazoan eukaryotic genomes but were rare in yeast and bacterial genomes. The (GATA)n sequence was found in cDNAs encoding mRNAs with known functions. At least 16 of 18 such transcripts encode membrane-associated proteins including: plasma membranes, synapses, mitochondrial membranes, nuclear envelopes, and brush border membranes. Flanking sequences were diverse but (GATA)n sequences clustered around 500 bases from stop codons. The (GATA)n sequences occurred in both orientations and showed constrained polymorphism. In sets of splice variants with and without (GAUA)n, the STR containing transcripts were the most abundant. These observations suggest that (GATA)n sequences probably function. In many cases, the function may be to encode post-transcriptional signals for mRNAs encoding membrane-associated proteins.
Collapse
Affiliation(s)
- Donald E Riley
- Department of Urology, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
16
|
Svensson C, Lundberg K. Immune-specific up-regulation of adseverin gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Mol Pharmacol 2001; 60:135-42. [PMID: 11408608 DOI: 10.1124/mol.60.1.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To identify genes that are regulated by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and possibly involved in TCDD-induced immunotoxicity, we used the differential display technique to screen for differentially expressed genes in the mouse thymus. Here we show that TCDD increased the expression of adseverin, a Ca(2+)-dependent, actin-severing protein. The induction of adseverin is dose- and time-dependent in parallel with the induction of CYP1A1, which is currently the most frequently used marker for TCDD exposure. A comparison between mouse strains with different TCDD responsiveness indicated that the induction of adseverin is dependent on the aryl hydrocarbon receptor, a transcription factor known to mediate most of TCDD's biological effects. Examination of additional organs revealed that the up-regulation of the adseverin gene expression is immune-specific. Using an anti-adseverin antibody, we confirmed the induction of adseverin by TCDD at the protein level and it was confined to the thymic cortex, which harbors immature thymocytes that are known target cells of TCDD. Considering adseverin's role in actin cytoskeletal reorganization, our observations reveal new mechanistic aspects of how TCDD might exert some of its immunotoxic effects.
Collapse
Affiliation(s)
- C Svensson
- Department of Pharmaceutical Biosciences, Division of Toxicology, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
17
|
Xu YS, Kantorow M, Davis J, Piatigorsky J. Evidence for gelsolin as a corneal crystallin in zebrafish. J Biol Chem 2000; 275:24645-52. [PMID: 10818094 DOI: 10.1074/jbc.m001159200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that gelsolin is one of the most prevalent water-soluble proteins in the transparent cornea of zebrafish. There are also significant amounts of actin. In contrast to actin, gelsolin is barely detectable in other eye tissues (iris, lens, and remaining eye) of the zebrafish. Gelsolin cDNA hybridized intensely in Northern blots to RNA from the cornea but not from the lens, brain, or headless body. The deduced zebrafish gelsolin is approximately 60% identical to mammalian cytosolic gelsolin and has the characteristic six segmental repeats as well as the binding sites for actin, calcium, and phosphatidylinositides. In situ hybridization tests showed that gelsolin mRNA is concentrated in the zebrafish corneal epithelium. The zebrafish corneal epithelium stains very weakly with rhodamine-phalloidin, indicating little F-actin in the cytoplasm. In contrast, the mouse corneal epithelium contains relatively little gelsolin and stains intensely with rhodamine-phalloidin, as does the zebrafish extraocular muscle. We propose, by analogy with the diverse crystallins of the eye lens and with the putative enzyme-crystallins (aldehyde dehydrogenase class 3 and other enzymes) of the mammalian cornea, that gelsolin and actin-gelsolin complexes act as water-soluble crystallins in the zebrafish cornea and contribute to its optical properties.
Collapse
Affiliation(s)
- Y S Xu
- Laboratory of Molecular and Developmental Biology, NEI, National Institutes of Health, Bethesda, Maryland 20892-2730, USA
| | | | | | | |
Collapse
|
18
|
Dumoutier L, Louahed J, Renauld JC. Cloning and characterization of IL-10-related T cell-derived inducible factor (IL-TIF), a novel cytokine structurally related to IL-10 and inducible by IL-9. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1814-9. [PMID: 10657629 DOI: 10.4049/jimmunol.164.4.1814] [Citation(s) in RCA: 400] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
IL-9 is a Th2 cytokine active on various cell types such as T and B lymphocytes, mast cells, and eosinophils, and potentially involved in allergy and asthma. To understand better the molecular mechanisms underlying the activity of this cytokine, we used a cDNA subtraction method to identify genes specifically induced by IL-9 in mouse T cells. One of the IL-9-regulated genes isolated by this approach turned out to encode a 180-amino acid long protein, including a potential signal peptide, and showing 22% amino acid identity with IL-10. This protein, designated IL-10-related T cell-derived inducible factor (IL-TIF), is induced by IL-9 in thymic lymphomas, T cells, and mast cells, and by lectins in freshly isolated splenocytes. Experiments concerning the mechanism regulating IL-TIF expression in T cells indicate that IL-9 induction is rapid (within 1 h), does not require protein synthesis, and depends on the activation of the Janus kinase (JAK)-STAT pathway. In vivo, constitutive expression of IL-TIF was detected by RT-PCR in thymus and brain, suggesting that the role of this new factor is not restricted to the immune system. Transfection of HEK293 cells with the IL-TIF cDNA resulted in the production of a glycosylated protein of about 25 kDa that was found to induce STAT activation in mesangial and neuronal cell lines. Further studies will have to address the possibility that some of the IL-9 activities may be mediated by IL-TIF.
Collapse
Affiliation(s)
- L Dumoutier
- Ludwig Institute for Cancer Research, Brussels, Belgium
| | | | | |
Collapse
|
19
|
Friederich E, Vancompernolle K, Louvard D, Vandekerckhove J. Villin function in the organization of the actin cytoskeleton. Correlation of in vivo effects to its biochemical activities in vitro. J Biol Chem 1999; 274:26751-60. [PMID: 10480879 DOI: 10.1074/jbc.274.38.26751] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Villin is an actin-binding protein of the intestinal brush border that bundles, nucleates, caps, and severs actin in a Ca(2+)-dependent manner in vitro. Villin induces the growth of microvilli in transfected cells, an activity that requires a carboxyl-terminally located KKEK motif. By combining cell transfection and biochemical assays, we show that the capacity of villin to induce growth of microvilli in cells correlates with its ability to bundle F-actin in vitro but not with its nucleating activity. In agreement with its importance for microfilament bundling in cells, the KKEK motif of the carboxyl-terminal F-actin-binding site is crucial for bundling in vitro. In addition, substitutions of basic residues in a second site, located in the amino-terminal portion of villin, impaired its activity in cells and reduced its binding to F-actin in the absence of Ca(2+) as well as its bundling and severing activities in vitro. Altogether, these findings suggest that villin participates in the organization and stabilization of the brush border core bundle but does not initiate its assembly by nucleation of actin filaments.
Collapse
Affiliation(s)
- E Friederich
- Laboratoire de Morphogenèse et Signalisation Cellulaire, Centre National de la Recherche Scientifique, UMR 144, Institut Curie, 26, rue d'Ulm, Paris 75248 Cedex 05 France.
| | | | | | | |
Collapse
|
20
|
Abstract
The gelsolin family of actin-modulating proteins contains seven mammalian members of which three have similar domain structure and function: gelsolin, capG, and adseverin. Previous studies have provided some information on the expression of these proteins, but no comprehensive analysis of expression during development has been performed. By in situ hybridization to murine embryo sections, we show that gelsolin expression is widespread but focal from e12.5 onward, with the exception of brain and mucosal epithelium. In contrast, CapG expression is high in mucosal epithelium, inner renal medulla, and adrenal cortex, and seen at much lower levels more broadly. Adseverin expression is even more restricted, being seen at sites of endochondral bone formation during development only, and in developing and adult outer renal medulla and intestine. In parallel analyses the three genes demonstrated patterns of expression that were complementary and non-overlapping in nearly all organs. The observations suggest new functions for these proteins in organ systems and tissues where their expression was not previously recognized. They further suggest that the proteins have distinct tissue-specific functions in modulating the actin cytoskeleton during cellular motile activities, and that such functions have diverged since the genes arose ancestrally by gene duplication. Dev Dyn 1999;215:297-307.
Collapse
Affiliation(s)
- M Arai
- Genetics Laboratory, Hematology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | |
Collapse
|
21
|
Abstract
Several new members of the gelsolin family have been discovered in the past year. Determination of the structure of gelsolin and identification of lysophosphatidic acid as a negative regulator provide novel functional insights. Gelsolin is an obligate downstream effector of Rac for motility in dermal fibroblasts, regulates phosphoinositide signaling pathways and ion channel function in vivo, and acts as both a regulator and effector of apoptosis.
Collapse
Affiliation(s)
- D J Kwiatkowski
- Genetics Laboratory Hematology Division Brigham and Women's Hospital 221 Longwood Avenue Boston MA 02115 USA.
| |
Collapse
|
22
|
Van Troys M, Vandekerckhove J, Ampe C. Structural modules in actin-binding proteins: towards a new classification. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1448:323-48. [PMID: 9990286 DOI: 10.1016/s0167-4889(98)00152-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The number of actin binding proteins for which (part of) the three-dimensional structure is known, is steadily increasing. This has led to a picture in which defined structural modules with actin binding capacity are shared between different actin binding proteins. A classification of these based on their common three-dimensional modules appears a logical future step and in this review we provide an initial list starting from the currently known structures. The discussed cases illustrate that a comparison of the similarities and variations within the common structural actin binding unit of different members of a particular class may ultimately provide shortcuts for defining their actin target site and for understanding their effect on actin dynamics. Within this concept, the multitude of possible interactions by an extensive, and still increasing, list of actin binding proteins becomes manageable because they can be presented as variations upon a limited number of structural themes. We discuss the possible evolutionary routes that may have produced the present array of actin binding modules.
Collapse
Affiliation(s)
- M Van Troys
- Flanders Interuniversity Institute for Biotechnology, Department of Biochemistry, Faculty of Medicine, University of Gent, Belgium
| | | | | |
Collapse
|
23
|
Stocker S, Hiery M, Marriott G. Phototactic migration of Dictyostelium cells is linked to a new type of gelsolin-related protein. Mol Biol Cell 1999; 10:161-78. [PMID: 9880334 PMCID: PMC25161 DOI: 10.1091/mbc.10.1.161] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The molecular and functional characterization of a 125-kDa Ca2+-extractable protein of the Triton X-100-insoluble fraction of Dictyostelium cells identified a new type of a gelsolin-related molecule. In addition to its five gelsolin segments, this gelsolin-related protein of 125 kDa (GRP125) reveals a number of unique domains, two of which are predicted to form coiled-coil regions. Another distinct attribute of GRP125 concerns the lack of sequence elements known to be essential for characteristic activities of gelsolin-like proteins, i.e. the severing, capping, or nucleation of actin filaments. The subcellular distribution of GRP125 to vesicular compartments suggests an activity of GRP125 different from actin-binding, gelsolin-related proteins. GRP125 expression is tightly regulated and peaks at the transition to the multicellular pseudoplasmodial stage of Dictyostelium development. GRP125 was found indispensable for slug phototaxis, because slugs fail to correctly readjust their orientation in the absence of GRP125. Analysis of the GRP125-deficient mutant showed that GRP125 is required for coupling photodetection to the locomotory machinery of slugs. We propose that GRP125 is essential in the natural environment for the propagation of Dictyostelium spores. We also present evidence for further representatives of the GRP125 type in Dictyostelium, as well as in heterologous cells from lower to higher eukaryotes.
Collapse
Affiliation(s)
- S Stocker
- Max-Planck-Institute for Biochemistry, D-82152 Martinsried, Germany
| | | | | |
Collapse
|
24
|
Meerschaert K, De Corte V, De Ville Y, Vandekerckhove J, Gettemans J. Gelsolin and functionally similar actin-binding proteins are regulated by lysophosphatidic acid. EMBO J 1998; 17:5923-32. [PMID: 9774337 PMCID: PMC1170920 DOI: 10.1093/emboj/17.20.5923] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An extensive survey was carried out for compounds capable of regulating actin-binding proteins in a manner similar to phosphatidylinositol 4,5 bisphosphate (PI 4,5-P2). For this purpose we developed a sensitive assay involving release of radioactively phosphorylated actin from the fragminP-actin complex. We found that the structurally simplest lysophospholipid, lysophosphatidic acid (LPA), dissociated the complex between fragminP and actin, whereas other lysophospholipids or sphingosine-1-phosphate were inactive. Furthermore, LPA inhibited the F-actin severing activity of human gelsolin, purified from plasma or as recombinant protein, mouse adseverin and Physarum fragminP. Dissociation of actin-containing complexes by LPA analyzed by gelfiltration indicated that LPA is active as a monomer, in contrast to PI 4,5-P2. We further show that binding of LPA to these actin-regulatory proteins promotes their phosphorylation by pp60(c-src). A PI 4,5-P2-binding peptide counteracted the effects mediated by LPA, suggesting that LPA binds to the same target region in these actin-binding proteins. When both LPA and PI 4,5-P2 were used in combination we found that LPA reduced the threshold concentration at which PI 4,5-P2 was active. Significantly, LPA promoted the release of gelsolin from barbed actin filaments in octylglucoside-permeabilized human platelets. These results suggest that lysophosphatidic acid could act as an intracellular modulator of actin-binding proteins. Our findings can also explain agonist-induced changes in the actin cytoskeleton that are not mediated by polyphosphoinositides.
Collapse
Affiliation(s)
- K Meerschaert
- Flanders Interuniversity Institute for Biotechnology (V.I.B.) and Department of Biochemistry, Faculty of Medicine, Universiteit Gent, Ledeganckstraat 35, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|