1
|
Trerotola M, Relli V, Tripaldi R, Simeone P, Guerra E, Sacchetti A, Ceci M, Pantalone L, Ciufici P, Moschella A, Caiolfa VR, Zamai M, Alberti S. Large, recursive membrane platforms are associated to Trop-1, Trop-2, and protein kinase signaling for cell growth. Mol Biol Cell 2025; 36:ar38. [PMID: 39785844 PMCID: PMC11974968 DOI: 10.1091/mbc.e24-06-0267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/29/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
The transmembrane glycoproteins Trop-1/EpCAM and Trop-2 independently trigger Ca2+ and kinase signals for cell growth and tumor progression. Our findings indicated that Trop-1 and Trop-2 tightly colocalize at macroscopic, ruffle-like protrusions (RLP), that elevate from the cell perimeter, and locally recur over hundreds of seconds. These previously unrecognized elevated membrane regions ≥20-µm-long, up to 1.5 µm high were revealed by Z-stack analysis and three-dimensional reconstruction of signal transducer-hosting plasma membrane regions. Trop-2 stimulates cell growth through a membrane supercomplex that comprises CD9, PKCα, ion pumps, and cytoskeletal components. Our findings indicated that the growth-driving Trop-2 supercomplex assembles at RLP. RLP behaved as sites of clustering of signal transducers, of phosphorylation/activation of growth-driving kinases, as recruitment sites of PKCα and as origin of Ca2+ signaling waves, suggesting RLP to be novel signaling platforms in living cells. RLP were induced by growth factors and disappeared upon growth factor deprivation and β-actin depolymerization, candidating RLP to be functional platforms for high-dimensional signaling for cell growth.
Collapse
Affiliation(s)
- Marco Trerotola
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti, Italy
| | - Valeria Relli
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Romina Tripaldi
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Pasquale Simeone
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Emanuela Guerra
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University “G. d'Annunzio”, Chieti, Italy
| | - Andrea Sacchetti
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Martina Ceci
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Ludovica Pantalone
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Paolo Ciufici
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
| | - Antonino Moschella
- Unit of Medical Genetics, Department of Biomedical Sciences (BIOMORF), University of Messina, Messina, Italy
| | - Valeria R. Caiolfa
- Microscopy and Dynamic Imaging Unit, Centro National de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Experimental Imaging Centre, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Moreno Zamai
- Microscopy and Dynamic Imaging Unit, Centro National de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Experimental Imaging Centre, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Saverio Alberti
- Laboratory of Cancer Pathology, Centre for Advanced Studies and Technology (CAST), University “G. D'Annunzio”, Chieti, Italy
- Unit of Medical Genetics, Department of Biomedical Sciences (BIOMORF), University of Messina, Messina, Italy
| |
Collapse
|
2
|
Aslemarz A, Fagotto-Kaufmann M, Ruppel A, Fagotto-Kaufmann C, Balland M, Lasko P, Fagotto F. An EpCAM/Trop2 mechanostat differentially regulates collective behaviour of human carcinoma cells. EMBO J 2025; 44:75-106. [PMID: 39572744 PMCID: PMC11696905 DOI: 10.1038/s44318-024-00309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 01/04/2025] Open
Abstract
EpCAM and its close relative Trop2 are well-known cell surface markers of carcinoma, but their potential role in cancer metastasis remains unclear. They are known, however, to downregulate myosin-dependent contractility, a key parameter involved in adhesion and migration. We investigate here the morphogenetic impact of the high EpCAM and Trop2 levels typically found in epithelial breast cancer cells, using spheroids of MCF7 cells as an in vitro model. Intriguingly, EpCAM depletion stimulated spheroid cohesive spreading, while Trop2 depletion had the opposite effect. Combining cell biological and biophysical approaches, we demonstrate that while EpCAM and Trop2 both contribute to moderate cell contractility, their depletions differentially impact on the process of "wetting" a substrate, here both matrix and neighboring cells, by affecting the balance of cortical tension at cell and tissue interfaces. These distinct phenotypes can be explained by partial enrichment at specific interfaces. Our data are consistent with the EpCAM-Trop2 pair acting as a mechanostat that tunes adhesive and migratory behaviours.
Collapse
Affiliation(s)
- Azam Aslemarz
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
- Dept. of Biology, McGill University, Montreal, QC, H3A1B1, Canada
- SGS, Mississauga, ON, L5T 1W8, Canada
| | - Marie Fagotto-Kaufmann
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
- Department of Neurobiology, University of Stuttgart, 70569, Stuttgart, Germany
| | - Artur Ruppel
- LIPHY, UMR5588, University of Grenoble, 38400, Grenoble, France
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France
| | | | - Martial Balland
- LIPHY, UMR5588, University of Grenoble, 38400, Grenoble, France
| | - Paul Lasko
- Dept. of Biology, McGill University, Montreal, QC, H3A1B1, Canada
| | - François Fagotto
- CRBM, University of Montpellier and CNRS, Montpellier, 34293, France.
| |
Collapse
|
3
|
Volovik MV, Denieva ZG, Gifer PK, Rakitina MA, Batishchev OV. Membrane Activity and Viroporin Assembly for the SARS-CoV-2 E Protein Are Regulated by Cholesterol. Biomolecules 2024; 14:1061. [PMID: 39334828 PMCID: PMC11430671 DOI: 10.3390/biom14091061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/20/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
The SARS-CoV-2 E protein is an enigmatic viral structural protein with reported viroporin activity associated with the acute respiratory symptoms of COVID-19, as well as the ability to deform cell membranes for viral budding. Like many viroporins, the E protein is thought to oligomerize with a well-defined stoichiometry. However, attempts to determine the structure of the protein complex have yielded inconclusive results, suggesting several possible oligomers, ranging from dimers to pentamers. Here, we combined patch-clamp, confocal fluorescence microscopy on giant unilamellar vesicles, and atomic force microscopy to show that E protein can exhibit two modes of membrane activity depending on membrane lipid composition. In the absence or the presence of a low content of cholesterol, the protein forms short-living transient pores, which are seen as semi-transmembrane defects in a membrane by atomic force microscopy. Approximately 30 mol% cholesterol is a threshold for the transition to the second mode of conductance, which could be a stable pentameric channel penetrating the entire lipid bilayer. Therefore, the E-protein has at least two different types of activity on membrane permeabilization, which are regulated by the amount of cholesterol in the membrane lipid composition and could be associated with different types of protein oligomers.
Collapse
Affiliation(s)
- Marta V Volovik
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Zaret G Denieva
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Polina K Gifer
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Maria A Rakitina
- N.I. Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, 1 Ostrovityanova Street, 117997 Moscow, Russia
| | - Oleg V Batishchev
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
4
|
Ghiandai V, Grassi ES, Gazzano G, Fugazzola L, Persani L. Characterization of EpCAM in thyroid cancer biology by three-dimensional spheroids in vitro model. Cancer Cell Int 2024; 24:196. [PMID: 38835027 DOI: 10.1186/s12935-024-03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Thyroid cancer (TC) is the most common endocrine malignancy. Nowadays, undifferentiated thyroid cancers (UTCs) are still lethal, mostly due to the insurgence of therapy resistance and disease relapse. These events are believed to be caused by a subpopulation of cancer cells with stem-like phenotype and specific tumor-initiating abilities, known as tumor-initiating cells (TICs). A comprehensive understanding of how to isolate and target these cells is necessary. Here we provide insights into the role that the protein Epithelial Cell Adhesion Molecule (EpCAM), a known TICs marker for other solid tumors, may have in TC biology, thus considering EpCAM a potential marker of thyroid TICs in UTCs. METHODS The characterization of EpCAM was accomplished through Western Blot and Immunofluorescence on patient-derived tissue samples, adherent cell cultures, and 3D sphere cultures of poorly differentiated thyroid cancer (PDTC) and anaplastic thyroid cancer (ATC) cell lines. The frequency of tumor cells with putative tumor-initiating ability within the 3D cultures was assessed through extreme limiting dilution analysis (ELDA). EpCAM proteolytic cleavages were studied through treatments with different cleavages' inhibitors. To evaluate the involvement of EpCAM in inducing drug resistance, Vemurafenib (PLX-4032) treatments were assessed through MTT assay. RESULTS Variable EpCAM expression pattern was observed in TC tissue samples, with increased cleavage in the more UTC. We demonstrated that EpCAM is subjected to an intense cleavage process in ATC-derived 3D tumor spheres and that the 3D model faithfully mimics what was observed in patient's samples. We also proved that the integrity of the protein appears to be crucial for the generation of 3D spheres, and its expression and cleavage in a 3D system could contribute to drug resistance in thyroid TICs. CONCLUSIONS Our data provide novel information on the role of EpCAM expression and cleavage in the biology of thyroid TICs, and our 3D model reflects the variability of EpCAM cleavage observed in tissue samples. EpCAM evaluation could play a role in clinical decisions regarding patient therapy since its expression and cleavage may have a fundamental role in the switch to a drug-resistant phenotype of UTC cells.
Collapse
Affiliation(s)
- Viola Ghiandai
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Elisa Stellaria Grassi
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Giacomo Gazzano
- Pathology Unit, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Laura Fugazzola
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Luca Persani
- Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
5
|
Xiao D, Xiong M, Wang X, Lyu M, Sun H, Cui Y, Chen C, Jiang Z, Sun F. Regulation of the Function and Expression of EpCAM. Biomedicines 2024; 12:1129. [PMID: 38791091 PMCID: PMC11117676 DOI: 10.3390/biomedicines12051129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The epithelial cell adhesion molecule (EpCAM) is a single transmembrane protein on the cell surface. Given its strong expression on epithelial cells and epithelial cell-derived tumors, EpCAM has been identified as a biomarker for circulating tumor cells (CTCs) and exosomes and a target for cancer therapy. As a cell adhesion molecule, EpCAM has a crystal structure that indicates that it forms a cis-dimer first and then probably a trans-tetramer to mediate intercellular adhesion. Through regulated intramembrane proteolysis (RIP), EpCAM and its proteolytic fragments are also able to regulate multiple signaling pathways, Wnt signaling in particular. Although great progress has been made, increasingly more findings have revealed the context-specific expression and function patterns of EpCAM and their regulation processes, which necessitates further studies to determine the structure, function, and expression of EpCAM under both physiological and pathological conditions, broadening its application in basic and translational cancer research.
Collapse
Affiliation(s)
- Di Xiao
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mingrui Xiong
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xin Wang
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Mengqing Lyu
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hanxiang Sun
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yeting Cui
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Chen Chen
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Ziyu Jiang
- Tumor Precision Diagnosis and Treatment Technology and Translational Medicine, Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan 430071, China;
| | - Fan Sun
- College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan 430081, China; (D.X.); (M.X.); (X.W.); (M.L.); (H.S.); (Y.C.)
- Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
6
|
Faccioli LA, Dias ML, Martins-Santos R, Paredes BD, Takiya CM, dos Santos Goldenberg RC. Resident Liver Stem Cells. RESIDENT STEM CELLS AND REGENERATIVE THERAPY 2024:23-51. [DOI: 10.1016/b978-0-443-15289-4.00015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Nicholls J, Cao B, Le Texier L, Xiong LY, Hunter CR, Llanes G, Aguliar EG, Schroder WA, Phipps S, Lynch JP, Cao H, Heazlewood SY, Williams B, Clouston AD, Nefzger CM, Polo JM, Nilsson SK, Blazar BR, MacDonald KPA. Bone Marrow Regulatory T Cells Are a Unique Population, Supported by Niche-Specific Cytokines and Plasmacytoid Dendritic Cells, and Required for Chronic Graft-Versus-Host Disease Control. Front Cell Dev Biol 2021; 9:737880. [PMID: 34631716 PMCID: PMC8493124 DOI: 10.3389/fcell.2021.737880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/16/2021] [Indexed: 11/23/2022] Open
Abstract
Regulatory T cell (Treg) reconstitution is essential for reestablishing tolerance and maintaining homeostasis following stem-cell transplantation. We previously reported that bone marrow (BM) is highly enriched in autophagy-dependent Treg and autophagy disruption leads to a significant Treg loss, particularly BM-Treg. To correct the known Treg deficiency observed in chronic graft-versus-host disease (cGVHD) patients, low dose IL-2 infusion has been administered, substantially increasing peripheral Treg (pTreg) numbers. However, as clinical responses were only seen in ∼50% of patients, we postulated that pTreg augmentation was more robust than for BM-Treg. We show that BM-Treg and pTreg have distinct characteristics, indicated by differential transcriptome expression for chemokine receptors, transcription factors, cell cycle control of replication and genes linked to Treg function. Further, BM-Treg were more quiescent, expressed lower FoxP3, were highly enriched for co-inhibitory markers and more profoundly depleted than splenic Treg in cGVHD mice. In vivo our data are consistent with the BM and not splenic microenvironment is, at least in part, driving this BM-Treg signature, as adoptively transferred splenic Treg that entered the BM niche acquired a BM-Treg phenotype. Analyses identified upregulated expression of IL-9R, IL-33R, and IL-7R in BM-Treg. Administration of the T cell produced cytokine IL-2 was required by splenic Treg expansion but had no impact on BM-Treg, whereas the converse was true for IL-9 administration. Plasmacytoid dendritic cells (pDCs) within the BM also may contribute to BM-Treg maintenance. Using pDC-specific BDCA2-DTR mice in which diptheria toxin administration results in global pDC depletion, we demonstrate that pDC depletion hampers BM, but not splenic, Treg homeostasis. Together, these data provide evidence that BM-Treg and splenic Treg are phenotypically and functionally distinct and influenced by niche-specific mediators that selectively support their respective Treg populations. The unique properties of BM-Treg should be considered for new therapies to reconstitute Treg and reestablish tolerance following SCT.
Collapse
Affiliation(s)
- Jemma Nicholls
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Benjamin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Laetitia Le Texier
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Laura Yan Xiong
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher R. Hunter
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Genesis Llanes
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Ethan G. Aguliar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Wayne A. Schroder
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Simon Phipps
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jason P. Lynch
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Huimin Cao
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Shen Y. Heazlewood
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Brenda Williams
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | | | - Christian M. Nefzger
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Jose M. Polo
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
- Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Susan K. Nilsson
- Biomedical Manufacturing Commonwealth Scientific and Industrial Research Organization, Melbourne, VIC, Australia
- Australian Regenerative Medicine Institute, Monash University, Melbourne, VIC, Australia
| | - Bruce R. Blazar
- Division of Blood and Marrow Transplant and Cellular Therapies, Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Kelli P. A. MacDonald
- Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
8
|
Functional Implications of the Dynamic Regulation of EpCAM during Epithelial-to-Mesenchymal Transition. Biomolecules 2021; 11:biom11070956. [PMID: 34209658 PMCID: PMC8301972 DOI: 10.3390/biom11070956] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) is a transmembrane glycoprotein expressed in epithelial tissues. EpCAM forms intercellular, homophilic adhesions, modulates epithelial junctional protein complex formation, and promotes epithelial tissue homeostasis. EpCAM is a target of molecular therapies and plays a prominent role in tumor biology. In this review, we focus on the dynamic regulation of EpCAM expression during epithelial-to-mesenchymal transition (EMT) and the functional implications of EpCAM expression on the regulation of EMT. EpCAM is frequently and highly expressed in epithelial cancers, while silenced in mesenchymal cancers. During EMT, EpCAM expression is downregulated by extracellular signal-regulated kinases (ERK) and EMT transcription factors, as well as by regulated intramembrane proteolysis (RIP). The functional impact of EpCAM expression on tumor biology is frequently dependent on the cancer type and predominant oncogenic signaling pathways, suggesting that the role of EpCAM in tumor biology and EMT is multifunctional. Membrane EpCAM is cleaved in cancers and its intracellular domain (EpICD) is transported into the nucleus and binds β-catenin, FHL2, and LEF1. This stimulates gene transcription that promotes growth, cancer stem cell properties, and EMT. EpCAM is also regulated by epidermal growth factor receptor (EGFR) signaling and the EpCAM ectoderm (EpEX) is an EGFR ligand that affects EMT. EpCAM is expressed on circulating tumor and cancer stem cells undergoing EMT and modulates metastases and cancer treatment responses. Future research exploring EpCAM’s role in EMT may reveal additional therapeutic opportunities.
Collapse
|
9
|
Gaston C, De Beco S, Doss B, Pan M, Gauquelin E, D'Alessandro J, Lim CT, Ladoux B, Delacour D. EpCAM promotes endosomal modulation of the cortical RhoA zone for epithelial organization. Nat Commun 2021; 12:2226. [PMID: 33850145 PMCID: PMC8044225 DOI: 10.1038/s41467-021-22482-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 03/11/2021] [Indexed: 01/13/2023] Open
Abstract
At the basis of cell shape and behavior, the organization of actomyosin and its ability to generate forces are widely studied. However, the precise regulation of this contractile network in space and time is unclear. Here, we study the role of the epithelial-specific protein EpCAM, a contractility modulator, in cell shape and motility. We show that EpCAM is required for stress fiber generation and front-rear polarity acquisition at the single cell level. In fact, EpCAM participates in the remodeling of a transient zone of active RhoA at the cortex of spreading epithelial cells. EpCAM and RhoA route together through the Rab35/EHD1 fast recycling pathway. This endosomal pathway spatially organizes GTP-RhoA to fine tune the activity of actomyosin resulting in polarized cell shape and development of intracellular stiffness and traction forces. Impairment of GTP-RhoA endosomal trafficking either by silencing EpCAM or by expressing Rab35/EHD1 mutants prevents proper myosin-II activity, stress fiber formation and ultimately cell polarization. Collectively, this work shows that the coupling between co-trafficking of EpCAM and RhoA, and actomyosin rearrangement is pivotal for cell spreading, and advances our understanding of how biochemical and mechanical properties promote cell plasticity.
Collapse
Affiliation(s)
- Cécile Gaston
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Simon De Beco
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Bryant Doss
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Meng Pan
- Mechanobiology Institute, T-lab, Singapore, Singapore
| | - Estelle Gauquelin
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Joseph D'Alessandro
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | | | - Benoit Ladoux
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France
| | - Delphine Delacour
- Cell Adhesion and Mechanics, Institut Jacques Monod, CNRS UMR7592, Paris Diderot University, Paris, France.
| |
Collapse
|
10
|
Sbiera I, Kircher S, Altieri B, Fassnacht M, Kroiss M, Sbiera S. Epithelial and Mesenchymal Markers in Adrenocortical Tissues: How Mesenchymal Are Adrenocortical Tissues? Cancers (Basel) 2021; 13:1736. [PMID: 33917436 PMCID: PMC8038668 DOI: 10.3390/cancers13071736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 12/22/2022] Open
Abstract
A clinically relevant proportion of adrenocortical carcinoma (ACC) cases shows a tendency to metastatic spread. The objective was to determine whether the epithelial to mesenchymal transition (EMT), a mechanism associated with metastasizing in several epithelial cancers, might play a crucial role in ACC. 138 ACC, 29 adrenocortical adenomas (ACA), three normal adrenal glands (NAG), and control tissue samples were assessed for the expression of epithelial (E-cadherin and EpCAM) and mesenchymal (N-cadherin, SLUG and SNAIL) markers by immunohistochemistry. Using real-time RT-PCR we quantified the alternative isoform splicing of FGFR 2 and 3, another known indicator of EMT. We also assessed the impact of these markers on clinical outcome. Results show that both normal and neoplastic adrenocortical tissues lacked expression of epithelial markers but strongly expressed mesenchymal markers N-cadherin and SLUG. FGFR isoform splicing confirmed higher similarity of adrenocortical tissues to mesenchymal compared to epithelial tissues. In ACC, higher SLUG expression was associated with clinical markers indicating aggressiveness, while N-cadherin expression inversely associated with these markers. In conclusion, we could not find any indication of EMT as all adrenocortical tissues lacked expression of epithelial markers and exhibited closer similarity to mesenchymal tissues. However, while N-cadherin might play a positive role in tissue structure upkeep, SLUG seems to be associated with a more aggressive phenotype.
Collapse
Affiliation(s)
- Iuliu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
| | - Stefan Kircher
- Institute for Pathology, University of Würzburg, 97080 Würzburg, Germany;
| | - Barbara Altieri
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
| | - Martin Fassnacht
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
- Clinical Chemistry and Laboratory Medicine, University Hospital Würzburg, 97080 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
| | - Matthias Kroiss
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
- Comprehensive Cancer Center Mainfranken, University of Würzburg, 97080 Würzburg, Germany
- Department of Internal Medicine IV, University Hospital Munich, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| | - Silviu Sbiera
- Department of Internal Medicine I, Division of Endocrinology and Diabetes, University Hospital Würzburg, 97080 Würzburg, Germany; (I.S.); (B.A.); (M.F.)
| |
Collapse
|
11
|
Gisina AM, Kim YS, Gabashvili AN, Tsvetkova AV, Vakhrushev IV, Yarygin KN, Lupatov AY. Expression of Epithelial Cell Adhesion Molecule (EpCAM) in Tumor Spheroids of Human Colorectal Adenocarcinoma Cells. Bull Exp Biol Med 2020; 170:135-141. [PMID: 33231806 DOI: 10.1007/s10517-020-05018-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Indexed: 10/22/2022]
Abstract
We studied the formation of spheroids by Caco-2, SW480, and HCT116 human colorectal adenocarcinoma cell lines under low-adhesion culturing conditions. Of these three cell lines, only HCT116 formed stable tumor spheroids. Flow cytometry analysis of 19 surface markers in monolayer HCT116 culture and spheroids formed by these cells revealed considerable similarity of the expression profiles in these two culturing modes. The only exception was EpCAM molecule: its expression in spheroids was 3-fold higher than in the monolayer culture. Scanning confocal laser microscopy showed equal EpCAM distribution in the inner mass of the spheroids.
Collapse
Affiliation(s)
- A M Gisina
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia.
| | - Ya S Kim
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - A N Gabashvili
- National University of Science and Technology MISIS, Moscow, Russia
| | - A V Tsvetkova
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - I V Vakhrushev
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - K N Yarygin
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| | - A Yu Lupatov
- V. N. Orekhovich Research Institute of Biomedical Chemistry, Moscow, Russia
| |
Collapse
|
12
|
Fagotto F, Aslemarz A. EpCAM cellular functions in adhesion and migration, and potential impact on invasion: A critical review. Biochim Biophys Acta Rev Cancer 2020; 1874:188436. [PMID: 32976980 DOI: 10.1016/j.bbcan.2020.188436] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/19/2020] [Accepted: 09/19/2020] [Indexed: 12/14/2022]
Abstract
EpCAM has long been known as a cell surface protein highly expressed in carcinomas. It has since become one of the key cancer biomarkers. Despite its high fame, its actual role in cancer development is still controversial. Beyond a flurry of correlative studies, which point either to a positive or a negative link with tumour progression, there has been surprisingly few studies on the actual cellular mechanisms of EpCAM and on their functional consequences. Clearly, EpCAM plays multiple important roles, in cell proliferation as well as in cell adhesion and migration. The two latter functions, directly relevant for metastasis, are the focus of this review. We attempt here to bring together the available experimental data to build a global coherent view of EpCAM functions. We also include in this overview EpCAM2/Trop2, the close relative of EpCAM. At the core of EpCAM (and EpCAM2/Trop2) function stands the ability to repress contractility of the actomyosin cell cortex. This activity appears to involve direct inhibition by EpCAM of members of the novel PKC family and of a specific downstream PKD-Erk cascade. We will discuss how this activity can result in a variety of adhesive and migratory phenotypes, thus potentially explaining at least part of the apparent inconsistencies between different studies. The picture remains fragmented, and we will highlight some of the conflicting evidence and the many unsolved issues, starting with the controversy around its original description as a cell-cell adhesion molecule.
Collapse
Affiliation(s)
- François Fagotto
- CRBM, University of Montpellier and CNRS, Montpellier 34293, France.
| | - Azam Aslemarz
- CRBM, University of Montpellier and CNRS, Montpellier 34293, France; Department of Biology, McGill University, Montreal, QC H3A1B1, Canada
| |
Collapse
|
13
|
Fagotto F. EpCAM as Modulator of Tissue Plasticity. Cells 2020; 9:E2128. [PMID: 32961790 PMCID: PMC7563481 DOI: 10.3390/cells9092128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/24/2020] [Accepted: 09/14/2020] [Indexed: 01/01/2023] Open
Abstract
The Epithelial Cell Adhesion Molecule or EpCAM is a well-known marker highly expressed in carcinomas and showing a strong correlation with poor cancer prognosis. While its name relates to its proposed function as a cell adhesion molecule, EpCAM has been shown to have various signalling functions. In particular, it has been identified as an important positive regulator of cell adhesion and migration, playing an essential role in embryonic morphogenesis as well as intestinal homeostasis. This activity is not due to its putative adhesive function, but rather to its ability to repress myosin contractility by impinging on a PKC signalling cascade. This mechanism confers EpCAM the unique property of favouring tissue plasticity. I review here the currently available data, comment on possible connections with other properties of EpCAM, and discuss the potential significance in the context of cancer invasion.
Collapse
Affiliation(s)
- François Fagotto
- CRBM, University of Montpellier and CNRS, 34293 Montpellier, France
| |
Collapse
|
14
|
Gires O, Pan M, Schinke H, Canis M, Baeuerle PA. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years? Cancer Metastasis Rev 2020; 39:969-987. [PMID: 32507912 PMCID: PMC7497325 DOI: 10.1007/s10555-020-09898-3] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
EpCAM (epithelial cell adhesion molecule) was discovered four decades ago as a tumor antigen on colorectal carcinomas. Owing to its frequent and high expression on carcinomas and their metastases, EpCAM serves as a prognostic marker, a therapeutic target, and an anchor molecule on circulating and disseminated tumor cells (CTCs/DTCs), which are considered the major source for metastatic cancer cells. Today, EpCAM is reckoned as a multi-functional transmembrane protein involved in the regulation of cell adhesion, proliferation, migration, stemness, and epithelial-to-mesenchymal transition (EMT) of carcinoma cells. To fulfill these functions, EpCAM is instrumental in intra- and intercellular signaling as a full-length molecule and following regulated intramembrane proteolysis, generating functionally active extra- and intracellular fragments. Intact EpCAM and its proteolytic fragments interact with claudins, CD44, E-cadherin, epidermal growth factor receptor (EGFR), and intracellular signaling components of the WNT and Ras/Raf pathways, respectively. This plethora of functions contributes to shaping intratumor heterogeneity and partial EMT, which are major determinants of the clinical outcome of carcinoma patients. EpCAM represents a marker for the epithelial status of primary and systemic tumor cells and emerges as a measure for the metastatic capacity of CTCs. Consequentially, EpCAM has reclaimed potential as a prognostic marker and target on primary and systemic tumor cells.
Collapse
Affiliation(s)
- Olivier Gires
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
- Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer", Helmholtz Zentrum, Neuherberg, Germany.
| | - Min Pan
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- Department of Otorhinolaryngology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Henrik Schinke
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Martin Canis
- Department of Otorhinolaryngology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Patrick A Baeuerle
- Institute for Immunology, LMU Munich, Grosshadernerstr. 9, 82152 Planegg, Martinsried, Germany
- MPM Capital, Cambridge MA, 450 Kendall Street, Cambridge, MA, 02142, USA
| |
Collapse
|
15
|
Jing Y, Zhou L, Chen J, Xu H, Sun J, Cai M, Jiang J, Gao J, Wang H. Quantitatively Mapping the Assembly Pattern of EpCAM on Cell Membranes with Peptide Probes. Anal Chem 2019; 92:1865-1873. [DOI: 10.1021/acs.analchem.9b03901] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yingying Jing
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lulu Zhou
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Junling Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Jiayin Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Mingjun Cai
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Junguang Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Jing Gao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230027, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Wenhai Road, Aoshanwei, Jimo, Qingdao, Shandong 266237, China
| |
Collapse
|
16
|
Yahyazadeh Mashhadi SM, Kazemimanesh M, Arashkia A, Azadmanesh K, Meshkat Z, Golichenari B, Sahebkar A. Shedding light on the EpCAM: An overview. J Cell Physiol 2019; 234:12569-12580. [DOI: 10.1002/jcp.28132] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/30/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Seyed Muhammad Yahyazadeh Mashhadi
- Department of Virology Pasteur Institute of Iran Tehran Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences Mashhad Iran
- Production Expert at Samandaroo 8 (Biotech Pharmaceutical) Co. Mashhad Iran
| | | | - Arash Arashkia
- Department of Virology Pasteur Institute of Iran Tehran Iran
| | | | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences Mashhad Iran
| | - Behrouz Golichenari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences Mashhad Iran
- Neurogenic inflammation Research Center, Mashhad University of Medical Sciences Mashhad Iran
- School of Pharmacy, Mashhad University of Medical Sciences Mashhad Iran
| |
Collapse
|
17
|
Gaber A, Kim SJ, Kaake RM, Benčina M, Krogan N, Šali A, Pavšič M, Lenarčič B. EpCAM homo-oligomerization is not the basis for its role in cell-cell adhesion. Sci Rep 2018; 8:13269. [PMID: 30185875 PMCID: PMC6125409 DOI: 10.1038/s41598-018-31482-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/20/2018] [Indexed: 01/01/2023] Open
Abstract
Cell-surface tumor marker EpCAM plays a key role in proliferation, differentiation and adhesion processes in stem and epithelial cells. It is established as a cell-cell adhesion molecule, forming intercellular interactions through homophilic association. However, the mechanism by which such interactions arise has not yet been fully elucidated. Here, we first show that EpCAM monomers do not associate into oligomers that would resemble an inter-cellular homo-oligomer, capable of mediating cell-cell adhesion, by using SAXS, XL-MS and bead aggregation assays. Second, we also show that EpCAM forms stable dimers on the surface of a cell with pre-formed cell-cell contacts using FLIM-FRET; however, no inter-cellular homo-oligomers were detectable. Thus, our study provides clear evidence that EpCAM indeed does not function as a homophilic cell adhesion molecule and therefore calls for a significant revision of its role in both normal and cancerous tissues. In the light of this, we strongly support the previously suggested name Epithelial Cell Activating Molecule instead of the Epithelial Cell Adhesion Molecule.
Collapse
Affiliation(s)
- Aljaž Gaber
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, SI 1000, Slovenia
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, 1700 4th Street, Suite 503B, San Francisco, CA, 94158, USA
| | - Robyn M Kaake
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, SI 1000, Slovenia
| | - Nevan Krogan
- J. David Gladstone Institutes, San Francisco, CA, 94158, USA
- Quantitative Biosciences Institute, QBI, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Andrej Šali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, 1700 4th Street, Suite 503B, San Francisco, CA, 94158, USA
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, SI 1000, Slovenia.
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, Ljubljana, SI 1000, Slovenia.
- Department of Biochemistry, Molecular and Structural Biology, Institute Jožef Stefan, Jamova 39, Ljubljana, SI 1000, Slovenia.
| |
Collapse
|
18
|
Boesch M, Spizzo G, Seeber A. Concise Review: Aggressive Colorectal Cancer: Role of Epithelial Cell Adhesion Molecule in Cancer Stem Cells and Epithelial-to-Mesenchymal Transition. Stem Cells Transl Med 2018; 7:495-501. [PMID: 29667344 PMCID: PMC5980125 DOI: 10.1002/sctm.17-0289] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/31/2018] [Indexed: 12/22/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. In spite of various attempts to ameliorate outcome by escalating treatment, significant improvement is lacking particularly in the adjuvant setting. It has been proposed that cancer stem cells (CSCs) and the epithelial‐to‐mesenchymal transition (EMT) are at least partially responsible for therapy resistance in CRC. The epithelial cell adhesion molecule (EpCAM) was one of the first CSC antigens to be described. Furthermore, an EpCAM‐specific antibody (edrecolomab) has the merit of having launched the era of monoclonal antibody treatment in oncology in the 1990s. However, despite great initial enthusiasm, monoclonal antibody treatment has not proven successful in the adjuvant treatment of CRC patients. In the meantime, new insights into the function of EpCAM in CRC have emerged and new drugs targeting various epitopes have been developed. In this review article, we provide an update on the role of EpCAM in CSCs and EMT, and emphasize the potential predictive selection criteria for novel treatment strategies and refined clinical trial design. stemcellstranslationalmedicine2018;7:495–501
Collapse
Affiliation(s)
- Maximilian Boesch
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Gilbert Spizzo
- Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| | - Andreas Seeber
- Internal Medicine V, Medical University of Innsbruck, Innsbruck, Austria.,Tyrolean Cancer Research Institute (TKFI), Innsbruck, Austria
| |
Collapse
|
19
|
Spatiotemporal patterning of EpCAM is important for murine embryonic endo- and mesodermal differentiation. Sci Rep 2018; 8:1801. [PMID: 29379062 PMCID: PMC5789065 DOI: 10.1038/s41598-018-20131-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023] Open
Abstract
Epithelial cell adhesion molecule EpCAM is expressed in pluripotent embryonic stem cells (ESC) in vitro, but is repressed in differentiated cells, except epithelia and carcinomas. Molecular functions of EpCAM, possibly imposing such repression, were primarily studied in malignant cells and might not apply to non-pathologic differentiation. Here, we comprehensively describe timing and rationale for EpCAM regulation in early murine gastrulation and ESC differentiation using single cell RNA-sequencing datasets, in vivo and in vitro models including CRISPR-Cas9-engineered ESC-mutants. We demonstrate expression of EpCAM in inner cell mass, epiblast, primitive/visceral endoderm, and strict repression in the most primitive, nascent Flk1+ mesoderm progenitors at E7.0. Selective expression of EpCAM was confirmed at mid-gestation and perinatal stages. The rationale for strict patterning was studied in ESC differentiation. Gain/loss-of-function demonstrated supportive functions of EpCAM in achieving full pluripotency and guided endodermal differentiation, but repressive functions in mesodermal differentiation as exemplified with cardiomyocyte formation. We further identified embryonic Ras (ERas) as novel EpCAM interactor of EpCAM and an EpCAM/ERas/AKT axis that is instrumental in differentiation regulation. Hence, spatiotemporal patterning of EpCAM at the onset of gastrulation, resulting in early segregation of interdependent EpCAM+ endodermal and EpCAM-/vimentin+ mesodermal clusters represents a novel regulatory feature during ESC differentiation.
Collapse
|
20
|
Hsu YT, Osmulski P, Wang Y, Huang YW, Liu L, Ruan J, Jin VX, Kirma NB, Gaczynska ME, Huang THM. EpCAM-Regulated Transcription Exerts Influences on Nanomechanical Properties of Endometrial Cancer Cells That Promote Epithelial-to-Mesenchymal Transition. Cancer Res 2016; 76:6171-6182. [PMID: 27569206 DOI: 10.1158/0008-5472.can-16-0752] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 08/15/2016] [Indexed: 12/24/2022]
Abstract
Overexpression of epithelial cell adhesion molecule (EpCAM) has been implicated in advanced endometrial cancer, but its roles in this progression remain to be elucidated. In addition to its structural role in modulating cell-surface adhesion, here we demonstrate that EpCAM is a regulatory molecule in which its internalization into the nucleus turns on a transcription program. Activation of EGF/EGFR signal transduction triggered cell-surface cleavage of EpCAM, leading to nuclear internalization of its cytoplasmic domain EpICD. ChIP-seq analysis identified target genes that are coregulated by EpICD and its transcription partner, LEF-1. Network enrichment analysis further uncovered a group of 105 genes encoding functions for tight junction, adherent, and cell migration. Furthermore, nanomechanical analysis by atomic force microscopy revealed increased softness and decreased adhesiveness of EGF-stimulated cancer cells, implicating acquisition of an epithelial-mesenchymal transition (EMT) phenotype. Thus, genome editing of EpCAM could be associated with altering these nanomechanical properties towards a less aggressive phenotype. Using this integrative genomic-biophysical approach, we demonstrate for the first time an intricate relationship between EpCAM-regulated transcription and altered biophysical properties of cells that promote EMT in advanced endometrial cancer. Cancer Res; 76(21); 6171-82. ©2016 AACR.
Collapse
Affiliation(s)
- Ya-Ting Hsu
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Pawel Osmulski
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yao Wang
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lu Liu
- Department of Computer Science, University of Texas at San Antonio, San Antonio, Texas
| | - Jianhua Ruan
- Department of Computer Science, University of Texas at San Antonio, San Antonio, Texas
| | - Victor X Jin
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Nameer B Kirma
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Maria E Gaczynska
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| | - Tim Hui-Ming Huang
- Departments of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, Texas.
| |
Collapse
|
21
|
|
22
|
Vercollone JR, Balzar M, Litvinov SV, Yang W, Cirulli V. MMTV/LTR Promoter-Driven Transgenic Expression of EpCAM Leads to the Development of Large Pancreatic Islets. J Histochem Cytochem 2015. [PMID: 26216137 DOI: 10.1369/0022155415583876] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Our previous work demonstrated an important role of EpCAM in the regulation of pancreatic cell adhesion, growth and differentiation. Here we investigated the consequences of human EpCAM (hEpCAM) overexpression under the control of the MMTV-LTR promoter, known to drive robust gene expression in a number of ductal epithelia, including the pancreas. In this animal model (MMTV-hEpCAM) we uncovered a striking pancreatic phenotype exhibiting a 12-fold increase in the islet cell mass, with normal expression patterns of insulin and the transcription factor PDX-1. Intriguingly, these large islet clusters revealed an altered architectural organization of α- and δ-cells that appeared interspersed with β-cells in the islet cores. This suggests an effect of the hEpCAM transgene on the function of other cell adhesion molecules that we have previously shown to regulate islet cell type segregation. Consistent with this finding, we show that the pancreatic epithelium in MMTV-hEpCAM transgenic mice exhibits a redistribution of β-catenin, a known regulator of E-cadherin-mediated adhesions. Collectively, these results provide an important in vivo validation of hEpCAM signaling properties in normal epithelia and offer unique opportunities to further explore the function of this glycoprotein in select pancreatic cell lineages to elicit islet cell expansion, and/or regeneration in diabetes.
Collapse
Affiliation(s)
- Jeffrey R Vercollone
- Department of Medicine, Diabetes & Obesity Center of Excellence, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington (JRV, WY, VC)
| | - Maarten Balzar
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands (MB, SVL)
| | - Sergey V Litvinov
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands (MB, SVL)
| | - Wendy Yang
- Department of Medicine, Diabetes & Obesity Center of Excellence, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington (JRV, WY, VC)
| | - Vincenzo Cirulli
- Department of Medicine, Diabetes & Obesity Center of Excellence, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington (JRV, WY, VC)
| |
Collapse
|
23
|
McDougall ARA, Tolcos M, Hooper SB, Cole TJ, Wallace MJ. Trop2: from development to disease. Dev Dyn 2015; 244:99-109. [PMID: 25523132 DOI: 10.1002/dvdy.24242] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Trop2 was first discovered as a biomarker of invasive trophoblast cells. Since then most research has focused on its role in tumourigenesis because it is highly expressed in the vast majority of human tumours and animal models of cancer. It is also highly expressed in stem cells and in many organs during development. RESULTS We review the multifaceted role of Trop2 during development and tumourigenesis, including its role in regulating cell proliferation and migration, self-renewal, and maintenance of basement membrane integrity. We discuss the evolution of Trop2 and its related protein Epcam (Trop1), including their distinct roles. Mutation of Trop2 leads to gelatinous drop-like corneal dystrophy, whereas over-expression of Trop2 in human tumours promotes tumour aggressiveness and increases mortality. Although Trop2 expression is sufficient to promote tumour growth, the surprising discovery that Trop2-null mice have an increased risk of tumour development has highlighted the complexity of Trop2 signaling. Recently, studies have begun to identify the mechanisms underlying TROP2’s functions, including regulated intramembrane proteolysis or specific interactions with integrin b1 and claudin proteins. CONCLUSIONS Understanding the mechanisms underlying TROP2 signaling will clarify its role during development, aid in the development of better cancer treatments and unlock a promising new direction in regenerative medicine.
Collapse
|
24
|
Pelissier-Rota MA, Chartier NT, Jacquier-Sarlin MR. Dynamic Regulation of Adherens Junctions: Implication in Cell Differentiation and Tumor Development. INTERCELLULAR COMMUNICATION IN CANCER 2015:53-149. [DOI: 10.1007/978-94-017-7380-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Kozan PA, McGeough MD, Peña CA, Mueller JL, Barrett KE, Marchelletta RR, Sivagnanam M. Mutation of EpCAM leads to intestinal barrier and ion transport dysfunction. J Mol Med (Berl) 2014; 93:535-45. [PMID: 25482158 PMCID: PMC4408367 DOI: 10.1007/s00109-014-1239-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/11/2014] [Accepted: 11/14/2014] [Indexed: 12/11/2022]
Abstract
UNLABELLED Congenital tufting enteropathy (CTE) is a devastating diarrheal disease seen in infancy that is typically associated with villous changes and the appearance of epithelial tufts. We previously found mutations in epithelial cell adhesion molecule (EpCAM) to be causative in CTE. We developed a knock-down cell model of CTE through transfection of an EpCAM shRNA construct into T84 colonic epithelial cells to elucidate the in vitro role of EpCAM in barrier function and ion transport. Cells with EpCAM deficiency exhibited decreased electrical resistance, increased permeability, and decreased ion transport. Based on mutations in CTE patients, an in vivo mouse model was developed, with tamoxifen-inducible deletion of exon 4 in Epcam resulting in mutant protein with decreased expression. Tamoxifen treatment of Epcam (Δ4/Δ4) mice resulted in pathological features of villous atrophy and epithelial tufts, similar to those in human CTE patients, within 4 days post induction. Epcam (Δ4/Δ4) mice also showed decreased expression of tight junctional proteins, increased permeability, and decreased ion transport in the intestines. Taken together, these findings reveal mechanisms that may underlie disease in CTE. KEY MESSAGES Knock-down EpCAM cell model of congenital tufting enteropathy was developed. In vivo inducible mouse model was developed resulting in mutant EpCAM protein. Cells with EpCAM deficiency demonstrated barrier and ion transport dysfunction. Tamoxifen-treated Epcam (Δ4/Δ4) mice demonstrated pathological features. Epcam (Δ4/Δ4) mice showed improper barrier function and ion transport.
Collapse
Affiliation(s)
- Philip A Kozan
- Division of Gastroenterology, Department of Medicine, University of California San Diego, San Diego, CA, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Poon CE, Madawala RJ, Day ML, Murphy CR. EpCAM is decreased but is still present in uterine epithelial cells during early pregnancy in the rat: potential mechanism for maintenance of mucosal integrity during implantation. Cell Tissue Res 2014; 359:655-664. [PMID: 25367431 DOI: 10.1007/s00441-014-2017-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/24/2014] [Indexed: 11/30/2022]
Abstract
The non-receptive uterine luminal epithelium forms a polarised epithelial barrier, protective against potential pathogenic assault from the external environment and invasion by the blastocyst. However, during the window of implantation, the uterine luminal epithelial cells (UECs) transition to a receptive state by dismantling many of their intercellular and cell-matrix adhesions in preparation for epithelial detachment and subsequent blastocyst implantation. The present study investigated the presence and regulation of the intercellular adhesion protein, Epithelial Cell Adhesion Molecule (EpCAM) during early pregnancy in the rat to understand its role in the transition to receptivity. Immunofluorescence and western blotting analysis were used to study EpCAM expression in normal pregnancy, hormone replacement studies and pseudopregnancy. EpCAM was abundantly expressed and localised to the uterine luminal and glandular epithelium during the non-receptive state but decreased to lower but still observable levels around the time of implantation. This decrease was not dependent on ovarian hormones or the blastocyst. Further, EpCAM colocalised with but did not associate with its frequent binding partner, Tumour necrosis factor α (TNFα)-converting enzyme, also known as A Disintegrin And Metalloprotease 17 (TACE/ADAM17), at the time of fertilisation. These results suggest that, prior to implantation, EpCAM mediates intercellular adhesion in the uterine epithelium, but that, during implantation when UECs lose the majority of their intercellular and cell-matrix adhesions, EpCAM levels are decreased but still present for the maintenance of mucosal integrity.
Collapse
Affiliation(s)
- Connie E Poon
- Cell & Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy & Histology) and The Bosch Institute, Anderson Stuart Building, The University of Sydney, Sydney, NSW, 2006, Australia.
| | - Romanthi J Madawala
- Cell & Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy & Histology) and The Bosch Institute, Anderson Stuart Building, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Margot L Day
- Laboratory of Developmental Physiology, School of Medical Sciences (Discipline of Physiology) and The Bosch Institute, The Medical Foundation Building, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Christopher R Murphy
- Cell & Reproductive Biology Laboratory, School of Medical Sciences (Discipline of Anatomy & Histology) and The Bosch Institute, Anderson Stuart Building, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
27
|
Pavšič M, Gunčar G, Djinović-Carugo K, Lenarčič B. Crystal structure and its bearing towards an understanding of key biological functions of EpCAM. Nat Commun 2014; 5:4764. [DOI: 10.1038/ncomms5764] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 07/21/2014] [Indexed: 12/19/2022] Open
|
28
|
Gadalla SE, Öjemalm K, Vasquez PL, Nilsson I, Ericsson C, Zhao J, Nistér M. EpCAM associates with endoplasmic reticulum aminopeptidase 2 (ERAP2) in breast cancer cells. Biochem Biophys Res Commun 2013; 439:203-8. [DOI: 10.1016/j.bbrc.2013.08.059] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 11/27/2022]
|
29
|
Schnell U, Cirulli V, Giepmans BNG. EpCAM: structure and function in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1989-2001. [PMID: 23618806 DOI: 10.1016/j.bbamem.2013.04.018] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/12/2013] [Accepted: 04/16/2013] [Indexed: 12/14/2022]
Abstract
Injection of tumor cells in mice more than 30 years ago resulted in the discovery of an epithelial antigen, later defined as a cell adhesion molecule (EpCAM). Although EpCAM has since evoked significant interest as a target in cancer therapy, mechanistic insights on the functions of this glycoprotein have been emerging only very recently. This may have been caused by the multitude of functions attributed to the glycoprotein, its localization at different subcellular sites and complex posttranslational modifications. Here, we review how EpCAM modifies cell-cell contact adhesion strength and tissue plasticity, and how it regulates cell proliferation and differentiation. Major knowledge derived from human diseases will be highlighted: Mutant EpCAM that is absent from the cell surface leads to fatal intestinal abnormalities (congenital tufting enteropathy). EpCAM-mediated cell proliferation in cancer may result from signaling (i) via regulated intramembrane proteolysis and/or (ii) the localization and association with binding partners in specialized membrane microdomains. New insight in EpCAM signaling will help to develop optimized cancer therapies and open new avenues in the field of regenerative medicine.
Collapse
Affiliation(s)
- Ulrike Schnell
- Dept. of Cell Biology, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
30
|
Wu CJ, Mannan P, Lu M, Udey MC. Epithelial cell adhesion molecule (EpCAM) regulates claudin dynamics and tight junctions. J Biol Chem 2013; 288:12253-68. [PMID: 23486470 DOI: 10.1074/jbc.m113.457499] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epithelial cell adhesion molecule (EpCAM) (CD326) is a surface glycoprotein expressed by invasive carcinomas and some epithelia. Herein, we report that EpCAM regulates the composition and function of tight junctions (TJ). EpCAM accumulated on the lateral interfaces of human colon carcinoma and normal intestinal epithelial cells but did not co-localize with TJ. Knockdown of EpCAM in T84 and Caco-2 cells using shRNAs led to changes in morphology and adhesiveness. TJ formed readily after EpCAM knockdown; the acquisition of trans-epithelial electroresistance was enhanced, and TJ showed increased resistance to disruption by calcium chelation. Preparative immunoprecipitation demonstrated that EpCAM bound tightly to claudin-7. Co-immunoprecipitation documented associations of EpCAM with claudin-7 and claudin-1 but not claudin-2 or claudin-4. Claudin-1 associated with claudin-7 in co-transfection experiments, and claudin-7 was required for association of claudin-1 with EpCAM. EpCAM knockdown resulted in decreases in claudin-7 and claudin-1 proteins that were reversed with lysosome inhibitors. Immunofluorescence microscopy revealed that claudin-7 and claudin-1 continually trafficked into lysosomes. Although EpCAM knockdown decreased claudin-1 and claudin-7 protein levels overall, accumulations of claudin-1 and claudin-7 in TJ increased. Physical interactions between EpCAM and claudins were required for claudin stabilization. These findings suggest that EpCAM modulates adhesion and TJ function by regulating intracellular localization and degradation of selected claudins.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Dermatology Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892-1908, USA
| | | | | | | |
Collapse
|
31
|
Tsukahara Y, Tanaka M, Miyajima A. TROP2 expressed in the trunk of the ureteric duct regulates branching morphogenesis during kidney development. PLoS One 2011; 6:e28607. [PMID: 22194864 PMCID: PMC3237457 DOI: 10.1371/journal.pone.0028607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/11/2011] [Indexed: 11/18/2022] Open
Abstract
TROP2, a cell surface protein structurally related to EpCAM, is expressed in various carcinomas, though its function remains largely unknown. We examined the expression of TROP2 and EpCAM in fetal mouse tissues, and found distinct patterns in the ureteric bud of the fetal kidney, which forms a tree-like structure. The tip cells in the ureteric bud proliferate to form branches, whereas the trunk cells differentiate to form a polarized ductal structure. EpCAM was expressed throughout the ureteric bud, whereas TROP2 expression was strongest at the trunk but diminished towards the tips, indicating the distinct cell populations in the ureteric bud. The cells highly expressing TROP2 (TROP2(high)) were negative for Ki67, a proliferating cell marker, and TROP2 and collagen-I were co-localized to the basal membrane of the trunk cells. TROP2(high) cells isolated from the fetal kidney failed to attach and spread on collagen-coated plates. Using MDCK cells, a well-established model for studying the branching morphogenesis of the ureteric bud, TROP2 was shown to inhibit cell spreading and motility on collagen-coated plates, and also branching in collagen-gel cultures, which mimic the ureteric bud's microenvironment. These results together suggest that TROP2 modulates the interaction between the cells and matrix and regulates the formation of the ureteric duct by suppressing branching from the trunk during kidney development.
Collapse
Affiliation(s)
- Yuko Tsukahara
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Minoru Tanaka
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (MT); (AM)
| | - Atsushi Miyajima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
- * E-mail: (MT); (AM)
| |
Collapse
|
32
|
Franke WW, Rickelt S. Mesenchymal-epithelial transitions: Spontaneous and cumulative syntheses of epithelial marker molecules and their assemblies to novel cell junctions connecting human hematopoietic tumor cells to carcinomatoid tissue structures. Int J Cancer 2011; 129:2588-99. [DOI: 10.1002/ijc.26227] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 05/02/2011] [Accepted: 05/24/2011] [Indexed: 12/11/2022]
|
33
|
Gupta V, Rao NN. Immunohistochemical expression of EGP40, a tumor marker, in different grades of oral squamous cell carcinoma. J Oral Maxillofac Pathol 2011; 15:34-8. [PMID: 21731275 PMCID: PMC3125653 DOI: 10.4103/0973-029x.80038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Aim: The aim of this study was to see the distribution and pattern of staining of epithelial glycoprotein 40 EGP-40 (also known as GA733-2, ESA, KSA, 17-1A antigen) in the different grades of OSCC. Materials and Methods: 30 biopsy reports retrieved from the files of the Department of Oral Pathology and Microbiology, College of Dental Surgery, Manipal were used. These comprised of 10 microslides each of 3 different histological grades of Oral Squamous Cell Carcinoma, namely Well Differentiated, Moderately Differentiated and Poorly Differentiated carcinomas. Immunoperoxidase staining for IgG, was performed by the unlabelled antibody peroxidase-antiperoxidase complex (PAP) method. The criteria used to define an antigen positive area were: Homogenous /Patchy staining of the section and Cytoplasmic/ Membranous staining of the tumor cells. Results: The expression of EGP 40 in different grades of OSCC showed an inverse relationship to differentiation and a direct relationship with the proliferation of the tumor cells and its expression became more pronounced as the grade worsened i.e. from well to poorly differentiated OSCC. Conclusion: In the present study, the surface antigen EGP40 (Ep-CAM) was detected in the different grades of OSCC with its expression becoming more pronounced as the grade worsened i.e. from well to poorly differentiated OSCC. However, further studies are required to understand the dualistic role of EGP40 (Ep-CAM) in mediating cell to cell adhesion preventing cell scattering and its heterogeneous expression in promoting tumor invasion and metastasis and also to determine its exact role and significance at a practically applicable level.
Collapse
Affiliation(s)
- Vineeta Gupta
- Department of Oral Pathology and Microbiology, College of Dental Surgery, Manipal, India
| | | |
Collapse
|
34
|
Gostner JM, Fong D, Wrulich OA, Lehne F, Zitt M, Hermann M, Krobitsch S, Martowicz A, Gastl G, Spizzo G. Effects of EpCAM overexpression on human breast cancer cell lines. BMC Cancer 2011; 11:45. [PMID: 21281469 PMCID: PMC3042418 DOI: 10.1186/1471-2407-11-45] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 01/31/2011] [Indexed: 01/10/2023] Open
Abstract
Background Recently, EpCAM has attracted major interest as a target for antibody- and vaccine-based cancer immunotherapies. In breast cancer, the EpCAM antigen is overexpressed in 30-40% of all cases and this increased expression correlates with poor prognosis. The use of EpCAM-specific monoclonal antibodies is a promising treatment approach in these patients. Methods In order to explore molecular changes following EpCAM overexpression, we investigated changes of the transcriptome upon EpCAM gene expression in commercially available human breast cancer cells lines Hs578T and MDA-MB-231. To assess cell proliferation, a tetrazolium salt based assay was performed. A TCF/LEF Reporter Kit was used to measure the transcriptional activity of the Wnt/β-catenin pathway. To evaluate the accumulation of β-catenin in the nucleus, a subcellular fractionation assay was performed. Results For the first time we could show that expression profiling data of EpCAM transfected cell lines Hs578TEpCAM and MDA-MB-231EpCAM indicate an association of EpCAM overexpression with the downregulation of the Wnt signaling inhibitors SFRP1 and TCF7L2. Confirmation of increased Wnt signaling was provided by a TCF/LEF reporter kit and by the finding of the nuclear accumulation of ß-catenin for MDA-MB-231EpCAM but not Hs578TEpCAM cells. In Hs578T cells, an increase of proliferation and chemosensitivity to Docetaxel was associated with EpCAM overexpression. Conclusions These data show a cell type dependent modification of Wnt signaling components after EpCAM overexpression in breast cancer cell lines, which results in marginal functional changes. Further investigations on the interaction of EpCAM with SFRP1 and TCF7L2 and on additional factors, which may be causal for changes upon EpCAM overexpression, will help to characterize unique molecular properties of EpCAM-positive breast cancer cells.
Collapse
Affiliation(s)
- Johanna M Gostner
- Laboratory for Experimental Oncology, Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Maghzal N, Vogt E, Reintsch W, Fraser JS, Fagotto F. The tumor-associated EpCAM regulates morphogenetic movements through intracellular signaling. ACTA ACUST UNITED AC 2010; 191:645-59. [PMID: 20974811 PMCID: PMC3003323 DOI: 10.1083/jcb.201004074] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial cell adhesion molecule (EpCAM) is best known as a tumor-associated protein highly expressed in carcinomas. The function of this cell surface protein during embryonic development and its potential role in cancer are still poorly understood. We identified EpCAM in a gain-of-function screen for inducers of abnormal tissue mixing during gastrulation. Elevated EpCAM levels in either the ectoderm or the mesoderm confer "invasive" properties to cells in both populations. We found that this phenotype represents an "overstimulation" of an essential activity of EpCAM in controlling cell movements during embryonic development. Surprisingly, this property is independent of the putative adhesive function of EpCAM, and rather relies on a novel signaling function that operates through down-regulation of PKC activity. We show that inhibition of novel PKCs accounts entirely for the invasive phenotype induced by abnormally high levels of EpCAM as well as for its normal function in regulating cell rearrangement during early development.
Collapse
Affiliation(s)
- Nadim Maghzal
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
36
|
Ko JS, Seo JK, Shim JO, Hwang SH, Park HS, Kang GH. Tufting Enteropathy with EpCAM Mutations in Two Siblings. Gut Liver 2010; 4:407-10. [PMID: 20981223 DOI: 10.5009/gnl.2010.4.3.407] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 12/02/2009] [Indexed: 02/06/2023] Open
Abstract
Tufting enteropathy is a rare autosomal recessive disorder presenting with early-onset severe intractable diarrhea. The epithelial cell adhesion molecule gene (EpCAM) has recently been identified as the gene responsible for tufting enteropathy. Based on histology, a diagnosis of tufting enteropathy was made in two Korean siblings. They developed chronic diarrhea and failure to thrive. They had a broad nasal bridge and micrognathia. Duodenal and colonic biopsies showed villous atrophy, disorganization of surface enterocytes, and focal crowding resembling tufts. Protracted diarrhea continued and so cyclic parenteral nutrition was supplied. The sister had juvenile rheumatoid arthritis. Mutation analysis of EpCAM identified two compound heterozygous mutations in these siblings: 1) a donor splicing site mutation in intron 5 (c.491+1G>A) and 2) a novel nonsense mutation in exon 3 (c.316A>T, Lys106X). Analysis of EpCAM will be useful for genetic counseling and prenatal diagnosis of tufting enteropathy.
Collapse
Affiliation(s)
- Jae Sung Ko
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
37
|
Shahabi S, Yang CPH, Goldberg GL, Horwitz SB. Epothilone B enhances surface EpCAM expression in ovarian cancer Hey cells. Gynecol Oncol 2010; 119:345-50. [PMID: 20674962 DOI: 10.1016/j.ygyno.2010.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 07/07/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Epothilone B (EpoB), like Taxol, stabilizes microtubules resulting in an inhibition of microtubule dynamic instability. The drug is being evaluated in phase III clinical trials. An EpoB analog, Ixabepilone, was approved by the FDA for the treatment of taxane-resistant metastatic breast cancer. Epithelial cell adhesion antigen (EpCAM) expression is significantly higher in epithelial ovarian cancer cells compared to normal cells. The effects of EpoB and other microtubule-interacting agents on surface EpCAM expression were studied. METHODS Biochemical methods, immunofluorescence and flow cytometry were used to identify EpCAM expression on the surface of the ovarian cancer cell line, Hey, after exposure to EpoB. The relationship between EpoB-mediated surface EpCAM expression and EpoB-induced α-tubulin acetylation, a surrogate marker for stable microtubules, in Hey cells also was investigated. RESULTS Nanomolar concentrations of EpoB, Taxol, discodermolide or vinblastine caused a marked increase in surface EpCAM expression in Hey cells. Alpha-tubulin acetylation was increased following treatment with Taxol, EpoB and discodermolide, but not with vinblastine, indicating that drug-enhanced surface EpCAM expression does not correlate with tubulin acetylation or stabilization. Unexpectedly, EpoB did not have a significant effect on EpCAM mRNA expression, nor did it alter the level of total cellular EpCAM in Hey cells. CONCLUSIONS The results indicate that disruption of the microtubule cytoskeleton is associated with the redistribution of cell surface antigens in ovarian cancer cells. The increase in cell surface EpCAM antigen density may facilitate the antibody targeting of EpCAM-positive ovarian cancer cells.
Collapse
Affiliation(s)
- Shohreh Shahabi
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
38
|
MOC-31 exhibits superior reactivity compared with Ber-EP4 in invasive lobular and ductal carcinoma of the breast: a tissue microarray study. Appl Immunohistochem Mol Morphol 2009; 17:202-6. [PMID: 19391212 DOI: 10.1097/pai.0b013e31818c0f42] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Distinguishing between reactive mesothelial proliferations and adenocarcinoma is often very difficult. Ancillary studies, in particular immunohistochemistry, are often critical in detecting malignant epithelial cells, especially in serous effusion specimens. MOC-31 and Ber-EP4 are antibodies which target the epithelial cell adhesion molecule (Ep-CAM, TACSTD1) expressed in epithelial cells, and both are useful in distinguishing metastatic adenocarcinoma from reactive mesothelial cells. However, the reactivity of MOC-31 and Ber-EP4 with breast carcinoma, one of the more common carcinomas involving serous effusions, has not been extensively studied. We analyzed the immunohistochemical expression of MOC-31 and Ber-EP4 using tissue microarrays containing invasive ductal carcinoma (191 cases), invasive lobular carcinoma (44 cases), and 102 other carcinoma types comprising primary carcinomas of lung, gynecologic tract, pancreas, colon, gastric, esophageal, prostate, head and neck, hepatic, and renal origin. For MOC-31, 184 of 191 (96%) invasive ductal carcinomas and 39 of 44 (89%) invasive lobular carcinomas exhibited diffuse positive staining. In contrast, for Ber-EP4, 121 of 183 (66%) invasive ductal carcinomas and 11 of 40 (27.5%) invasive lobular carcinomas exhibited diffuse positive staining. With the exception of 1 case of esophageal adenocarcinoma, all other adenocarcinomas (86 of 87 cases) exhibited diffuse staining with both Ber-EP4 and MOC-31. MOC-31 and Ber-EP4 exhibited identical staining with all other carcinoma types. Our findings indicate that MOC-31 is superior to Ber-EP4 in detecting both invasive lobular and ductal carcinoma of the breast.
Collapse
|
39
|
Moh MC, Tian Q, Zhang T, Lee LH, Shen S. The immunoglobulin-like cell adhesion molecule hepaCAM modulates cell adhesion and motility through direct interaction with the actin cytoskeleton. J Cell Physiol 2009; 219:382-91. [PMID: 19142852 DOI: 10.1002/jcp.21685] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously, we reported the identification of a novel immunoglobulin-like cell adhesion molecule hepaCAM that promotes cell-extracellular matrix (ECM) interactions including cell adhesion and motility. Cell-ECM interactions are known to be directed by the actin cytoskeleton. In this study, we examined the association of hepaCAM with the actin cytoskeleton. We found that hepaCAM was partially insoluble in Triton X-100 and colocalized with the actin cytoskeleton on the plasma membrane. Disruption of F-actin decreased the detergent insolubility and disturbed the subcellular localization of hepaCAM. Coimmunoprecipitation and F-actin cosedimentation assays revealed that hepaCAM directly bound to F-actin. In addition, we constructed three N- and C-terminal domain-deleted mutants of hepaCAM to determine the actin-binding region as well as to evaluate the effect of the domains on the biological function of hepaCAM. Detergent solubility assays showed that the cytoplasmic domain of hepaCAM might be required for actin association. However, deletion of either the extracellular or the cytoplasmic domain of hepaCAM abolished actin coprecipitation as well as delayed cell-ECM adhesion and cell motility. The data suggest that an intact hepaCAM protein is critical for establishing a stable physical association with the actin cytoskeleton; and such association is important for modulating hepaCAM-mediated cell adhesion and motility.
Collapse
Affiliation(s)
- Mei Chung Moh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
40
|
Györffy B, Dietel M, Fekete T, Lage H. A snapshot of microarray-generated gene expression signatures associated with ovarian carcinoma. Int J Gynecol Cancer 2008; 18:1215-33. [PMID: 18217975 DOI: 10.1111/j.1525-1438.2007.01169.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
It was hypothesized that analysis of global gene expression in ovarian carcinoma can identify dysregulated genes that can serve as molecular markers and provide further insight into carcinogenesis and provide the basis for development of new diagnostic tools as well as new targeted therapy protocols. By applying bioinformatics tools for screening of biomedical databases, a gene expression profile databank, specific for ovarian carcinoma, was constructed with utilizable data sets published in 28 studies that applied different array technology platforms. The data sets were divided into four compartments: (i) genes associated with carcinogenesis: in 14 studies, 1881 genes were extracted, 75 genes were identified in more than one study, and only 4 genes (PRKCBP1, SPON1, TACSTD1, and PTPRM) were identified in three studies. (ii) Genes associated with histologic subtypes: in four studies, 463 genes could be identified, but none of them was identified in more than a single study. (iii) Genes associated with therapy response: in seven studies, 606 genes were identified from which 38 were differentially regulated in at least two studies, 3 genes (TMSB4X, GRN, and TJP1) in three studies, and 1 gene (IFITM1) in four studies. (iv) Genes associated with prognosis and progression: 254 genes were found in seven studies. From these genes, merely three were identified in at least two different studies. This snapshot of available gene expression data not only provides independently described potential diagnostic and therapeutic targets for ovarian carcinoma but also emphasizes the drawbacks of the current state of global gene expression analyses in ovarian cancer.
Collapse
Affiliation(s)
- B Györffy
- Charité Campus Mitte, Institute of Pathology, Berlin, Germany
| | | | | | | |
Collapse
|
41
|
Reidel B, Goldmann T, Giessl A, Wolfrum U. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton. ACTA ACUST UNITED AC 2008; 65:785-800. [PMID: 18623243 DOI: 10.1002/cm.20300] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vertebrate rod photoreceptor cells, arrestin and the visual G-protein transducin move between the inner segment and outer segment in response to changes in light. This stimulus dependent translocation of signalling molecules is assumed to participate in long term light adaptation of photoreceptors. So far the cellular basis for the transport mechanisms underlying these intracellular movements remains largely elusive. Here we investigated the dependency of these movements on actin filaments and the microtubule cytoskeleton of photoreceptor cells. Co-cultures of mouse retina and retinal pigment epithelium were incubated with drugs stabilizing and destabilizing the cytoskeleton. The actin and microtubule cytoskeleton and the light dependent distribution of signaling molecules were subsequently analyzed by light and electron microscopy. The application of cytoskeletal drugs differentially affected the cytoskeleton in photoreceptor compartments. During dark adaptation the depolymerization of microtubules as well as actin filaments disrupted the translocation of arrestin and transducin in rod photoreceptor cells. During light adaptation only the delivery of arrestin within the outer segment was impaired after destabilization of microtubules. Movements of transducin and arrestin required intact cytoskeletal elements in dark adapting cells. However, diffusion might be sufficient for the fast molecular movements observed as cells adapt to light. These findings indicate that different molecular translocation mechanisms are responsible for the dark and light associated translocations of arrestin and transducin in rod photoreceptor cells.
Collapse
Affiliation(s)
- Boris Reidel
- Department of Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg University of Mainz, Germany
| | | | | | | |
Collapse
|
42
|
Trzpis M, Popa ER, McLaughlin PMJ, van Goor H, Timmer A, Bosman GW, de Leij LMFH, Harmsen MC. Spatial and temporal expression patterns of the epithelial cell adhesion molecule (EpCAM/EGP-2) in developing and adult kidneys. Nephron Clin Pract 2007; 107:e119-31. [PMID: 18025791 DOI: 10.1159/000111039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 05/11/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The epithelial cell adhesion molecule (EpCAM) is expressed by most epithelia and is involved in processes fundamental for morphogenesis, including cell-cell adhesion, proliferation, differentiation, and migration. Previously, a role for EpCAM in pancreatic morphogenesis was confirmed in vitro. Furthermore, changes in the EpCAM expression pattern were found in developing lung and thymus and in the regenerating liver. Therefore, EpCAM was proposed to be a morphoregulatory molecule. METHODS Using immunohistochemistry, the expression pattern of human and murine homologues of EpCAM was characterized in adult and embryonic kidneys from humans and human-EpCAM (hEpCAM)-transgenic mice. RESULTS EpCAM expression was found in the ureteric bud throughout nephrogenesis. EpCAM was not expressed in the metanephric mesenchyme. In comma- and S-shaped bodies, both metanephric mesenchyme derived structures, EpCAM expression appeared by E13.5. In adult kidneys, most epithelia expressed varying levels of EpCAM, as confirmed by double staining for human EpCAM and segment-specific nephron markers. Podocytes were EpCAM negative. At the cellular level, the EpCAM expression shifted from apical in embryonic to basolateral in adult kidneys. CONCLUSIONS The spatiotemporal expression pattern of EpCAM changes during nephrogenesis. In the adult kidney, the expression varies markedly along the nephron. These data provide a basis for further studies on EpCAM in developing and adult kidneys.
Collapse
Affiliation(s)
- Monika Trzpis
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Schmelzer E, Zhang L, Bruce A, Wauthier E, Ludlow J, Yao HL, Moss N, Melhem A, McClelland R, Turner W, Kulik M, Sherwood S, Tallheden T, Cheng N, Furth ME, Reid LM. Human hepatic stem cells from fetal and postnatal donors. J Exp Med 2007; 204:1973-1987. [PMID: 17664288 PMCID: PMC2118675 DOI: 10.1084/jem.20061603] [Citation(s) in RCA: 444] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Accepted: 06/28/2007] [Indexed: 12/12/2022] Open
Abstract
Human hepatic stem cells (hHpSCs), which are pluripotent precursors of hepatoblasts and thence of hepatocytic and biliary epithelia, are located in ductal plates in fetal livers and in Canals of Hering in adult livers. They can be isolated by immunoselection for epithelial cell adhesion molecule-positive (EpCAM+) cells, and they constitute approximately 0.5-2.5% of liver parenchyma of all donor ages. The self-renewal capacity of hHpSCs is indicated by phenotypic stability after expansion for >150 population doublings in a serum-free, defined medium and with a doubling time of approximately 36 h. Survival and proliferation of hHpSCs require paracrine signaling by hepatic stellate cells and/or angioblasts that coisolate with them. The hHpSCs are approximately 9 microm in diameter, express cytokeratins 8, 18, and 19, CD133/1, telomerase, CD44H, claudin 3, and albumin (weakly). They are negative for alpha-fetoprotein (AFP), intercellular adhesion molecule (ICAM) 1, and for markers of adult liver cells (cytochrome P450s), hemopoietic cells (CD45), and mesenchymal cells (vascular endothelial growth factor receptor and desmin). If transferred to STO feeders, hHpSCs give rise to hepatoblasts, which are recognizable by cordlike colony morphology and up-regulation of AFP, P4503A7, and ICAM1. Transplantation of freshly isolated EpCAM+ cells or of hHpSCs expanded in culture into NOD/SCID mice results in mature liver tissue expressing human-specific proteins. The hHpSCs are candidates for liver cell therapies.
Collapse
Affiliation(s)
- Eva Schmelzer
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Winter MJ, Cirulli V, Briaire-de Bruijn IH, Litvinov SV. Cadherins are regulated by Ep-CAM via phosphaditylinositol-3 kinase. Mol Cell Biochem 2007; 302:19-26. [PMID: 17646933 DOI: 10.1007/s11010-007-9420-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 01/19/2007] [Indexed: 02/01/2023]
Abstract
The cross-signaling between (cell) adhesion molecules is nowadays a well-accepted phenomenon and includes orchestrated cellular changes and changes in the microenvironment. For example, Ep-CAM is an epithelial adhesion molecule that prevails in active proliferating tissue and is suppressed in a more differentiated state of the cell. E-cadherin adhesion complexes are typical for the advanced and terminal differentiated cell status. During normal proliferation, E-cadherin is not suppressed. We have demonstrated the effect of overexpression of Ep-CAM on E-cadherin, which probably affects the connection of cadherins and F-actin. Phosphatidylinositol 3-kinase (Pi3K) participates in various regulating mechanisms, for example in signaling to nuclei, vesicle transport, and cytoskeletal rearrangements. The effect of Ep-CAM on E-cadherin mediated junctions as well as the involvement of Pi3K in regulating adherens junctions, led us to investigate the potential interaction between Pi3K and Ep-CAM. Introduction of Ep-CAM in the epithelial cells caused abrogation of N-cadherin mediated cell-cell adhesion, which could be inhibited by Pi3K inhibitor LY294002. Moreover, the Pi3K subunit p85 was precipitated with Ep-CAM from cell lysates, and this complex showed kinase activity. The Pi3K activity shuttled from N-cadherin to Ep-CAM. From our results, we conclude that Ep-CAM cross signaling with N-cadherin involves Pi3K, resulting in the abrogation of the cadherin adhesion complexes in epithelial cells.
Collapse
Affiliation(s)
- Manon J Winter
- Department of Pathology, Leiden University Medical Center, P.O. Box 9600, 2300 RC, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
45
|
Gosens MJEM, van Kempen LCL, van de Velde CJH, van Krieken JHJM, Nagtegaal ID. Loss of membranous Ep-CAM in budding colorectal carcinoma cells. Mod Pathol 2007; 20:221-32. [PMID: 17361206 DOI: 10.1038/modpathol.3800733] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Tumor budding is a histological feature that reflects loss of adhesion of tumor cells and is associated with locoregional metastasis of colorectal carcinoma. Although nuclear localization of beta-catenin is associated with tumor budding, the molecular mechanism remains largely elusive. In this study, we hypothesize that the epithelial cell adhesion molecule (Ep-CAM) is involved in tumor budding. In order to address this question, we performed immunohistochemistry on Ep-CAM using three different antibodies (monoclonal antibodies Ber-ep4 and 311-1K1 and a polyclonal antibody) and a double staining on beta-catenin and Ep-CAM. In addition, Ep-CAM mRNA was monitored with mRNA in situ hybridization. Subsequently, we determined the effect of Ep-CAM staining patterns on tumor spread in rectal cancer. In contrast to the tumor mass, budding cells of colorectal carcinoma displayed lack of membranous but highly increased cytoplasmic Ep-CAM staining and nuclear translocation of beta-catenin. mRNA in situ hybridization suggested no differences in Ep-CAM expression between the invasive front and the tumor mass. Importantly, reduced Ep-CAM staining at the invasive margin of rectal tumor specimens (n=133) correlated significantly with tumor budding, tumor grade and an increased risk of local recurrence (P=0.001, P=0.04 and P=0.03, respectively). These data demonstrate abnormal processing of Ep-CAM at the invasive margin of colorectal carcinomas. Our observations indicate that loss of membranous Ep-CAM is associated with nuclear beta-catenin localization and suggest that this contributes to reduced cell-cell adhesions, increased migratory potential and tumor budding.
Collapse
Affiliation(s)
- Marleen J E M Gosens
- Department of Pathology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | |
Collapse
|
46
|
Stoecklein NH, Siegmund A, Scheunemann P, Luebke AM, Erbersdobler A, Verde PE, Eisenberger CF, Peiper M, Rehders A, Esch JSA, Knoefel WT, Hosch SB. Ep-CAM expression in squamous cell carcinoma of the esophagus: a potential therapeutic target and prognostic marker. BMC Cancer 2006; 6:165. [PMID: 16796747 PMCID: PMC1523209 DOI: 10.1186/1471-2407-6-165] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2005] [Accepted: 06/23/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To evaluate the expression and test the clinical significance of the epithelial cellular adhesion molecule (Ep-CAM) in esophageal squamous cell carcinoma (SCC) to check the suitability of esophageal SCC patients for Ep-CAM directed targeted therapies. METHODS The Ep-CAM expression was immunohistochemically investigated in 70 primary esophageal SCCs using the monoclonal antibody Ber-EP4. For the interpretation of the staining results, we used a standardized scoring system ranging from 0 to 3+. The survival analysis was calculated from 53 patients without distant metastasis, with R0 resection and at least 2 months of clinical follow-up. RESULTS Ep-CAM neo-expression was observed in 79% of the tumors with three expression levels, 1+ (26%), 2+ (11%) and 3+ (41%). Heterogeneous expression was observed at all expression levels. Interestingly, tumors with 3+ Ep-CAM expression conferred a significantly decreased median relapse-free survival period (log rank, p = 0.0001) and median overall survival (log rank, p = 0.0003). Multivariate survival analysis disclosed Ep-CAM 3+ expression as independent prognostic factor. CONCLUSION Our results suggest Ep-CAM as an attractive molecule for targeted therapy in esophageal SCC. Considering the discontenting results of the current adjuvant concepts for esophageal SCC patients, Ep-CAM might provide a promising target for an adjuvant immunotherapeutic intervention.
Collapse
Affiliation(s)
- Nikolas H Stoecklein
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Düsseldorf, D-40225 Düsseldorf, Germany
| | - Annika Siegmund
- Klinik für Allgemein-, Viszeral- und Thoraxchirugie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Peter Scheunemann
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Düsseldorf, D-40225 Düsseldorf, Germany
- Chirurgische Klinik, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Andreas M Luebke
- Klinik für Allgemein-, Viszeral- und Thoraxchirugie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Andreas Erbersdobler
- Institut für Pathologie, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Pablo E Verde
- Koordinierungszentrum für klinische Studien, Universitätsklinikum Düsseldorf, D-40225 Düsseldorf, Germany
| | - Claus F Eisenberger
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Düsseldorf, D-40225 Düsseldorf, Germany
- Chirurgische Klinik, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Matthias Peiper
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Düsseldorf, D-40225 Düsseldorf, Germany
- Chirurgische Klinik, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Alexander Rehders
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Düsseldorf, D-40225 Düsseldorf, Germany
- Chirurgische Klinik, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Jan Schulte am Esch
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Düsseldorf, D-40225 Düsseldorf, Germany
| | - Wolfram Trudo Knoefel
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Düsseldorf, D-40225 Düsseldorf, Germany
- Chirurgische Klinik, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| | - Stefan B Hosch
- Klinik für Allgemein- und Viszeralchirurgie, Universitätsklinikum Düsseldorf, D-40225 Düsseldorf, Germany
- Chirurgische Klinik, Universitätsklinikum Hamburg-Eppendorf, D-20246 Hamburg, Germany
| |
Collapse
|
47
|
Xie X, Wang CY, Cao YX, Wang W, Zhuang R, Chen LH, Dang NN, Fang L, Jin BQ. Expression pattern of epithelial cell adhesion molecule on normal and malignant colon tissues. World J Gastroenterol 2005; 11:344-7. [PMID: 15637741 PMCID: PMC4205334 DOI: 10.3748/wjg.v11.i3.344] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression pattern of epithelial cell adhesion molecule (Ep-CAM) on normal and malignant colon tissues to evaluate its diagnostic and therapeutic significance.
METHODS: cDNA encoding Ep-CAM extracellular domain was cloned by reverse transcription-polymerase chain reaction (RT-PCR) from excised malignant colon tissues and inserted into a glutathione S-transferase (GST)-tagged vector. Ep-CAM-GST fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG) and purified with glutathione-sepharose. The Ep-CAM-GST fusion protein was mixed with Freund’s adjuvant and Balb/c mice were immunized with it. Sp2/0 myeloma cells were fused with the spleen cells of the immunized mice. After having selected by indirect ELISA, the anti-Ep-CAM monoclonal antibodies (MAbs) were generated and the corresponding ascites were obtained. Finally, the human colon carcinoma tissue array prepared from seventy individual patients was stained with the anti-Ep-CAM MAbs.
RESULTS: The isolated Ep-CAM cDNA sequence was identical to the data in GenBank. The expressed fusion protein was almost soluble and had a molecular weight (MW) of 53 ku. Four MAbs against Ep-CAM were obtained and designated as FMU-Ep1, FMU-Ep2, FMU-Ep3 and FMU-Ep4 respectively. Among them, FMU-Ep4 could recognize the natural Ep-CAM on Colo205 and SW480 cells, and all of them could be used for immunohistochemical staining of tissue sections. It was found that Ep-CAM was distributed differently in normal and various malignant colon tissues, including squamous cell carcinoma, signet-ring cell carcinoma and adenocarcinoma. In normal colon gland epithelia, Ep-CAM antigen was mainly distributed on the basolateral membrane and in the region between the basolateral membrane and the cytoplastic part near the nuclei, whereas the expression pattern of colon malignancies was mainly on the whole surface of epithelia and the expression was much higher than the normal colon tissues. The staining pattern of tissue array showed in adenocarcinoma and papillary adenocarcinoma, and the expression of Ep-CAM was increased from grade I to grade III.
CONCLUSION: MAbs against Ep-CAM might be useful for research on the structure and function of Ep-CAM and may have diagnostic and therapeutic value to various colon carcinomas.
Collapse
Affiliation(s)
- Xin Xie
- Department of Immunology, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Münz M, Zeidler R, Gires O. The tumour-associated antigen EpCAM upregulates the fatty acid binding protein E-FABP. Cancer Lett 2004; 225:151-7. [PMID: 15922867 DOI: 10.1016/j.canlet.2004.11.048] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 11/20/2004] [Accepted: 11/23/2004] [Indexed: 12/01/2022]
Abstract
The epithelial cell adhesion molecule, EpCAM, is a transmembrane glycoprotein associated with both benign and malignant proliferation. In cancer cells, expression levels of this tumour-associated antigen correlate positively with the grade of dysplasia and are also a negative prognostic factor for breast cancer patients. De novo expression of EpCAM resulted in the rapid upregulation of the proto-oncogene c-Myc along with enhanced cell proliferation and metabolism. Here, we analyzed the effects of EpCAM onto the proteome of epithelial cells. The epidermal fatty acid binding protein, E-FABP, was identified as a new EpCAM-regulated protein. E-FABP is a major target of c-Myc and was rapidly upregulated upon induction of EpCAM. Additionally, E-FABP levels correlated with the amount of EpCAM in permanent squamous cell carcinoma lines and in vivo in primary head and neck carcinomas. Taken together, these results provide further evidence for the direct involvement of EpCAM in signalling processes, gene regulation, and cellular metabolism supporting its important role in tumour biology.
Collapse
Affiliation(s)
- Markus Münz
- Head and Neck Research Department, Clinical Cooperation Group Molecular Oncology, GSF, National Research Center for Environment and Health, Marchioninistr. 15, 81377 Munich, Germany.
| | | | | |
Collapse
|
49
|
Nochi T, Yuki Y, Terahara K, Hino A, Kunisawa J, Kweon MN, Yamaguchi T, Kiyono H. Biological role of Ep-CAM in the physical interaction between epithelial cells and lymphocytes in intestinal epithelium. Clin Immunol 2004; 113:326-39. [PMID: 15507398 DOI: 10.1016/j.clim.2004.08.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Accepted: 08/24/2004] [Indexed: 10/26/2022]
Abstract
The mucosal epithelium including intestinal epithelial cells (IECs) and intraepithelial lymphocytes (IELs) provide a first line of defense in the gastrointestinal tract. However, limited information is currently available concerning the nature of the physical interaction molecule that interconnects IECs and IELs. Among the several monoclonal antibodies (mAbs) generated by immunizing porcine IECs, mAb (5-15-1) was shown to strongly react with IELs in addition to IECs. MALDI-TOF-MS and tandem MS analysis suggested that the antigen belongs to a family of human homophilic epithelial cell adhesion molecule (Ep-CAM). The amino acid sequence of porcine Ep-CAM showed 82.8%, 78.1%, and 76.8% homology compared to human, mouse, and rat Ep-CAM. Moreover, 5-15-1 specifically reacted with transfectant of porcine Ep-CAM. These data suggest that the Ep-CAM may act as a physical homophilic interaction molecule between IELs and IECs at the mucosal epithelium for providing immunological barrier as a first line of defense against mucosal infection.
Collapse
Affiliation(s)
- Tomonori Nochi
- Division of Mucosal Immunology, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Gutzmer R, Li W, Sutterwala S, Lemos MP, Elizalde JI, Urtishak SL, Behrens EM, Rivers PM, Schlienger K, Laufer TM, Eck SL, Marks MS. A tumor-associated glycoprotein that blocks MHC class II-dependent antigen presentation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:1023-32. [PMID: 15240690 DOI: 10.4049/jimmunol.173.2.1023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tumors evade immune surveillance despite the frequent expression of tumor-associated Ags (TAA). Tumor cells escape recognition by CD8(+) T cells through several mechanisms, including down-regulation of MHC class I molecules and associated Ag-processing machinery. However, although it is well accepted that optimal anti-tumor immune responses require tumor-reactive CD4(+) T cells, few studies have addressed how tumor cells evade CD4(+) T cell recognition. In this study, we show that a common TAA, GA733-2, and its murine orthologue, mouse epithelial glycoprotein (mEGP), function in blocking MHC class II-restricted Ag presentation by dendritic cells. GA733-2 is a common TAA that is expressed normally at low levels by some epithelial tissues and a subset of dendritic cells, but at high levels on colon, breast, lung, and some nonepithelial tumors. We show that ectopic expression of mEGP or GA733-2, respectively, in dendritic cells derived from murine bone marrow or human monocytes results in a dose-dependent inability to stimulate proliferation of Ag-specific or alloreactive CD4(+) T cells. Dendritic cells exposed to cell debris from tumors expressing mEGP are similarly compromised. Furthermore, mice immunized with dendritic cells expressing mEGP from a recombinant adenovirus vector exhibited a muted anti-adenovirus immune response. The inhibitory effect of mEGP was not due to down-regulation of functional MHC class II molecules or active suppression of T cells, and did not extend to T cell responses to superantigen. These results demonstrate a novel mechanism by which tumors may evade CD4(+) T cell-dependent immune responses through expression of a TAA.
Collapse
Affiliation(s)
- Ralf Gutzmer
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|