1
|
Allyn BM, Hayer KE, Oyeniran C, Nganga V, Lee K, Mishra B, Sacan A, Oltz EM, Bassing CH. Locus folding mechanisms determine modes of antigen receptor gene assembly. J Exp Med 2024; 221:e20230985. [PMID: 38189780 PMCID: PMC10772921 DOI: 10.1084/jem.20230985] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/12/2023] [Accepted: 12/15/2023] [Indexed: 01/09/2024] Open
Abstract
The dynamic folding of genomes regulates numerous biological processes, including antigen receptor (AgR) gene assembly. We show that, unlike other AgR loci, homotypic chromatin interactions and bidirectional chromosome looping both contribute to structuring Tcrb for efficient long-range V(D)J recombination. Inactivation of the CTCF binding element (CBE) or promoter at the most 5'Vβ segment (Trbv1) impaired loop extrusion originating locally and extending to DβJβ CBEs at the opposite end of Tcrb. Promoter or CBE mutation nearly eliminated Trbv1 contacts and decreased RAG endonuclease-mediated Trbv1 recombination. Importantly, Trbv1 rearrangement can proceed independent of substrate orientation, ruling out scanning by DβJβ-bound RAG as the sole mechanism of Vβ recombination, distinguishing it from Igh. Our data indicate that CBE-dependent generation of loops cooperates with promoter-mediated activation of chromatin to juxtapose Vβ and DβJβ segments for recombination through diffusion-based synapsis. Thus, the mechanisms that fold a genomic region can influence molecular processes occurring in that space, which may include recombination, repair, and transcriptional programming.
Collapse
Affiliation(s)
- Brittney M. Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katharina E. Hayer
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
- Department of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Perelman School of Medicine, Philadelphia, PA, USA
| | - Clement Oyeniran
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Vincent Nganga
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kyutae Lee
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bikash Mishra
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Ahmet Sacan
- Biomedical Engineering Doctoral Degree Program, School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Eugene M. Oltz
- Department of Microbial Infection and Immunity, Ohio State College of Medicine, Ohio State University, Columbus, OH, USA
| | - Craig H. Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
2
|
Hoolehan W, Harris JC, Byrum JN, Simpson DA, Rodgers K. An updated definition of V(D)J recombination signal sequences revealed by high-throughput recombination assays. Nucleic Acids Res 2022; 50:11696-11711. [PMID: 36370096 PMCID: PMC9723617 DOI: 10.1093/nar/gkac1038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
In the adaptive immune system, V(D)J recombination initiates the production of a diverse antigen receptor repertoire in developing B and T cells. Recombination activating proteins, RAG1 and RAG2 (RAG1/2), catalyze V(D)J recombination by cleaving adjacent to recombination signal sequences (RSSs) that flank antigen receptor gene segments. Previous studies defined the consensus RSS as containing conserved heptamer and nonamer sequences separated by a less conserved 12 or 23 base-pair spacer sequence. However, many RSSs deviate from the consensus sequence. Here, we developed a cell-based, massively parallel assay to evaluate V(D)J recombination activity on thousands of RSSs where the 12-RSS heptamer and adjoining spacer region contained randomized sequences. While the consensus heptamer sequence (CACAGTG) was marginally preferred, V(D)J recombination was highly active on a wide range of non-consensus sequences. Select purine/pyrimidine motifs that may accommodate heptamer unwinding in the RAG1/2 active site were generally preferred. In addition, while different coding flanks and nonamer sequences affected recombination efficiency, the relative dependency on the purine/pyrimidine motifs in the RSS heptamer remained unchanged. Our results suggest RAG1/2 specificity for RSS heptamers is primarily dictated by DNA structural features dependent on purine/pyrimidine pattern, and to a lesser extent, RAG:RSS base-specific interactions.
Collapse
Affiliation(s)
- Walker Hoolehan
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Justin C Harris
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jennifer N Byrum
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Destiny A Simpson
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Karla K Rodgers
- To whom correspondence should be addressed. Tel: +1 405 271 2227 (Ext 61248);
| |
Collapse
|
3
|
Hirokawa S, Chure G, Belliveau NM, Lovely GA, Anaya M, Schatz DG, Baltimore D, Phillips R. Sequence-dependent dynamics of synthetic and endogenous RSSs in V(D)J recombination. Nucleic Acids Res 2020; 48:6726-6739. [PMID: 32449932 PMCID: PMC7337519 DOI: 10.1093/nar/gkaa418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/25/2022] Open
Abstract
Developing lymphocytes of jawed vertebrates cleave and combine distinct gene segments to assemble antigen-receptor genes. This process called V(D)J recombination that involves the RAG recombinase binding and cutting recombination signal sequences (RSSs) composed of conserved heptamer and nonamer sequences flanking less well-conserved 12- or 23-bp spacers. Little quantitative information is known about the contributions of individual RSS positions over the course of the RAG-RSS interaction. We employ a single-molecule method known as tethered particle motion to track the formation, lifetime and cleavage of individual RAG-12RSS-23RSS paired complexes (PCs) for numerous synthetic and endogenous 12RSSs. We reveal that single-bp changes, including in the 12RSS spacer, can significantly and selectively alter PC formation or the probability of RAG-mediated cleavage in the PC. We find that some rarely used endogenous gene segments can be mapped directly to poor RAG binding on their adjacent 12RSSs. Finally, we find that while abrogating RSS nicking with Ca2+ leads to substantially shorter PC lifetimes, analysis of the complete lifetime distributions of any 12RSS even on this reduced system reveals that the process of exiting the PC involves unidentified molecular details whose involvement in RAG-RSS dynamics are crucial to quantitatively capture kinetics in V(D)J recombination.
Collapse
Affiliation(s)
- Soichi Hirokawa
- Department of Applied Physics, California Institute of Technology, Pasadena, CA 91125, USA
| | - Griffin Chure
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nathan M Belliveau
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Geoffrey A Lovely
- National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael Anaya
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - David Baltimore
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Department of Physics, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Allyn BM, Lee KD, Bassing CH. Genome Topology Control of Antigen Receptor Gene Assembly. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:2617-2626. [PMID: 32366683 PMCID: PMC7440635 DOI: 10.4049/jimmunol.1901356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/22/2020] [Indexed: 02/02/2023]
Abstract
The past decade has increased our understanding of how genome topology controls RAG endonuclease-mediated assembly of lymphocyte AgR genes. New technologies have illuminated how the large IgH, Igκ, TCRα/δ, and TCRβ loci fold into compact structures that place their numerous V gene segments in similar three-dimensional proximity to their distal recombination center composed of RAG-bound (D)J gene segments. Many studies have shown that CTCF and cohesin protein-mediated chromosome looping have fundamental roles in lymphocyte lineage- and developmental stage-specific locus compaction as well as broad usage of V segments. CTCF/cohesin-dependent loops have also been shown to direct and restrict RAG activity within chromosome domains. We summarize recent work in elucidating molecular mechanisms that govern three-dimensional chromosome organization and in investigating how these dynamic mechanisms control V(D)J recombination. We also introduce remaining questions for how CTCF/cohesin-dependent and -independent genome architectural mechanisms might regulate compaction and recombination of AgR loci.
Collapse
Affiliation(s)
- Brittney M Allyn
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Kyutae D Lee
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Craig H Bassing
- Immunology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
5
|
Modeling altered T-cell development with induced pluripotent stem cells from patients with RAG1-dependent immune deficiencies. Blood 2016; 128:783-93. [PMID: 27301863 DOI: 10.1182/blood-2015-10-676304] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 06/06/2016] [Indexed: 11/20/2022] Open
Abstract
Primary immunodeficiency diseases comprise a group of heterogeneous genetic defects that affect immune system development and/or function. Here we use in vitro differentiation of human induced pluripotent stem cells (iPSCs) generated from patients with different recombination-activating gene 1 (RAG1) mutations to assess T-cell development and T-cell receptor (TCR) V(D)J recombination. RAG1-mutants from severe combined immunodeficient (SCID) patient cells showed a failure to sustain progression beyond the CD3(--)CD4(-)CD8(-)CD7(+)CD5(+)CD38(-)CD31(-/lo)CD45RA(+) stage of T-cell development to reach the CD3(-/+)CD4(+)CD8(+)CD7(+)CD5(+)CD38(+)CD31(+)CD45RA(-) stage. Despite residual mutant RAG1 recombination activity from an Omenn syndrome (OS) patient, similar impaired T-cell differentiation was observed, due to increased single-strand DNA breaks that likely occur due to heterodimers consisting of both an N-terminal truncated and a catalytically dead RAG1. Furthermore, deep-sequencing analysis of TCR-β (TRB) and TCR-α (TRA) rearrangements of CD3(-)CD4(+)CD8(-) immature single-positive and CD3(+)CD4(+)CD8(+) double-positive cells showed severe restriction of repertoire diversity with preferential usage of few Variable, Diversity, and Joining genes, and skewed length distribution of the TRB and TRA complementary determining region 3 sequences from SCID and OS iPSC-derived cells, whereas control iPSCs yielded T-cell progenitors with a broadly diversified repertoire. Finally, no TRA/δ excision circles (TRECs), a marker of TRA/δ locus rearrangements, were detected in SCID and OS-derived T-lineage cells, consistent with a pre-TCR block in T-cell development. This study compares human T-cell development of SCID vs OS patients, and elucidates important differences that help to explain the wide range of immunologic phenotypes that result from different mutations within the same gene of various patients.
Collapse
|
6
|
Synapsis alters RAG-mediated nicking at Tcrb recombination signal sequences: implications for the “beyond 12/23” rule. Mol Cell Biol 2014; 34:2566-80. [PMID: 24797073 DOI: 10.1128/mcb.00411-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
At the Tcrb locus, Vβ-to-Jβ rearrangement is permitted by the 12/23 rule but is not observed in vivo, a restriction termed the “beyond 12/23” rule (B12/23 rule). Previous work showed that Vβ recombination signal sequences (RSSs) do not recombine with Jβ RSSs because Jβ RSSs are crippled for either nicking or synapsis. This result raised the following question: how can crippled Jβ RSSs recombine with Dβ RSSs? We report here that the nicking of some Jβ RSSs can be substantially stimulated by synapsis with a 3′Dβ1 partner RSS. This result helps to reconcile disagreement in the field regarding the impact of synapsis on nicking. Furthermore, our data allow for the classification of Tcrb RSSs into two major categories: those that nick quickly and those that nick slowly in the absence of a partner. Slow-nicking RSSs can be stimulated to nick more efficiently upon synapsis with an appropriate B12/23 partner, and our data unexpectedly suggest that fast-nicking RSSs can be inhibited for nicking upon synapsis with an inappropriate partner. These observations indicate that the RAG proteins exert fine control over every step of V(D)J cleavage and support the hypothesis that initial RAG binding can occur on RSSs with either 12- or 23-bp spacers (12- or 23-RSSs, respectively).
Collapse
|
7
|
Unifying model for molecular determinants of the preselection Vβ repertoire. Proc Natl Acad Sci U S A 2013; 110:E3206-15. [PMID: 23918392 DOI: 10.1073/pnas.1304048110] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The primary antigen receptor repertoire is sculpted by the process of V(D)J recombination, which must strike a balance between diversification and favoring gene segments with specialized functions. The precise determinants of how often gene segments are chosen to complete variable region coding exons remain elusive. We quantified Vβ use in the preselection Tcrb repertoire and report relative contributions of 13 distinct features that may shape their recombination efficiencies, including transcription, chromatin environment, spatial proximity to their DβJβ targets, and predicted quality of recombination signal sequences (RSSs). We show that, in contrast to functional Vβ gene segments, all pseudo-Vβ segments are sequestered in transcriptionally silent chromatin, which effectively suppresses wasteful recombination. Importantly, computational analyses provide a unifying model, revealing a minimum set of five parameters that are predictive of Vβ use, dominated by chromatin modifications associated with transcription, but largely independent of precise spatial proximity to DβJβ clusters. This learned model-building strategy may be useful in predicting the relative contributions of epigenetic, spatial, and RSS features in shaping preselection V repertoires at other antigen receptor loci. Ultimately, such models may also predict how designed or naturally occurring alterations of these loci perturb the preselection use of variable gene segments.
Collapse
|
8
|
Trancoso I, Bonnet M, Gardner R, Carneiro J, Barreto VM, Demengeot J, Sarmento LM. A Novel Quantitative Fluorescent Reporter Assay for RAG Targets and RAG Activity. Front Immunol 2013; 4:110. [PMID: 23720659 PMCID: PMC3655321 DOI: 10.3389/fimmu.2013.00110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/27/2013] [Indexed: 12/11/2022] Open
Abstract
Recombination-Activating Genes (RAG) 1 and 2 form the site specific recombinase that mediates V(D)J recombination, a process of DNA editing required for lymphocyte development and responsible for their diverse repertoire of antigen receptors. Mistargeted RAG activity associates with genome alteration and is responsible for various lymphoid tumors. Moreover several non-lymphoid tumors express RAG ectopically. A practical and powerful tool to perform quantitative assessment of RAG activity and to score putative RAG-Recognition signal sequences (RSS) is required in the fields of immunology, oncology, gene therapy, and development. Here we report the detailed characterization of a novel fluorescence-based reporter of RAG activity, named GFPi, a tool that allows measuring recombination efficiency (RE) by simple flow cytometry analysis. GFPi can be produced both as a plasmid for transient transfection experiments in cell lines or as a retrovirus for stable integration in the genome, thus supporting ex vivo and in vivo studies. The GFPi assay faithfully quantified endogenous and ectopic RAG activity as tested in genetically modified fibroblasts, tumor derived cell lines, developing pre-B cells, and hematopoietic cells. The GFPi assay also successfully ranked the RE of various RSS pairs, including bona fide RSS associated with V(D)J segments, artificial consensus sequences modified or not at specific nucleotides known to affect their efficiencies, or cryptic RSS involved in RAG-dependent activation of oncogenes. Our work validates the GFPi reporter as a practical quantitative tool for the study of RAG activity and RSS efficiencies. It should turn useful for the study of RAG-mediated V(D)J and aberrant rearrangements, lineage commitment, and vertebrate evolution.
Collapse
|
9
|
Aoki-Ota M, Torkamani A, Ota T, Schork N, Nemazee D. Skewed primary Igκ repertoire and V-J joining in C57BL/6 mice: implications for recombination accessibility and receptor editing. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:2305-15. [PMID: 22287713 PMCID: PMC3288532 DOI: 10.4049/jimmunol.1103484] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous estimates of the diversity of the mouse Ab repertoire have been based on fragmentary data as a result of many technical limitations, in particular, the many samples necessary to provide adequate coverage. In this study, we used 5'-coding end amplification of Igκ mRNAs from bone marrow, splenic, and lymph node B cells of C57BL/6 mice combined with amplicon pyrosequencing to assess the functional and nonfunctional Vκ repertoire. To evaluate the potential effects of receptor editing, we also compared V/J associations and usage in bone marrows of mouse mutants under constitutive negative selection or an altered ability to undergo secondary recombination. To focus on preimmune B cells, our cell sorting strategy excluded memory B cells and plasma cells. Analysis of ~90 Mbp, representing >250,000 individual transcripts from 59 mice, revealed that 101 distinct functional Vκ genes are used but at frequencies ranging from ~0.001 to ~10%. Usage of seven Vκ genes made up >40% of the repertoire. A small class of transcripts from apparently nonfunctional Vκ genes was found, as were occasional transcripts from several apparently functional genes that carry aberrant recombination signals. Of 404 potential V-J combinations (101 Vκs × 4 Jκs), 398 (98.5%) were found at least once in our sample. For most Vκ transcripts, all Jκs were used, but V-J association biases were common. Usage patterns were remarkably stable in different selective conditions. Overall, the primary κ repertoire is highly skewed by preferred rearrangements, limiting Ab diversity, but potentially facilitating receptor editing.
Collapse
Affiliation(s)
- Miyo Aoki-Ota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| | - Ali Torkamani
- Translational Sciences Institute, The Scripps Research Institute, La Jolla, California 92037
| | - Takayuki Ota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| | - Nicholas Schork
- Translational Sciences Institute, The Scripps Research Institute, La Jolla, California 92037
| | - David Nemazee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
10
|
Abstract
V(D)J recombination assembles immunoglobulin and T cell receptor genes during lymphocyte development through a series of carefully orchestrated DNA breakage and rejoining events. DNA cleavage requires a series of protein-DNA complexes containing the RAG1 and RAG2 proteins and recombination signals that flank the recombining gene segments. In this review, we discuss recent advances in our understanding of the function and domain organization of the RAG proteins, the composition and structure of RAG-DNA complexes, and the pathways that lead to the formation of these complexes. We also consider the functional significance of RAG-mediated histone recognition and ubiquitin ligase activities, and the role played by RAG in ensuring proper repair of DNA breaks made during V(D)J recombination. Finally, we propose a model for the formation of RAG-DNA complexes that involves anchoring of RAG1 at the recombination signal nonamer and RAG2-dependent surveillance of adjoining DNA for suitable spacer and heptamer sequences.
Collapse
Affiliation(s)
- David G Schatz
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
11
|
Schatz DG, Ji Y. Recombination centres and the orchestration of V(D)J recombination. Nat Rev Immunol 2011; 11:251-63. [PMID: 21394103 DOI: 10.1038/nri2941] [Citation(s) in RCA: 420] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The initiation of V(D)J recombination by the recombination activating gene 1 (RAG1) and RAG2 proteins is carefully orchestrated to ensure that antigen receptor gene assembly occurs in the appropriate cell lineage and in the proper developmental order. Here we review recent advances in our understanding of how DNA binding and cleavage by the RAG proteins are regulated by the chromatin structure and architecture of antigen receptor genes. These advances suggest novel mechanisms for both the targeting and the mistargeting of V(D)J recombination, and have implications for how these events contribute to genome instability and lymphoid malignancy.
Collapse
Affiliation(s)
- David G Schatz
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, Box 208011, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
12
|
Naik AK, Lieber MR, Raghavan SC. Cytosines, but not purines, determine recombination activating gene (RAG)-induced breaks on heteroduplex DNA structures: implications for genomic instability. J Biol Chem 2010; 285:7587-97. [PMID: 20051517 DOI: 10.1074/jbc.m109.089631] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sequence specificity of the recombination activating gene (RAG) complex during V(D)J recombination has been well studied. RAGs can also act as structure-specific nuclease; however, little is known about the mechanism of its action. Here, we show that in addition to DNA structure, sequence dictates the pattern and efficiency of RAG cleavage on altered DNA structures. Cytosine nucleotides are preferentially nicked by RAGs when present at single-stranded regions of heteroduplex DNA. Although unpaired thymine nucleotides are also nicked, the efficiency is many fold weaker. Induction of single- or double-strand breaks by RAGs depends on the position of cytosines and whether it is present on one or both of the strands. Interestingly, RAGs are unable to induce breaks when adenine or guanine nucleotides are present at single-strand regions. The nucleotide present immediately next to the bubble sequence could also affect RAG cleavage. Hence, we propose "C((d))C((S))C((S))" (d, double-stranded; s, single-stranded) as a consensus sequence for RAG-induced breaks at single-/double-strand DNA transitions. Such a consensus sequence motif is useful for explaining RAG cleavage on other types of DNA structures described in the literature. Therefore, the mechanism of RAG cleavage described here could explain facets of chromosomal rearrangements specific to lymphoid tissues leading to genomic instability.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
13
|
H3K4me3 stimulates the V(D)J RAG complex for both nicking and hairpinning in trans in addition to tethering in cis: implications for translocations. Mol Cell 2009; 34:535-44. [PMID: 19524534 DOI: 10.1016/j.molcel.2009.05.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/31/2009] [Accepted: 05/18/2009] [Indexed: 01/19/2023]
Abstract
The PHD finger of the RAG2 polypeptide of the RAG1/RAG2 complex binds to the histone H3 modification, trimethylated lysine 4 (H3K4me3), and in some manner increases V(D)J recombination. In the absence of biochemical studies of H3K4me3 on purified RAG enzyme activity, the precise role of H3K4me3 remains unclear. Here, we find that H3K4me3 stimulates purified RAG enzymatic activity at both the nicking (2- to 5-fold) and hairpinning (3- to 11-fold) steps of V(D)J recombination. Remarkably, this stimulation can be achieved with free H3K4me3 peptide (in trans), indicating that H3K4me3 functions via two distinct mechanisms. It not only tethers the RAG enzyme complex to a region of DNA, but it also induces a substantial increase in the catalytic turnover number (k(cat)) of the RAG complex. The H3K4me3 catalytic stimulation applies to suboptimal cryptic RSS sites located at H3K4me3 peaks that are critical in the inception of human T cell acute lymphoblastic lymphomas.
Collapse
|
14
|
Franchini DM, Benoukraf T, Jaeger S, Ferrier P, Payet-Bornet D. Initiation of V(D)J recombination by Dbeta-associated recombination signal sequences: a critical control point in TCRbeta gene assembly. PLoS One 2009; 4:e4575. [PMID: 19238214 PMCID: PMC2642999 DOI: 10.1371/journal.pone.0004575] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 01/15/2009] [Indexed: 01/26/2023] Open
Abstract
T cell receptor (TCR) β gene assembly by V(D)J recombination proceeds via successive Dβ-to-Jβ and Vβ-to-DJβ rearrangements. This two-step process is enforced by a constraint, termed beyond (B)12/23, which prohibits direct Vβ-to-Jβ rearrangements. However the B12/23 restriction does not explain the order of TCRβ assembly for which the regulation remains an unresolved issue. The initiation of V(D)J recombination consists of the introduction of single-strand DNA nicks at recombination signal sequences (RSSs) containing a 12 base-pairs spacer. An RSS containing a 23 base-pairs spacer is then captured to form a 12/23 RSSs synapse leading to coupled DNA cleavage. Herein, we probed RSS nicks at the TCRβ locus and found that nicks were only detectable at Dβ-associated RSSs. This pattern implies that Dβ 12RSS and, unexpectedly, Dβ 23RSS initiate V(D)J recombination and capture their respective Vβ or Jβ RSS partner. Using both in vitro and in vivo assays, we further demonstrate that the Dβ1 23RSS impedes cleavage at the adjacent Dβ1 12RSS and consequently Vβ-to-Dβ1 rearrangement first requires the Dβ1 23RSS excision. Altogether, our results provide the molecular explanation to the B12/23 constraint and also uncover a ‘Dβ1 23RSS-mediated’ restriction operating beyond chromatin accessibility, which directs Dβ1 ordered rearrangements.
Collapse
Affiliation(s)
- Don-Marc Franchini
- Centre d'Immunologie de Marseille-Luminy, Université Aix Marseille, Marseille, France
- CNRS, UMR6102, Marseille, France
- Inserm, U631, Marseille, France
| | - Touati Benoukraf
- Centre d'Immunologie de Marseille-Luminy, Université Aix Marseille, Marseille, France
- CNRS, UMR6102, Marseille, France
- Inserm, U631, Marseille, France
| | - Sébastien Jaeger
- Centre d'Immunologie de Marseille-Luminy, Université Aix Marseille, Marseille, France
- CNRS, UMR6102, Marseille, France
- Inserm, U631, Marseille, France
| | - Pierre Ferrier
- Centre d'Immunologie de Marseille-Luminy, Université Aix Marseille, Marseille, France
- CNRS, UMR6102, Marseille, France
- Inserm, U631, Marseille, France
| | - Dominique Payet-Bornet
- Centre d'Immunologie de Marseille-Luminy, Université Aix Marseille, Marseille, France
- CNRS, UMR6102, Marseille, France
- Inserm, U631, Marseille, France
- * E-mail:
| |
Collapse
|
15
|
Leaky severe combined immunodeficiency and aberrant DNA rearrangements due to a hypomorphic RAG1 mutation. Blood 2009; 113:2965-75. [PMID: 19126872 DOI: 10.1182/blood-2008-07-165167] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The RAG1/2 endonuclease initiates programmed DNA rearrangements in progenitor lymphocytes by generating double-strand breaks at specific recombination signal sequences. This process, known as V(D)J recombination, assembles the vastly diverse antigen receptor genes from numerous V, D, and J coding segments. In vitro biochemical and cellular transfection studies suggest that RAG1/2 may also play postcleavage roles by forming complexes with the recombining ends to facilitate DNA end processing and ligation. In the current study, we examine the in vivo consequences of a mutant form of RAG1, RAG1-S723C, that is proficient for DNA cleavage, yet exhibits defects in postcleavage complex formation and end joining in vitro. We generated a knockin mouse model harboring the RAG1-S723C hypomorphic mutation and examined the immune system in this fully in vivo setting. RAG1-S723C homozygous mice exhibit impaired lymphocyte development and decreased V(D)J rearrangements. Distinct from RAG nullizygosity, the RAG1-S723C hypomorph results in aberrant DNA double-strand breaks within rearranging loci. RAG1-S723C also predisposes to thymic lymphomas associated with chromosomal translocations in a p53 mutant background, and heterozygosity for the mutant allele accelerates age-associated immune system dysfunction. Thus, our study provides in vivo evidence that implicates aberrant RAG1/2 activity in lymphoid tumor development and premature immunosenescence.
Collapse
|
16
|
A role for DNA polymerase mu in the emerging DJH rearrangements of the postgastrulation mouse embryo. Mol Cell Biol 2008; 29:1266-75. [PMID: 19103746 DOI: 10.1128/mcb.01518-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The molecular complexes involved in the nonhomologous end-joining process that resolves recombination-activating gene (RAG)-induced double-strand breaks and results in V(D)J gene rearrangements vary during mammalian ontogeny. In the mouse, the first immunoglobulin gene rearrangements emerge during midgestation periods, but their repertoires have not been analyzed in detail. We decided to study the postgastrulation DJ(H) joints and compare them with those present in later life. The embryo DJ(H) joints differed from those observed in perinatal life by the presence of short stretches of nontemplated (N) nucleotides. Whereas most adult N nucleotides are introduced by terminal deoxynucleotidyl transferase (TdT), the embryo N nucleotides were due to the activity of the homologous DNA polymerase mu (Polmu), which was widely expressed in the early ontogeny, as shown by analysis of Polmu(-/-) embryos. Based on its DNA-dependent polymerization ability, which TdT lacks, Polmu also filled in small sequence gaps at the coding ends and contributed to the ligation of highly processed ends, frequently found in the embryo, by pairing to internal microhomology sites. These findings show that Polmu participates in the repair of early-embryo, RAG-induced double-strand breaks and subsequently may contribute to preserve the genomic stability and cellular homeostasis of lymphohematopoietic precursors during development.
Collapse
|
17
|
Wong SY, Lu CP, Roth DB. A RAG1 mutation found in Omenn syndrome causes coding flank hypersensitivity: a novel mechanism for antigen receptor repertoire restriction. THE JOURNAL OF IMMUNOLOGY 2008; 181:4124-30. [PMID: 18768869 DOI: 10.4049/jimmunol.181.6.4124] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Hypomorphic RAG mutants with severely reduced V(D)J recombination activity cause Omenn Syndrome (OS), an immunodeficiency with features of immune dysregulation and a restricted TCR repertoire. Precisely how RAG mutants produce autoimmune and allergic symptoms has been unclear. Current models posit that the severe recombination defect restricts the number of lymphocyte clones, a few of which are selected upon Ag exposure. We show that murine RAG1 R972Q, corresponding to an OS mutation, renders the recombinase hypersensitive to selected coding sequences at the hairpin formation step. Other RAG1 OS mutants tested do not manifest this sequence sensitivity. These new data support a novel mechanism for OS: by selectively impairing recombination at certain coding flanks, a RAG mutant can cause primary repertoire restriction, as opposed to a more random, limited repertoire that develops secondary to severely diminished recombination activity.
Collapse
Affiliation(s)
- Serre-Yu Wong
- Program in Molecular Pathogenesis, Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, and Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
18
|
Lu H, Schwarz K, Lieber MR. Extent to which hairpin opening by the Artemis:DNA-PKcs complex can contribute to junctional diversity in V(D)J recombination. Nucleic Acids Res 2007; 35:6917-23. [PMID: 17932067 PMCID: PMC2175297 DOI: 10.1093/nar/gkm823] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
V(D)J recombination events are initiated by cleavage at gene segments by the RAG1:RAG2 complex, which results in hairpin formation at the coding ends. The hairpins are opened by the Artemis:DNA-PKcs complex, and then joined via the nonhomologous DNA end joining (NHEJ) process. Here we examine the opening of the hairpinned coding ends from all of the 39 functional human VH elements. We find that there is some sequence-dependent variation in the efficiency and even the position of hairpin opening by Artemis:DNA-PKcs. The hairpin opening efficiency varies over a 7-fold range. The hairpin opening position varies over the region from 1 to 4 nt 3′ of the hairpin tip, leading to a 2–8 nt single-stranded 3′ overhang at each coding end. This information provides greater clarity on the extent to which the hairpin opening position contributes to junctional diversification in V(D)J recombination.
Collapse
Affiliation(s)
- Haihui Lu
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Biological Sciences and Department of Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA and Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm and Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Klaus Schwarz
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Biological Sciences and Department of Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA and Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm and Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
| | - Michael R. Lieber
- Department of Pathology, Department of Biochemistry & Molecular Biology, Department of Biological Sciences and Department of Molecular Microbiology & Immunology, Norris Comprehensive Cancer Center, Los Angeles, CA, USA and Institute for Clinical Transfusion Medicine and Immunogenetics, Ulm and Institute for Transfusion Medicine, University Hospital Ulm, Ulm, Germany
- * To whom correspondence should be addressed. +1 323 865 0568+1 323 865 3019 Correspondence may also be addressed to Klaus Schwarz. +49 731 150 642 +49 731 150 575
| |
Collapse
|
19
|
Drejer-Teel AH, Fugmann SD, Schatz DG. The beyond 12/23 restriction is imposed at the nicking and pairing steps of DNA cleavage during V(D)J recombination. Mol Cell Biol 2007; 27:6288-99. [PMID: 17636023 PMCID: PMC2099602 DOI: 10.1128/mcb.00835-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The beyond 12/23 (B12/23) rule ensures inclusion of a Dbeta gene segment in the assembled T-cell receptor (TCR) beta variable region exon and is manifest by a failure of direct Vbeta-to-Jbeta gene segment joining. The restriction is enforced during the DNA cleavage step of V(D)J recombination by the recombination-activating gene 1 and 2 (RAG1/2) proteins and the recombination signal sequences (RSSs) flanking the TCRbeta gene segments. Nothing is known about the step(s) at which DNA cleavage is defective or how TCRbeta locus sequences contribute to these defects. To address this, we examined the steps of DNA cleavage by the RAG proteins using TCRbeta locus V, D, and J RSS oligonucleotide substrates. The results demonstrate that the B12/23 rule is enforced through slow nicking of Jbeta substrates and to some extent through poor synapsis of Vbeta and Jbeta substrates. Nicking is controlled largely by the coding flank and, unexpectedly, the RSS spacer, while synapsis is controlled primarily by the RSS nonamer. The results demonstrate that different Jbeta substrates are crippled at different steps of cleavage by distinct combinations of defects in the various DNA elements and strongly suggest that the DNA nicking step of V(D)J recombination can be rate limiting in vivo.
Collapse
Affiliation(s)
- Anna H Drejer-Teel
- Department of Genetics, Yale University School of Medicine, 330 Cedar St., New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
20
|
Ciubotaru M, Kriatchko AN, Swanson PC, Bright FV, Schatz DG. Fluorescence resonance energy transfer analysis of recombination signal sequence configuration in the RAG1/2 synaptic complex. Mol Cell Biol 2007; 27:4745-58. [PMID: 17470556 PMCID: PMC1951485 DOI: 10.1128/mcb.00177-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
A critical step in V(D)J recombination is the synapsis of complementary (12/23) recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins to generate the paired complex (PC). Using a facilitated ligation assay and substrates that vary the helical phasing of the RSSs, we provide evidence that one particular geometric configuration of the RSSs is favored in the PC. To investigate this configuration further, we used fluorescent resonance energy transfer (FRET) to detect the synapsis of fluorescently labeled RSS oligonucleotides. FRET requires an appropriate 12/23 RSS pair, a divalent metal ion, and high-mobility-group protein HMGB1 or HMGB2. Energy transfer between the RSSs was detected with all 12/23 RSS end positions of the fluorescent probes but was not detected when probes were placed on the two ends of the same RSS. Energy transfer was confirmed to originate from the PC by using an in-gel FRET assay. The results argue against a unique planar configuration of the RSSs in the PC and are most easily accommodated by models in which synapsed 12- and 23-RSSs are bent and cross one another, with implications for the organization of the RAG proteins and the DNA substrates at the time of cleavage.
Collapse
Affiliation(s)
- Mihai Ciubotaru
- Howard Hughes Medical Institute and Department of Immunibiology, Yale University School of Medicine, New Haven, CT 06520-8011, USA
| | | | | | | | | |
Collapse
|
21
|
The structure-specific nicking of small heteroduplexes by the RAG complex: implications for lymphoid chromosomal translocations. DNA Repair (Amst) 2007; 6:751-9. [PMID: 17307402 DOI: 10.1016/j.dnarep.2006.12.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 11/15/2006] [Accepted: 12/29/2006] [Indexed: 10/23/2022]
Abstract
During V(D)J recombination, the RAG complex binds at recombination signal sequences and creates double-strand breaks. In addition to this sequence-specific recognition of the RSS, the RAG complex has been shown to be a structure-specific nuclease, cleaving 3' overhangs and 3' flaps, and, more recently, 10 nucleotides (nt) bubble (heteroduplex) structures. Here, we assess the smallest size heteroduplex that core and full-length RAGs can cleave. We also test whether bubbles adjacent to a partial RSS are nicked any differently or any more efficiently than bubbles that are surrounded by random sequence. These points are important in considering what types and what size of non-B DNA structure that the RAG complex can nick, and this helps assess the role of the RAG complex in mediating lymphoid chromosomal translocations. We find that the smallest bubble nicked by the RAG complex is 3nt, and proximity to a partial or full RSS sequence does not affect the nicking by RAGs. RAG nicking efficiency increases with the size of the heteroduplex and is only about two-fold less efficient than an RSS when the bubble is 6nt. We consider these findings in the context of RAG nicking at non-B DNA structures in lymphoid chromosomal translocations.
Collapse
|
22
|
Abstract
The rearrangement of antigen receptor genes is initiated by double-strand breaks catalyzed by the RAG1/2 complex at the junctions of recombination signal sequences and coding segments. As with some "cut-and-paste" transposases, such as Tn5 and Hermes, a DNA hairpin is formed at one end of the break via a nicked intermediate. By using abasic DNA substrates, we show that different base positions are important for the two steps of cleavage. Removal of one base in the coding flank enhances hairpin formation, bypassing a requirement for a paired complex of two signal sequences. Rescue by abasic substrates is consistent with a base-flip mechanism seen in the crystal structure of the Tn5 postcleavage complex and may mimic the DNA changes on paired complex formation. We have searched for a tryptophan residue in RAG1 that would be the functional equivalent of W298 in Tn5, which stabilizes the DNA interaction by stacking the flipped base on the indole ring. A W956A mutation in RAG1 had an inhibitory effect on both nicking and hairpin stages that could be rescued by abasic substrates. W956 is therefore a likely candidate for interacting with this base during hairpin formation.
Collapse
Affiliation(s)
- Gabrielle J. Grundy
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 241, Bethesda, MD 20892
| | - Joanne E. Hesse
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 241, Bethesda, MD 20892
| | - Martin Gellert
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 5, Room 241, Bethesda, MD 20892
- *To whom correspondence may be addressed. E-mail:
| |
Collapse
|
23
|
Rahman NS, Godderz LJ, Stray SJ, Capra JD, Rodgers KK. DNA cleavage of a cryptic recombination signal sequence by RAG1 and RAG2. Implications for partial V(H) gene replacement. J Biol Chem 2006; 281:12370-80. [PMID: 16531612 DOI: 10.1074/jbc.m507906200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Antibody and T cell receptor genes are assembled from gene segments by V(D)J recombination to produce an almost infinitely diverse repertoire of antigen specificities. Recombination is initiated by cleavage of conserved recombination signal sequences (RSS) by RAG1 and RAG2 during lymphocyte development. Recent evidence demonstrates that recombination can occur at noncanonical RSS sites within Ig genes or at other loci, outside the context of normal lymphocyte receptor gene rearrangement. We have characterized the ability of the RAG proteins to bind and cleave a cryptic RSS (cRSS) located within an Ig V(H) gene segment. The RAG proteins bound with sequence specificity to either the consensus RSS or the cRSS. The RAG proteins nick the cRSS on both the top and bottom strands, thereby bypassing the formation of the DNA hairpin intermediate observed in RAG cleavage of canonical RSS substrates. We propose that the RAG proteins may utilize an alternative mechanism for double-stranded DNA cleavage, depending on the substrate sequence. These results have implications for further diversification of the antigen receptor repertoire as well as the role of the RAG proteins in genomic instability.
Collapse
Affiliation(s)
- Negar S Rahman
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73190, USA
| | | | | | | | | |
Collapse
|
24
|
Raghavan SC, Hsieh CL, Lieber MR. Both V(D)J coding ends but neither signal end can recombine at the bcl-2 major breakpoint region, and the rejoining is ligase IV dependent. Mol Cell Biol 2005; 25:6475-84. [PMID: 16024785 PMCID: PMC1190333 DOI: 10.1128/mcb.25.15.6475-6484.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2005] [Revised: 03/31/2005] [Accepted: 04/13/2005] [Indexed: 12/22/2022] Open
Abstract
The t(14;18) chromosomal translocation is the most common translocation in human cancer, and it occurs in all follicular lymphomas. The 150-bp bcl-2 major breakpoint region (Mbr) on chromosome 18 is a fragile site, because it adopts a non-B DNA conformation that can be cleaved by the RAG complex. The non-B DNA structure and the chromosomal translocation can be recapitulated on intracellular human minichromosomes where immunoglobulin 12- and 23-signals are positioned downstream of the bcl-2 Mbr. Here we show that either of the two coding ends in these V(D)J recombination reactions can recombine with either of the two broken ends of the bcl-2 Mbr but that neither signal end can recombine with the Mbr. Moreover, we show that the rejoining is fully dependent on DNA ligase IV, indicating that the rejoining phase relies on the nonhomologous DNA end-joining pathway. These results permit us to formulate a complete model for the order and types of cleavage and rejoining events in the t(14;18) translocation.
Collapse
Affiliation(s)
- Sathees C Raghavan
- USC Norris Comprehensive Cancer Ctr., Rm. 5428, 1441 Eastlake Ave., Los Angeles, CA 90089-9176, USA
| | | | | |
Collapse
|
25
|
Larijani M, Chen S, Cunningham LA, Volpe JM, Cowell LG, Lewis SM, Wu GE. The recombination difference between mouse kappa and lambda segments is mediated by a pair-wise regulation mechanism. Mol Immunol 2005; 43:870-81. [PMID: 16054218 DOI: 10.1016/j.molimm.2005.06.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Indexed: 10/25/2022]
Abstract
In mice, kappa light chains dominate over lambda in the immunoglobulin repertoire by as much as 20-fold. Although a major contributor to this difference is the recombination signal sequences (RSS), the mechanism by which RSS cause differential representation has not been determined. To elucidate the mechanism, we tested kappa and lambda RSS flanked by their natural 5' and 3' flanks in three systems that monitor V(D)J recombination. Using extra-chromosomal recombination substrates, we established that a kappa RSS and its flanks support six- to nine-fold higher levels of recombination than a lambda counterpart. In vitro cleavage assays with these same sequences demonstrated that single cleavage at individual kappa or lambda RSS (plus flanks) occurs with comparable frequencies, but that a pair of kappa RSS (plus flanks) support significantly higher levels of double cleavage than a pair of lambda RSS (plus flanks). Using EMSA with double stranded oligonucleotides containing the same kappa or lambda RSS and their respective flanks, we examined RAG/DNA complex formation. We report that, surprisingly, RAG-1/2 form only modestly higher levels of complexes on individual 12 and 23 kappa RSS (plus natural flanks) as compared to their lambda counterparts. We conclude that the overuse of kappa compared to lambda segments cannot be accounted for by differences in RAG-1/2 binding nor by cleavage at individual RSS but rather could be accounted for by enhanced pair-wise cleavage of kappa RSS by RAG-1/2. Based on the data presented, we suggest that the biased usage of light chain segments is imposed at the level of synaptic RSS pairs.
Collapse
Affiliation(s)
- Mani Larijani
- Department of Biology, York University, 4700 Keele St, Toronto, Ont., Canada M3J 1P3.
| | | | | | | | | | | | | |
Collapse
|
26
|
Ciubotaru M, Schatz DG. Synapsis of recombination signal sequences located in cis and DNA underwinding in V(D)J recombination. Mol Cell Biol 2004; 24:8727-44. [PMID: 15367690 PMCID: PMC516766 DOI: 10.1128/mcb.24.19.8727-8744.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2003] [Revised: 02/21/2004] [Accepted: 06/22/2004] [Indexed: 11/20/2022] Open
Abstract
V(D)J recombination requires binding and synapsis of a complementary (12/23) pair of recombination signal sequences (RSSs) by the RAG1 and RAG2 proteins, aided by a high-mobility group protein, HMG1 or HMG2. Double-strand DNA cleavage within this synaptic, or paired, complex is thought to involve DNA distortion or melting near the site of cleavage. Although V(D)J recombination normally occurs between RSSs located on the same DNA molecule (in cis), all previous studies that directly assessed RSS synapsis were performed with the two DNA substrates in trans. To overcome this limitation, we have developed a facilitated circularization assay using DNA substrates of reduced length to assess synapsis of RSSs in cis. We show that a 12/23 pair of RSSs is the preferred substrate for synapsis of cis RSSs and that the efficiency of pairing is dependent upon RAG1-RAG2 stoichiometry. Synapsis in cis occurs rapidly and is kinetically favored over synapsis of RSSs located in trans. This experimental system also allowed the generation of underwound DNA substrates containing pairs of RSSs in cis. Importantly, we found that the RAG proteins cleave such substrates substantially more efficiently than relaxed substrates and that underwinding may enhance RSS synapsis as well as RAG1/2-mediated catalysis. The energy stored in such underwound substrates may be used in the generation of DNA distortion and/or protein conformational changes needed for synapsis and cleavage. We propose that this unwinding is uniquely sensed during synapsis of an appropriate 12/23 pair of RSSs.
Collapse
Affiliation(s)
- Mihai Ciubotaru
- Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar St., TAC S625, New Haven, CT 06510.
| | | |
Collapse
|
27
|
Yu K, Taghva A, Ma Y, Lieber MR. Kinetic analysis of the nicking and hairpin formation steps in V(D)J recombination. DNA Repair (Amst) 2004; 3:67-75. [PMID: 14697761 DOI: 10.1016/j.dnarep.2003.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The complete cleavage phase of V(D)J recombination includes four phases: binding of the active RAG complexes to the 12- or 23-signals, nicking of the signals, synapsis of the two signals, and hairpin formation at both signals concurrently. We have done time courses for the complete cleavage phase of the V(D)J recombination reaction and quantitated the amount of active RAG enzyme. We have also formulated a kinetic model for the binding, nicking, synapsis, and hairpin formation phases. We have utilized free solution enzymatic measurements for the binding and nicking phases as we do mathematical simulations of the kinetic model. This permits iteration of rate constants for the synapsis and hairpin formation phases until the model fits the observed overall cleavage time course. This process yields a rate constant for the hairpin formation that is 0.004 min(-1), which corresponds to an average catalytic cycle time of 250 min. This value is exceedingly close to a measured value of this constant that relied on wash-out of an inhibitory cofactor. The agreement indicates that this is likely to be the rate of the hairpin step over a wide range of range of conditions and irrespective of the DNA sequence of the V, D or J coding end located adjacent to the signal. These findings indicate that, under optimal in vitro conditions, the core RAG proteins carry out nicking at a rate which is nearly 150-fold faster than hairpin formation. The physiologic implications of this and other kinetic inferences of these time courses are discussed.
Collapse
Affiliation(s)
- Kefei Yu
- Department of Pathology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Room 5428, 1441 Eastlake Avenue, MC 9176, Los Angeles, CA 90033, USA
| | | | | | | |
Collapse
|
28
|
Talukder SR, Dudley DD, Alt FW, Takahama Y, Akamatsu Y. Increased frequency of aberrant V(D)J recombination products in core RAG-expressing mice. Nucleic Acids Res 2004; 32:4539-49. [PMID: 15328366 PMCID: PMC516053 DOI: 10.1093/nar/gkh778] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
RAG1 and RAG2 play a central role in V(D)J recombination, a process for antigen receptor gene assembly. The truncated 'core' regions of RAGs are sufficient to catalyze the recombination reaction, although with lower joining efficiency than full-length proteins. To investigate the role of the non-core regions of RAGs in the end-joining phase of antigen receptor rearrangement, we analyzed recombination products isolated from core RAG1 and core RAG2 knock-in mice. Here, we report that the truncation of RAGs increases the frequency of aberrant recombination in vivo. Signal joints (SJs) associated with V-to-D recombination of core RAG1 knock-in mice were normal, whereas those of core RAG2 knock-in mice were highly imprecise, containing large deletions and additions, and in some cases coding sequences. In contrast, we found an elevated level of imprecise D-to-J associated SJs for both core RAG1- and RAG2-expressing mice. Likewise, sequences of coding joints (CJs) were also affected by the expression of core RAGs. Finally, sequences found at the junctions of rearranged T-cell receptor loci were highly influenced by differences in rearranging recombination signal sequence pairs. We provide the first evidence that the non-core regions of RAGs have critical functions in the proper assembly and resolution of recombination intermediates in endogenous antigen receptor loci.
Collapse
Affiliation(s)
- Sadiqur R Talukder
- Institute for Genome Research, University of Tokushima, Tokushima 770-8503, Japan and Howard Hughes Medical Institute, Children's Hospital, Harvard Medical School, CBR Institute for Biomedical Research, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
The primary T-cell receptor repertoire is generated by somatic rearrangement of discontinuous gene segments. The shape of the combinatorial repertoire is stereotypical and, in part, evolutionarily conserved among mammals. Rearrangement is initiated by specific interactions between the recombinase and the recombination signals (RSs) that flank the gene segments. Conserved sequence variations in the RS, which modulate its interactions with the recombinase, appear to be a major factor in shaping the primary repertoire. In vitro, biochemical studies have revealed distinct steps in these complex recombinase-RS interactions that may determine the final frequency of gene segment rearrangement. These studies offer a plausible model to explain gene segment selection, but new, more physiological approaches will have to be developed to verify and refine the mechanism by which the recombinase targets the RS in its endogenous chromosomal context in vivo.
Collapse
MESH Headings
- Animals
- Base Sequence
- DNA Damage/physiology
- Gene Rearrangement, T-Lymphocyte
- Genes, Immunoglobulin/immunology
- Genes, Immunoglobulin/physiology
- Genes, T-Cell Receptor
- Humans
- Molecular Sequence Data
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- VDJ Recombinases/physiology
Collapse
Affiliation(s)
- Ferenc Livák
- Department of Microbiology and Immunology, Graduate Program in Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
30
|
Collins AM, Sewell WA, Edwards MR. Immunoglobulin gene rearrangement, repertoire diversity, and the allergic response. Pharmacol Ther 2003; 100:157-70. [PMID: 14609718 DOI: 10.1016/j.pharmthera.2003.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The immunoglobulin repertoire arises as a consequence of combinatorial diversity, junctional diversity, and the process of somatic point mutation. Each of these processes involves biases that limit and shape the available immunoglobulin repertoire. The expressed repertoire is further shaped by selection, to the extent that biased gene usage can become apparent in many disease states. The study of rearranged immunoglobulin genes therefore may not only provide insights into the molecular processes involved in the generation of antibody diversity but also inform us of pathogenic processes and perhaps identify particular lymphocyte clones as therapeutic targets. Partly as a consequence of the low numbers of circulating IgE-committed B-cells, studies of rearranged IgE genes in allergic individuals have commenced relatively recently. In this review, recent advances in our understanding of the processes of immunoglobulin gene rearrangement and somatic point mutation are described, and biases inherent to these processes are discussed. The evidence that some diseases may be associated with particular gene rearrangements is then considered, with a particular focus on allergic disease. Reviewed data suggest that an important contribution to the IgE response may come from cells that use relatively rare heavy chain V (V(H)) segment genes, which display little somatic point mutation. Some IgE antibodies also seem to display polyreactive binding. In other contexts, these 3 characteristics have been associated with antibodies of the B-1 B-cell subset, and the possibility that B-1 B-cells contribute to the allergic response is therefore considered.
Collapse
Affiliation(s)
- A M Collins
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales, Sydney, Australia.
| | | | | |
Collapse
|
31
|
Olaru A, Patterson DN, Villey I, Livák F. DNA-Rag Protein Interactions in the Control of Selective D Gene Utilization in the TCRβ Locus. THE JOURNAL OF IMMUNOLOGY 2003; 171:3605-11. [PMID: 14500657 DOI: 10.4049/jimmunol.171.7.3605] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ordered assembly of Ag receptor genes by VDJ recombination is a key determinant of successful lymphocyte differentiation and function. Control of gene rearrangement has been traditionally viewed as a result of complex reorganization of the nucleochromatin mediated by several nuclear factors. Selective recombination of the variable (V) genes to the diversity (D), but not joining (J), gene segments within the TCRbeta locus has been shown to be controlled by recombination signal (RS) sequences that flank the gene segments. Through ex vivo and in vitro recombination assays, we demonstrate that the Rag proteins can discriminate between the RS of the D and J genes and enforce selective D gene incorporation into the TCRbeta variable domain in the absence of other nuclear factors or chromatin structure. DNA binding studies indicate that discrimination is not simply caused by higher affinity binding of the Rag proteins to the isolated 12RS of the D as opposed to the J genes. Furthermore, we also demonstrate that the 12RS within the TCRbeta locus is functionally inferior to the consensus 12RS. We propose that selective gene segment usage is controlled at the level of differential assembly and/or stability of synaptic RS complexes, and that evolutionary "deterioration" of the RS motifs may have been important to allow the VDJ recombinase to exert autonomous control over gene segment use during gene rearrangement.
Collapse
Affiliation(s)
- Alexandru Olaru
- Department of Microbiology and Immunology, Graduate Program in Molecular and Cellular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
32
|
Cowell LG, Davila M, Yang K, Kepler TB, Kelsoe G. Prospective estimation of recombination signal efficiency and identification of functional cryptic signals in the genome by statistical modeling. J Exp Med 2003; 197:207-20. [PMID: 12538660 PMCID: PMC2193808 DOI: 10.1084/jem.20020250] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2002] [Accepted: 12/05/2002] [Indexed: 12/03/2022] Open
Abstract
The recombination signals (RS) that guide V(D)J recombination are phylogenetically conserved but retain a surprising degree of sequence variability, especially in the nonamer and spacer. To characterize RS variability, we computed the position-wise information, a measure correlated with sequence conservation, for each nucleotide position in an RS alignment and demonstrate that most position-wise information is present in the RS heptamers and nonamers. We have previously demonstrated significant correlations between RS positions and here show that statistical models of the correlation structure that underlies RS variability efficiently identify physiologic and cryptic RS and accurately predict the recombination efficiencies of natural and synthetic RS. In scans of mouse and human genomes, these models identify a highly conserved family of repetitive DNA as an unexpected source of frequent, cryptic RS that rearrange both in extrachromosomal substrates and in their genomic context.
Collapse
Affiliation(s)
- Lindsay G Cowell
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
33
|
Livák F, Petrie HT. Access roads for RAG-ged terrains: control of T cell receptor gene rearrangement at multiple levels. Semin Immunol 2002; 14:297-309. [PMID: 12220931 DOI: 10.1016/s1044-5323(02)00063-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Antigen-specific immune response requires the generation of a diverse antigen (Ag)-receptor repertoire. The primary repertoire is generated through somatic gene rearrangement and molded by subsequent cellular selection. Constraints during gene recombination influence the ultimate shape of the repertoire. One major control mechanism of gene rearrangement, investigated for many years, is exerted through regulated chromosomal accessibility of the recombinase to the antigen receptor loci. More recent studies began to explore the role of interactions between the recombinase and its cognate recognition DNA sequences. The emerging results suggest that formation of the primary repertoire is controlled by two, partially independent factors: chromosomal accessibility and direct recombinase-DNA interactions.
Collapse
Affiliation(s)
- Ferenc Livák
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA.
| | | |
Collapse
|
34
|
Tsai CL, Drejer AH, Schatz DG. Evidence of a critical architectural function for the RAG proteins in end processing, protection, and joining in V(D)J recombination. Genes Dev 2002; 16:1934-49. [PMID: 12154124 PMCID: PMC186421 DOI: 10.1101/gad.984502] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In addition to creating the DNA double strand breaks that initiate V(D)J recombination, the RAG proteins are thought to play a critical role in the joining phase of the reaction. One such role, suggested by in vitro studies, might be to ensure the structural integrity of postcleavage complexes, but the significance of such a function in vivo is unknown. We have identified RAG1 mutants that are proficient in DNA cleavage but defective in their ability to interact with coding ends after cleavage and in the capture of target DNA for transposition. As a result, these mutants exhibit severe defects in hybrid joint formation, hairpin coding end opening, and transposition in vitro, and in V(D)J recombination in vivo. Our results suggest that the RAG proteins have an architectural function in facilitating proper and efficient V(D)J joining, and a protective function in preventing degradation of broken ends prior to joining.
Collapse
Affiliation(s)
- Chia-Lun Tsai
- Department of Molecular Biophysics and Biochemistry, Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | |
Collapse
|
35
|
Yu K, Taghva A, Lieber MR. The cleavage efficiency of the human immunoglobulin heavy chain VH elements by the RAG complex: implications for the immune repertoire. J Biol Chem 2002; 277:5040-6. [PMID: 11739391 DOI: 10.1074/jbc.m109772200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human immunoglobulin heavy chain locus contains 39 functional human V(H) elements. All 39 V(H) elements (with their adjacent heptamer/nonamer signal) were tested for site-specific cleavage with purified human core RAG1 and RAG2, and HMG1 proteins in a 12/23-coupled cleavage reaction. Both nicking and hairpin formation were measured. The individual V(H) cleavage efficiencies vary over nearly a 30-fold range. These measurements will be useful in considering the factors affecting the generation of the immunoglobulin and T-cell receptor repertoires in the adult humans. Interestingly, when these cleavage efficiencies are summed for each of the V(H) families, the six V(H) family efficiencies correspond closely to the observed profile of unselected V(H) family usage in the peripheral B cells of normal adult humans. This correspondence raises the possibility that the dominant factor determining V(H) element utilization within the 1-megabase human genomic V(H) array is simply the individual RAG cleavage efficiencies.
Collapse
Affiliation(s)
- Kefei Yu
- Norris Comprehensive Cancer Center, Department of Pathology, , University of Southern California, Keck School of Medicine, Los Angeles, California 90089-9176, USA
| | | | | |
Collapse
|
36
|
Affiliation(s)
- D G Hesslein
- Department of Cell Biology and Section of Immunobiology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA.
| | | |
Collapse
|
37
|
Sadofsky MJ. The RAG proteins in V(D)J recombination: more than just a nuclease. Nucleic Acids Res 2001; 29:1399-409. [PMID: 11266539 PMCID: PMC31291 DOI: 10.1093/nar/29.7.1399] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2001] [Revised: 02/09/2001] [Accepted: 02/09/2001] [Indexed: 11/12/2022] Open
Abstract
V(D)J recombination is the process that generates the diversity among T cell receptors and is one of three mechanisms that contribute to the diversity of antibodies in the vertebrate immune system. The mechanism requires precise cutting of the DNA at segment boundaries followed by rejoining of particular pairs of the resulting termini. The imprecision of aspects of the joining reaction contributes significantly to increasing the variability of the resulting functional genes. Signal sequences target DNA recombination and must participate in a highly ordered protein-DNA complex in order to limit recombination to appropriate partners. Two proteins, RAG1 and RAG2, together form the nuclease that cleaves the DNA at the border of the signal sequences. Additional roles of these proteins in organizing the reaction complex for subsequent steps are explored.
Collapse
Affiliation(s)
- M J Sadofsky
- Medical College of Georgia, Institute of Molecular Medicine and Genetics, CB-2803, Augusta, GA 30912, USA.
| |
Collapse
|
38
|
Mo X, Bailin T, Sadofsky MJ. A C-terminal region of RAG1 contacts the coding DNA during V(D)J recombination. Mol Cell Biol 2001; 21:2038-47. [PMID: 11238939 PMCID: PMC86807 DOI: 10.1128/mcb.21.6.2038-2047.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The site-specific DNA rearrangement process, called V(D)J recombination, creates much of the diversity of immune receptor molecules in the adaptive immune system. Central to this reaction is the organization of the protein-DNA complex containing the proteins RAG1 and RAG2 and their DNA targets. A long-term goal is to appreciate the three-dimensional relationships between the proteins and DNA that allow the assembly of the appropriate reaction intermediates, resulting in concerted cleavage and directed rejoining of the DNA ends. Previous cross-linking approaches have mapped RAG1 contacts on the DNA. RAG1 protein contacts the DNA at the conserved heptamer and nonamer sequences as well as at the coding DNA adjacent to the heptamer. Here we subject RAG1, covalently cross-linked to DNA substrates, to partial cyanogen bromide degradation or trypsin proteolysis in order to map contacts on the protein. We find that coding-sequence contacts occur near the C terminus of RAG1, while contacts made within the recombination signal sequence occur nearer the N terminus of the core region of RAG1. A deletion protein lacking the C-terminal DNA-contacting region is still capable of making the N-terminal contacts. This suggests that the two binding interactions may exist on two separate domains of the protein. A trypsin cleavage pattern of the native protein supports this conclusion. A two-domain model for RAG1 is evaluated with respect to the larger recombination complex.
Collapse
Affiliation(s)
- X Mo
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
39
|
Yu K, Lieber MR. The nicking step in V(D)J recombination is independent of synapsis: implications for the immune repertoire. Mol Cell Biol 2000; 20:7914-21. [PMID: 11027262 PMCID: PMC86402 DOI: 10.1128/mcb.20.21.7914-7921.2000] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In all of the transposition reactions that have been characterized thus far, synapsis of two transposon ends is required before any catalytic steps (strand nicking or strand transfer) occur. In V(D)J recombination, there have been inconclusive data concerning the role of synapsis in nicking. Synapsis between two 12-substrates or between two 23-substrates has not been ruled out in any studies thus far. Here we provide the first direct tests of this issue. We find that immobilization of signals does not affect their nicking, even though hairpinning is affected in a manner reflecting its known synaptic requirement. We also find that nicking is kinetically a unireactant enzyme-catalyzed reaction. Time courses are no different between nicking seen for a 12-substrate alone and a reaction involving both a 12- and a 23-substrate. Hence, synapsis is neither a requirement nor an effector of the rate of nicking. These results establish V(D)J recombination as the first example of a DNA transposition-type reaction in which catalytic steps begin prior to synapsis, and the results have direct implications for the order of the steps in V(D)J recombination, for the contribution of V(D)J recombination nicks to genomic instability, and for the diversification of the immune repertoire.
Collapse
Affiliation(s)
- K Yu
- Norris Comprehensive Cancer Center and Departments of Pathology, University of Southern California School of Medicine, Los Angeles, CA 90089-9176, USA
| | | |
Collapse
|
40
|
Fugmann SD, Lee AI, Shockett PE, Villey IJ, Schatz DG. The RAG proteins and V(D)J recombination: complexes, ends, and transposition. Annu Rev Immunol 2000; 18:495-527. [PMID: 10837067 DOI: 10.1146/annurev.immunol.18.1.495] [Citation(s) in RCA: 450] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
V(D)J recombination proceeds through a series of protein:DNA complexes mediated in part by the RAG1 and RAG2 proteins. These proteins are responsible for sequence-specific DNA recognition and DNA cleavage, and they appear to perform multiple postcleavage roles in the reaction as well. Here we review the interaction of the RAG proteins with DNA, the chemistry of the cleavage reaction, and the higher order complexes in which these events take place. We also discuss postcleavage functions of the RAG proteins, including recent evidence indicating that they initiate the process of coding end processing by nicking hairpin DNA termini. Finally, we discuss the evolutionary and functional implications of the finding that RAG1 and RAG2 constitute a transposase, and we consider RAG protein biochemistry in the context of several bacterial transposition systems. This suggests a model of the RAG protein active site in which two divalent metal ions serve alternating and opposite roles as activators of attacking hydroxyl groups and stabilizers of oxyanion leaving groups.
Collapse
Affiliation(s)
- S D Fugmann
- Howard Hughes Medical Institute, Section of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520-8011, USA
| | | | | | | | | |
Collapse
|