1
|
Yang W, Gao K, Qian Y, Huang Y, Xiang Q, Chen C, Chen Q, Wang Y, Fang F, He Q, Chen S, Xiong J, Chen Y, Xie N, Zheng D, Zhai R. A novel tRNA-derived fragment AS-tDR-007333 promotes the malignancy of NSCLC via the HSPB1/MED29 and ELK4/MED29 axes. J Hematol Oncol 2022; 15:53. [PMID: 35526007 PMCID: PMC9077895 DOI: 10.1186/s13045-022-01270-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/21/2022] [Indexed: 12/25/2022] Open
Abstract
Background Transfer RNA-derived fragments (tRFs) are a new class of small non-coding RNAs. Recent studies suggest that tRFs participate in some pathological processes. However, the biological functions and mechanisms of tRFs in non-small cell lung cancer (NSCLC) are largely unknown.
Methods Differentially expressed tRFs were identified by tRF and tiRNA sequencing using 9 pairs of pre- and post-operation plasma from patients with NSCLC. Quantitative real-time PCR (qRT-PCR) and fluorescence in situ hybridization (FISH) were used to determine the levels of tRF in tissues, plasma, and cells. Gain- and loss-of-function experiments were implemented to investigate the oncogenic effects of tRF on NSCLC cells in vitro and in vivo. Chromatin immunoprecipitation (ChIP), luciferase reporter, RNA pulldown, mass spectrum, RNA immunoprecipitation (RIP), Western blot, co-immunoprecipitation (Co-IP) assays, and rescue experiments were performed to explore the regulatory mechanisms of tRF in NSCLC. Results AS-tDR-007333 was an uncharacterized tRF and significantly up-regulated in NSCLC tissues, plasma, and cells. Clinically, AS-tDR-007333 overexpression could distinguish NSCLC patients from healthy controls and associated with poorer prognosis of NSCLC patients. Functionally, overexpression of AS-tDR-007333 enhanced proliferation and migration of NSCLC cells, whereas knockdown of AS-tDR-007333 resulted in opposite effects. Mechanistically, AS-tDR-007333 promoted the malignancy of NSCLC cells by activating MED29 through two distinct mechanisms. First, AS-tDR-007333 bound to and interacted with HSPB1, which activated MED29 expression by enhancing H3K4me1 and H3K27ac in MED29 promoter. Second, AS-tDR-007333 stimulated the expression of transcription factor ELK4, which bound to MED29 promoter and increased its transcription. Therapeutically, inhibition of AS-tDR-007333 suppressed NSCLC cell growth in vivo. Conclusions Our study identifies a new oncogenic tRF and uncovers a novel mechanism that AS-tDR-007333 promotes NSCLC malignancy through the HSPB1-MED29 and ELK4-MED29 axes. AS-tDR-007333 is a potential diagnostic or prognostic marker and therapeutic target for NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-022-01270-y.
Collapse
Affiliation(s)
- Wenhan Yang
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Kaiping Gao
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Youhui Qian
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, 3002 West Shungang Road, Shenzhen, 518035, China
| | - Yongyi Huang
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Qin Xiang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Cheng Chen
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Qianqian Chen
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yiling Wang
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Fuyuan Fang
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, 3002 West Shungang Road, Shenzhen, 518035, China
| | - Qihan He
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Siqi Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, 3002 West Shungang Road, Shenzhen, 518035, China
| | - Juan Xiong
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China
| | - Yangchao Chen
- Faculty of Medicine, The Chinese University of Hong Kong, Rm508A, Lo Kwee-Seong Integrated Biomedical Sciences Bldg, Shatin, NT, Hong Kong, China
| | - Ni Xie
- Department of Thoracic Surgery, The First Affiliated Hospital of Shenzhen University, 3002 West Shungang Road, Shenzhen, 518035, China.
| | - Duo Zheng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China.
| | - Rihong Zhai
- School of Public Health, Shenzhen University Health Science Center, 1066 Xueyuan Ave., Shenzhen, 518055, China. .,Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention, International Cancer Center, Shenzhen University Health Science Center, Shenzhen, China. .,Department of Thoracic Surgery, Shenzhen University General Hospital, 1098 Xueyuan Ave., Shenzhen, 518055, China.
| |
Collapse
|
2
|
Postrecruitment Function of Yeast Med6 Protein during the Transcriptional Activation by Mediator Complex. Biochem Res Int 2018; 2018:6406372. [PMID: 29992056 PMCID: PMC5818915 DOI: 10.1155/2018/6406372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/29/2017] [Indexed: 11/17/2022] Open
Abstract
Med6 protein (Med6p) is a hallmark component of evolutionarily conserved Mediator complexes, and the genuine role of Med6p in Mediator functions remains elusive. For the functional analysis of Saccharomyces cerevisiae Med6p (scMed6p), we generated a series of scMed6p mutants harboring a small internal deletion. Genetic analysis of these mutants revealed that three regions (amino acids 33-42 (Δ2), 125-134 (Δ5), and 157-166 (Δ6)) of scMed6p are required for cell viability and are located at highly conserved regions of Med6 homologs. Notably, the Med6p-Δ2 mutant was barely detectable in whole-cell extracts and purified Mediator, suggesting a loss of Mediator association and concurrent rapid degradation. Consistent with this, the recombinant forms of Med6p having these mutations partially (Δ2) restore or fail (Δ5 and Δ6) to restore in vitro transcriptional defects caused by temperature-sensitive med6 mutation. In an artificial recruitment assay, Mediator containing a LexA-fused wild-type Med6p or Med6p-Δ5 was recruited to the lexA operator region with TBP and activated reporter gene expression. However, the recruitment of Mediator containing LexA-Med6p-Δ6 to lexA operator region resulted in neither TBP recruitment nor reporter gene expression. This result demonstrates a pivotal role of Med6p in the postrecruitment function of Mediator, which is essential for transcriptional activation by Mediator.
Collapse
|
3
|
Eychenne T, Werner M, Soutourina J. Toward understanding of the mechanisms of Mediator function in vivo: Focus on the preinitiation complex assembly. Transcription 2017; 8:328-342. [PMID: 28841352 DOI: 10.1080/21541264.2017.1329000] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mediator is a multisubunit complex conserved in eukaryotes that plays an essential coregulator role in RNA polymerase (Pol) II transcription. Despite intensive studies of the Mediator complex, the molecular mechanisms of its function in vivo remain to be fully defined. In this review, we will discuss the different aspects of Mediator function starting with its interactions with specific transcription factors, its recruitment to chromatin and how, as a coregulator, it contributes to the assembly of transcription machinery components within the preinitiation complex (PIC) in vivo and beyond the PIC formation.
Collapse
Affiliation(s)
- Thomas Eychenne
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France.,b Institut Pasteur, (Epi)genomics of Animal Development Unit , Development and Stem Cell Biology Department, CNRS UMR3778 , Paris , France
| | - Michel Werner
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France
| | - Julie Soutourina
- a Institute for Integrative Biology of the Cell (I2BC), Institute of Life Sciences Frédéric Joliot, CEA, CNRS , Univ. Paris Sud, University Paris Saclay , Gif-sur-Yvette , France
| |
Collapse
|
4
|
Nozawa K, Schneider TR, Cramer P. Core Mediator structure at 3.4 Å extends model of transcription initiation complex. Nature 2017; 545:248-251. [PMID: 28467824 DOI: 10.1038/nature22328] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/31/2017] [Indexed: 01/07/2023]
Abstract
Mediator is a multiprotein co-activator that binds the transcription pre-initiation complex (PIC) and regulates RNA polymerase (Pol) II. The Mediator head and middle modules form the essential core Mediator (cMed), whereas the tail and kinase modules play regulatory roles. The architecture of Mediator and its position on the PIC are known, but atomic details are limited to Mediator subcomplexes. Here we report the crystal structure of the 15-subunit cMed from Schizosaccharomyces pombe at 3.4 Å resolution. The structure shows an unaltered head module, and reveals the intricate middle module, which we show is globally required for transcription. Sites of known Mediator mutations cluster at the interface between the head and middle modules, and in terminal regions of the head subunits Med6 (ref. 16) and Med17 (ref. 17) that tether the middle module. The structure led to a model for Saccharomyces cerevisiae cMed that could be combined with the 3.6 Å cryo-electron microscopy structure of the core PIC (cPIC). The resulting atomic model of the cPIC-cMed complex informs on interactions of the submodules forming the middle module, called beam, knob, plank, connector, and hook. The hook is flexibly linked to Mediator by a conserved hinge and contacts the transcription initiation factor IIH (TFIIH) kinase that phosphorylates the carboxy (C)-terminal domain (CTD) of Pol II and was recently positioned on the PIC. The hook also contains residues that crosslink to the CTD and reside in a previously described cradle. These results provide a framework for understanding Mediator function, including its role in stimulating CTD phosphorylation by TFIIH.
Collapse
Affiliation(s)
- Kayo Nozawa
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| | - Thomas R Schneider
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o Deutsches Elektronen Synchrotron (DESY), Notkestrasse 85, D-22603 Hamburg, Germany
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Eychenne T, Novikova E, Barrault MB, Alibert O, Boschiero C, Peixeiro N, Cornu D, Redeker V, Kuras L, Nicolas P, Werner M, Soutourina J. Functional interplay between Mediator and TFIIB in preinitiation complex assembly in relation to promoter architecture. Genes Dev 2016; 30:2119-2132. [PMID: 27688401 PMCID: PMC5066617 DOI: 10.1101/gad.285775.116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/12/2016] [Indexed: 11/24/2022]
Abstract
Mediator is a large coregulator complex conserved from yeast to humans and involved in many human diseases, including cancers. Together with general transcription factors, it stimulates preinitiation complex (PIC) formation and activates RNA polymerase II (Pol II) transcription. In this study, we analyzed how Mediator acts in PIC assembly using in vivo, in vitro, and in silico approaches. We revealed an essential function of the Mediator middle module exerted through its Med10 subunit, implicating a key interaction between Mediator and TFIIB. We showed that this Mediator-TFIIB link has a global role on PIC assembly genome-wide. Moreover, the amplitude of Mediator's effect on PIC formation is gene-dependent and is related to the promoter architecture in terms of TATA elements, nucleosome occupancy, and dynamics. This study thus provides mechanistic insights into the coordinated function of Mediator and TFIIB in PIC assembly in different chromatin contexts.
Collapse
Affiliation(s)
- Thomas Eychenne
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - Elizaveta Novikova
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - Marie-Bénédicte Barrault
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - Olivier Alibert
- Laboratoire d'Exploration Fonctionnelle des Génomes (LEFG), Institut de Radiobiologie Cellulaire et Moléculaire (IRCM), CEA, Genopole G2, F-91057 Evry Cedex, France
| | - Claire Boschiero
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - Nuno Peixeiro
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - David Cornu
- Service d'Identification et de Caractérisation des Protéines par Spectrométrie de Masse (SICaPS), CNRS, F-91198 Gif-sur-Yvette Cedex, France
| | - Virginie Redeker
- Service d'Identification et de Caractérisation des Protéines par Spectrométrie de Masse (SICaPS), CNRS, F-91198 Gif-sur-Yvette Cedex, France.,Paris-Saclay Institute of Neuroscience (Neuro-PSI), CNRS, F-91198 Gif-sur-Yvette Cedex, France
| | - Laurent Kuras
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France
| | - Pierre Nicolas
- Mathematiques et Informatique Appliquées du Génome à l'Environnement (MaIAGE), Institut National de la Recherche Agronomique (INRA), Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Michel Werner
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| | - Julie Soutourina
- Institute for Integrative Biology of the Cell (I2BC), Commissariat à l'Énergie Atomique (CEA), Centre National de la Recherche Scientifique (CNRS), Université Paris Sud, Université Paris Saclay, F-91198 Gif-sur-Yvette Cedex, France.,Institut de Biologie et de Technologies de Saclay (IBITECS), CEA, F-91191 Gif-sur-Yvette Cedex, France
| |
Collapse
|
6
|
Aristizabal MJ, Negri GL, Benschop JJ, Holstege FCP, Krogan NJ, Kobor MS. High-throughput genetic and gene expression analysis of the RNAPII-CTD reveals unexpected connections to SRB10/CDK8. PLoS Genet 2013; 9:e1003758. [PMID: 24009531 PMCID: PMC3757075 DOI: 10.1371/journal.pgen.1003758] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 07/15/2013] [Indexed: 12/21/2022] Open
Abstract
The C-terminal domain (CTD) of RNA polymerase II (RNAPII) is composed of heptapeptide repeats, which play a key regulatory role in gene expression. Using genetic interaction, chromatin immunoprecipitation followed by microarrays (ChIP-on-chip) and mRNA expression analysis, we found that truncating the CTD resulted in distinct changes to cellular function. Truncating the CTD altered RNAPII occupancy, leading to not only decreases, but also increases in mRNA levels. The latter were largely mediated by promoter elements and in part were linked to the transcription factor Rpn4. The mediator subunit Cdk8 was enriched at promoters of these genes, and its removal not only restored normal mRNA and RNAPII occupancy levels, but also reduced the abnormally high cellular amounts of Rpn4. This suggested a positive role of Cdk8 in relationship to RNAPII, which contrasted with the observed negative role at the activated INO1 gene. Here, loss of CDK8 suppressed the reduced mRNA expression and RNAPII occupancy levels of CTD truncation mutants.
Collapse
Affiliation(s)
- Maria J. Aristizabal
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gian Luca Negri
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin, Ireland
| | - Joris J. Benschop
- Molecular Cancer Research, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Frank C. P. Holstege
- Molecular Cancer Research, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Nevan J. Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California, United States of America
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
7
|
Larsson M, Uvell H, Sandström J, Rydén P, Selth LA, Björklund S. Functional studies of the yeast med5, med15 and med16 mediator tail subunits. PLoS One 2013; 8:e73137. [PMID: 23991176 PMCID: PMC3750046 DOI: 10.1371/journal.pone.0073137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 07/23/2013] [Indexed: 11/19/2022] Open
Abstract
The yeast Mediator complex can be divided into three modules, designated Head, Middle and Tail. Tail comprises the Med2, Med3, Med5, Med15 and Med16 protein subunits, which are all encoded by genes that are individually non-essential for viability. In cells lacking Med16, Tail is displaced from Head and Middle. However, inactivation of MED5/MED15 and MED15/MED16 are synthetically lethal, indicating that Tail performs essential functions as a separate complex even when it is not bound to Middle and Head. We have used the N-Degron method to create temperature-sensitive (ts) mutants in the Mediator tail subunits Med5, Med15 and Med16 to study the immediate effects on global gene expression when each subunit is individually inactivated, and when Med5/15 or Med15/16 are inactivated together. We identify 25 genes in each double mutant that show a significant change in expression when compared to the corresponding single mutants and to the wild type strain. Importantly, 13 of the 25 identified genes are common for both double mutants. We also find that all strains in which MED15 is inactivated show down-regulation of genes that have been identified as targets for the Ace2 transcriptional activator protein, which is important for progression through the G1 phase of the cell cycle. Supporting this observation, we demonstrate that loss of Med15 leads to a G1 arrest phenotype. Collectively, these findings provide insight into the function of the Mediator Tail module.
Collapse
Affiliation(s)
- Miriam Larsson
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Hanna Uvell
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Jenny Sandström
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Patrik Rydén
- Department of Statistics, Umeå University, Umeå, Sweden
| | - Luke A. Selth
- Mechanisms of Transcription Laboratory, Clare Hall Laboratories, Cancer Research UK London Research Institute, South Mimms, United Kingdom
| | - Stefan Björklund
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
8
|
Ansari SA, Morse RH. Mechanisms of Mediator complex action in transcriptional activation. Cell Mol Life Sci 2013; 70:2743-56. [PMID: 23361037 PMCID: PMC11113466 DOI: 10.1007/s00018-013-1265-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 12/14/2022]
Abstract
Mediator is a large multisubunit complex that plays a central role in the regulation of RNA Pol II transcribed genes. Conserved in overall structure and function among eukaryotes, Mediator comprises 25-30 protein subunits that reside in four distinct modules, termed head, middle, tail, and CDK8/kinase. Different subunits of Mediator contact other transcriptional regulators including activators, co-activators, general transcription factors, subunits of RNA Pol II, and specifically modified histones, leading to the regulated expression of target genes. This review is focused on the interactions of specific Mediator subunits with diverse transcription regulators and how those interactions contribute to Mediator function in transcriptional activation.
Collapse
Affiliation(s)
- Suraiya A. Ansari
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
| | - Randall H. Morse
- Laboratory of Molecular Genetics, Wadsworth Center, New York State Department of Health, Albany, NY 12201–0509 USA
- Department of Biomedical Science, University at Albany School of Public Health, Albany, NY USA
| |
Collapse
|
9
|
Peng J, Zhou JQ. The tail-module of yeast Mediator complex is required for telomere heterochromatin maintenance. Nucleic Acids Res 2012; 40:581-93. [PMID: 21930512 PMCID: PMC3258146 DOI: 10.1093/nar/gkr757] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 08/15/2011] [Accepted: 08/30/2011] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic chromosome ends have a DNA-protein complex structure termed telomere. Integrity of telomeres is essential for cell proliferation. Genome-wide screenings for telomere length maintenance genes identified several components of the transcriptional regulator, the Mediator complex. Our work provides evidence that Mediator is involved in telomere length regulation and telomere heterochromatin maintenance. Tail module of Mediator is required for telomere silencing by promoting or stabilizing Sir protein binding and spreading on telomeres. Mediator binds on telomere and may be a component of telomeric chromatin. Our study reveals a specific role of Mediator complex at the heterochromatic telomere and this function is specific to telomeres as it has no effect on the HMR locus.
Collapse
Affiliation(s)
| | - Jin-Qiu Zhou
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Graduate School of the Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
10
|
Seizl M, Larivière L, Pfaffeneder T, Wenzeck L, Cramer P. Mediator head subcomplex Med11/22 contains a common helix bundle building block with a specific function in transcription initiation complex stabilization. Nucleic Acids Res 2011; 39:6291-304. [PMID: 21498544 PMCID: PMC3152362 DOI: 10.1093/nar/gkr229] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mediator is a multiprotein co-activator of RNA polymerase (Pol) II transcription. Mediator contains a conserved core that comprises the ‘head’ and ‘middle’ modules. We present here a structure–function analysis of the essential Med11/22 heterodimer, a part of the head module. Med11/22 forms a conserved four-helix bundle domain with C-terminal extensions, which bind the central head subunit Med17. A highly conserved patch on the bundle surface is required for stable transcription pre-initiation complex formation on a Pol II promoter in vitro and in vivo and may recruit the general transcription factor TFIIH. The bundle domain fold is also present in the Mediator middle module subcomplex Med7/21 and is predicted in the Mediator heterodimers Med2/3, Med4/9, Med10/14 and Med28/30. The bundle domain thus represents a common building block that has been multiplied and functionally diversified during Mediator evolution in eukaryotes.
Collapse
Affiliation(s)
- Martin Seizl
- Gene Center and Department of Biochemistry, Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Feodor-Lynen-Strasse 25, 81377 Munich, Germany
| | | | | | | | | |
Collapse
|
11
|
Kuuselo R, Savinainen K, Sandström S, Autio R, Kallioniemi A. MED29, a component of the mediator complex, possesses both oncogenic and tumor suppressive characteristics in pancreatic cancer. Int J Cancer 2011; 129:2553-65. [PMID: 21225629 DOI: 10.1002/ijc.25924] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 12/22/2010] [Indexed: 11/11/2022]
Abstract
Mediator complex subunit 29 (MED29) is part of a large multiprotein coactivator complex that mediates regulatory signals from gene-specific activators to general transcription machinery in RNA polymerase II mediated transcription. We previously found that MED29 is amplified and overexpressed in pancreatic cancer and that MED29 silencing leads to decreased cell survival in PANC-1 pancreatic cancer cells with high MED29 expression. Here we further demonstrate decreased migration, invasion and colony formation in PANC-1 cells after MED29 silencing. Unexpectedly, lentiviral-based overexpression of MED29 led to decreased proliferation of NIH/3T3 cells as well as MIAPaCa-2 pancreatic cancer cells with low endogenous expression. More importantly, subcutaneous inoculation of the MED29-transduced pancreatic cancer cells into immuno-compromised mice resulted in dramatic tumor suppression. The mock-control mice developed large tumors, whereas the animals with MED29-xenografts showed both decreased tumor incidence and a major reduction in tumor size. Gene expression analysis in the MED29-transduced pancreatic cancer cells revealed differential expression of genes involved in control of cell cycle and cell division. The observed gene expression changes are expected to modulate the cell cycle in a way that leads to reduced cell growth, explaining the in vivo tumor suppressive phenotype. Taken together, these data implicate MED29 as an important regulator of key cellular functions in pancreatic cancer with both oncogenic and tumor suppressive characteristics. Such a dualistic role appears to be more common than previously thought and is likely to depend on the genetic background of the cancer cells and their surrounding environment.
Collapse
Affiliation(s)
- Riina Kuuselo
- Institute of Medical Technology, University of Tampere and Centre for Laboratory Medicine, Tampere University Hospital, Tampere, Finland
| | | | | | | | | |
Collapse
|
12
|
Rogers C, Guo Z, Stiller JW. Connecting mutations of the RNA polymerase II C-terminal domain to complex phenotypic changes using combined gene expression and network analyses. PLoS One 2010; 5:e11386. [PMID: 20613981 PMCID: PMC2894937 DOI: 10.1371/journal.pone.0011386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/22/2010] [Indexed: 11/19/2022] Open
Abstract
The C-terminal domain (CTD) of the largest subunit in DNA-dependent RNA polymerase II (RNAP II) is essential for mRNA synthesis and processing, through coordination of an astounding array of protein-protein interactions. Not surprisingly, CTD mutations can have complex, pleiotropic impacts on phenotype. For example, insertions of five alanine residues between CTD diheptads in yeast, which alter the CTD's overall tandem structure and physically separate core functional units, dramatically reduce growth rate and result in abnormally large cells that accumulate increased DNA content over time. Patterns by which specific CTD-protein interactions are disrupted by changes in CTD structure, as well as how downstream metabolic pathways are impacted, are difficult to target for direct experimental analyses. In an effort to connect an altered CTD to complex but quantifiable phenotypic changes, we applied network analyses of genes that are differentially expressed in our five alanine CTD mutant, combined with established genetic interactions from the Saccharomyces cerevisiae Genome Database (SGD). We were able to identify candidate genetic pathways, and several key genes, that could explain how this change in CTD structure leads to the specific phenotypic changes observed. These hypothetical networks identify links between CTD-associated proteins and mitotic function, control of cell cycle checkpoint mechanisms, and expression of cell wall and membrane components. Such results can help to direct future genetic and biochemical investigations that tie together the complex impacts of the CTD on global cellular metabolism.
Collapse
Affiliation(s)
- Carlyle Rogers
- Department of Biology, East Carolina University, Greenville, North Carolina, United States of America.
| | | | | |
Collapse
|
13
|
Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains. Mol Cell Biol 2010; 30:2376-90. [PMID: 20308326 DOI: 10.1128/mcb.01046-09] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Targets of the tandem Gcn4 acidic activation domains in transcription preinitiation complexes were identified by site-specific cross-linking. The individual Gcn4 activation domains cross-link to three common targets, Gal11/Med15, Taf12, and Tra1, which are subunits of four conserved coactivator complexes, Mediator, SAGA, TFIID, and NuA4. The Gcn4 N-terminal activation domain also cross-links to the Mediator subunit Sin4/Med16. The contribution of the two Gcn4 activation domains to transcription was gene specific and varied from synergistic to less than additive. Gcn4-dependent genes had a requirement for Gal11 ranging from 10-fold dependence to complete Gal11 independence, while the Gcn4-Taf12 interaction did not significantly contribute to the expression of any gene studied. Complementary methods identified three conserved Gal11 activator-binding domains that bind each Gcn4 activation domain with micromolar affinity. These Gal11 activator-binding domains contribute additively to transcription activation and Mediator recruitment at Gcn4- and Gal11-dependent genes. Although we found that the conserved Gal11 KIX domain contributes to Gal11 function, we found no evidence of specific Gcn4-KIX interaction and conclude that the Gal11 KIX domain does not function by specific interaction with Gcn4. Our combined results show gene-specific coactivator requirements, a surprising redundancy in activator-target interactions, and an activator-coactivator interaction mediated by multiple low-affinity protein-protein interactions.
Collapse
|
14
|
Mediator complex association with constitutively transcribed genes in yeast. Proc Natl Acad Sci U S A 2009; 106:16734-9. [PMID: 19805365 DOI: 10.1073/pnas.0905103106] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mediator is a large, multisubunit complex that is essential for transcription of mRNA by RNA Pol II in eukaryotes and is believed to bridge transcriptional activators and the general transcription machinery. However, several recent studies suggest that the requirement for Mediator during transcriptional activation is not universal, but rather activator dependent, and may be indirect for some genes. Here we have investigated Mediator association with several constitutively transcribed genes in yeast by comparing a yeast strain that harbors a temperature-sensitive mutation in an essential Mediator subunit, Srb4, with its wild-type (WT) counterpart. We find modest association of Mediator with constitutively active genes and show that this association is strongly decreased in srb4 ts yeast, whereas association with a nontranscribed region or repressed gene promoters is lower and unaffected in the mutant yeast. The tail module of Mediator remains associated with ribosomal protein (RP) gene promoters in srb4 ts yeast, while subunits from the head and middle modules are lost. Tail module association at Rap1-dependent gene promoters is lost in rap1 ts yeast, indicating that Rap1 is required for Mediator recruitment at these gene promoters and that its recruitment occurs via the tail module. Pol II association is also rapidly and severely affected in srb4 ts yeast, indicating that Mediator is directly required for pol II association at constitutively transcribed genes. Our results are consistent with Mediator functioning as a general transcription factor in yeast.
Collapse
|
15
|
Hagist S, Sültmann H, Millonig G, Hebling U, Kieslich D, Kuner R, Balaguer S, Seitz HK, Poustka A, Mueller S. In vitro-targeted gene identification in patients with hepatitis C using a genome-wide microarray technology. Hepatology 2009; 49:378-86. [PMID: 19177570 DOI: 10.1002/hep.22677] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
UNLABELLED Iron in association with reactive oxygen species (ROS) is highly toxic, aggravating oxidative stress reactions. Increased iron not only plays an important role in the progression of hereditary hemochromatosis (HH) but also in common liver diseases such as chronic hepatitis C. The underlying mechanisms of hepatitis C virus (HCV)-mediated iron accumulation, however, are poorly understood. We introduce an in vitro-targeted approach to identify ROS/iron-regulated genes in patients with HCV using a genome-wide DNA microarray. The sensitivity of the 32,231 complementary DNA clone-carrying microarray was approximately 20% as estimated by detecting target genes of the genome-wide transcription factor hypoxia inducible factor 1alpha. Upon in vitro challenge to iron and oxidative stress, 265 iron-related and 1326 ROS-related genes could be identified in HepG2 cells; 233 significantly regulated genes were found in patients with mild (HCV) or severe (HH) iron deposition. Notably, 17 of the in vitro-selected genes corresponded to the genes identified in patients with HCV or HH. Among them, natriuretic peptide precursor B (NPPB) was the only iron-regulated gene identified in vitro that was differentially regulated between HCV and HH. Reverse-transcription polymerase chain reaction confirmed most of the microarray-identified genes in an even larger group of patients (n = 12). In patients with HCV, these included genes that are associated with RNA processing (MED9/NFAT, NSUN2), proliferation, differentiation, hypoxia, or iron metabolism (ISG20, MIG6, HIG2, CA9, NDRG1), whereas none of the nine known iron-related genes showed significant differences between HCV and HH. CONCLUSION Although high-density microarray technology is less suitable for routine liver diagnosis, its use in combination with prior in vitro selection is a powerful approach to identify candidate genes relevant for liver disease.
Collapse
Affiliation(s)
- Susanne Hagist
- Department of Internal Medicine, Salem Medical Center, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Takahashi H, Kasahara K, Kokubo T. Saccharomyces cerevisiaeMed9 comprises two functionally distinct domains that play different roles in transcriptional regulation. Genes Cells 2009; 14:53-67. [DOI: 10.1111/j.1365-2443.2008.01250.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Esnault C, Ghavi-Helm Y, Brun S, Soutourina J, Van Berkum N, Boschiero C, Holstege F, Werner M. Mediator-dependent recruitment of TFIIH modules in preinitiation complex. Mol Cell 2008; 31:337-46. [PMID: 18691966 DOI: 10.1016/j.molcel.2008.06.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Revised: 02/10/2008] [Accepted: 06/01/2008] [Indexed: 11/18/2022]
Abstract
In vitro, without Mediator, the association of general transcription factors (GTF) and RNA polymerase II (Pol II) in preinitiation complexes (PIC) occurs in an orderly fashion. In this work, we explore the in vivo function of Mediator in GTF recruitment to PIC. A direct interaction between Med11 Mediator head subunit and Rad3 TFIIH subunit was identified. We explored the significance of this interaction and those of Med11 with head module subunits Med17 and Med22 and found that impairing these interactions could differentially affect the recruitment of TFIIH, TFIIE, and Pol II in the PIC. A med11 mutation that altered promoter occupancy by the TFIIK kinase module of TFIIH genome-wide also reduced Pol II CTD serine 5 phosphorylation. We conclude that the Mediator head module plays a critical role in TFIIH and TFIIE recruitment to the PIC. We identify steps in PIC formation that suggest a branched assembly pathway.
Collapse
|
18
|
He Q, Battistella L, Morse RH. Mediator requirement downstream of chromatin remodeling during transcriptional activation of CHA1 in yeast. J Biol Chem 2007; 283:5276-86. [PMID: 18093974 DOI: 10.1074/jbc.m708266200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mediator complex is essential for transcription by RNA polymerase II in eukaryotes. Although chromatin remodeling is an integral part of transcriptional activation at many promoters, whether Mediator is required for this function has not been determined. Here we have used the yeast CHA1 gene to study the role of Mediator in chromatin remodeling and recruitment of the transcription machinery. We show by chromatin immunoprecipitation that Mediator subunits are recruited to the induced CHA1 promoter. Inactivation of Mediator at 37 degrees C in yeast harboring the srb4-138 (med17) ts mutation severely reduces CHA1 activation and prevents recruitment to the induced CHA1 promoter of Med18/Srb5, from the head module of Mediator, and Med14/Rgr1, which bridges the middle and tail modules. In contrast, recruitment of Med15/Gal11 from the tail module is unaffected in med17 ts yeast at 37 degrees C. Recruitment of TATA-binding protein (TBP) is severely compromised in the absence of functional Mediator, whereas Kin28 and polymerase II recruitment are reduced but to a lesser extent. Induced levels of histone H3K4me3 at the CHA1 promoter are not diminished by inactivation of Mediator, whereas recruitment of Paf1 and of Ser2- and Ser5-phosphorylated forms of Rbp1 are reduced but not eliminated. Loss of histone H3 from the induced CHA1 promoter is seen in wild type yeast but is greatly reduced by loss of intact Mediator. In contrast, Swi/Snf recruitment and nucleosome remodeling are unaffected by loss of Mediator function. Thus, Mediator is required for recruitment of the transcription machinery subsequent to chromatin remodeling during CHA1 induction.
Collapse
Affiliation(s)
- Qiye He
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, New York 12201-2002, USA
| | | | | |
Collapse
|
19
|
Functional conservation of the glutamine-rich domains of yeast Gal11 and human SRC-1 in the transactivation of glucocorticoid receptor Tau 1 in Saccharomyces cerevisiae. Mol Cell Biol 2007; 28:913-25. [PMID: 18070925 DOI: 10.1128/mcb.01140-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Gal11 protein, a component of the Mediator complex, is required for the transcriptional activation of many class II genes as a physiological target of various activator proteins in vivo. In this study, we identified the yeast (Saccharomyces cerevisiae) Mediator complex as a novel coactivator of the transcriptional activity of the glucocorticoid receptor (GR) tau 1 (tau1), the major transcriptional activation domain of the GR. GR tau1 directly interacted with the Mediator complex in vivo and in vitro in a Gal11 module-dependent manner, and the Gal11p subunit interacted directly with GR tau1. Specific amino acid residues within the glutamine-rich (Qr) domain of Gal11p (residues 116 to 277) were essential for its interaction with GR tau1 and GR tau1 transactivity in yeast, as demonstrated by mutational analysis of the Gal11 Qr domain, which is highly conserved among human steroid receptor coactivator (SRC) proteins. A Gal11p variant, mini-Gal11p, comprised of the Mediator association and Qr domains of Gal11p or chimeric mini-Gal11p containing the Qr domain of SRC-1 could potentiate the GR tau1 transactivity in a gal11Delta yeast strain. These results suggest that there is functional conservation between Qr domains of yeast Gal11p and mammalian SRC proteins as direct targets of activator proteins in yeast.
Collapse
|
20
|
Baidoobonso SM, Guidi BW, Myers LC. Med19(Rox3) Regulates Intermodule Interactions in the Saccharomyces cerevisiae Mediator Complex. J Biol Chem 2007; 282:5551-9. [PMID: 17192271 DOI: 10.1074/jbc.m609484200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae Mediator is a 25-subunit complex that facilitates both transcriptional activation and repression. Structural and functional studies have divided Mediator subunits into four distinct modules. The Head, Middle, and Tail modules form the core functional Mediator complex, whereas a fourth, the Cyc-C module, is variably associated with the core. By purifying Mediator from a strain lacking the Med19(Rox3) subunit, we have found that a complex missing only the Med19(Rox3) subunit can be isolated under mild conditions. Additionally, we have established that the entire Middle module is released when the Deltamed19(rox3) Mediator is purified under more stringent conditions. In contrast to most models of the modular structure of Mediator, we show that release of the Middle module in the Deltamed19(rox3) Mediator leaves a stable complex made up solely of Head and Tail subunits. Both the intact and Head-Tail Deltamed19(rox3) Mediator complexes have defects in enhanced basal transcription, enhanced TFIIH phosphorylation of the CTD, as well as binding of RNA Pol II and the CTD. The largely intact Deltamed19(rox3) complex facilitates activated transcription at levels similar to the wild type Mediator. In the absence of the Middle module, however, the Deltamed19(rox3) Mediator is unable to facilitate activated transcription. Although the Middle module is unnecessary for holding the Head and Tail modules together, it is required for the complex to function as a conduit between activators and the core transcription machinery.
Collapse
Affiliation(s)
- Shamara M Baidoobonso
- Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | |
Collapse
|
21
|
Lallet S, Garreau H, Garmendia-Torres C, Szestakowska D, Boy-Marcotte E, Quevillon-Chéruel S, Jacquet M. Role of Gal11, a component of the RNA polymerase II mediator in stress-induced hyperphosphorylation of Msn2 in Saccharomyces cerevisiae. Mol Microbiol 2007; 62:438-52. [PMID: 17020582 DOI: 10.1111/j.1365-2958.2006.05363.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In the yeast Saccharomyces cerevisiae, the Msn2 transcription factor is a key element in mediating the environmental stress response (ESR), leading to the induction of 100-200 genes through the cis-acting Stress Response Element (STRE) in response to various physico-chemical stresses and nutritional variations. This activation is accompanied by a stress-induced hyperphosphorylation of Msn2. By a systematic screening we identified two proteins essential in this process: (i) the cyclin-dependent Ssn3/Srb10 protein kinase, part of a module of the RNA polymerase II mediator, which has already been shown to be involved in hyperphosphorylation and degradation of Msn2 upon stress, and (ii) Gal11, a component of the mediator. In a gal11 mutant, stress-induced hyperphosphorylation of Msn2 is abolished, stress-induced transcription of Msn2-dependent genes is decreased and Msn2 degradation is impaired. Rgr1, another component of the mediator, is also critical for this hyperphosphorylation, indicating that the integrity of the mediator is required for this process. Moreover the transactivating region of Msn2 interacts in vitro with the N-terminal domain of Gal11. These results point out the role of the mediator, especially its Gal11 subunit, in the hyperphosphorylation and degradation of Msn2 during stress response.
Collapse
Affiliation(s)
- Sylvie Lallet
- Laboratoire Polarité cellulaire, Traffic membranaire & Signalisation, UMR 6061 CNRS, Université Rennes 1, Faculté de Médecine, 2 Avenue du Pr Léon Bernard, CS 34317, 35043 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Martchenko M, Levitin A, Whiteway M. Transcriptional activation domains of the Candida albicans Gcn4p and Gal4p homologs. EUKARYOTIC CELL 2006; 6:291-301. [PMID: 17158732 PMCID: PMC1797954 DOI: 10.1128/ec.00183-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Many putative transcription factors in the pathogenic fungus Candida albicans contain sequence similarity to well-defined transcriptional regulators in the budding yeast Saccharomyces cerevisiae, but this sequence similarity is often limited to the DNA binding domains of the molecules. The Gcn4p and Gal4p proteins of Saccharomyces cerevisiae are highly studied and well-understood eukaryotic transcription factors of the basic leucine zipper (Gcn4p) and C(6) zinc cluster (Gal4p) families; C. albicans has C. albicans Gcn4p (CaGcn4p) and CaGal4p with DNA binding domains highly similar to their S. cerevisiae counterparts. Deletion analysis of the CaGcn4p protein shows that the N' terminus is needed for transcriptional activation; an 81-amino-acid region is critical for this function, and this domain can be coupled to a lexA DNA binding module to provide transcription-activating function in a heterologous reporter system. Deletion analysis of the C. albicans Gal4p identifies a C-terminal 73-amino-acid-long transcription-activating domain that also can be transferred to a heterologous reporter construct to direct transcriptional activation. These two transcriptional activation regions show no sequence similarity to the respective domains in their S. cerevisiae homologs, and the two C. albicans transcription-activating domains themselves show little similarity.
Collapse
Affiliation(s)
- Mikhail Martchenko
- Department of Biology, McGill University, Stewart Biology Building, 1205 Avenue Docteur Penfield, Montreal, Quebec, Canada H3A 1B1
| | | | | |
Collapse
|
23
|
Hallberg M, Hu GZ, Tronnersjö S, Adler D, Balciunas D, Björklund S, Ronne H. Functional and physical interactions within the middle domain of the yeast mediator. Mol Genet Genomics 2006; 276:197-210. [PMID: 16758199 DOI: 10.1007/s00438-006-0135-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Accepted: 04/25/2006] [Indexed: 10/24/2022]
Abstract
Med21 (Srb7) is a small essential subunit of the middle domain of the Mediator, which is conserved in all eukaryotes. It is thought to play an important role in both transcriptional activation and repression. In the yeast Saccharomyces cerevisiae, Med21 is known to interact both with the Mediator subunit Med6 and the global co-repressor Tup1. We have made a temperature-sensitive med21-ts mutant, which we used in a high copy number suppressor screen. We found ten yeast genes that can suppress the med21-ts mutation in high copy number. The three strongest suppressors were MED7 and MED10 (NUT2), which encode other Mediator subunits, and ASH1, which encodes a repressor of the HO gene. 2-Hybrid experiments confirmed multiple interactions between Med21, Med10, Med7 and Med4, and also revealed a Med21 self-interaction. The interactions of Med21 with Med7 and Med10 were verified by co-immunoprecipitation of tagged proteins produced in insect cells and E. coli, where both interactions were found to depend strongly on the amino acid residues 2-8 of Med21. These interactions, and the interactions of Med21 with Med6 and Tup1, suggest that Med21 may serve as a molecular switchboard that integrates different signals before they reach the core polymerase.
Collapse
Affiliation(s)
- Magnus Hallberg
- Department of Medical Biochemistry and Biophysics, Umeå University, 0187, Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
Mediator is a key RNA polymerase II (Pol II) cofactor in the regulation of eukaryotic gene expression. It is believed to function as a coactivator linking gene-specific activators to the basal Pol II initiation machinery. In support of this model, we provide evidence that Mediator serves in vivo as a coactivator for the yeast activator Met4, which controls the gene network responsible for the biosynthesis of sulfur-containing amino acids and S-adenosylmethionine. In addition, we show that SAGA (Spt-Ada-Gcn5-acetyltransferase) is also recruited to Met4 target promoters, where it participates in the recruitment of Pol II by a mechanism involving histone acetylation. Interestingly, we find that SAGA is not required for Mediator recruitment by Met4 and vice versa. Our results provide a novel example of functional interplay between Mediator and coactivators involved in histone modification.
Collapse
Affiliation(s)
- Christophe Leroy
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
25
|
Singh H, Erkine AM, Kremer SB, Duttweiler HM, Davis DA, Iqbal J, Gross RR, Gross DS. A functional module of yeast mediator that governs the dynamic range of heat-shock gene expression. Genetics 2006; 172:2169-84. [PMID: 16452140 PMCID: PMC1456402 DOI: 10.1534/genetics.105.052738] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 01/20/2006] [Indexed: 11/18/2022] Open
Abstract
We report the results of a genetic screen designed to identify transcriptional coregulators of yeast heat-shock factor (HSF). This sequence-specific activator is required to stimulate both basal and induced transcription; however, the identity of factors that collaborate with HSF in governing noninduced heat-shock gene expression is unknown. In an effort to identify these factors, we isolated spontaneous extragenic suppressors of hsp82-deltaHSE1, an allele of HSP82 that bears a 32-bp deletion of its high-affinity HSF-binding site, yet retains its two low-affinity HSF sites. Nearly 200 suppressors of the null phenotype of hsp82-deltaHSE1 were isolated and characterized, and they sorted into six expression without heat-shock element (EWE) complementation groups. Strikingly, all six groups contain alleles of genes that encode subunits of Mediator. Three of the six subunits, Med7, Med10/Nut2, and Med21/Srb7, map to Mediator's middle domain; two subunits, Med14/Rgr1 and Med16/Sin4, to its tail domain; and one subunit, Med19/Rox3, to its head domain. Mutations in genes encoding these factors enhance not only the basal transcription of hsp82-deltaHSE1, but also that of wild-type heat-shock genes. In contrast to their effect on basal transcription, the more severe ewe mutations strongly reduce activated transcription, drastically diminishing the dynamic range of heat-shock gene expression. Notably, targeted deletion of other Mediator subunits, including the negative regulators Cdk8/Srb10, Med5/Nut1, and Med15/Gal11 fail to derepress hsp82-deltaHSE1. Taken together, our data suggest that the Ewe subunits constitute a distinct functional module within Mediator that modulates both basal and induced heat-shock gene transcription.
Collapse
Affiliation(s)
- Harpreet Singh
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Alluri P, Liu B, Yu P, Xiao X, Kodadek T. Isolation and characterization of coactivator-binding peptoids from a combinatorial library. MOLECULAR BIOSYSTEMS 2006; 2:568-79. [PMID: 17216038 DOI: 10.1039/b608924k] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pharmacologic agents capable of activating the expression of specific genes would be valuable tools in biological research and could potentially be useful therapeutically. Efforts to develop a general solution to this problem have focused on the discovery of cell permeable mimics of native transcription factors comprised of linked DNA-binding and activation domain surrogates. Recently, we reported the isolation of a peptoid, called KBPo2, that binds a fragment of the mammalian coactivator CREB-binding protein (CBP). When delivered to a promoter-bound DNA-binding domain, this peptoid acted as a potent activation domain mimic in human cells. In this paper, we provide full details of the screening experiments and also report further characterization of this molecule as well as the other peptoids that came out of the screen. Of the three peptoids identified as putative CBP ligands, only KBPo2 demonstrated the necessary combination of binding affinity, specificity and cell permeability necessary to function as a potent activation domain mimic in cells. KBPo2 binds to CBP in a region different than that recognized by the native activation peptide from the transcription factor CREB.
Collapse
Affiliation(s)
- Prasanna Alluri
- Division of Translational Research, Department of Internal Medicine and Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9185, USA
| | | | | | | | | |
Collapse
|
27
|
Gulshan K, Rovinsky SA, Coleman ST, Moye-Rowley WS. Oxidant-specific Folding of Yap1p Regulates Both Transcriptional Activation and Nuclear Localization. J Biol Chem 2005; 280:40524-33. [PMID: 16219769 DOI: 10.1074/jbc.m504716200] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast transcriptional regulator Yap1p is a key determinant in oxidative stress resistance. This protein is found in the cytoplasm under non-stressed conditions but rapidly accumulates in the nucleus following oxidant exposure. There it activates transcription of genes encoding antioxidants that return the redox balance of the cell to an acceptable range. Yap1p localization to the nucleus requires the oxidant-specific formation of disulfide bonds in the N-terminal cysteine-rich domain (N-CRD) and/or the C-terminal cysteine-rich domain (C-CRD). H(2)O(2) exposure triggers the formation of two interdomain disulfide bonds between the N-and C-CRDs. This dually disulfide-bonded structure has been argued to mask the nuclear export signal in the C-CRD that would otherwise prevent Yap1p nuclear accumulation. The C-CRD is required for wild-type H(2)O(2) tolerance but dispensable for resistance to diamide. The Saccharomyces cerevisiae TRX2 gene, encoding a thioredoxin protein, cannot be induced by H(2)O(2) in the presence of various mutant forms of Yap1p lacking the normally functioning C-CRD. In this work, we demonstrate that the proper folding of Yap1p in the presence of H(2)O(2) is required for recruitment of the mediator component Rox3p to the TRX2 promoter in addition to the nuclear accumulation of Yap1p during stress by this oxidant. These data demonstrate that the dually disulfide-bonded Yap1p N- and C-CRDs form a bifunctional protein domain controlling both nuclear localization and transcriptional activation.
Collapse
Affiliation(s)
- Kailash Gulshan
- Department of Physiology and Biophysics, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
28
|
Abstract
Mediator was first identified because of its activity in activator-stimulated transcription in vivo and in vitro. Later, biochemical fractionation led to the co-purification of the multi-subunit Mediator complex and RNA polymerase II (pol II). Results of these studies suggested a model whereby transcription-activator proteins, which bind to specific gene regulatory sequences, recruit both Mediator and pol II as a holoenzyme in a one-step mechanism. More recent studies of Drosophila Mediator and additional studies in yeast have demonstrated that different transcription activators can bind and recruit Mediator to promoters in vivo in a step that is independent of pol II recruitment. Moreover, the different activators in Drosophila bind and recruit Mediator via physical interactions with specific subsets of proteins. These features of Mediator function seem to be broadly conserved.
Collapse
Affiliation(s)
- Young-Joon Kim
- Department of Biochemistry, Yonsei University, 134 Sinchon-dong, Seodaemoon-gu, Seoul 120-749, Republic of Korea
| | | |
Collapse
|
29
|
Guglielmi B, van Berkum NL, Klapholz B, Bijma T, Boube M, Boschiero C, Bourbon HM, Holstege FCP, Werner M. A high resolution protein interaction map of the yeast Mediator complex. Nucleic Acids Res 2004; 32:5379-91. [PMID: 15477388 PMCID: PMC524289 DOI: 10.1093/nar/gkh878] [Citation(s) in RCA: 181] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2004] [Revised: 09/20/2004] [Accepted: 09/20/2004] [Indexed: 11/13/2022] Open
Abstract
Mediator is a large, modular protein complex remotely conserved from yeast to man that conveys regulatory signals from DNA-binding transcription factors to RNA polymerase II. In Saccharomyces cerevisiae, Mediator is thought to be composed of 24 subunits organized in four sub-complexes, termed the head, middle, tail and Cdk8 (Srb8-11) modules. In this work, we have used screening and pair-wise two-hybrid approaches to investigate protein-protein contacts between budding yeast Mediator subunits. The derived interaction map includes the delineation of numerous interaction domains between Mediator subunits, frequently corresponding to segments that have been conserved in evolution, as well as novel connections between the Cdk8 (Srb8-11) and head modules, the head and middle modules, and the middle and tail modules. The two-hybrid analysis, together with co-immunoprecipitation studies and gel filtration experiments revealed that Med31 (Soh1) is associated with the yeast Mediator that therefore comprises 25 subunits. Finally, analysis of the protein interaction network within the Drosophila Mediator middle module indicated that the structural organization of the Mediator complex is conserved from yeast to metazoans. The resulting interaction map provides a framework for delineating Mediator structure-function and investigating how Mediator function is regulated.
Collapse
Affiliation(s)
- Benjamin Guglielmi
- Service de Biochimie et Génétique Moléculaire, Bâtiment 144, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kim TW, Kwon YJ, Kim JM, Song YH, Kim SN, Kim YJ. MED16 and MED23 of Mediator are coactivators of lipopolysaccharide- and heat-shock-induced transcriptional activators. Proc Natl Acad Sci U S A 2004; 101:12153-8. [PMID: 15297616 PMCID: PMC514449 DOI: 10.1073/pnas.0401985101] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 06/21/2004] [Indexed: 11/18/2022] Open
Abstract
Transcriptional activators interact with diverse proteins and recruit transcriptional machinery to the activated promoter. Recruitment of the Mediator complex by transcriptional activators is usually the key step in transcriptional activation. However, it is unclear how Mediator recognizes different types of activator proteins. To systematically identify the subunits responsible for the signal- and activator-specific functions of Mediator in Drosophila melanogaster, each Mediator subunit was depleted by RNA interference, and its effect on transcriptional activation of endogenous as well as synthetic promoters was examined. The depletion of some Mediator gene products caused general transcriptional defects, whereas depletion of others caused defects specifically related to activation. In particular, MED16 and MED23 were required for lipopolysaccharide- and heat-shock-specific gene expression, respectively, and their activator-specific functions appeared to result from interaction with specific activators. The corequirement of MED16 for other forms of differentiation-inducing factor-induced transcription was confirmed by microarray analysis of differentiation-inducing factor (DIF)- and MED16-depleted cells individually. These results suggest that distinct Mediator subunits interact with specific activators to coordinate and transfer activator-specific signals to the transcriptional machinery.
Collapse
Affiliation(s)
- Tae Whan Kim
- Department of Biochemistry, Yonsei University, Seoul 120-749, South Korea
| | | | | | | | | | | |
Collapse
|
31
|
Zhang F, Sumibcay L, Hinnebusch AG, Swanson MJ. A triad of subunits from the Gal11/tail domain of Srb mediator is an in vivo target of transcriptional activator Gcn4p. Mol Cell Biol 2004; 24:6871-86. [PMID: 15254252 PMCID: PMC444856 DOI: 10.1128/mcb.24.15.6871-6886.2004] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Srb mediator is an important transcriptional coactivator for Gcn4p in the yeast Saccharomyces cerevisiae. We show that three subunits of the Gal11/tail domain of mediator, Gal11p, Pgd1p, and Med2p, and the head domain subunit Srb2p make overlapping contributions to the interaction of mediator with recombinant Gcn4p in vitro. Each of these proteins, along with the tail subunit Sin4p, also contributes to the recruitment of mediator by Gcn4p to target promoters in vivo. We found that Gal11p, Med2p, and Pgd1p reside in a stable subcomplex in sin4Delta cells that interacts with Gcn4p in vitro and that is recruited independently of the rest of mediator by Gcn4p in vivo. Thus, the Gal11p/Med2p/Pgd1p triad is both necessary for recruitment of intact mediator and appears to be sufficient for recruitment by Gcn4p as a free subcomplex. The med2Delta mutation impairs the recruitment of TATA binding protein (TBP) and RNA polymerase II to the promoter and the induction of transcription at ARG1, demonstrating the importance of the tail domain for activation by Gcn4p in vivo. Even though the Gal11p/Med2p/Pgd1p triad is the only portion of Srb mediator recruited efficiently to the promoter in the sin4Delta strain, this mutant shows high-level TBP recruitment and wild-type transcriptional induction at ARG1. Hence, the Gal11p/Med2p/Pgd1p triad may contribute to TBP recruitment independently of the rest of mediator.
Collapse
Affiliation(s)
- Fan Zhang
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Building 6A/Room B1A13, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
32
|
Nevado J, Tenbaum SP, Aranda A. hSrb7, an essential human Mediator component, acts as a coactivator for the thyroid hormone receptor. Mol Cell Endocrinol 2004; 222:41-51. [PMID: 15249124 DOI: 10.1016/j.mce.2004.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/11/2004] [Accepted: 05/11/2004] [Indexed: 10/26/2022]
Abstract
Nuclear hormone receptors interact with the basal-transcriptional complex and/or coactivators to regulate transcriptional activation. These activator-target interactions recruit the transcriptional machinery to the promoter and may also stimulate transcriptional events subsequent to the binding of the machinery to the promoter or enhancer element. We describe a novel functional interaction of the nuclear thyroid receptor (TR), with a human Mediator component (hSrb7), and a human TFIIH component (hMo15). In mammalian two-hybrid experiments as well as in GST-pull down assays, hSrb7 interacts with TR but not with other nuclear receptors such as the retinoic acid receptor (RAR) or the vitamin D receptor (VDR). Whereas hMo15 also interacts with VDR and RAR in mammalian two-hybrid assays, no association of hSrb7 with VDR or RAR is found. Accordingly, cotransfection of TR and hSrb7 increases thyroid hormone (T3)-dependent transcription in an AF-2-dependent manner, while hSrb7 causes no stimulation of vitamin D- or retinoic acid-mediated transactivation. These results reveal a novel co-activator role for hSrb7 and hMo15 on TR transcriptional responses, and demonstrate that different receptors can selectively target different co-activators or general transcription factors to stimulate transcription.
Collapse
Affiliation(s)
- Julián Nevado
- Unidad de Investigación, Hospital Universitario de Getafe, 28905 Getafe, Madrid, Spain
| | | | | |
Collapse
|
33
|
Affiliation(s)
- Stefan Björklund
- Department of Medical Biochemistry, Umeå University, S-901 87 Umeå, Sweden
| | | |
Collapse
|
34
|
Cantin GT, Stevens JL, Berk AJ. Activation domain-mediator interactions promote transcription preinitiation complex assembly on promoter DNA. Proc Natl Acad Sci U S A 2003; 100:12003-8. [PMID: 14506297 PMCID: PMC218703 DOI: 10.1073/pnas.2035253100] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2003] [Indexed: 11/18/2022] Open
Abstract
The interaction of activators with mediator has been proposed to stimulate the assembly of RNA polymerase II (Pol II) preinitiation complexes, but there have been few tests of this model. The finding that the major adenovirus E1A and mitogen-activated protein kinase-phosphorylated Elk1 activation domains bind to Sur2 uniquely among the metazoan mediator subunits and the development of transcriptionally active nuclear extracts from WT and sur2-/- embryonic stem cells, reported here, allowed a direct test of the model. We found that whereas VP16, E1A, and phosphorylated Elk1 activation domains each stimulate binding of mediator, Pol II, and general transcription factors to promoter DNA in extracts from WT cells, only VP16 stimulated their binding in extracts from sur2-/- cells. This stimulation of mediator, Pol II, and general transcription factor binding to promoter DNA correlated with transcriptional activation by these activators in WT and mutant extracts. Because the mutant mediator was active in reactions with the VP16 activation domain, the lack of activity in response to the E1A and Elk1 activation domains was not due to loss of a generalized mediator function, but rather the inability of the mutant mediator to be bound by E1A and Elk1. These results directly demonstrate that the interaction of activation domains with mediator stimulates preinitiation complex assembly on promoter DNA.
Collapse
Affiliation(s)
- Greg T Cantin
- Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, 611 Charles E. Young Drive East, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
35
|
Lewis BA, Reinberg D. The mediator coactivator complex: functional and physical roles in transcriptional regulation. J Cell Sci 2003; 116:3667-75. [PMID: 12917354 DOI: 10.1242/jcs.00734] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo, the DNA is packed into chromatin and transcription is dependent upon activators that recruit other factors to reverse the repressive effects of chromatin. The response to activators requires additional factors referred to as coactivators. One such coactivator, mediator, is a multi-subunit complex capable of responding to different activators. It plays an key role in activation, bridging DNA-bound activators, the general transcriptional machinery, especially RNA polymerase II, and the core promoter. Its subunits are necessary for a variety of positive and negative regulatory processes and serve as the direct targets of activators themselves. In vivo and in vitro studies support various roles for mediator in transcription initiation, while structural studies demonstrate that it engages in multiple interactions with RNA polymerase II, and adopts conformations that are activator specific.
Collapse
Affiliation(s)
- Brian A Lewis
- Howard Hughes Medical Institute, Division of Nucleic Acids Enzymology, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | |
Collapse
|
36
|
Balciunas D, Hallberg M, Björklund S, Ronne H. Functional interactions within yeast mediator and evidence of differential subunit modifications. J Biol Chem 2003; 278:3831-9. [PMID: 12468546 DOI: 10.1074/jbc.m206946200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is possible to recruit RNA polymerase II to a target promoter and, thus, activate transcription by fusing Mediator subunits to a DNA binding domain. To investigate functional interactions within Mediator, we have tested such fusions of the lexA DNA binding domain to Med1, Med2, Gal11, Srb7, and Srb10 in wild type, med1, med2, gal11, sin4, srb8, srb10, and srb11 strains. We found that lexA-Med2 and lexA-Gal11 are strong activators that are independent of all Mediator subunits tested. lexA-Srb10 is a weak activator that depends on Srb8 and Srb11. lexA-Med1 and lexA-Srb7 are both cryptic activators that become active in the absence of Srb8, Srb10, Srb11, or Sin4. An unexpected finding was that lexA-VP16 differs from Gal4-VP16 in that it is independent of the activator binding Mediator module. Both lexA-Med1 and lexA-Srb7 are stably associated with Med4 and Med8, which suggests that they are incorporated into Mediator. Med4 and Med8 exist in two mobility forms that differ in their association with lexA-Med1 and lexA-Srb7. Within purified Mediator, Med4 is present as a phosphorylated lower mobility form. Taken together, these results suggest that assembly of Mediator is a multistep process that involves conversion of both Med4 and Med8 to their low mobility forms.
Collapse
Affiliation(s)
- Darius Balciunas
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala Genetic Center, Box 7080, Sweden
| | | | | | | |
Collapse
|
37
|
Park JM, Kim JM, Kim LK, Kim SN, Kim-Ha J, Kim JH, Kim YJ. Signal-induced transcriptional activation by Dif requires the dTRAP80 mediator module. Mol Cell Biol 2003; 23:1358-67. [PMID: 12556495 PMCID: PMC141132 DOI: 10.1128/mcb.23.4.1358-1367.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Mediator complex is the major multiprotein transcriptional coactivator complex in Drosophila melanogaster. Mediator components interact with diverse sets of transcriptional activator proteins to elicit the sophisticated regulation of gene expression. The distinct phenotypes associated with certain mutations in some of the Mediator genes and the specific in vitro interactions of Mediator gene products with transcriptional activator proteins suggest the presence of activator-specific binding subunits within the Mediator complex. However, the physiological relevance of these selective in vitro interactions has not been addressed. Therefore, we analyzed dTRAP80, one of the putative activator-binding subunits of the Mediator, for specificity of binding to a number of natural transcriptional activators from Drosophila. Among the group of activator proteins that requires the Mediator complex for transcriptional activation, only a subset of these proteins interacted with dTRAP80 in vitro and only these dTRAP80-interacting activators were defective for activation under dTRAP80-deficient in vivo conditions. In particular, activation of Drosophila antimicrobial peptide drosomycin gene expression by the NF-kappa B-like transcription factor Dif during induction of the Toll signaling pathway was dependent on the dTRAP80 module. These results, and the indirect support from the dTRAP80 artificial recruitment assay, indicate that dTRAP80 serves as a genuine activator-binding target responsible for a distinct group of activators.
Collapse
Affiliation(s)
- Jin Mo Park
- Department of Biochemistry, National Creative Research Initiative Center for Genome Regulation, Yonsei University. Digital Genomics, Inc., Seoul 120-749, Korea
| | | | | | | | | | | | | |
Collapse
|
38
|
Holland L, Gauthier L, Bell-Rogers P, Yankulov K. Distinct parts of minichromosome maintenance protein 2 associate with histone H3/H4 and RNA polymerase II holoenzyme. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:5192-202. [PMID: 12392551 DOI: 10.1046/j.1432-1033.2002.03224.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Minichromosome maintenance (MCM) proteins are part of the replication licensing factor (RLF-M), which limits the initiation of DNA replication to once per cell cycle. We have previously reported that higher order complexes of mammalian pol II and general pol II transcription factors, referred to as pol II holoenzyme, also contain MCM proteins. In the present study we have analyzed in detail the interaction between MCM2 and pol II holoenzyme. N- and C- terminal deletions were introduced into epitope-tagged MCM2 and the truncated proteins were transiently expressed in 293 cells. Affinity chromatography was used to purify RNA pol II holoenzyme and histone binding MCM complexes. We found that amino acids 168-230 of MCM2 are required for its binding to pol II holoenzyme in vivo. We also showed that bacterially expressed amino acids 169-212 of MCM2 associate with pol II and several general transcription factors in vitro. Point mutations within the 169-212 domain of MCM2 disrupted its interaction with pol II holoenzyme both in vitro and in vivo. This region is distinct from the previously characterized histone H3 binding domain of MCM2.
Collapse
Affiliation(s)
- Linda Holland
- Department of Molecular Biology and Genetics, University of Guelph, Ontario Canada
| | | | | | | |
Collapse
|
39
|
Gauthier L, Dziak R, Kramer DJH, Leishman D, Song X, Ho J, Radovic M, Bentley D, Yankulov K. The role of the carboxyterminal domain of RNA polymerase II in regulating origins of DNA replication in Saccharomyces cerevisiae. Genetics 2002; 162:1117-29. [PMID: 12454060 PMCID: PMC1462328 DOI: 10.1093/genetics/162.3.1117] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MCM (minichromosome maintenance) proteins function as a replication licensing factor (RLF-M), which contributes to limiting initiation of DNA replication to once per cell cycle. In the present study we show that a truncation of the pol II CTD in a S. cerevisiae strain harboring a mutation in mcm5 partially reverses its ts phenotype and improves maintenance of CEN/ARS minichromosomes. We correlate this phenotype to effects on DNA replication rather than to effects on transcription or specific gene expression. We also demonstrate that a similar truncation of the CTD reduces minichromosome stability and impairs stimulation of DNA replication by trans-activators and that tethering of recombinant pol II CTD to an origin of replication has a significant stimulatory effect on minichromosome stability. Furthermore, we show that pol II is recruited to ARS1. We propose that in S. cerevisiae a mechanism of coordinating pol II transcription and DNA replication is mediated by the CTD of pol II.
Collapse
Affiliation(s)
- Laura Gauthier
- Department of Molecular Biology and Genetics, University of Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Shim EY, Walker AK, Blackwell TK. Broad requirement for the mediator subunit RGR-1 for transcription in the Caenorhabditis elegans embryo. J Biol Chem 2002; 277:30413-6. [PMID: 12089139 DOI: 10.1074/jbc.c200305200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mediator-related transcription co-factors integrate positive and negative inputs and recruit and activate the RNA polymerase II complex. To understand the role of Mediator during transcription, it is important to identify Mediator subunits that are essential for its functions. In the yeast Mediator, the conserved component Rgr1 is associated with multiple subunits that are required for specific activation or repression events. Yeast rgr1 is essential for viability, for certain repression mechanisms, and for activation of heat shock genes, but it is not known whether rgr1 is generally important for transcription. Here we have performed the first analysis of rgr-1 function in a metazoan. We found that in the developing Caenorhabditis elegans embryo rgr-1 is broadly required for transcription and for phosphorylation of both Ser-2 and Ser-5 of the RNA polymerase II C-terminal domain repeat. We conclude that RGR-1 fulfills a critical Mediator function that is broadly essential for metazoan mRNA transcription and that RGR-1 may be required at an early recruitment or initiation step.
Collapse
Affiliation(s)
- Eun Yong Shim
- Center for Blood Research and Department of Pathology, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
41
|
Boube M, Joulia L, Cribbs DL, Bourbon HM. Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. Cell 2002; 110:143-51. [PMID: 12150923 DOI: 10.1016/s0092-8674(02)00830-9] [Citation(s) in RCA: 196] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mediator complexes (MED) link transcriptional regulators to RNA polymerase II. Here, we summarize the latest advances on the functional organization of yeast Mediator. We argue for the existence of a "universal" Mediator structurally conserved from yeast to man, based on an extensive analysis of sequence databases. Finally, we examine the implications of these observations for the physiological roles of metazoan MED subunits.
Collapse
Affiliation(s)
- Muriel Boube
- Centre de Biologie du Développement, Université Paul Sabatier, 31062, Toulouse Cedex, France
| | | | | | | |
Collapse
|
42
|
Sipiczki M. Identification of Schizosaccharomyces pombe genes that encode putative homologues of Saccharomyces cerevisiae mediator complex subunits. Acta Microbiol Immunol Hung 2002; 48:519-31. [PMID: 11791349 DOI: 10.1556/amicr.48.2001.3-4.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The mediator complexes transduce regulatory information from upstream regulatory elements to the transcription machinery in organisms ranging from yeasts to humans. By a genome-wide search we identified 14 ORFs and genes in the genome of the fission yeast Schizosaccharomyces pombe that encode putative homologues of Saccharomyces cerevisiae mediator subunits. The Sch. pombe proteins are smaller and appear to form a mediator of lower complexity, which is consistent with the hypothesized ancient origin of fission yeasts.
Collapse
Affiliation(s)
- M Sipiczki
- Department of Genetics and Molecular Biology, University of Debrecen, Research Group for Microbial Developmental Genetics, Hungarian Academy of Sciences, Debrecen, P.O. Box 56, H-4010 Debrecen, Hungary
| |
Collapse
|
43
|
Lu Z, Ansari AZ, Lu X, Ogirala A, Ptashne M. A target essential for the activity of a nonacidic yeast transcriptional activator. Proc Natl Acad Sci U S A 2002; 99:8591-6. [PMID: 12084920 PMCID: PMC124323 DOI: 10.1073/pnas.092263499] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
P201 is a short (eight-residue) nonacidic peptide that comprises a strong transcriptional activating region when tethered to DNA in yeast. Here we identify the mediator protein Gal11 as an essential target of P201. Deletion of Gal11, which modestly decreases activation elicited by the typical acidic yeast activator, abolishes activation by DNA-tethered P201. A point mutation in Gal11, which has no effect on other Gal11 functions, also greatly diminishes activation by DNA-tethered P201. P201 binds to a fragment of Gal11 in vivo and in vitro, and the interaction is diminished by mutations in either component that decrease activation in vivo. P201, unlike the typical yeast acidic activating region, does not work in mammalian cells, which is consistent with the notion that the unique target of P201 (Gal11) is absent from mammalian cells.
Collapse
Affiliation(s)
- Zhen Lu
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
44
|
Mencía M, Moqtaderi Z, Geisberg JV, Kuras L, Struhl K. Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol Cell 2002; 9:823-33. [PMID: 11983173 DOI: 10.1016/s1097-2765(02)00490-2] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In yeast, TFIID strongly associates with nearly all ribosomal protein (RP) promoters, but a TAF-independent form of TBP preferentially associates with other active promoters. RP promoters are regulated in response to growth stimuli, in most cases by a Rap1-containing activator. This Rap1-dependent activator is necessary and sufficient for TFIID recruitment, whereas other activators do not efficiently recruit TFIID. TAFs are recruited to RP promoters even when TBP and other general transcription factors are not associated, suggesting that TFIID recruitment involves a direct activator-TAF interaction. Most RP promoters lack canonical TATA elements, and they are preferentially activated by the Rap1-containing activator. These results demonstrate activator-specific recruitment of TFIID in vivo, and they suggest that TFIID recruitment is important for coordinate expression of RP genes.
Collapse
Affiliation(s)
- Mario Mencía
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
45
|
Hinnebusch AG, Natarajan K. Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. EUKARYOTIC CELL 2002; 1:22-32. [PMID: 12455968 PMCID: PMC118051 DOI: 10.1128/ec.01.1.22-32.2002] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
46
|
Kang JS, Kim SH, Hwang MS, Han SJ, Lee YC, Kim YJ. The structural and functional organization of the yeast mediator complex. J Biol Chem 2001; 276:42003-10. [PMID: 11555651 DOI: 10.1074/jbc.m105961200] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Mediator complex of Saccharomyces cerevisiae is required for diverse aspects of transcription by RNA polymerase II (pol II). Mediator is composed of two functionally distinct subcomplexes, Rgr1 and Srb4. To identify the structures and functions of each subcomplex, we expressed recombinant proteins for each subunit and assayed their interactions with each other and with basal transcription proteins. The Rgr1 subcomplex is composed of the Gal11 module, which binds activators, and the Med9/10 module. The Med9/10 module is required for both transcriptional activation and repression, and these activities appear to be carried out by two submodules. Proteins in the Med9 submodule interact physically and genetically with Srb10/11, suggesting that the Med9 submodule mediates the repression of pol II. Purified recombinant Srb4 subcomplex stimulated basal transcription of pol II but had little effect on activated transcription and phosphorylation of the C-terminal domain of the Rpb1 subunit of pol II. Both subcomplexes of Mediator interacted with a distinct set of basal transcription factors and pol II. The modular organization of Mediator and the associated functions suggest that the Mediator complex may recruit and/or stabilize the preinitiation complex through several points of contact with transcriptional regulators and basal transcription factors.
Collapse
Affiliation(s)
- J S Kang
- National Creative Research Center for Genome Regulation, Department of Biochemistry, Yonsei University, Seoul 120-749, Korea
| | | | | | | | | | | |
Collapse
|
47
|
Han SJ, Lee JS, Kang JS, Kim YJ. Med9/Cse2 and Gal11 modules are required for transcriptional repression of distinct group of genes. J Biol Chem 2001; 276:37020-6. [PMID: 11470794 DOI: 10.1074/jbc.m105596200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast Mediator is composed of two subcomplexes, Rgr1 and Srb4, known to be required for diverse aspects of transcriptional regulation; however, their structural and functional organizations have not yet been deciphered in detail. Biochemical analyses designed to determine the subunit composition of the Rgr1 subcomplex revealed that the regulator-interacting subcomplex has a modular structure and is composed of the Gal11, Med9/Cse2, and Med10/Nut2 modules. Genome-wide gene expression and Northern analyses performed in the presence or absence of the various Mediator modules revealed a distinct requirement for the Gal11, Med9/Cse2, and Med10/Nut2 modules in transcriptional repression as well as activation. GST pull-down analysis revealed that the transcriptional repressor Tup1 binds to distinct but overlapping regions of the Gal11 module that were shown previously to be transcriptional activator binding sites. These data suggest that competition between transcriptional activators and repressors for a common binding site in the Mediator and distinct conformational changes in the Mediator induced by repressor binding may underlie the mechanism of transcriptional repression in eukaryotes.
Collapse
Affiliation(s)
- S J Han
- National Creative Research Initiative Center for Genome Regulation, Department of Biochemistry, 134 Sinchon-dong, Seodaemoon-ku, Yonsei University, Seoul 120-749, Korea
| | | | | | | |
Collapse
|
48
|
Bhoite LT, Yu Y, Stillman DJ. The Swi5 activator recruits the Mediator complex to the HO promoter without RNA polymerase II. Genes Dev 2001; 15:2457-69. [PMID: 11562354 PMCID: PMC312787 DOI: 10.1101/gad.921601] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Regulation of HO gene expression in the yeast Saccharomyces cerevisiae is intricately orchestrated by an assortment of gene-specific DNA-binding and non-DNA binding regulators. Binding of the early G1 transcription factor Swi5 to the distal URS1 element of the HO promoter initiates a cascade of events through recruitment of the Swi/Snf and SAGA complexes. In late G1, binding of transcription factor SBF to promoter proximal sequences results in the timely expression of HO. In this work we describe an important additional layer of complexity to the current model by identifying a connection between Swi5 and the Mediator/RNA polymerase II holoenzyme complex. We show that Swi5 recruits Mediator to HO by specific interaction with the Gal11 module of the Mediator complex. Importantly, binding of both the Gal11 and Srb4 mediator components to the upstream region of HO is independent of the SBF factor. Swi/Snf is required for Mediator binding, and genetic suppression experiments suggest that Swi/Snf and Mediator act in the same genetic pathway of HO activation. Experiments examining the kinetics of binding show that Mediator binds to HO promoter elements 1.5 kb upstream of the transcription start site in early G1, but this binding occurs without RNA Pol II. RNA Pol II does not bind to HO until late G1, when HO is actively transcribed, and binding occurs exclusively to the TATA region.
Collapse
Affiliation(s)
- L T Bhoite
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
49
|
Howard SC, Chang YW, Budovskaya YV, Herman PK. The Ras/PKA signaling pathway of Saccharomyces cerevisiae exhibits a functional interaction with the Sin4p complex of the RNA polymerase II holoenzyme. Genetics 2001; 159:77-89. [PMID: 11560888 PMCID: PMC1461800 DOI: 10.1093/genetics/159.1.77] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Saccharomyces cerevisiae cells enter into the G(0)-like resting state, stationary phase, in response to specific types of nutrient limitation. We have initiated a genetic analysis of this resting state and have identified a collection of rye mutants that exhibit a defective transcriptional response to nutrient deprivation. These transcriptional defects appear to disrupt the control of normal growth because the rye mutants are unable to enter into a normal stationary phase upon nutrient deprivation. In this study, we examined the mutants in the rye1 complementation group and found that rye1 mutants were also defective for stationary phase entry. Interestingly, the RYE1 gene was found to be identical to SIN4, a gene that encodes a component of the yeast Mediator complex within the RNA polymerase II holoenzyme. Moreover, mutations that affected proteins within the Sin4p module of the Mediator exhibited specific genetic interactions with the Ras protein signaling pathway. For example, mutations that elevated the levels of Ras signaling, like RAS2(val19), were synthetic lethal with sin4. In all, our data suggest that specific proteins within the RNA polymerase II holoenzyme might be targets of signal transduction pathways that are responsible for coordinating gene expression with cell growth.
Collapse
Affiliation(s)
- S C Howard
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
50
|
Jeong CJ, Yang SH, Xie Y, Zhang L, Johnston SA, Kodadek T. Evidence that Gal11 protein is a target of the Gal4 activation domain in the mediator. Biochemistry 2001; 40:9421-7. [PMID: 11478912 DOI: 10.1021/bi010011k] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mediator is an approximately 20 protein complex that is essential for the transcription of most genes in yeast. It is contacted by a number of gene-specific activators, but the details of these interactions are not well understood in most cases. Here, evidence is presented that the mediator component Gal11 represents at least one target of the Gal4 activation domain (AD). Deletion of Gal11 is shown to decrease the affinity of the Gal4 AD for the mediator, and direct binding of an N-terminal domain of Gal11 with the Gal4 AD is demonstrated. Quantitative studies, however, indicate that the K(D) of the 1:1 Gal4 AD--Gal11 complex is modest. Combined with in vivo data showing that Delta gal11 cells exhibit reduced, but still significant, Gal4-mediated gene expression, these results suggest that the dimeric activator might also contact another protein in the mediator in addition to Gal11.
Collapse
Affiliation(s)
- C J Jeong
- Department of Internal Medicine, Ryburn Center for Molecular Cardiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-8573, USA
| | | | | | | | | | | |
Collapse
|