1
|
MiT translocation renal cell carcinoma: A review of the literature from molecular characterization to clinical management. Biochim Biophys Acta Rev Cancer 2022; 1877:188823. [DOI: 10.1016/j.bbcan.2022.188823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/17/2022] [Accepted: 10/04/2022] [Indexed: 11/23/2022]
|
2
|
Kmeid M, Akgul M. TFE3 Rearrangement and Expression in Renal Cell Carcinoma. Int J Surg Pathol 2022:10668969221108517. [PMID: 35912477 DOI: 10.1177/10668969221108517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
TFE3 rearranged Renal cell carcinoma (RCC) is not very common, and demonstrates unique heterogenous morphological features overlapping other recognized entities and distinct immunoprofile. It can be seen in any age group, therefore practicing pathologists should be aware of the distinctive clinical settings and histologic findings associated with these tumors and subsequently employ an adequate panel of ancillary studies in order to confirm the diagnosis. Recognizing these entities remains crucial for future clinical trials and development of novel therapies.
Collapse
Affiliation(s)
- Michel Kmeid
- Department of Pathology and Laboratory Medicine, 138207Albany Medical Center, Albany, NY, USA
| | - Mahmut Akgul
- Department of Pathology and Laboratory Medicine, 138207Albany Medical Center, Albany, NY, USA
| |
Collapse
|
3
|
Yang L, Chen Y, Liu N, Lu Y, Li X, Ma W, Gan W, Li D. 5mC and H3K9me3 of TRAF3IP2 promoter region accelerates the progression of translocation renal cell carcinoma. Biomark Res 2022; 10:54. [PMID: 35897085 PMCID: PMC9331078 DOI: 10.1186/s40364-022-00402-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/19/2022] [Indexed: 11/16/2022] Open
Abstract
Background In our previous study, we found that lncRNA TRAF3IP2 antisense RNA 1 (TRAF3IP2-AS1) could play a critical role in the progression of NONO-TFE3 translocation renal cell carcinoma (NONO-TFE3 tRCC). However, the function of TRAF3IP2 (TRAF3 interacting protein 2), encoded by the complementary strand of TRAF3IP2-AS1, remains poorly understood in NONO-TFE3 tRCC. Methods Immunohistochemistry, western blot, and qRT-PCR were undertaken to study the expression and clinical significance of TRAF3IP2 in Xp11.2 tRCC tissues and cells. The functions of TRAF3IP2 in tRCC were investigated by proliferation analysis, EdU staining, colony and sphere formation assay, Transwell assay, and apoptosis analysis. The regulatory mechanisms among TRAF3IP2, NOTCH1, and TRAF3IP2-AS1 were investigated by luciferase assay, RNA immunoprecipitation, western blot, methylated DNA Immunoprecipitation, and CRISPR/dCas9-based system. Results The results showed that TRAF3IP2 was highly expressed in NONO-TFE3 tRCC tissues and cells, and the silence of TRAF3IP2 inhibited the proliferation, migration, and invasion of UOK109 cells which were derived from cancer tissue of patient with NONO-TFE3 tRCC. Mechanistic studies revealed that TRAF3IP2 functioned as a co-activator of NOTCH1 to activate the NOTCH1 pathway. Meanwhile, HNRNPK, DNMT1 and SETDB1 could be recruited by TRAF3IP2-AS1 to the promoter region of TRAF3IP2, which mediated 5-hydroxymethylcytosine (5mC) on DNA and trimethylated lysine 9 of histone H3 (H3K9me3) at transcriptional level to repress the expression of TRAF3IP2. Conclusions TRAF3IP2 functions as an oncogene in NONO-TFE3 tRCC progression and might serve as a novel target for NONO-TFE3 tRCC therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00402-3.
Collapse
Affiliation(s)
- Lei Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yi Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Ning Liu
- Department of Urology, Affiliated Drum Tower Hospital of Medical, School of Nanjing University, Nanjing, 210008, Jiangsu, China.,Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Yanwen Lu
- Department of Urology, Affiliated Drum Tower Hospital of Medical, School of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Xin Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Wenliang Ma
- Department of Urology, Affiliated Drum Tower Hospital of Medical, School of Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical, School of Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
4
|
Yang L, Chen Y, Liu N, Shi Q, Han X, Gan W, Li D. Low expression of TRAF3IP2-AS1 promotes progression of NONO-TFE3 translocation renal cell carcinoma by stimulating N 6-methyladenosine of PARP1 mRNA and downregulating PTEN. J Hematol Oncol 2021; 14:46. [PMID: 33741027 PMCID: PMC7980631 DOI: 10.1186/s13045-021-01059-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background NONO-TFE3 translocation renal cell carcinoma (NONO-TFE3 tRCC) is one subtype of RCCs associated with Xp11.2 translocation/TFE3 gene fusions RCC (Xp11.2 tRCCs). Long non-coding RNA (lncRNA) has attracted great attention in cancer research. The function and mechanisms of TRAF3IP2 antisense RNA 1 (TRAF3IP2-AS1), a natural antisense lncRNA, in NONO-TFE3 tRCC remain poorly understood. Methods FISH and qRT-PCR were undertaken to study the expression, localization and clinical significance of TRAF3IP2-AS1 in Xp11.2 tRCC tissues and cells. The functions of TRAF3IP2-AS1 in tRCC were investigated by proliferation analysis, EdU staining, colony and sphere formation assay, Transwell assay and apoptosis analysis. The regulatory mechanisms among TRAF3IP2-AS1, PARP1, PTEN and miR-200a-3p/153-3p/141-3p were investigated by luciferase assay, RNA immunoprecipitation, Western blot and immunohistochemistry. Results The expression of TRAF3IP2-AS1 was suppressed by NONO-TFE3 fusion in NONO-TFE3 tRCC tissues and cells. Overexpression of TRAF3IP2-AS1 inhibited the proliferation, migration and invasion of UOK109 cells which were derived from cancer tissue of patient with NONO-TFE3 tRCC. Mechanistic studies revealed that TRAF3IP2-AS1 accelerated the decay of PARP1 mRNA by direct binding and recruitment of N6-methyladenosie methyltransferase complex. Meanwhile, TRAF3IP2-AS1 competitively bound to miR-200a-3p/153-3p/141-3p and prevented those from decreasing the level of PTEN. Conclusions TRAF3IP2-AS1 functions as a tumor suppressor in NONO-TFE3 tRCC progression and may serve as a novel target for NONO-TFE3 tRCC therapy. TRAF3IP2-AS1 expression has the potential to serve as a novel diagnostic and prognostic biomarker for NONO-TFE3 tRCC detection. Supplementary Information The online version contains supplementary material available at 10.1186/s13045-021-01059-5.
Collapse
Affiliation(s)
- Lei Yang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yi Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Ning Liu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - QianCheng Shi
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China.,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Weidong Gan
- Department of Urology, Affiliated Drum Tower Hospital of Medical School of Nanjing University, Nanjing, 210008, Jiangsu, China.
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China. .,Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China.
| |
Collapse
|
5
|
Fisher MH, Kirkpatrick GD, Stevens B, Jones C, Callaghan M, Rajpurkar M, Fulbright J, Cooper MA, Rowley J, Porter CC, Gutierrez-Hartmann A, Jones K, Jordan C, Pietras EM, Di Paola J. ETV6 germline mutations cause HDAC3/NCOR2 mislocalization and upregulation of interferon response genes. JCI Insight 2020; 5:140332. [PMID: 32841218 PMCID: PMC7526537 DOI: 10.1172/jci.insight.140332] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022] Open
Abstract
ETV6 is an ETS family transcription factor that plays a key role in hematopoiesis and megakaryocyte development. Our group and others have identified germline mutations in ETV6 resulting in autosomal dominant thrombocytopenia and predisposition to malignancy; however, molecular mechanisms defining the role of ETV6 in megakaryocyte development have not been well established. Using a combination of molecular, biochemical, and sequencing approaches in patient-derived PBMCs, we demonstrate abnormal cytoplasmic localization of ETV6 and the HDAC3/NCOR2 repressor complex that led to overexpression of HDAC3-regulated interferon response genes. This transcriptional dysregulation was also reflected in patient-derived platelet transcripts and drove aberrant proplatelet formation in megakaryocytes. Our results suggest that aberrant transcription may predispose patients with ETV6 mutations to bone marrow inflammation, dysplasia, and megakaryocyte dysfunction.
Collapse
Affiliation(s)
- Marlie H. Fisher
- Molecular Biology Graduate Program
- Medical Scientist Training Program, and
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Gregory D. Kirkpatrick
- Medical Scientist Training Program, and
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Brett Stevens
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Courtney Jones
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Michael Callaghan
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, Michigan, USA
| | - Madhvi Rajpurkar
- Department of Pediatrics, Children’s Hospital of Michigan, Wayne State University, Detroit, Michigan, USA
| | - Joy Fulbright
- Department of Pediatrics, Children’s Mercy Hospital, Kansas City, Missouri, USA
| | - Megan A. Cooper
- Department of Pediatrics, Washington University at St. Louis, St. Louis, Missouri, USA
| | - Jesse Rowley
- Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Christopher C. Porter
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Arthur Gutierrez-Hartmann
- Molecular Biology Graduate Program
- Department of Internal Medicine and
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kenneth Jones
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Craig Jordan
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Eric M. Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jorge Di Paola
- Department of Pediatrics, Washington University at St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
6
|
TFE3 fusions escape from controlling of mTOR signaling pathway and accumulate in the nucleus promoting genes expression in Xp11.2 translocation renal cell carcinomas. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:119. [PMID: 30849994 PMCID: PMC6408813 DOI: 10.1186/s13046-019-1101-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/11/2019] [Indexed: 12/20/2022]
Abstract
Background Xp11.2 translocation renal cell carcinoma (tRCC) is mainly caused by translocation of the TFE3 gene located on chromosome Xp11.2 and is characterized by overexpression of the TFE3 fusion gene. Patients are diagnosed with tRCC usually before 45 years of age with poor prognosis. We investigated this disease using two tRCC cell lines, UOK109 and UOK120, in this study. Methods The purpose of this study was to investigate the pathogenic mechanism of TFE3 fusions in tRCC based on its subcellular localization, nuclear translocation and transcriptional activity. The expression of TFE3 fusions and other related genes were analyzed by quantitative reverse transcription PCR (qRT-PCR) and Western blot. The subcellular localization of TFE3 was determined using immunofluorescence. The transcriptional activity of TFE3 fusions was measured using a luciferase reporter assay and ChIP analysis. In some experiments, TFE3 fusions were depleted by RNAi or gene knockdown. The TFE3 fusion segments were cloned into a plasmid expression system for expression in cells. Results Our results demonstrated that TFE3 fusions were overexpressed in tRCC with a strong nuclear retention irrespective of treatment with an mTORC1 inhibitor or not. TFE3 fusions lost its co-localization with lysosomal proteins and decreased its interaction with the chaperone 14–3-3 proteins in UOK109 and UOK120 cells. However, the fusion segments of TFE3 could not translocate to the nucleus and inhibition of Gsk3β could increase the cytoplasmic retention of TFE3 fusions. Both the luciferase reporter assay and ChIP analysis demonstrated that TFE3 fusions could bind to the promoters of the target genes as a wild-type TFE3 protein. Knockdown of TFE3 results in decreased expression of those genes responsible for lysosomal biogenesis and other target genes. The ChIP-seq data further verified that, in addition to lysosomal genes, TFE3 fusions could regulate genes involved in cellular responses to hypoxic stress and transcription. Conclusions Our results indicated that the overexpressed TFE3 fusions were capable of escaping from the control by the mTOR signaling pathway and were accumulated in the nucleus in UOK109 and UOK120 cells. The nuclear retention of TFE3 fusions promoted the expression of lysosomal genes and other target genes, facilitating cancer cell resistance against an extreme environment. Electronic supplementary material The online version of this article (10.1186/s13046-019-1101-7) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Chen S, Turbat-Herrera EA, Herrera GA, Chadha M, Shackelford RE, Wei EX. Metastatic TFE3-overexpressing renal clear cell carcinoma with dense granules: a histological, immunohistochemical, and ultrastructural study. Ultrastruct Pathol 2018; 42:369-375. [DOI: 10.1080/01913123.2018.1499686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Shoujun Chen
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Elba A. Turbat-Herrera
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Guillermo A. Herrera
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Meghna Chadha
- Department of Radiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Rodney E. Shackelford
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Eric X. Wei
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, LA, USA
| |
Collapse
|
8
|
Transcription Factor ETS-1 and Reactive Oxygen Species: Role in Vascular and Renal Injury. Antioxidants (Basel) 2018; 7:antiox7070084. [PMID: 29970819 PMCID: PMC6071050 DOI: 10.3390/antiox7070084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 12/24/2022] Open
Abstract
The E26 avian erythroblastosis virus transcription factor-1 (ETS-1) is a member of the ETS family and regulates the expression of a variety of genes including growth factors, chemokines and adhesion molecules. Although ETS-1 was discovered as an oncogene, several lines of research show that it is up-regulated by angiotensin II (Ang II) both in the vasculature and the glomerulus. While reactive oxygen species (ROS) are required for Ang II-induced ETS-1 expression, ETS-1 also regulates the expression of p47phox, which is one of the subunits of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and a major source of ROS in the kidney and vasculature. Thus, there appears to be a positive feedback between ETS-1 and ROS. ETS-1 is also upregulated in the kidneys of rats with salt-sensitive hypertension and plays a major role in the development of end-organ injury in this animal model. Activation of the renin angiotensin system is required for the increased ETS-1 expression in these rats, and blockade of ETS-1 or haplodeficiency reduces the severity of kidney injury in these rats. In summary, ETS-1 plays a major role in the development of vascular and renal injury and is a potential target for the development of novel therapeutic strategies to ameliorate end-organ injury in hypertension.
Collapse
|
9
|
Arderiu G, Espinosa S, Peña E, Aledo R, Badimon L. PAR2-SMAD3 in microvascular endothelial cells is indispensable for vascular stability via tissue factor signaling. J Mol Cell Biol 2015; 8:255-70. [PMID: 26658897 DOI: 10.1093/jmcb/mjv065] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/29/2015] [Indexed: 12/31/2022] Open
Abstract
Tissue factor (TF) signaling regulates gene expression and protein synthesis leading to the modulation of cell function. Recently, we have demonstrated in microvascular endothelial cells (mECs) that TF signaling induces activation of ETS1 transcription factor. Because combinatorial control is a characteristic property of ETS family members, involving the interaction between ETS1 and other transcription factors, here we investigate whether additional transcription factors are involved in TF-induced angiogenesis. We show by in vitro and in vivo experiments that in addition to ETS1, SMAD3 contributes to tube-like stabilization induced by TF in mECs. Whereas the ability of TF-overexpressing cells to induce gene expression through ETS1 is dependent on AKT signaling, SMAD3 induces ETS1 by an alternative AKT-independent pathway. Moreover, while TF-AKT-ETS1 pathway to induce CCL2 is PAR2-independent, PAR2 is required for TF-SMAD3-induced CCL2 expression. PAR2-dependent activation of SMAD3 is mediated by PKC phosphorylation. In addition, disruption of SMAD3 expression in mECs reduces ERK1/2 phosphorylation and decreases target gene promoter activity. In conclusion, in mECs TF-induced angiogenesis seems to be the result of two signaling pathways: TF-induced microvessel formation is regulated through β1 integrin-AKT-ETS1; and TF-induced microvessel stabilization is regulated via PAR2-SMAD3 that is indispensable for the maintenance of vascular integrity.
Collapse
Affiliation(s)
- Gemma Arderiu
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Sonia Espinosa
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Esther Peña
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Rosa Aledo
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| | - Lina Badimon
- Cardiovascular Research Center (CSIC-ICCC), Hospital de Sant Pau (UAB) and IIB-Sant Pau, 08025 Barcelona, Spain
| |
Collapse
|
10
|
Testoni M, Chung EYL, Priebe V, Bertoni F. The transcription factor ETS1 in lymphomas: friend or foe? Leuk Lymphoma 2015; 56:1975-80. [PMID: 25363344 DOI: 10.3109/10428194.2014.981670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
ETS1 is a member of the ETS family of transcription factors, which contains many cancer genes. ETS1 gene is mapped at 11q24.3, a chromosomal region that is often the site of genomic rearrangements in hematological cancers. ETS1 is expressed in a variety of cells, including B and T lymphocytes. ETS1 is important in various biological processes such as development, differentiation, proliferation, apoptosis, migration and tissue remodeling. It acts as an oncogene controlling invasive and angiogenic behavior of malignant cells in multiple human cancers. In particular, ETS1 deregulation has been reported in diffuse large B-cell lymphoma, in Burkitt lymphoma and in Hodgkin lymphoma. Here, we summarize the function of ETS1 in normal cells, with a particular emphasis on lymphocytes, and its possible role as an oncogene or tumor suppressor gene in the different mature B cell lymphomas.
Collapse
Affiliation(s)
- Monica Testoni
- Lymphoma and Genomics Research Program, IOR Institute of Oncology Research , Bellinzona , Switzerland
| | | | | | | |
Collapse
|
11
|
Kauffman EC, Ricketts CJ, Rais-Bahrami S, Yang Y, Merino MJ, Bottaro DP, Srinivasan R, Linehan WM. Molecular genetics and cellular features of TFE3 and TFEB fusion kidney cancers. Nat Rev Urol 2014; 11:465-75. [PMID: 25048860 DOI: 10.1038/nrurol.2014.162] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Despite nearly two decades passing since the discovery of gene fusions involving TFE3 or TFEB in sporadic renal cell carcinoma (RCC), the molecular mechanisms underlying the renal-specific tumorigenesis of these genes remain largely unclear. The recently published findings of The Cancer Genome Atlas Network reported that five of the 416 surveyed clear cell RCC tumours (1.2%) harboured SFPQ-TFE3 fusions, providing further evidence for the importance of gene fusions. A total of five TFE3 gene fusions (PRCC-TFE3, ASPSCR1-TFE3, SFPQ-TFE3, NONO-TFE3, and CLTC-TFE3) and one TFEB gene fusion (MALAT1-TFEB) have been identified in RCC tumours and characterized at the mRNA transcript level. A multitude of molecular pathways well-described in carcinogenesis are regulated in part by TFE3 or TFEB proteins, including activation of TGFβ and ETS transcription factors, E-cadherin expression, CD40L-dependent lymphocyte activation, mTORC1 signalling, insulin-dependent metabolism regulation, folliculin signalling, and retinoblastoma-dependent cell cycle arrest. Determining which pathways are most important to RCC oncogenesis will be critical in discovering the most promising therapeutic targets for this disease.
Collapse
Affiliation(s)
- Eric C Kauffman
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10, CRC Room 1-5940, Bethesda, MD 20892, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10, CRC Room 1-5940, Bethesda, MD 20892, USA
| | - Soroush Rais-Bahrami
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10, CRC Room 1-5940, Bethesda, MD 20892, USA
| | - Youfeng Yang
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10, CRC Room 1-5940, Bethesda, MD 20892, USA
| | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Building 10, CRC Room 1-5940, Bethesda, MD 20892, USA
| | - Donald P Bottaro
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10, CRC Room 1-5940, Bethesda, MD 20892, USA
| | - Ramaprasad Srinivasan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10, CRC Room 1-5940, Bethesda, MD 20892, USA
| | - W Marston Linehan
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Building 10, CRC Room 1-5940, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Ets-1 is required for the activation of VEGFR3 during latent Kaposi's sarcoma-associated herpesvirus infection of endothelial cells. J Virol 2013; 87:6758-68. [PMID: 23552426 DOI: 10.1128/jvi.03241-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV), the etiologic agent of Kaposi's sarcoma (KS), is present in the predominant tumor cells of KS, the spindle cells. Spindle cells express markers of lymphatic endothelium and, interestingly, KSHV infection of blood endothelial cells reprograms them to a lymphatic endothelial cell phenotype. KSHV-induced reprogramming requires the activation of STAT3 and phosphatidylinositol 3 (PI3)/AKT through the activation of cellular receptor gp130. Importantly, KSHV-induced reprogramming is specific to endothelial cells, indicating that there are additional host genes that are differentially regulated during KSHV infection of endothelial cells that contribute to lymphatic reprogramming. We found that the transcription factor Ets-1 is highly expressed in KS spindle cells and is upregulated during KSHV infection of endothelial cells in culture. The KSHV latent vFLIP gene is sufficient to induce Ets-1 expression in an NF-κB-dependent fashion. Ets-1 is required for KSHV-induced expression of VEGFR3, a lymphatic endothelial-cell-specific receptor important for lymphangiogenesis, and Ets-1 activates the promoter of VEGFR3. Ets-1 knockdown does not alter the expression of another lymphatic-specific gene, the podoplanin gene, but does inhibit the expression of VEGFR3 in uninfected lymphatic endothelium, indicating that Ets-1 is a novel cellular regulator of VEGFR3 expression. Knockdown of Ets-1 affects the ability of KSHV-infected cells to display angiogenic phenotypes, indicating that Ets-1 plays a role in KSHV activation of endothelial cells during latent KSHV infection. Thus, Ets-1 is a novel regulator of VEGFR3 and is involved in the induction of angiogenic phenotypes by KSHV.
Collapse
|
13
|
Review of Ets1 structure, function, and roles in immunity. Cell Mol Life Sci 2013; 70:3375-90. [PMID: 23288305 DOI: 10.1007/s00018-012-1243-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 11/20/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
The Ets1 transcription factor is a member of the Ets gene family and is highly conserved throughout evolution. Ets1 is known to regulate a number of important biological processes in normal cells and in tumors. In particular, Ets1 has been associated with regulation of immune cell function and with an aggressive behavior in tumors that express it at high levels. Here we review and summarize the general features of Ets1 and describe its roles in immunity and autoimmunity, with a focus on its roles in B lymphocytes. We also review evidence that suggests that Ets1 may play a role in malignant transformation of hematopoietic malignancies including B cell malignancies.
Collapse
|
14
|
Meadows SM, Myers CT, Krieg PA. Regulation of endothelial cell development by ETS transcription factors. Semin Cell Dev Biol 2011; 22:976-84. [PMID: 21945894 DOI: 10.1016/j.semcdb.2011.09.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
The ETS family of transcription factors plays an essential role in controlling endothelial gene expression. Multiple members of the ETS family are expressed in the developing endothelium and evidence suggests that the proteins function, to some extent, redundantly. However, recent studies have demonstrated a crucial non-redundant role for ETV2, as a primary player in specification and differentiation of the endothelial lineage. Here, we review the contribution of ETS factors, and their partner proteins, to the regulation of embryonic vascular development.
Collapse
Affiliation(s)
- Stryder M Meadows
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States
| | | | | |
Collapse
|
15
|
Hu Z, Gallo SM. Identification of interacting transcription factors regulating tissue gene expression in human. BMC Genomics 2010; 11:49. [PMID: 20085649 PMCID: PMC2822763 DOI: 10.1186/1471-2164-11-49] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 01/19/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tissue gene expression is generally regulated by multiple transcription factors (TFs). A major first step toward understanding how tissues achieve their specificity is to identify, at the genome scale, interacting TFs regulating gene expression in different tissues. Despite previous discoveries, the mechanisms that control tissue gene expression are not fully understood. RESULTS We have integrated a function conservation approach, which is based on evolutionary conservation of biological function, and genes with highest expression level in human tissues to predict TF pairs controlling tissue gene expression. To this end, we have identified 2549 TF pairs associated with a certain tissue. To find interacting TFs controlling tissue gene expression in a broad spatial and temporal manner, we looked for TF pairs common to the same type of tissues and identified 379 such TF pairs, based on which TF-TF interaction networks were further built. We also found that tissue-specific TFs may play an important role in recruiting non-tissue-specific TFs to the TF-TF interaction network, offering the potential for coordinating and controlling tissue gene expression across a variety of conditions. CONCLUSION The findings from this study indicate that tissue gene expression is regulated by large sets of interacting TFs either on the same promoter of a gene or through TF-TF interaction networks.
Collapse
Affiliation(s)
- Zihua Hu
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, Department of Biostatistics, Department of Medicine, State University of New York (SUNY), Buffalo, NY 14260, USA
| | - Steven M Gallo
- Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York (SUNY), Buffalo, NY 14260, USA
| |
Collapse
|
16
|
Ishii H, Du H, Zhang Z, Henderson A, Sen R, Pazin MJ. Mi2beta shows chromatin enzyme specificity by erasing a DNase I-hypersensitive site established by ACF. J Biol Chem 2009; 284:7533-41. [PMID: 19158090 PMCID: PMC2658048 DOI: 10.1074/jbc.m807617200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/11/2008] [Indexed: 12/31/2022] Open
Abstract
ATP-dependent chromatin-remodeling enzymes are linked to changes in gene expression; however, it is not clear how the multiple remodeling enzymes found in eukaryotes differ in function and work together. In this report, we demonstrate that the ATP-dependent remodeling enzymes ACF and Mi2beta can direct consecutive, opposing chromatin-remodeling events, when recruited to chromatin by different transcription factors. In a cell-free system based on the immunoglobulin heavy chain gene enhancer, we show that TFE3 induces a DNase I-hypersensitive site in an ATP-dependent reaction that requires ACF following transcription factor binding to chromatin. In a second step, PU.1 directs Mi2beta to erase an established DNase I-hypersensitive site, in an ATP-dependent reaction subsequent to PU.1 binding to chromatin, whereas ACF will not support erasure. Erasure occurred without displacing the transcription factor that initiated the site. Other tested enzymes were unable to erase the DNase I-hypersensitive site. Establishing and erasing the DNase I-hypersensitive site required transcriptional activation domains from TFE3 and PU.1, respectively. Together, these results provide important new mechanistic insight into the combinatorial control of chromatin structure.
Collapse
Affiliation(s)
- Haruhiko Ishii
- Graduate Program in Biophysics and Structural Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | |
Collapse
|
17
|
Characterization of an Oct1 orthologue in the channel catfish, Ictalurus punctatus: a negative regulator of immunoglobulin gene transcription? BMC Mol Biol 2007; 8:8. [PMID: 17266766 PMCID: PMC1800861 DOI: 10.1186/1471-2199-8-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 01/31/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enhancer (Emu3') of the immunoglobulin heavy chain locus (IGH) of the channel catfish (Ictalurus punctatus) has been well characterized. The functional core region consists of two variant Oct transcription factor binding octamer motifs and one E-protein binding muE5 site. An orthologue to the Oct2 transcription factor has previously been cloned in catfish and is a functionally active transcription factor. This study was undertaken to clone and characterize the Oct1 transcription factor, which has also been shown to be important in driving immunoglobulin gene transcription in mammals. RESULTS An orthologue of Oct1, a POU family transcription factor, was cloned from a catfish macrophage cDNA library. The inferred amino acid sequence of the catfish Oct1, when aligned with other vertebrate Oct1 sequences, revealed clear conservation of structure, with the POU specific subdomain of catfish Oct1 showing 96% identity to that of mouse Oct1. Expression of Oct1 was observed in clonal T and B cell lines and in all tissues examined. Catfish Oct1, when transfected into both mammalian (mouse) and catfish B cell lines, unexpectedly failed to drive transcription from three different octamer-containing reporter constructs. These contained a trimer of octamer motifs, a fish VH promoter, and the core region of the catfish Emu3' IGH enhancer, respectively. This failure of catfish Oct1 to drive transcription was not rescued by human BOB.1, a co-activator of Oct transcription factors that stimulates transcription driven by catfish Oct2. When co-transfected with catfish Oct2, Oct1 reduced Oct2 driven transcriptional activation. Electrophoretic mobility shift assays showed that catfish Oct1 (native or expressed in vitro) bound both consensus and variant octamer motifs. Putative N- and C-terminal activation domains of Oct1, when fused to a Gal4 DNA binding domain and co-transfected with Gal4-dependent reporter constructs were transcriptionally inactive, which may be due in part to a lack of residues associated with activation domain function. CONCLUSION An orthologue to mammalian Oct1 has been found in the catfish. It is similar to mammalian Oct1 in structure and expression. However, these results indicate that the physiological functions of catfish Oct1 differ from those of mammalian Oct1 and include negative regulation of transcription.
Collapse
|
18
|
Nijman SMB, Hijmans EM, Messaoudi SE, van Dongen MMW, Sardet C, Bernards R. A functional genetic screen identifies TFE3 as a gene that confers resistance to the anti-proliferative effects of the retinoblastoma protein and transforming growth factor-beta. J Biol Chem 2006; 281:21582-21587. [PMID: 16737956 DOI: 10.1074/jbc.m602312200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The helix-loop-helix transcription factor TFE3 has been suggested to play a role in the control of cell growth by acting as a binding partner of transcriptional regulators such as E2F3, SMAD3, and LEF-1. Furthermore, translocations/TFE3 fusions have been directly implicated in tumorigenesis. Surprisingly, however, a direct functional role for TFE3 in the regulation of proliferation has not been reported. By screening retroviral cDNA expression libraries to identify cDNAs that confer resistance to a pRB-induced proliferation arrest, we have found that TFE3 overrides a growth arrest in Rat1 cells induced by pRB and its upstream regulator p16(INK4A). In addition, TFE3 expression blocks the anti-mitogenic effects of TGF-beta in rodent and human cells. We provide data supporting a role for endogenous TFE3 in the direct regulation of CYCLIN E expression in an E2F3-dependent manner. These observations establish TFE3 as a functional regulator of proliferation and offer a potential mechanism for its involvement in cancer.
Collapse
Affiliation(s)
- Sebastian M B Nijman
- Division of Molecular Carcinogenesis and Centre for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
| | - E Marielle Hijmans
- Division of Molecular Carcinogenesis and Centre for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
| | - Selma El Messaoudi
- Institut de Genetique Moleculaire, Unité Mixte de Recherche 5535/IFR24 CNRS, 1919 Route de Mende 34293, Montpellier Cedex 5, France
| | - Miranda M W van Dongen
- Division of Molecular Carcinogenesis and Centre for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands
| | - Claude Sardet
- Institut de Genetique Moleculaire, Unité Mixte de Recherche 5535/IFR24 CNRS, 1919 Route de Mende 34293, Montpellier Cedex 5, France
| | - René Bernards
- Division of Molecular Carcinogenesis and Centre for Biomedical Genetics, The Netherlands Cancer Institute, 121 Plesmanlaan, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Truscott M, Raynal L, Wang Y, Bérubé G, Leduy L, Nepveu A. The N-terminal Region of the CCAAT Displacement Protein (CDP)/Cux Transcription Factor Functions as an Autoinhibitory Domain that Modulates DNA Binding. J Biol Chem 2004; 279:49787-94. [PMID: 15377665 DOI: 10.1074/jbc.m409484200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The CCAAT displacement protein/Cut homeobox (CDP/Cux) transcription factor is expressed as multiple isoforms that may contain up to four DNA-binding domains: Cut repeats 1, 2, and 3 (CR1, CR2, CR3) and the Cut homeodomain (HD). The full-length protein, which contains all four DNA-binding domains, is surprisingly less efficient than the shorter isoforms in DNA binding. Using a panel of recombinant proteins expressed in mammalian or bacterial cells, we have identified a domain at the extreme N terminus of the protein that can inhibit DNA binding. This domain was able to inhibit the activity of full-length CDP/Cux and of proteins containing various combinations of DNA-binding domains: CR1CR2, CR3HD, or CR2CR3HD. Since inhibition of DNA binding was also observed with purified proteins obtained from bacteria, we conclude that autoinhibition does not require post-translational modification or interaction with an interacting protein but instead functions through an intramolecular mechanism. Antibodies directed against the N-terminal region were able to partially relieve inhibition. In vivo, the transition between the inactive and active states for DNA binding is likely to be governed by posttranslational modifications and/or interaction with one or more protein partners. In addition, we show that the relief of autoinhibition can be accomplished via the proteolytic processing of CDP/Cux. Altogether, these results reveal a novel mode of regulation that serves to modulate the DNA binding activity of CDP/Cux.
Collapse
Affiliation(s)
- Mary Truscott
- Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
20
|
Yan S, Jane DT, Dufresne MJ, Sloane BF. Transcription of cathepsin B in glioma cells: regulation by an E-box adjacent to the transcription initiation site. Biol Chem 2004; 384:1421-7. [PMID: 14669984 DOI: 10.1515/bc.2003.157] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have previously isolated the human cathepsin B promoter and shown that Sp1 and Ets factors are involved in the regulation of cathepsin B expression. Using mutagenesis, transient transfection and electrophoretic mobility shift assays (EMSAs), we further identified regulatory factors that mediate cathepsin B transcription in U87 human glioblastoma cells. An E-box element (CACGTG) adjacent to the transcription initiation site (at nucleotides -7 to -2) was found to be indispensable for cathepsin B promoter activity. Mutation of this E-box element in both pSCB2, a promoter construct with high promoter activity, and pSCB6, a construct with basal promoter activity, led to a 90% decrease in promoter activity in U87 cells. EMSAs demonstrated that upstream stimulatory factor 1 (USF-1) and upstream stimulatory factor 2 (USF-2) bound to the E-box as a heterodimer. Chromatin immunoprecipitation assays revealed that both USF-1 and USF-2 were associated with the cathepsin B promoter. The roles of USF-1 and USF-2 in the regulation of cathepsin B expression were demonstrated by (i) co-transfection experiments showing that USF-1 or USF-2 increased promoter activity by 2.5-fold individually and by 3.4-fold together; (ii) co-transfection of pSCB6 with pUSF-2deltaN (a dominant negative USF-2 expression plasmid) resulting in an 80% decrease in promoter activity; and (iii) mutation of the E-box element (from 5'-CACGTG to 5'-CGCGTT in the pSCB6 basal promoter construct) abolishing transactivation of cathepsin B by USF-1 and USF-2. These results collectively indicate that an E-box at nucleotides -7 to -2 of the cathepsin B promoter is critical to the expression of cathepsin B and that binding of USF-1 and USF-2 to this E-box can regulate cathepsin B promoter activity.
Collapse
Affiliation(s)
- Shiqing Yan
- Department of Pharmacology, Wayne State University, 540 E. Canfield Ave., Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
21
|
Giangrande PH, Zhu W, Rempel RE, Laakso N, Nevins JR. Combinatorial gene control involving E2F and E Box family members. EMBO J 2004; 23:1336-47. [PMID: 15014447 PMCID: PMC381409 DOI: 10.1038/sj.emboj.7600134] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 01/29/2004] [Indexed: 12/16/2022] Open
Abstract
Various studies point to the potential role of combinatorial action of transcription factors as a mechanism to achieve the complexity of eukaryotic gene control with a finite number of regulatory proteins. Our previous work has focused on interactions involving the E2F family of transcription factors as an example of combinatorial gene control, leading to the identification of TFE3 and YY1 as transcription partners for several E2F proteins. We now show that additional E2F target genes share a common promoter architecture and are also regulated by the combined action of TFE3 and E2F3. In contrast, the thymidine kinase (TK-1) promoter is also regulated by E2F3 but independent of TFE3. Other promoters exhibit distinct specificity in the interaction with E2F proteins that includes a role for E2F1 but not E2F3, examples where both E2F1 and E2F3 are seen to interact, and promoters that are regulated by TFE3 but independent of an E2F. We propose that these examples of combinatorial interactions involving E2F proteins provide a basis for the specificity of transcription control in the Rb/E2F pathway.
Collapse
Affiliation(s)
- Paloma H Giangrande
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Wencheng Zhu
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Rachel E Rempel
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Nina Laakso
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
| | - Joseph R Nevins
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Howard Hughes Medical Institute, Duke University Medical Center, CARL Building, Room 268, Durham, NC 27710, USA. Tel.: +1 919 684 2746; Fax: +1 919 681 8973; E-mail:
| |
Collapse
|
22
|
Ishii H, Sen R, Pazin MJ. Combinatorial control of DNase I-hypersensitive site formation and erasure by immunoglobulin heavy chain enhancer-binding proteins. J Biol Chem 2003; 279:7331-8. [PMID: 14660676 DOI: 10.1074/jbc.m308973200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNase I-hypersensitive sites in cellular chromatin are usually believed to be nucleosome-free regions generated by transcription factor binding. Using a cell-free system we show that hypersensitivity does not simply correlate with the number of DNA-bound proteins. Specifically, the leucine zipper containing basic helix-loop-helix protein TFE3 was sufficient to induce a DNase I-hypersensitive site at the immunoglobulin heavy chain micro enhancer in vitro. TFE3 enhanced binding of an ETS protein PU.1 to the enhancer. However, PU.1 binding erased the DNase I-hypersensitive site without abolishing TFE3 binding. Furthermore, TFE3 binding enhanced transcription in the presence and absence of a hypersensitive site, whereas endonuclease accessibility correlated strictly with DNase I hypersensitivity. We infer that chromatin constraints for transcription and nuclease sensitivity can differ.
Collapse
Affiliation(s)
- Haruhiko Ishii
- Graduate Program in Biophysics and Structural Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | |
Collapse
|
23
|
McCarthy KM, McDevit D, Andreucci A, Reeves R, Nikolajczyk BS. HMGA1 co-activates transcription in B cells through indirect association with DNA. J Biol Chem 2003; 278:42106-14. [PMID: 12907668 DOI: 10.1074/jbc.m308586200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The immunoglobulin heavy chain enhancer, or mu enhancer, is required for B cell development. Only the appropriate combination of transcription factors results in B cell-specific enhancer activation. HMGA1 (formerly (HMG-I(Y)) is a proposed co-activator of the ETS transcription factors required for mu enhancer activity. HMGA1 associates with the ETS factor PU.1, resulting in changes in PU.1 structure, and enhanced transcriptional synergy with Ets-1 on the mu enhancer in nonlymphoid cells. New data show HMGA1 directly interacts with Ets-1 in addition to PU.1. In vitro HMGA1/Ets-1 interaction facilitates Ets-1/mu enhancer binding in the absence of an HMGA1.Ets-1.DNA complex. To address whether HMGA1 is present in the transcriptionally active mu nucleoprotein complex, we completed DNA pull-down assays to detect protein tethering in the context of protein/DNA interaction. Results show that HMGA1 is not tightly associated with mu enhancer DNA through PU.1 or Ets-1, despite strong associations between these proteins in solution. However, chromatin immunoprecipitation assays show HMGA1 associates with the endogenous enhancer in B cells. Furthermore, antisense HMGA1 substantially decreases mu enhancer activity in B cells. Taken together, these data suggest that HMGA1 functions as a transcriptional mu enhancer co-activator in B cells through indirect association with DNA.
Collapse
Affiliation(s)
- Kevin M McCarthy
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
The Ets1 proto-oncoprotein is a member of the Ets family of transcription factors that share a unique DNA binding domain, the Ets domain. The DNA binding activity of Ets1 is controlled by kinases and transcription factors. Some transcription factors, such as AML-1, regulate Ets1 by targeting its autoinhibitory module. Others, such as Pax-5, alter Ets1 DNA binding properties. Ets1 harbors two phosphorylation sites, threonine-38 and an array of serines within the exon VII domain. Phosphorylation of threonine-38 by ERK1/2 activates Ets1, whereas phosphorylation of the exon VII domain by CaMKII or MLCK inhibits Ets1 DNA binding activity. Ets1 is expressed by numerous cell types. In haemotopoietic cells, it contributes to the regulation of cellular differentiation. In a variety of other cells, including endothelial cells, vascular smooth muscle cells and epithelial cancer cells, Ets1 promotes invasive behavior. Regulation of MMP1, MMP3, MMP9 and uPA as well as of VEGF and VEGF receptor gene expression has been ascribed to Ets1. In tumors, Ets1 expression is indicative of poorer prognosis.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Universität Halle-Wittenberg Universitätsklinik und Poliklinik für Gynäkologie Magdeburger Str, 24 06097 Halle, Saale, Germany.
| |
Collapse
|
25
|
Mathur M, Das S, Samuels HH. PSF-TFE3 oncoprotein in papillary renal cell carcinoma inactivates TFE3 and p53 through cytoplasmic sequestration. Oncogene 2003; 22:5031-44. [PMID: 12902986 DOI: 10.1038/sj.onc.1206643] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Papillary renal cell carcinomas are associated with chromosomal translocations involving the helix-loop-helix leucine-zipper region of the TFE3 gene on the X chromosome. These translocations lead to the expression of TFE3 chimeras of PRCC, RCC17, NonO and PSF (PTB-associated splicing factor). In this study, we explored the role of PSF-TFE3 fusion protein in mediating cell transformation. Unlike wild-type TFE3 or PSF, which are nuclear proteins, PSF-TFE3 is not a nuclear protein and is targeted to the endosomal compartment. Although PSF-TFE3 has no effect on the nuclear localization of wild-type PSF, it sequesters wild-type TFE3 as well as p53 in the extranuclear compartment leading to functionally null p53 and TFE3 cells. In UOK-145 papillary renal carcinoma cells, which endogenously express PSF-TFE3, siRNA complementary to the PSF-TFE3 fusion junction leads to a reduction in PSF-TFE3 and redistribution of endogenous TFE3 and p53 from the cytoplasmic compartment to the nucleus. Our results indicate that PSF-TFE3 acts through a novel mechanism, and exports TFE3, p53 and possibly other factors from the nucleus to the cytoplasm for degradation leading to the transformed phenotype. Thus, PSF-TFE3 is a promising target for the treatment for a subset of renal cell carcinomas.
Collapse
Affiliation(s)
- Mukul Mathur
- Departments of Pharmacology and Medicine, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | |
Collapse
|
26
|
Paratore C, Brugnoli G, Lee HY, Suter U, Sommer L. The role of the Ets domain transcription factor Erm in modulating differentiation of neural crest stem cells. Dev Biol 2002; 250:168-80. [PMID: 12297104 DOI: 10.1006/dbio.2002.0795] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The transcription factor Erm is a member of the Pea3 subfamily of Ets domain proteins that is expressed in multipotent neural crest cells, peripheral neurons, and satellite glia. A specific role of Erm during development has not yet been established. We addressed the function of Erm in neural crest development by forced expression of a dominant-negative form of Erm. Functional inhibition of Erm in neural crest cells interfered with neuronal fate decision, while progenitor survival and proliferation were not affected. In contrast, blocking Erm function in neural crest stem cells did not influence their ability to adopt a glial fate, independent of the glia-inducing signal. Furthermore, glial survival and differentiation were normal. However, the proliferation rate was drastically diminished in glial cells, suggesting a glia-specific role of Erm in controlling cell cycle progression. Thus, in contrast to other members of the Pea3 subfamily that are involved in late steps of neurogenesis, Erm appears to be required in early neural crest development. Moreover, our data point to multiple, lineage-specific roles of Erm in neural crest stem cells and their derivatives, suggesting that Erm function is dependent on the cell intrinsic and extrinsic context.
Collapse
Affiliation(s)
- Christian Paratore
- Institute of Cell Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Baillat D, Bègue A, Stéhelin D, Aumercier M. ETS-1 transcription factor binds cooperatively to the palindromic head to head ETS-binding sites of the stromelysin-1 promoter by counteracting autoinhibition. J Biol Chem 2002; 277:29386-98. [PMID: 12034715 DOI: 10.1074/jbc.m200088200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Stromelysin-1 (matrix metalloproteinase-3) is a member of the matrix metalloproteinase family. Regulation of its gene expression is critical for tissue homeostasis. Patterns of increased co-expression of stromelysin-1 and ETS-1 genes have been observed in pathological processes. Stromelysin-1 promoter is transactivated by ETS proteins through two palindromic head to head ETS-binding sites, an unusual configuration among metalloproteinase promoters. By using surface plasmon resonance, electrophoretic mobility shift assay, and photo-cross-linking, we showed that full-length human ETS-1 (p51) binds cooperatively to the ETS-binding site palindrome of the human stromelysin-1 promoter, with facilitated binding of the second ETS-1 molecule to form an ETS-1.DNA.ETS-1 ternary complex. The study of N-terminal deletion mutants allowed us to conclude that cooperative binding implied autoinhibition counteraction, requiring the 245-330-residue region of the protein that is encoded by exon VII of the gene. This region was deleted in the natural p42 isoform of ETS-1, which was unable to bind cooperatively to the palindrome. Transient transfection experiments showed a good correlation between DNA binding and promoter transactivation for p51. In contrast, p42 showed a poorer transactivation, reinforcing the significance of cooperative binding for full transactivation. It is the first time that ETS-1 was shown to be able to counteract its own autoinhibition.
Collapse
Affiliation(s)
- David Baillat
- CNRS Unité Mixte de Recherche 8526, Institut de Biologie de Lille, Institut Pasteur de Lille, B.P. 447, 1 Rue Calmette, 59021 Lille Cedex, France
| | | | | | | |
Collapse
|
28
|
Sandberg A, Bridge J. Updates on the cytogenetics and molecular genetics of bone and soft tissue tumors: alveolar soft part sarcoma. CANCER GENETICS AND CYTOGENETICS 2002; 136:1-9. [PMID: 12165444 DOI: 10.1016/s0165-4608(02)00592-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Avery Sandberg
- Department of DNA Diagnostics, St. Joseph's Hospital and Medical Center, 350 West Thomas Road, Phoenix, AZ 85013,USA
| | | |
Collapse
|
29
|
Abstract
Ets proteins are a family of transcription factors that regulate the expression of a myriad of genes in a variety of tissues and cell types. This functional versatility emerges from their interactions with other structurally unrelated transcription factors. Indeed, combinatorial control is a characteristic property of Ets family members, involving interactions between Ets and other key transcriptional factors such as AP1, SRF, and Pax family members. Intriguingly, recent molecular modeling and crystallographic data suggest that not only the ETS DNA-binding domain, but also the DNA recognition helix alpha3, are often directly required for Ets partner's selection. Indeed, while most DNA-binding proteins appear to exploit differences within their DNA recognition helices for sites selection, the Ets proteins exploit differences in their surfaces that interact with other transcription factors, which in turn may modify their DNA-binding properties in a promoter-specific fashion. Taken together, the gene-specific architecture of these unique complexes can mediate the selective control of transcriptional activity.
Collapse
Affiliation(s)
- Alexis Verger
- CNRS UMR 8526, Institut de Biologie de Lille, B.P. 447, 1 rue Calmette, 59021 Lille Cedex, France
| | | |
Collapse
|
30
|
Andreucci A, Reeves R, McCarthy KM, Nikolajczyk BS. Dominant-negative HMGA1 blocks mu enhancer activation through a novel mechanism. Biochem Biophys Res Commun 2002; 292:427-33. [PMID: 11906180 DOI: 10.1006/bbrc.2002.6672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The immunoglobulin mu intronic enhancer is a potent B cell-specific transcriptional activator. The enhancer is activated by the appropriate combination of transcription factors, amongst which are ets and bHLH proteins. HMGA1 (formerly HMG-I(Y)) is a demonstrated co-activator of the mu enhancer. HMGA1 functions through direct interaction with PU.1, one of the ets proteins critical for enhancer activation. New data demonstrates dominant negative HMGA1 dramatically decreases enhancer activity in B cells. EMSA analysis demonstrated that DN HMGA1 disrupts established PU.1/mu enhancer binding. Similarly, DN HMGA1 blocks mu enhancer binding by Ets-1. In sharp contrast, DN HMGA1 had no effect on binding activity of the ETS DNA binding domains of either PU.1 or Ets-1, or the bHLH-zip protein TFE3, suggesting specificity. Taken together, the data suggest that DN HMGA1 utilizes a novel mechanism to specifically block interaction between ets proteins and mu enhancer DNA, suggesting DN HMGA1 represents a new, highly specific means of regulating mu enhancer activity.
Collapse
Affiliation(s)
- Amy Andreucci
- Department of Medicine, Immunobiology Unit, Evans Memorial Department of Clinical Research, EBRC-438, Boston Medical Center, 650 Albany Street, Boston, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
31
|
Lindemann RK, Ballschmieter P, Nordheim A, Dittmer J. Transforming growth factor beta regulates parathyroid hormone-related protein expression in MDA-MB-231 breast cancer cells through a novel Smad/Ets synergism. J Biol Chem 2001; 276:46661-70. [PMID: 11590145 DOI: 10.1074/jbc.m105816200] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The majority of breast cancers metastasizing to bone secrete parathyroid hormone-related protein (PTHrP). PTHrP induces local osteolysis that leads to activation of bone matrix-borne transforming growth factor beta (TGF beta). In turn, TGF beta stimulates PTHrP expression and, thereby, accelerates bone destruction. We studied the mechanism by which TGF beta activates PTHrP in invasive MDA-MB-231 breast cancer cells. We demonstrate that TGF beta 1 up-regulates specifically the level of PTHrP P3 promoter-derived RNA in an actinomycin D-sensitive fashion. Transient transfection studies revealed that TGF beta 1 and its effector Smad3 are able to activate the P3 promoter. This effect depended upon an AGAC box and a previously described Ets binding site. Addition of Ets1 greatly enhanced the Smad3/TGF beta-mediated activation. Ets2 had also some effect, whereas other Ets proteins, Elf-1, Ese-1, and Erf-1, failed to cooperate with Smad3. In comparison, Ets1 did not increase Smad3/TGF beta-induced stimulation of the TGF beta-responsive plasminogen activator inhibitor 1 (PAI-1) promoter. Smad3 and Smad4 were able to specifically interact with the PTHrP P3-AGAC box and to bind to the P3 promoter together with Ets1. Inhibition of endogenous Ets1 expression by calphostin C abrogated TGF beta-induced up-regulation of the P3 transcript, whereas it did not affect the TGF beta effect on PAI expression. In TGF beta receptor II- and Ets1-deficient, noninvasive MCF-7 breast cancer cells, TGF beta 1 neither influenced endogenous PTHrP expression nor stimulated the PTHrP P3 promoter. These data suggest that TGF beta activates PTHrP expression by specifically up-regulating transcription from the PTHrP P3 promoter through a novel Smad3/Ets1 synergism.
Collapse
Affiliation(s)
- R K Lindemann
- Institut für Zellbiologie, Abteilung Molekularbiologie, Universität Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | | | | | |
Collapse
|
32
|
Sun P, Loh HH. Transcriptional regulation of mouse delta-opioid receptor gene: role of Ets-1 in the transcriptional activation of mouse delta-opioid receptor gene. J Biol Chem 2001; 276:45462-9. [PMID: 11583993 DOI: 10.1074/jbc.m104793200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previously, we identified a minimum core promoter of the mouse delta-opioid receptor (DOR) gene. The DOR promoter contains an E-box that binds upstream stimulatory factor and is crucial for the DOR promoter activity in NS20Y cells, a mouse neuronal cell line that constitutively expresses DOR. In the present study, we further analyzed the DOR promoter in NS20Y cells and have demonstrated that transcription factor Ets-1 binds to an Ets-1-binding site overlapping the E-box and trans-activates the DOR promoter by synergizing with upstream stimulatory factor in specific DNA binding. In addition, the Ets-1 DNA-binding domain is sufficient to play the functional role of Ets-1 in trans-activating the DOR promoter. Furthermore, through in vivo cross-linking assays and Northern blot analyses, we have demonstrated that Ets-1 binds to the DOR promoter in the neonatal mouse brain and that overexpressed Ets-1 can significantly enhance the expression of DOR mRNA in primary neonatal mouse neuronal cells. Collectively, our data suggest that Ets-1 functions as a trans-activator of the DOR promoter in the neonatal mouse brain and thus may contribute to the development of the mouse brain DOR system.
Collapse
MESH Headings
- Animals
- Base Sequence
- Binding Sites
- Binding, Competitive
- Blotting, Northern
- Brain/metabolism
- Cell Line
- Cells, Cultured
- Chromatin/metabolism
- Cross-Linking Reagents/pharmacology
- DNA/metabolism
- Deoxyribonuclease I/metabolism
- Gene Expression Regulation
- Genes, Reporter
- Mice
- Plasmids/metabolism
- Precipitin Tests
- Promoter Regions, Genetic
- Protein Binding
- Protein Structure, Tertiary
- Proto-Oncogene Protein c-ets-1
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-ets
- RNA, Messenger/metabolism
- Receptors, Opioid, delta/genetics
- Transcription Factors/physiology
- Transcription, Genetic
- Transcriptional Activation
- Transfection
Collapse
Affiliation(s)
- P Sun
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
33
|
Morii E, Ogihara H, Oboki K, Sawa C, Sakuma T, Nomura S, Esko JD, Handa H, Kitamura Y. Inhibitory effect of the mi transcription factor encoded by the mutant mi allele on GA binding protein-mediated transcript expression in mouse mast cells. Blood 2001; 97:3032-9. [PMID: 11342428 DOI: 10.1182/blood.v97.10.3032] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mi transcription factor (MITF) is a basic-helix-loop-helix leucine zipper (bHLH-Zip) transcription factor that is important for the development of mast cells. Mast cells of mi/mi genotype express normal amounts of abnormal MITF (mi-MITF), whereas mast cells of tg/tg genotype do not express any MITFs. The synthesis of heparin is abnormal in the skin mast cells of mi/mi mice. Because N-deacetylase/N-sulfotransferase 2 (NDST-2) is essential for the synthesis of heparin, the amount of NDST-2 messenger RNA (mRNA) was compared among cultured mast cells (CMCs) of +/+, mi/mi, and tg/tg genotypes. The NDST-2 mRNA was detected by in situ hybridization in the skin mast cells of +/+ and tg/tg mice, but not in the skin mast cells of mi/mi mice. The amount of NDST-2 mRNA decreased significantly in CMCs derived from mi/mi mice when compared to the values of +/+ and tg/tg mice, suggesting that the defective form of MITF inhibited the expression of the NDST-2 transcript. The expression of NDST-2 transcript was mediated by the GGAA motif located in the 5'-untranslated region. GA binding protein (GABP) bound the GGAA motif and increased the amount of NDST-2 transcript. The mi-MITF appeared to inhibit the ability of GABP to express NDST-2 transcript by disturbing its nuclear localization. This is the first study to show that expression of an abnormal form of a bHLH-Zip transcription factor can dramatically alter the intracellular location of another DNA/RNA binding factor, which in turn brings about profound and unexpected consequences on transcript expression.
Collapse
Affiliation(s)
- E Morii
- Department of Pathology, Osaka University Medical School, Suita, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Lewis RT, Andreucci A, Nikolajczyk BS. PU.1-mediated transcription is enhanced by HMG-I(Y)-dependent structural mechanisms. J Biol Chem 2001; 276:9550-7. [PMID: 11124259 DOI: 10.1074/jbc.m008726200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ets transcription factor PU.1 is an important regulator of the immunoglobulin heavy chain gene intronic enhancer, or mu enhancer. However, PU.1 is only one component of the large multiprotein complex required for B cell-specific enhancer activation. The transcriptional coactivator HMG-I(Y), a protein demonstrated to physically interact with PU.1, increases PU.1 affinity for the mu enhancer muB element, indicating that HMG-I(Y) may play a role in the transcriptionally active mu enhanceosome. Increased PU.1 affinity is not mediated by HMG-I(Y)-induced changes in DNA structure. Investigation of alternative mechanisms to explain the HMG-I(Y)-mediated increase in PU.1/mu enhancer binding demonstrated, by trypsin and chymotrypsin mapping, that interaction between PU.1 and HMG-I(Y) in solution induces a structural change in PU.1. In the presence of HMG-I(Y) and wild-type mu enhancer DNA, PU.1 becomes more chymotrypsin resistant, suggesting an additional change in PU.1 structure upon HMG-I(Y)-induced PU.1/DNA binding. From these results, we suggest that increased DNA affinity under limiting PU.1 concentrations is mediated by an HMG-I(Y)-induced structural change in PU.1. In functional assays, HMG-I(Y) further augments transcriptional synergy between PU.1 and another member of the ets family, Ets-1, indicating that HMG-I(Y) is a functional component of the active enhancer complex. These studies suggest a new mechanism for HMG-I(Y)-mediated coactivation; HMG-I(Y) forms protein-protein interactions with a transcription factor, which alters the three-dimensional structure of the factor, resulting in enhanced DNA binding and transcriptional activation. This mechanism may be important for transcriptional activation under conditions of limiting transcription factor concentration, such as at the low levels of PU.1 expressed in B cells.
Collapse
Affiliation(s)
- R T Lewis
- Departments of Medicine and Microbiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
35
|
Skalsky YM, Ajuh PM, Parker C, Lamond AI, Goodwin G, Cooper CS. PRCC, the commonest TFE3 fusion partner in papillary renal carcinoma is associated with pre-mRNA splicing factors. Oncogene 2001; 20:178-87. [PMID: 11313942 DOI: 10.1038/sj.onc.1204056] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2000] [Revised: 10/24/2000] [Accepted: 10/24/2000] [Indexed: 11/08/2022]
Abstract
In papillary renal cell carcinomas the TFE3 transcription factor becomes fused to the PSF and NonO pre-mRNA splicing factors and most commonly to a protein of unknown function designated PRCC. In this study we have examined the ability of the resulting PRCC-TFE3 and NonO-TFE3 fusions to activate transcription from the plasminogen activator inhibitor-1 (PAI-1) promoter. The results show that only fusion to PRCC enhanced transcriptional activation, indicating that the ability to enhance the level of transcription from endogenous TFE3 promoters is not a consistent feature of TFE3 fusions. In investigations of the normal function of PRCC we observed that PRCC expressed as a green fluorescent fusion protein colocalizes within the nucleus with Sm pre-mRNA splicing factors. It was also found that endogenous PRCC is coimmunoprecipitated by antibodies that recognize a variety of pre-mRNA splicing factors including SC35, PRL1 and CDC5. Association with the cellular splicing machinery is therefore, a common feature of the proteins that become fused to TFE3 in papillary renal cell carcinomas.
Collapse
MESH Headings
- Adult
- Amanitins/pharmacology
- Animals
- Artificial Gene Fusion
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Carcinoma, Papillary/drug therapy
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Cell Cycle Proteins
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Enzyme Inhibitors/pharmacology
- Female
- Green Fluorescent Proteins
- Humans
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Neoplasm Proteins
- Nuclear Proteins/metabolism
- Protein Kinases/metabolism
- Protein Serine-Threonine Kinases
- Proteins/genetics
- Proteins/metabolism
- RNA Precursors/genetics
- RNA Splicing
- RNA, Messenger/genetics
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Ribonucleoproteins
- Ribonucleoproteins, Small Nuclear/metabolism
- Saccharomyces cerevisiae Proteins
- Serine-Arginine Splicing Factors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y M Skalsky
- Institute of Cancer Research, Molecular Carcinogenesis Section, The Haddow Laboratories, 15 Cotswold Road, Sutton, Surrey, SM2 5NG, UK
| | | | | | | | | | | |
Collapse
|
36
|
Ladanyi M, Lui MY, Antonescu CR, Krause-Boehm A, Meindl A, Argani P, Healey JH, Ueda T, Yoshikawa H, Meloni-Ehrig A, Sorensen PH, Mertens F, Mandahl N, van den Berghe H, Sciot R, Dal Cin P, Bridge J. The der(17)t(X;17)(p11;q25) of human alveolar soft part sarcoma fuses the TFE3 transcription factor gene to ASPL, a novel gene at 17q25. Oncogene 2001; 20:48-57. [PMID: 11244503 DOI: 10.1038/sj.onc.1204074] [Citation(s) in RCA: 424] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Alveolar soft part sarcoma (ASPS) is an unusual tumor with highly characteristic histopathology and ultrastructure, controversial histogenesis, and enigmatic clinical behavior. Recent cytogenetic studies have identified a recurrent der(17) due to a non-reciprocal t(X;17)(p11.2;q25) in this sarcoma. To define the interval containing the Xp11.2 break, we first performed FISH on ASPS cases using YAC probes for OATL1 (Xp11.23) and OATL2 (Xp11.21), and cosmid probes from the intervening genomic region. This localized the breakpoint to a 160 kb interval. The prime candidate within this previously fully sequenced region was TFE3, a transcription factor gene known to be fused to translocation partners on 1 and X in some papillary renal cell carcinomas. Southern blotting using a TFE3 genomic probe identified non-germline bands in several ASPS cases, consistent with rearrangement and possible fusion of TFE3 with a gene on 17q25. Amplification of the 5' portion of cDNAs containing the 3' portion of TFE3 in two different ASPS cases identified a novel sequence, designated ASPL, fused in-frame to TFE3 exon 4 (type 1 fusion) or exon 3 (type 2 fusion). Reverse transcriptase PCR using a forward primer from ASPL and a TFE3 exon 4 reverse primer detected an ASPL-TFE3 fusion transcript in all ASPS cases (12/12: 9 type 1, 3 type 2), establishing the utility of this assay in the diagnosis of ASPS. Using appropriate primers, the reciprocal fusion transcript, TFE3-ASPL, was detected in only one of 12 cases, consistent with the non-reciprocal nature of the translocation in most cases, and supporting ASPL-TFE3 as its oncogenically significant fusion product. ASPL maps to chromosome 17, is ubiquitously expressed, and matches numerous ESTs (Unigene cluster Hs.84128) but no named genes. The ASPL cDNA open reading frame encodes a predicted protein of 476 amino acids that contains within its carboxy-terminal portion of a UBX-like domain that shows significant similarity to predicted proteins of unknown function in several model organisms. The ASPL-TFE3 fusion replaces the N-terminal portion of TFE3 by the fused ASPL sequences, while retaining the TFE3 DNA-binding domain, implicating transcriptional deregulation in the pathogenesis of this tumor, consistent with the biology of several other translocation-associated sarcomas. Oncogene (2001) 20, 48 - 57.
Collapse
MESH Headings
- Adolescent
- Adult
- Amino Acid Sequence
- Axilla
- Base Sequence
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
- Blotting, Southern
- Child
- Chromosome Breakage
- Chromosome Mapping
- Chromosomes, Human, Pair 17/genetics
- DNA, Complementary/isolation & purification
- DNA-Binding Proteins/genetics
- Extremities
- Female
- Gene Expression Profiling
- Humans
- In Situ Hybridization, Fluorescence
- Intracellular Signaling Peptides and Proteins
- Karyotyping
- Male
- Molecular Sequence Data
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasm Proteins/isolation & purification
- Oncogene Proteins, Fusion/biosynthesis
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/isolation & purification
- Organ Specificity/genetics
- RNA, Messenger/isolation & purification
- Reverse Transcriptase Polymerase Chain Reaction
- Sarcoma, Alveolar Soft Part/genetics
- Sequence Analysis, Protein
- Transcription Factors/genetics
- Translocation, Genetic
- Tumor Cells, Cultured
- X Chromosome/genetics
Collapse
Affiliation(s)
- M Ladanyi
- Department of Pathology, Memorial Sloan-Kettering Cancer Center, 1275 York Ave., New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Ets proteins are a family of transcription factors that share an 85 amino acid conserved DNA binding domain, the ETS domain. Over 25 mammalian Ets family members control important biological processes, including cellular proliferation, differentiation, lymphocyte development and activation, transformation and apoptosis by recognizing the GGA core motif in the promoter or enhancer of their target genes. Protein - protein interactions regulates DNA binding, subcellular localization, target gene selection and transcriptional activity of Ets proteins. Combinatorial control is a characteristic property of Ets family members, involving interaction between Ets and other key transcriptional factors such as AP-1, NFkappaB and Pax family members. Specific domains of Ets proteins interact with many protein motifs such as bHLH, bZipper and Paired domain. Such interactions coordinate cellular processes in response to diverse signals including cytokines, growth factors, antigen and cellular stresses.
Collapse
Affiliation(s)
- R Li
- Center for Molecular and Structural Biology, Medical University of South Carolina, Charleston, South Carolina, SC 29425, USA
| | | | | |
Collapse
|
38
|
Massagué J, Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J 2000; 19:1745-54. [PMID: 10775259 PMCID: PMC302010 DOI: 10.1093/emboj/19.8.1745] [Citation(s) in RCA: 1599] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2000] [Revised: 02/28/2000] [Accepted: 02/28/2000] [Indexed: 12/11/2022] Open
Affiliation(s)
- J Massagué
- Cell Biology Program and Howard Hughes Medical Institute, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
| | | |
Collapse
|
39
|
Cowley DO, Graves BJ. Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition. Genes Dev 2000; 14:366-76. [PMID: 10673508 PMCID: PMC316366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Phosphorylation of transcription factors is a key link between cell signaling and the control of gene expression. Here we report that phosphorylation regulates DNA binding of the Ets-1 transcription factor by reinforcing an autoinhibitory mechanism. Quantitative DNA-binding assays show that calcium-dependent phosphorylation inhibits Ets-1 DNA binding 50-fold. The four serines that mediate this inhibitory effect are distant from the DNA-binding domain but near structural elements required for autoinhibition. Mutational analyses demonstrate that an intact inhibitory module is required for phosphorylation-dependent regulation. Partial proteolysis studies indicate that phosphorylation stabilizes an inhibitory conformation. These findings provide a structural mechanism for phosphorylation-dependent inhibition of Ets-1 DNA binding and demonstrate a new function for inhibitory modules as structural mediators of negative signaling events.
Collapse
Affiliation(s)
- D O Cowley
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, USA
| | | |
Collapse
|
40
|
Cowley DO, Graves BJ. Phosphorylation represses Ets-1 DNA binding by reinforcing autoinhibition. Genes Dev 2000. [DOI: 10.1101/gad.14.3.366] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phosphorylation of transcription factors is a key link between cell signaling and the control of gene expression. Here we report that phosphorylation regulates DNA binding of the Ets-1 transcription factor by reinforcing an autoinhibitory mechanism. Quantitative DNA-binding assays show that calcium-dependent phosphorylation inhibits Ets-1 DNA binding 50-fold. The four serines that mediate this inhibitory effect are distant from the DNA-binding domain but near structural elements required for autoinhibition. Mutational analyses demonstrate that an intact inhibitory module is required for phosphorylation-dependent regulation. Partial proteolysis studies indicate that phosphorylation stabilizes an inhibitory conformation. These findings provide a structural mechanism for phosphorylation-dependent inhibition of Ets-1 DNA binding and demonstrate a new function for inhibitory modules as structural mediators of negative signaling events.
Collapse
|
41
|
Goetz TL, Gu TL, Speck NA, Graves BJ. Auto-inhibition of Ets-1 is counteracted by DNA binding cooperativity with core-binding factor alpha2. Mol Cell Biol 2000; 20:81-90. [PMID: 10594011 PMCID: PMC85055 DOI: 10.1128/mcb.20.1.81-90.2000] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Auto-inhibition is a common transcriptional control mechanism that is well characterized in the regulatory transcription factor Ets-1. Autoinhibition of Ets-1 DNA binding works through an inhibitory module that exists in two conformations. DNA binding requires a change in the inhibitory module from the packed to disrupted conformation. This structural switch provides a mechanism to tightly regulate Ets-1 DNA binding. We report that the Ets-1 partner protein core-binding factor alpha2 (CBFalpha2; also known as AML1 or PEBP2) stimulates Ets-1 DNA binding and counteracts auto-inhibition. Support for this conclusion came from three observations. First, the level of cooperative DNA binding (10-fold) was similar to the level of repression by auto-inhibition (10- to 20-fold). Next, a region necessary for cooperative DNA binding mapped to the inhibitory module. Third, an Ets-1 mutant with a constitutively disrupted inhibitory module did not bind DNA cooperatively with CBFalpha2. Furthermore, two additional lines of evidence indicated that CBFalpha2 affects the structural switch by direct interactions with Ets-1. First, the retention of cooperative DNA binding on nicked duplexes eliminated a potential role of through-DNA effects. Second, cooperative DNA binding was observed on composite sites with altered spacing or reversed orientation. We suggest that only protein interactions can accommodate this observed flexibility. These findings provide a mechanism by which CBF relieves the auto-inhibition of Ets-1 and illustrates one strategy for the synergistic activity of regulatory transcription factors.
Collapse
Affiliation(s)
- T L Goetz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112-5550, USA
| | | | | | | |
Collapse
|