1
|
Mai J, Nazari M, Stamminger T, Schreiner S. Daxx and HIRA go viral - How chromatin remodeling complexes affect DNA virus infection. Tumour Virus Res 2025; 19:200317. [PMID: 40120981 DOI: 10.1016/j.tvr.2025.200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/25/2025] Open
Abstract
Daxx and HIRA are key proteins in the host response to DNA virus infections. Daxx is involved in apoptosis, transcription regulation, and stress responses. During DNA virus infections, Daxx helps modulate the immune response and viral progression. Viruses like adenoviruses and herpesviruses can exploit Daxx to evade immune detection, either by targeting it for degradation or inhibiting its function. Daxx also interacts with chromatin to regulate transcription, which viruses can manipulate to enhance their own gene expression and replication. HIRA is a histone chaperone and reported to be essential for chromatin assembly and gene regulation. It plays a critical role in maintaining chromatin structure and modulating gene accessibility. During DNA virus infection, HIRA influences chromatin remodeling, affecting both viral and host DNA accessibility, which impacts viral replication and gene expression. Additionally, the histone variant H3.3 is crucial for maintaining active chromatin states. It is incorporated into chromatin independently of DNA replication and is associated with active gene regions. During viral infections, H3.3 dynamics can be altered, affecting viral genome accessibility and replication efficiency. Overall, Daxx and HIRA are integral to orchestrating viral infection programs, maintaining latency and/or persistence, and influencing virus-induced transformation by modulating chromatin dynamics and host immune responses, making them significant targets for therapeutic strategies once fully understood. Here, we summarize various DNA viruses and their crosstalk with Daxx and HIRA.
Collapse
Affiliation(s)
- Julia Mai
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | - Masih Nazari
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany
| | | | - Sabrina Schreiner
- Institute of Virology, Medical Center - University of Freiburg, Freiburg, Germany; Institute of Virology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
von Stromberg K, Seddar L, Ip WH, Günther T, Gornott B, Weinert SC, Hüppner M, Bertzbach LD, Dobner T. The human adenovirus E1B-55K oncoprotein coordinates cell transformation through regulation of DNA-bound host transcription factors. Proc Natl Acad Sci U S A 2023; 120:e2310770120. [PMID: 37883435 PMCID: PMC10622919 DOI: 10.1073/pnas.2310770120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/13/2023] [Indexed: 10/28/2023] Open
Abstract
The multifunctional adenovirus E1B-55K oncoprotein can induce cell transformation in conjunction with adenovirus E1A gene products. Previous data from transient expression studies and in vitro experiments suggest that these growth-promoting activities correlate with E1B-55K-mediated transcriptional repression of p53-targeted genes. Here, we analyzed genome-wide occupancies and transcriptional consequences of species C5 and A12 E1B-55Ks in transformed mammalian cells by combinatory ChIP and RNA-seq analyses. E1B-55K-mediated repression correlates with tethering of the viral oncoprotein to p53-dependent promoters via DNA-bound p53. Moreover, we found that E1B-55K also interacts with and represses transcription of numerous p53-independent genes through interactions with transcription factors that play central roles in cancer and stress signaling. Our results demonstrate that E1B-55K oncoproteins function as promiscuous transcriptional repressors of both p53-dependent and -independent genes and further support the model that manipulation of cellular transcription is central to adenovirus-induced cell transformation and oncogenesis.
Collapse
Affiliation(s)
| | - Laura Seddar
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Wing-Hang Ip
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Thomas Günther
- Virus Genomics, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Britta Gornott
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Sophie-Celine Weinert
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Max Hüppner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Luca D. Bertzbach
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| | - Thomas Dobner
- Department of Viral Transformation, Leibniz Institute of Virology, Hamburg20251, Germany
| |
Collapse
|
3
|
Double-edged role of PML nuclear bodies during human adenovirus infection. Virus Res 2020; 295:198280. [PMID: 33370557 DOI: 10.1016/j.virusres.2020.198280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023]
Abstract
PML nuclear bodies are matrix-bound nuclear structures with a variety of functions in human cells. These nuclear domains are interferon regulated and play an essential role during virus infections involving accumulation of SUMO-dependent host and viral factors. PML-NBs are targeted and subsequently manipulated by adenoviral regulatory proteins, illustrating their crucial role during productive infection and virus-mediated oncogenic transformation. PML-NBs have a longstanding antiviral reputation; however, the genomes of Human Adenoviruses and initial sites of viral transcription/replication are found juxtaposed to these domains, resulting in a double-edged capacity of these nuclear multiprotein/multifunctional complexes. This enigma provides evidence that Human Adenoviruses selectively counteract antiviral responses, and simultaneously benefit from or even depend on proviral PML-NB associated components by active recruitment to PML track-like structures, that are induced during infection. Thereby, a positive microenvironment for adenoviral transcription and replication is created at these nuclear subdomains. Based on the available data, this review aims to provide a detailed overview of the current knowledge of Human Adenovirus crosstalk with nuclear PML body compartments as sites of SUMOylation processes in the host cells, evaluating the currently known principles and molecular mechanisms.
Collapse
|
4
|
Hofmann S, Mai J, Masser S, Groitl P, Herrmann A, Sternsdorf T, Brack‐Werner R, Schreiner S. ATO (Arsenic Trioxide) Effects on Promyelocytic Leukemia Nuclear Bodies Reveals Antiviral Intervention Capacity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902130. [PMID: 32328411 PMCID: PMC7175289 DOI: 10.1002/advs.201902130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/12/2019] [Indexed: 05/04/2023]
Abstract
Human adenoviruses (HAdV) are associated with clinical symptoms such as gastroenteritis, keratoconjunctivitis, pneumonia, hepatitis, and encephalitis. In the absence of protective immunity, as in allogeneic bone marrow transplant patients, HAdV infections can become lethal. Alarmingly, various outbreaks of highly pathogenic, pneumotropic HAdV types have been recently reported, causing severe and lethal respiratory diseases. Effective drugs for treatment of HAdV infections are still lacking. The repurposing of drugs approved for other indications is a valuable alternative for the development of new antiviral therapies and is less risky and costly than de novo development. Arsenic trioxide (ATO) is approved for treatment of acute promyelocytic leukemia. Here, it is shown that ATO is a potent inhibitor of HAdV. ATO treatment blocks virus expression and replication by reducing the number and integrity of promyelocytic leukemia (PML) nuclear bodies, important subnuclear structures for HAdV replication. Modification of HAdV proteins with small ubiquitin-like modifiers (SUMO) is also key to HAdV replication. ATO reduces levels of viral SUMO-E2A protein, while increasing SUMO-PML, suggesting that ATO interferes with SUMOylation of proteins crucial for HAdV replication. It is concluded that ATO targets cellular processes key to HAdV replication and is relevant for the development of antiviral intervention strategies.
Collapse
Affiliation(s)
- Samuel Hofmann
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Julia Mai
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Sawinee Masser
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | - Peter Groitl
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
| | | | - Thomas Sternsdorf
- Research Institute Children's Cancer Center Hamburg20251HamburgGermany
| | | | - Sabrina Schreiner
- Institute of VirologySchool of MedicineTechnical University of Munich85764MunichGermany
- Institute of Virology Helmholtz Zentrum München85764MunichGermany
| |
Collapse
|
5
|
Ip WH, Dobner T. Cell transformation by the adenovirus oncogenes E1 and E4. FEBS Lett 2019; 594:1848-1860. [PMID: 31821536 DOI: 10.1002/1873-3468.13717] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Extensive studies on viral-mediated oncogenic transformation by human adenoviruses have revealed much of our current understanding on the molecular mechanisms that are involved in the process. To date, these studies have shown that cell transformation is a multistep process regulated by the cooperation of several adenoviral gene products encoded in the early regions 1 (E1) and 4 (E4). Early region 1A immortalizes primary rodent cells, whereas co-expression of early region protein 1B induces full manifestation of the transformed phenotype. Beside E1 proteins, also some E4 proteins have partial transforming activities through regulating many cellular pathways. Here, we summarize recent data of how adenoviral oncoproteins may contribute to viral transformation and discuss the challenge of pinpointing the underlying mechanisms.
Collapse
Affiliation(s)
- Wing Hang Ip
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Thomas Dobner
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| |
Collapse
|
6
|
Hung G, Flint SJ. Normal human cell proteins that interact with the adenovirus type 5 E1B 55kDa protein. Virology 2017; 504:12-24. [PMID: 28135605 PMCID: PMC5337154 DOI: 10.1016/j.virol.2017.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/17/2017] [Accepted: 01/19/2017] [Indexed: 12/31/2022]
Abstract
Several of the functions of the human adenovirus type 5 E1B 55kDa protein are fulfilled via the virus-specific E3 ubiquitin ligase it forms with the viral E4 Orf6 protein and several cellular proteins. Important substrates of this enzyme have not been identified, and other functions, including repression of transcription of interferon-sensitive genes, do not require the ligase. We therefore used immunoaffinity purification and liquid chromatography-mass spectrometry of lysates of normal human cells infected in parallel with HAdV-C5 and E1B 55kDa protein-null mutant viruses to identify specifically E1B 55kDa-associated proteins. The resulting set of >90 E1B-associated proteins contained the great majority identified previously, and was enriched for those associated with the ubiquitin-proteasome system, RNA metabolism and the cell cycle. We also report very severe inhibition of viral genome replication when cells were exposed to both specific or non-specific siRNAs and interferon prior to infection.
Collapse
Affiliation(s)
- George Hung
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S J Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
7
|
KAP1 Is a Host Restriction Factor That Promotes Human Adenovirus E1B-55K SUMO Modification. J Virol 2015; 90:930-46. [PMID: 26537675 DOI: 10.1128/jvi.01836-15] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/26/2015] [Indexed: 01/23/2023] Open
Abstract
UNLABELLED Once transported to the replication sites, human adenoviruses (HAdVs) need to ensure decondensation and transcriptional activation of their viral genomes to synthesize viral proteins and initiate steps to reprogram the host cell for viral replication. These early stages during adenoviral infection are poorly characterized but represent a decisive moment in the establishment of a productive infection. Here, we identify a novel host viral restriction factor, KAP1. This heterochromatin-associated transcription factor regulates the dynamic organization of the host chromatin structure via its ability to influence epigenetic marks and chromatin compaction. In response to DNA damage, KAP1 is phosphorylated and functionally inactive, resulting in chromatin relaxation. We discovered that KAP1 posttranslational modification is dramatically altered during HAdV infection to limit the antiviral capacity of this host restriction factor, which represents an essential step required for efficient viral replication. Conversely, we also observed during infection an HAdV-mediated decrease of KAP1 SUMO moieties, known to promote chromatin decondensation events. Based on our findings, we provide evidence that HAdV induces KAP1 deSUMOylation to minimize epigenetic gene silencing and to promote SUMO modification of E1B-55K by a so far unknown mechanism. IMPORTANCE Here we describe a novel cellular restriction factor for human adenovirus (HAdV) that sheds light on very early modulation processes in viral infection. We reported that chromatin formation and cellular SWI/SNF chromatin remodeling play key roles in HAdV transcriptional regulation. We observed that the cellular chromatin-associated factor and epigenetic reader SPOC1 represses HAdV infection and gene expression. Here, we illustrate the role of the SPOC1-interacting factor KAP1 during productive HAdV growth. KAP1 binds to the viral E1B-55K protein, promoting its SUMO modification, therefore illustrating a crucial step for efficient viral replication. Simultaneously, KAP1 posttranslational modification is dramatically altered during infection. We observed an HAdV-mediated decrease in KAP1 SUMOylation, known to promote chromatin decondensation events. These findings indicate that HAdV induces the loss of KAP1 SUMOylation to minimize epigenetic gene silencing and to promote the SUMO modification of E1B-55K by a so far unknown mechanism.
Collapse
|
8
|
PML isoforms IV and V contribute to adenovirus-mediated oncogenic transformation by functionally inhibiting the tumor-suppressor p53. Oncogene 2015; 35:69-82. [PMID: 25772236 DOI: 10.1038/onc.2015.63] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/16/2014] [Accepted: 01/30/2015] [Indexed: 11/09/2022]
Abstract
Although modulation of the cellular tumor-suppressor p53 is considered to have the major role in E1A/E1B-55K-mediated tumorigenesis, other promyelocytic leukemia nuclear body (PML-NB)/PML oncogenic domain (POD)-associated factors including SUMO, Mre11, Daxx, as well as the integrity of these nuclear bodies contribute to the transformation process. However, the biochemical consequences and oncogenic alterations of PML-associated E1B-55K by SUMO-dependent PML-IV and PML-V interaction have so far remained elusive. We performed mutational analysis to define a PML interaction motif within the E1B-55K polypeptide. Our results showed that E1B-55K/PML binding is not required for p53, Mre11 and Daxx interaction. We also observed that E1B-55K lacking subnuclear PML localization because of either PML-IV or PML-V-binding deficiency was no longer capable of mediating E1B-55K-dependent SUMOylation of p53, inhibition of p53-mediated transactivation or efficiently transforming primary rodent cells. These results together with the observation that E1B-55K-dependent SUMOylation of p53 is required for efficient cell transformation, provides evidence for the idea that the SUMO ligase activity of the E1B-55K viral oncoprotein is intimately linked to its growth-promoting oncogenic activities.
Collapse
|
9
|
Chahal JS, Qi J, Flint SJ. The human adenovirus type 5 E1B 55 kDa protein obstructs inhibition of viral replication by type I interferon in normal human cells. PLoS Pathog 2012; 8:e1002853. [PMID: 22912576 PMCID: PMC3415460 DOI: 10.1371/journal.ppat.1002853] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/26/2012] [Indexed: 12/24/2022] Open
Abstract
Vectors derived from human adenovirus type 5, which typically lack the E1A and E1B genes, induce robust innate immune responses that limit their therapeutic efficacy. We reported previously that the E1B 55 kDa protein inhibits expression of a set of cellular genes that is highly enriched for those associated with anti-viral defense and immune responses, and includes many interferon-sensitive genes. The sensitivity of replication of E1B 55 kDa null-mutants to exogenous interferon (IFN) was therefore examined in normal human fibroblasts and respiratory epithelial cells. Yields of the mutants were reduced at least 500-fold, compared to only 5-fold, for wild-type (WT) virus replication. To investigate the mechanistic basis of such inhibition, the accumulation of viral early proteins and genomes was compared by immunoblotting and qPCR, respectively, in WT- and mutant-infected cells in the absence or presence of exogenous IFN. Both the concentration of viral genomes detected during the late phase and the numbers of viral replication centers formed were strongly reduced in IFN-treated cells in the absence of the E1B protein, despite production of similar quantities of viral replication proteins. These defects could not be attributed to degradation of entering viral genomes, induction of apoptosis, or failure to reorganize components of PML nuclear bodies. Nor was assembly of the E1B- and E4 Orf6 protein- E3 ubiquitin ligase required to prevent inhibition of viral replication by IFN. However, by using RT-PCR, the E1B 55 kDa protein was demonstrated to be a potent repressor of expression of IFN-inducible genes in IFN-treated cells. We propose that a primary function of the previously described transcriptional repression activity of the E1B 55 kDa protein is to block expression of IFN- inducible genes, and hence to facilitate formation of viral replication centers and genome replication. The most frequently used therapeutic vectors for gene transfer or cancer treatment are derived from human adenovirus type 5 (Ad5). We have observed previously that the E1B 55 kDa protein encoded by a gene routinely deleted from these vectors represses expression of numerous cellular genes regulated by interferon (IFN) α and β, which are important components of the innate immune response to viral infection. We therefore compared synthesis of pre-mRNA from IFN-inducible genes, viral yields and early reactions in the infectious cycle in normal human cells exposed to exogenous IFN and infected by wild-type or E1B 55 kDa null-mutant viruses. We report that the E1B 55 kDa protein is a potent repressor of expression of IFN-regulated genes, and protects viral replication against anti-viral actions of IFN by blocking inhibition of formation of viral replication centers and genome replication. These observations provide the first information about the function of the transcription repression activity of E1B during the infectious cycle. Importantly, they also suggest new design considerations for adenoviral vectors that can circumvent induction of innate immune responses, currently a major therapeutic limitation.
Collapse
Affiliation(s)
- Jasdave S. Chahal
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - Ji Qi
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
| | - S. J. Flint
- Princeton University, Department of Molecular Biology, Lewis Thomas Laboratory, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
10
|
Schreiner S, Wimmer P, Dobner T. Adenovirus degradation of cellular proteins. Future Microbiol 2012; 7:211-25. [PMID: 22324991 DOI: 10.2217/fmb.11.153] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic cells orchestrate constant synthesis and degradation of intracellular components, including soluble proteins and organelles. The two major intracellular degradation pathways are the ubiquitin/proteasome system and autophagy. Whereas ubiquitin/proteasome system is involved in rapid degradation of proteins, autophagy selectively removes protein aggregates and damaged organelles. Failure of these highly adjusted proteolytic systems to maintain basal turnover leads to altered cellular homeostasis. During evolution, certain viruses have developed mechanisms to exploit their functions to facilitate their own replication, prevent viral clearance and promote the outcome of infection. In this article, we summarize the current opinion on adenoviruses (Ad) and molecular host cell targets, extending on recent evidences for protein degradation pathways in infected cells. We describe recently identified connections between Ad-mediated proteolysis and viral replication with main emphasis on the function of certain Ad proteins.
Collapse
Affiliation(s)
- Sabrina Schreiner
- Heinrich-Pette-Institute, Leibniz-Institute for Experimental Virology, Martinistrasse 52, 20251 Hamburg, Germany. sabrina.schreiner@hpi. uni-hamburg.de
| | | | | |
Collapse
|
11
|
Wimmer P, Blanchette P, Schreiner S, Ching W, Groitl P, Berscheminski J, Branton PE, Will H, Dobner T. Cross-talk between phosphorylation and SUMOylation regulates transforming activities of an adenoviral oncoprotein. Oncogene 2012; 32:1626-37. [PMID: 22614022 DOI: 10.1038/onc.2012.187] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Since the discovery of post-translational modification (PTM) by the small ubiquitin-related modifiers (SUMOs), a multitude of proteins have been described to be reversibly modified, resulting in the alteration of several cellular pathways. Interestingly, various pathogens gain access to this modification system, although the molecular mechanisms and functional consequences are barely understood. We show here that the adenoviral oncoprotein E1B-55K is a substrate of the SUMO conjugation system, which is directly linked to its C-terminal phosphorylation. This regulative connection is indispensable for modulation of the tumor suppressor p53/chromatin-remodeling factor Daxx by E1B-55K and, consequently, its oncogenic potential in primary mammalian cells. In virus infection, E1B-55K PTMs are necessary for localization to viral transcription/replication sites. Furthermore, we identify the E2 enzyme Ubc9 as an interaction partner of E1B-55K, providing a possible molecular explanation for SUMO-dependent modulation of cellular target proteins. In conclusion, these results for the first time provide evidence how E1B-55K PTMs are regulated and subsequently facilitate exploitation of the host cell SUMOylation machinery.
Collapse
Affiliation(s)
- P Wimmer
- Department of Molecular Virology, Heinrich-Pette-Institute-Leibniz-Institute for Experimental Virology, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Timely synthesis of the adenovirus type 5 E1B 55-kilodalton protein is required for efficient genome replication in normal human cells. J Virol 2012; 86:3064-72. [PMID: 22278242 DOI: 10.1128/jvi.06764-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Previous studies have indicated that the adenovirus type 5 E1B 55-kDa protein facilitates viral DNA synthesis in normal human foreskin fibroblasts (HFFs) but not in primary epithelial cells. To investigate this apparent difference further, viral DNA accumulation was examined in primary human fibroblasts and epithelial cells infected by the mutant AdEasyE1Δ2347, which carries the Hr6 frameshift mutation that prevents production of the E1B 55-kDa protein, in an E1-containing derivative of AdEasy. Impaired viral DNA synthesis was observed in normal HFFs but not in normal human bronchial epithelial cells infected by this mutant. However, acceleration of progression through the early phase, which is significantly slower in HFFs than in epithelial cells, eliminated the dependence of efficient viral DNA synthesis in HFFs on the E1B 55-kDa protein. These observations suggest that timely synthesis of the E1B 55-kDa protein protects normal cells against a host defense that inhibits adenoviral genome replication. One such defense is mediated by the Mre11-Rad50-Nbs1 complex. Nevertheless, examination of the localization of Mre11 and viral proteins by immunofluorescence suggested that this complex is inactivated similarly in AdEasyE1Δ2347 mutant-infected and AdEasyE1-infected HFFs.
Collapse
|
13
|
Adenovirus type 5 early region 1B 55K oncoprotein-dependent degradation of cellular factor Daxx is required for efficient transformation of primary rodent cells. J Virol 2011; 85:8752-65. [PMID: 21697482 DOI: 10.1128/jvi.00440-11] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Early region 1B 55K (E1B-55K) from adenovirus type 5 (Ad5) is a multifunctional regulator of lytic infection and contributes in vitro to complete cell transformation of primary rodent cells in combination with Ad5 E1A. Inhibition of p53 activated transcription plays a key role in processes by which E1B-55K executes its oncogenic potential. Nevertheless, additional functions of E1B-55K or further protein interactions with cellular factors of DNA repair, transcription, and apoptosis, including Mre11, PML, and Daxx, may also contribute to the transformation process. In line with previous results, we performed mutational analysis to define a Daxx interaction motif within the E1B-55K polypeptide. The results from these studies showed that E1B-55K/Daxx binding is not required for inhibition of p53-mediated transactivation or binding and degradation of cellular factors (p53/Mre11). Surprisingly, these mutants lost the ability to degrade Daxx and showed reduced transforming potential in primary rodent cells. In addition, we observed that E1B-55K lacking the SUMO-1 conjugation site (SCS/K104R) was sufficient for Daxx interaction but no longer capable of E1B-55K-dependent proteasomal degradation of the cellular factor Daxx. These results, together with the observation that E1B-55K SUMOylation is required for efficient transformation, provides evidence for the idea that SUMO-1-conjugated E1B-55K-mediated degradation of Daxx plays a key role in adenoviral oncogenic transformation. We assume that the viral protein contributes to cell transformation through the modulation of Daxx-dependent pathways. This further substantiates the assumption that further mechanisms for efficient transformation of primary cells can be separated from functions required for the inhibition of p53-stimulated transcription.
Collapse
|
14
|
Inhibition of p53 by adenovirus type 12 E1B-55K deregulates cell cycle control and sensitizes tumor cells to genotoxic agents. J Virol 2011; 85:7976-88. [PMID: 21680522 DOI: 10.1128/jvi.00492-11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Adenovirus E1B-55K represses p53-mediated transcription. However, the phenotypic consequence of p53 inhibition by E1B-55K for cell cycle regulation and drug sensitivity in tumor cells has not been examined. In HCT116 cells with constitutive E1B-55K expression, the activation of p53 target genes such as the p21, Mdm2, and Puma genes was attenuated, despite markedly elevated p53 protein levels. HCT116 cells with E1B-55K expression displayed a cell cycle profile similar to that of the isogenic HCT116p53(-/-) cells, including unhindered S-phase entry despite DNA damage. Surprisingly, E1B-55K-expressing cells were more sensitive to drug treatment than parental cells. Compared to HCT116 cells, HCT116p53(-/-) cells were more susceptible to both doxorubicin and etoposide, and E1B-55K expression had no effects on drug treatment. E1B-55K expression increased the rate of cell proliferation in HCT116 but not in HCT116p53(-/-) cells. Thus, deregulation of p53-mediated cell cycle control by E1B-55K probably underlies sensitization of HCT116 cells to anticancer drugs. Consistently, E1B-55K expression in A549, A172, and HepG2 cells, all containing wild-type (wt) p53, also enhanced etoposide-induced cytotoxicity, whereas in p53-null H1299 cells, E1B-55K had no effects. We generated several E1B-55K mutants with mutations at positions occupied by the conserved Phe/Trp/His residues. Most of these mutants showed no or reduced binding to p53, although some of them could still stabilize p53, suggesting that binding might not be essential for E1B-55K-induced p53 stabilization. Despite heightened p53 protein levels in cells expressing certain E1B-55K mutants, p53 activity was largely suppressed. Furthermore, most of these E1B-55K mutants could sensitize HCT116 cells to etoposide and doxorubicin. These results indicate that E1B-55K might have utility for enhancing chemotherapy.
Collapse
|
15
|
Adenovirus E1B 55-kilodalton protein is a p53-SUMO1 E3 ligase that represses p53 and stimulates its nuclear export through interactions with promyelocytic leukemia nuclear bodies. J Virol 2010; 84:12210-25. [PMID: 20861261 DOI: 10.1128/jvi.01442-10] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oncogenic transformation by adenovirus E1A and E1B-55K requires E1B-55K inhibition of p53 activity to prevent E1A-induced apoptosis. During viral infection, E1B-55K and E4orf6 substitute for the substrate-binding subunits of the host cell cullin 5 class of ubiquitin ligases, resulting in p53 polyubiquitinylation and proteasomal degradation. Here we show that E1B-55K alone also functions as an E3 SUMO1-p53 ligase. Fluorescence microscopy studies showed that E1B-55K alone, in the absence of other viral proteins, causes p53 to colocalize with E1B-55K in promyelocytic leukemia (PML) nuclear bodies, nuclear domains with a high concentration of sumoylated proteins. Photobleaching experiments with live cells revealed that E1B-55K tethering of p53 in PML nuclear bodies decreases the in vivo nuclear mobility of p53 nearly 2 orders of magnitude. E1B-55K-induced p53 sumoylation contributes to maximal inhibition of p53 function since mutation of the major p53 sumoylation site decreases E1B-55K-induced p53 sumoylation, tethering in PML nuclear bodies, and E1B-55K inhibition of p53 activity. Mutation of the E1B-55K sumoylation site greatly inhibits E1B-55K association with PML nuclear bodies and the p53 nuclear export to cytoplasmic aggresomes observed in E1A-E1B-transformed cells. Purified E1B-55K and p53 form high-molecular-weight complexes potentially through the formation of a network of E1B-55K dimers bound to the N termini of p53 tetramers. In support of this model, a p53 mutation that prevents tetramer formation greatly reduces E1B-55K-induced tethering in PML nuclear bodies and p53 nuclear export. These data indicate that E1B-55K's association with PML nuclear bodies inactivates p53 by first sequestering it in PML nuclear bodies and then greatly facilitating its nuclear export.
Collapse
|
16
|
SUMO modification of E1B-55K oncoprotein regulates isoform-specific binding to the tumour suppressor protein PML. Oncogene 2010; 29:5511-22. [PMID: 20639899 DOI: 10.1038/onc.2010.284] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The E1B-55K product from human adenovirus is a substrate of the small ubiquitin-related modifier (SUMO)-conjugation system. SUMOylation of E1B-55K is required to transform primary mammalian cells in cooperation with adenovirus E1A and to repress p53 tumour suppressor functions. The biochemical consequences of SUMO1 conjugation of 55K have so far remained elusive. Here, we report that E1B-55K physically interacts with different isoforms of the tumour suppressor protein promyelocytic leukaemia (PML). We show that E1B-55K binds to PML isoforms IV and V in a SUMO1-dependent and -independent manner. Interaction with PML-IV promotes the localization of 55K to PML-containing subnuclear structures (PML-NBs). In virus-infected cells, this process is negatively regulated by other viral proteins, indicating that binding to PML is controlled through reversible SUMOylation in a timely coordinated manner. These results together with earlier work are consistent with the idea that SUMOylation regulates targeting of E1B-55K to PML-NBs, known to control transcriptional regulation, tumour suppression, DNA repair and apoptosis. Furthermore, they suggest that SUMO1-dependent modulation of p53-dependent growth suppression through E1B-55K PML-IV interaction has a key role in adenovirus-mediated cell transformation.
Collapse
|
17
|
Miller DL, Rickards B, Mashiba M, Huang W, Flint SJ. The adenoviral E1B 55-kilodalton protein controls expression of immune response genes but not p53-dependent transcription. J Virol 2009; 83:3591-603. [PMID: 19211769 PMCID: PMC2663238 DOI: 10.1128/jvi.02269-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 01/30/2009] [Indexed: 01/20/2023] Open
Abstract
The human adenovirus type 5 (Ad5) E1B 55-kDa protein modulates several cellular processes, including activation of the tumor suppressor p53. Binding of the E1B protein to the activation domain of p53 inhibits p53-dependent transcription. This activity has been correlated with the transforming activity of the E1B protein, but its contribution to viral replication is not well understood. To address this issue, we used microarray hybridization methods to examine cellular gene expression in normal human fibroblasts (HFFs) infected by Ad5, the E1B 55-kDa-protein-null mutant Hr6, or a mutant carrying substitutions that impair repression of p53-dependent transcription. Comparison of the changes in cellular gene expression observed in these and our previous experiments (D. L. Miller et al., Genome Biol. 8:R58, 2007) by significance analysis of microarrays indicated excellent reproducibility. Furthermore, we again observed that Ad5 infection led to efficient reversal of the p53-dependent transcriptional program. As this same response was also induced in cells infected by the two mutants, we conclude that the E1B 55-kDa protein is not necessary to block activation of p53 in Ad5-infected cells. However, groups of cellular genes that were altered in expression specifically in the absence of the E1B protein were identified by consensus k-means clustering of the hybridization data. Statistical analysis of the enrichment of genes associated with specific functions in these clusters established that the E1B 55-kDa protein is necessary for repression of genes encoding proteins that mediate antiviral and immune defenses.
Collapse
Affiliation(s)
- Daniel L Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | | | | | | | |
Collapse
|
18
|
Adenovirus E1B 55-kilodalton protein: multiple roles in viral infection and cell transformation. J Virol 2009; 83:4000-12. [PMID: 19211739 DOI: 10.1128/jvi.02417-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
19
|
Cardoso FM, Kato SEM, Huang W, Flint SJ, Gonzalez RA. An early function of the adenoviral E1B 55 kDa protein is required for the nuclear relocalization of the cellular p53 protein in adenovirus-infected normal human cells. Virology 2008; 378:339-46. [PMID: 18632130 DOI: 10.1016/j.virol.2008.06.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 06/03/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
Abstract
It is well established that the human subgroup C adenovirus type 5 (Ad5) E1B 55 kDa protein can regulate the activity and concentration of the cellular tumor suppressor, p53. However, the contribution(s) of these functions of the E1B protein to viral reproduction remains unclear. To investigate this issue, we examined properties of p53 in normal human cells infected by E1B mutant viruses that display defective entry into the late phase or viral late mRNA export. The steady-state concentrations of p53 were significantly higher in cells infected by the E1B 55 kDa null mutant Hr6 or three mutants carrying small insertions in the E1B 55 kDa protein coding sequence than in Ad5-infected cells. Nevertheless, none of the mutants induced apoptosis in infected cells. Rather, the localization of p53 to E1B containing nuclear sites observed during infection by Ad5 was prevented by mutations that impair interaction of the E1B protein with p53 and/or with the E4 Orf6 protein. These results indicate that the E1B protein fulfills an early function that correlates efficient entry into the late phase with the localization of E1B and p53 in the nucleus of Ad5-infected normal human cells.
Collapse
Affiliation(s)
- F M Cardoso
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, México
| | | | | | | | | |
Collapse
|
20
|
Miller DL, Myers CL, Rickards B, Coller HA, Flint SJ. Adenovirus type 5 exerts genome-wide control over cellular programs governing proliferation, quiescence, and survival. Genome Biol 2007; 8:R58. [PMID: 17430596 PMCID: PMC1896011 DOI: 10.1186/gb-2007-8-4-r58] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 10/20/2006] [Accepted: 04/12/2007] [Indexed: 02/05/2023] Open
Abstract
The effects of the adenovirus Ad5 on basic host cell programs, such as cell-cycle regulation, were studied in a microarray analysis of human fibroblasts. About 2,000 genes were up- or down-regulated after Ad5 infection and Ad5 infection was shown to induce reversal of the quiescence program and recapitulation of the core serum response. Background Human adenoviruses, such as serotype 5 (Ad5), encode several proteins that can perturb cellular mechanisms that regulate cell cycle progression and apoptosis, as well as those that mediate mRNA production and translation. However, a global view of the effects of Ad5 infection on such programs in normal human cells is not available, despite widespread efforts to develop adenoviruses for therapeutic applications. Results We used two-color hybridization and oligonucleotide microarrays to monitor changes in cellular RNA concentrations as a function of time after Ad5 infection of quiescent, normal human fibroblasts. We observed that the expression of some 2,000 genes, about 10% of those examined, increased or decreased by a factor of two or greater following Ad5 infection, but were not altered in mock-infected cells. Consensus k-means clustering established that the temporal patterns of these changes were unexpectedly complex. Gene Ontology terms associated with cell proliferation were significantly over-represented in several clusters. The results of comparative analyses demonstrate that Ad5 infection induces reversal of the quiescence program and recapitulation of the core serum response, and that only a small subset of the observed changes in cellular gene expression can be ascribed to well characterized functions of the viral E1A and E1B proteins. Conclusion These findings establish that the impact of adenovirus infection on host cell programs is far greater than appreciated hitherto. Furthermore, they provide a new framework for investigating the molecular functions of viral early proteins and information relevant to the design of conditionally replicating adenoviral vectors.
Collapse
Affiliation(s)
- Daniel L Miller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Laboratory of Genetics, University of Wisconsin, 425-G Henry Mall, Madison, Wisconsin 53706, USA
| | - Chad L Myers
- Lewis-Sigler Institute for Integrative Genomics, Carl Icahn Laboratory, Princeton University, Princeton, NJ 08544, USA
- Department of Computer Science, Princeton University, Princeton, New Jersey 08544, USA
| | - Brenden Rickards
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Hilary A Coller
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - S Jane Flint
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
21
|
Zhao LY, Santiago A, Liu J, Liao D. Repression of p53-mediated transcription by adenovirus E1B 55-kDa does not require corepressor mSin3A and histone deacetylases. J Biol Chem 2007; 282:7001-10. [PMID: 17209038 DOI: 10.1074/jbc.m610749200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Ad E1B 55-kDa protein (E1B) is a potent transcriptional repressor. In vitro biochemical studies revealed that direct p53-E1B interaction is essential for E1B to block p53-activated transcription and a corepressor may be involved. To understand how E1B represses p53-mediated transcription in vivo, we expressed E1B in several tumor cell lines that express wild type p53. Here we show that E1B strongly suppresses the expression of p53 target genes such as p21 and Puma-alpha in normal growth conditions or after cells were treated with p53-activating chemotherapeutic agents, suggesting that E1B-mediated gene repression is dominant and cannot be reversed via p53 activation. Interestingly, we found that E1B binds to corepressor mSin3A. Mutagenesis analysis indicated that the sequence motif "LHLLA" near the NH(2) terminus of E1B is responsible for mSin3A binding, and this motif is conserved among E1B proteins from different Ad serotypes. The conserved paired amphipathic helix domain 1 of mSin3A is critical for mSin3A-E1B interaction. Surprisingly, E1B mutants that cannot bind to mSin3A can still repress p53 target genes, indicating that it is not the corepressor required for E1B-mediated gene repression. In support of this notion, repression of p53 target genes by E1B is insensitive to HDAC inhibitor trichostatin A. We further show that both the NH(2)- and COOH-terminal domains of E1B are required for the repression function. Therefore, E1B employs a unique repression mechanism to block p53-mediated transcription.
Collapse
Affiliation(s)
- Lisa Y Zhao
- Department of Anatomy and Cell Biology, and Shands Cancer Center Programs in Cancer Genetics, Epigenetics and Tumor Virology, and Cell Signaling, Apoptosis and Cancer, University of Florida College of Medicine, Gainesville, Florida 32611-3633, USA
| | | | | | | |
Collapse
|
22
|
Sieber T, Dobner T. Adenovirus type 5 early region 1B 156R protein promotes cell transformation independently of repression of p53-stimulated transcription. J Virol 2006; 81:95-105. [PMID: 17050591 PMCID: PMC1797270 DOI: 10.1128/jvi.01608-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Early region 1B (E1B) of adenovirus type 5 (Ad5) encodes at least five different polypeptides generated by alternative splicing of a common mRNA precursor. Two of these gene products, E1B-19K and E1B-55K, are individually capable of cooperating with the Ad5 E1A proteins to completely transform rodent cells in culture. Substantial evidence suggests that these two E1B proteins contribute to cell transformation by antagonizing growth arrest and apoptosis. Here, we performed genetic and biochemical analyses to assess the attributes of the remaining E1B proteins (E1B-156R, E1B-93R, and E1B-84R). Our results show that E1B-156R, which comprises the 79 amino-terminal and 77 carboxy-terminal amino acids of E1B-55K, also enhances focal transformation of primary rat cells in cooperation with E1A. Since E1B-156R seemed unable to relocalize p53 and inhibit its transactivating function, it must be assumed that it contributes to transformation independently of repression of p53-stimulated transcription. Furthermore, we discovered that E1B-156R contains a functional transcriptional repression domain and binds Ad5 E4orf6 and the cellular apoptosis regulator Daxx. While the ability to bind E4orf6 could indicate further biological functions of E1B-156R in viral infection, the interaction with Daxx might also be linked to its transforming potential. Taken together, these analyses introduce E1B-156R as a novel transformation-promoting E1B protein that acts without repressing p53 transactivation. Moreover, identification of the interaction partners E4orf6 and Daxx provides a first glance of E1B-156R's potential functions.
Collapse
Affiliation(s)
- Timo Sieber
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Germany
| | | |
Collapse
|
23
|
Strath J, Blair GE. Adenovirus subversion of immune surveillance, apoptotic and growth regulatory pathways: a model for tumorigenesis. Acta Microbiol Immunol Hung 2006; 53:145-69. [PMID: 16956126 DOI: 10.1556/amicr.53.2006.2.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The adenovirus system provides a novel model for evaluating the roles of multiple factors involved in tumour progression. In common with other DNA tumour viruses, adenovirus employs a variety of strategies to evade immune surveillance and perturbs cellular apoptotic and growth regulatory pathways to ensure efficient replication of progeny virions. Such subversion of cellular networks is also found in tumour cells. The mechanism behind the avoidance of immune surveillance and the extent of cellular network interference achieved by adenovirus is still being uncovered and is predicted to have ramifications for the design of cancer therapeutics.
Collapse
Affiliation(s)
- Janet Strath
- Institute of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | |
Collapse
|
24
|
Abstract
Adenovirus continues to be an important model system for investigating basic aspects of cell biology. Interactions of several cellular proteins with E1A conserved regions (CR) 1 and 2, and inhibition of apoptosis by E1B proteins are required for oncogenic transformation. CR2 binds RB family members, de-repressing E2F transcription factors, thus activating genes required for cell cycling. E1B-19K is a BCL2 homolog that binds and inactivates proapoptotic BAK and BAX. E1B-55K binds p53, inhibiting its transcriptional activation function. In productively infected cells, E1B-55K and E4orf6 assemble a ubiquitin ligase with cellular proteins Elongins B and C, Cullin 5 and RBX1 that polyubiquitinates p53 and one or more subunits of the MRN complex involved in DNA double-strand break repair, directing them to proteosomal degradation. E1A CR3 activates viral transcription by interacting with the MED23 Mediator subunit, stimulating preinitiation complex assembly on early viral promoters and probably also the rate at which they initiate transcription. The viral E1B-55K/E4orf6 ubiquitin ligase is also required for efficient viral late protein synthesis in many cell types, but the mechanism is not understood. E1A CR1 binds several chromatin-modifying complexes, but how this contributes to stimulation of cellular DNA synthesis and transformation is not clear. E1A CR4 binds the CtBP corepressor, but the mechanism by which this modulates the frequency of transformation remains to be determined. Clearly, adenovirus has much left to teach us about fundamental cellular processes.
Collapse
Affiliation(s)
- Arnold J Berk
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, University of California, Los Angeles (UCLA), 90095-1570, USA.
| |
Collapse
|
25
|
Abstract
DNA viruses have enormous utility in cancer research, both as tools for tumor target discovery as well as agents for lytic cancer therapies. This is because there is a profound functional overlap between the DNA viral and tumor cell programs. DNA viruses encode proteins that elicit growth deregulation in infected cells similar to that engendered by mutations in tumor cells. Evolution has refined viral proteins to target the critical cellular hubs that regulate growth. Thus, viral proteins are discriminating biochemical probes that can be used to identify and characterize novel tumor targets. Moreover, the overlap between the DNA viral and tumor programs can also be exploited for the development of lytic cancer therapies. Discovering whether tumor cells selectively complement the replication of viral mutants can reveal novel oncolytic viral therapies, as well as unexpected tumor properties. For example, altered RNA export was recently uncovered as a novel tumor cell property that underlies ONYX-015 replication, a promising oncolytic adenoviral therapy. A perspective is provided on how adenovirus could be systematically exploited to map the requisite role, or indeed the redundancy, of cellular pathways that act in an integrated program to elicit pathological replication. This knowledge has important applications for the rational design of the next generation of oncolytic viruses, as well as the discovery of efficacious combination cancer therapies.
Collapse
Affiliation(s)
- Clodagh C O'Shea
- Cancer Research Institute, University of California San Francisco, 94115, USA.
| |
Collapse
|
26
|
Liu Y, Shevchenko A, Shevchenko A, Berk AJ. Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J Virol 2005; 79:14004-16. [PMID: 16254336 PMCID: PMC1280221 DOI: 10.1128/jvi.79.22.14004-14016.2005] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2005] [Accepted: 08/18/2005] [Indexed: 12/26/2022] Open
Abstract
Results reported here indicate that adenovirus 5 exploits the cellular aggresome response to accelerate inactivation of MRE11-RAD50-NBS1 (MRN) complexes that otherwise inhibit viral DNA replication and packaging. Aggresomes are cytoplasmic inclusion bodies, observed in many degenerative diseases, that are formed from aggregated proteins by dynein-dependent retrograde transport on microtubules to the microtubule organizing center. Viral E1B-55K protein forms aggresomes that sequester p53 and MRN in transformed cells and in cells transfected with an E1B-55K expression vector. During adenovirus infection, the viral protein E4orf3 associates with MRN in promyelocytic leukemia protein nuclear bodies before MRN is bound by E1B-55K. Either E4orf3 or E4orf6 is required in addition to E1B-55K for E1B-55K aggresome formation and MRE11 export to aggresomes in adenovirus-infected cells. Aggresome formation contributes to the protection of viral DNA from MRN activity by sequestering MRN in the cytoplasm and greatly accelerating its degradation by proteosomes following its ubiquitination by the E1B-55K/E4orf6/elongin BC/Cullin5/Rbx1 ubiquitin ligase. Our results show that aggresomes significantly accelerate protein degradation by the ubiquitin-proteosome system. The observation that a normal cellular protein is inactivated when sequestered into an aggresome through association with an aggresome-inducing protein has implications for the potential cytotoxicity of aggresome-like inclusion bodies in degenerative diseases.
Collapse
Affiliation(s)
- Yue Liu
- Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095-1570, USA
| | | | | | | |
Collapse
|
27
|
Endter C, Härtl B, Spruss T, Hauber J, Dobner T. Blockage of CRM1-dependent nuclear export of the adenovirus type 5 early region 1B 55-kDa protein augments oncogenic transformation of primary rat cells. Oncogene 2005; 24:55-64. [PMID: 15480414 DOI: 10.1038/sj.onc.1208170] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Revised: 08/31/2004] [Accepted: 09/02/2004] [Indexed: 12/12/2022]
Abstract
The 55-kDa gene product from subgroup C adenovirus type 5 (Ad5) early region 1 (E1B-55kDa) plays a central role in the oncogenic transformation of primary rodent cells primarily by inactivating transcriptional and presumably other functional properties of the tumor suppressor protein p53. We have previously shown that Ad5 E1B-55kDa possesses a leucine-rich nuclear export signal (NES), which confers rapid nucleocytoplasmic shuttling via the CRM1-dependent export pathway. In this study we report that an export-deficient mutant of the viral protein (E1B-NES) substantially enhances focus formation of primary baby rat kidney cells in combination with Ad E1A. Transformed rat cells stably expressing the E1B-NES protein exhibited increased tumorigenicity and accelerated tumor growth in nude mice compared to transformants containing the wild-type E1B product. This 'gain of function' correlated with enhanced inhibition of p53 transactivation in transient reporter assays and the accumulation of the mutant protein and p53 in several dot-like subnuclear aggregates. Interestingly, these structures also contained a large fraction of cellular promyelocytic leukemia protein (PML), a known regulator of p53. These data indicate that E1B-NES promotes oncogenic transformation by combinatorial mechanisms that involve modulation of p53 in the context of PML nuclear bodies. In sum, these results extend our previous observation that inhibition of PML activities by E1B-55kDa is required for efficient focus formation and provide further support for the view that blocking p53 transcriptional functions is the principal mechanism by which the Ad protein contributes to complete cell transformation in conjunction with Ad E1A.
Collapse
Affiliation(s)
- Christian Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstrasse 22, D-93047 Regensburg, Germany
| | | | | | | | | |
Collapse
|
28
|
Zhao LY, Liao D. Sequestration of p53 in the cytoplasm by adenovirus type 12 E1B 55-kilodalton oncoprotein is required for inhibition of p53-mediated apoptosis. J Virol 2004; 77:13171-81. [PMID: 14645574 PMCID: PMC296092 DOI: 10.1128/jvi.77.24.13171-13181.2003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1B 55-kDa protein is a potent inhibitor of p53-mediated transactivation and apoptosis. The proposed mechanisms include tethering the E1B repression domain to p53-responsive promoters via direct E1B-p53 interaction. Cytoplasmic sequestration of p53 by the 55-kDa protein would impose additional inhibition on p53-mediated effects. To investigate further the role of cytoplasmic sequestration of p53 in its inhibition by the E1B 55-kDa protein we systematically examined domains in both the Ad12 55-kDa protein and p53 that underpin their colocalization in the cytoplasmic body and show that the N-terminal transactivation domain (TAD) of p53 is essential for retaining p53 in the cytoplasmic body. Deletion of amino acids 11 to 27 or even point mutation L22Q/W23S abolished the localization of p53 to the cytoplasmic body, whereas other parts of TAD and the C-terminal domain of p53 are dispensable. This cytoplasmic body is distinct from aggresome associated with overexpression of some proteins, since it neither altered vimentin intermediate filaments nor associated with centrosome or ubiquitin. Formation of this structure is sensitive to mutation of the Ad12 55-kDa protein. Strikingly, mutation S476/477A near the C terminus of the Ad12 55-kDa protein eliminated the formation of the cytoplasmic body. The equivalent residues in the Ad5 55-kDa protein were shown to be critical for its ability to inhibit p53. Indeed, Ad12 55-kDa mutants that cannot form a cytoplasmic body can no longer inhibit p53-mediated effects. Conversely, the Ad12 55-kDa protein does not suppress p53 mutant L22Q/W23S-mediated apoptosis. Finally, we show that E1B can still sequester p53 that contains the mitochondrial import sequence, thereby potentially preventing the localization of p53 to mitochondria. Thus, cytoplasmic sequestration of p53 by the E1B 55-kDa protein plays an important role in restricting p53 activities.
Collapse
Affiliation(s)
- Lisa Y Zhao
- Department of Anatomy and Cell Biology and UF Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610-0235, USA
| | | |
Collapse
|
29
|
Abstract
The last 40 years of molecular biological investigations into human adenoviruses have contributed enormously to our understanding of the basic principles of normal and malignant cell growth. Much of this knowledge stems from analyses of their productive infection cycle in permissive host cells. Also, initial observations concerning the carcinogenic potential of human adenoviruses subsequently revealed decisive insights into the molecular mechanisms of the origins of cancer, and established adenoviruses as a model system for explaining virus-mediated transformation processes. Today it is well established that cell transformation by human adenoviruses is a multistep process involving several gene products encoded in early transcription units 1A (E1A) and 1B (E1B). Moreover, a large body of evidence now indicates that alternative or additional mechanisms are engaged in adenovirus-mediated oncogenic transformation involving gene products encoded in early region 4 (E4) as well as epigenetic changes resulting from viral DNA integration. In particular, detailed studies on the tumorigenic potential of subgroup D adenovirus type 9 (Ad9) E4 have now revealed a new pathway that points to a novel, general mechanism of virus-mediated oncogenesis. In this chapter, we summarize the current state of knowledge about the oncogenes and oncogene products of human adenoviruses, focusing particularly on recent findings concerning the transforming and oncogenic properties of viral proteins encoded in the E1B and E4 transcription units.
Collapse
Affiliation(s)
- C Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Landshuterstr. 22, 93047 Regensburg, Germany
| | | |
Collapse
|
30
|
Zhao LY, Colosimo AL, Liu Y, Wan Y, Liao D. Adenovirus E1B 55-kilodalton oncoprotein binds to Daxx and eliminates enhancement of p53-dependent transcription by Daxx. J Virol 2003; 77:11809-21. [PMID: 14557665 PMCID: PMC229361 DOI: 10.1128/jvi.77.21.11809-11821.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1B 55-kDa protein impairs the p53 pathway and enhances transformation, although the underlying mechanisms remain to be defined. We found that Daxx binds to the E1B 55-kDa protein in a yeast two-hybrid screen. The two proteins interact through their C termini. Mutation of three potential phosphorylation sites (S489/490 and T494 to alanine) within the E1B 55-kDa protein did not affect its interaction with Daxx, although such mutations were previously shown to inhibit E1B's ability to repress p53-dependent transcription and to enhance transformation. In addition to their coimmunoprecipitation in 293 extracts, purified Daxx interacted with the E1B 55-kDa protein in vitro, indicating their direct interaction. In 293 cells, Daxx colocalized with the E1B 55-kDa protein within discrete nuclear dots, where p53 was also found. Such structures were distinct from PML (promyelocytic leukemia protein) bodies, and it appeared that Daxx was displaced from PML bodies. Thus, the Daxx concentration was diminished in dots with a prominent presence of PML and vice versa. Indeed, PML overexpression led to dramatic redistribution of Daxx from p53-E1B 55-kDa protein complexes to PML bodies. Additionally, expression of the E1B 55-kDa protein in Saos2 osteosarcoma cells reduced the number of PML bodies. Our data suggest that E1B and PML compete for available Daxx in the cell. Surprisingly, Daxx significantly augmented p53-mediated transcription and the E1B 55-kDa protein eliminated this effect. Thus, it is likely that the E1B 55-kDa protein sequesters Daxx and p53 in specific nuclear locations, where p53 cannot activate transcription. One consequence of the Daxx-E1B interaction might be an alteration of normal interactions of Daxx, PML, and p53, which may contribute to cell transformation.
Collapse
Affiliation(s)
- Lisa Y Zhao
- Department of Anatomy and Cell Biology and Shands Cancer Center, University of Florida College of Medicine, Gainesville, Florida 32610-0235, USA
| | | | | | | | | |
Collapse
|
31
|
Punga T, Akusjärvi G. Adenovirus 2 E1B-55K protein relieves p53-mediated transcriptional repression of the survivin and MAP4 promoters. FEBS Lett 2003; 552:214-8. [PMID: 14527689 DOI: 10.1016/s0014-5793(03)00927-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well established that adenovirus E1B-55K protein functions as an inhibitor of the tumor suppressor protein p53 by binding and inactivating p53 as a transcriptional activator protein. Here we show that the adenovirus 2 E1B-55K protein also blocks p53 as a transcriptional repressor protein of the survivin and the MAP4 promoters. The repression is dependent on the ability of E1B-55K to bind to p53 and is enhanced by coexpression of the adenovirus E4orf6 protein. Overexpression of the transcriptional corepressor protein Sin3A partially relieves the inhibitory effect of E1B-55K, suggesting that E1B-55K blocks p53 functions by interfering with the Sin3 complex.
Collapse
Affiliation(s)
- Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Box 582, 751 23 Uppsala, Sweden.
| | | |
Collapse
|
32
|
Kzhyshkowska J, Rusch A, Wolf H, Dobner T. Regulation of transcription by the heterogeneous nuclear ribonucleoprotein E1B-AP5 is mediated by complex formation with the novel bromodomain-containing protein BRD7. Biochem J 2003; 371:385-93. [PMID: 12489984 PMCID: PMC1223277 DOI: 10.1042/bj20021281] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Revised: 12/09/2002] [Accepted: 12/18/2002] [Indexed: 11/17/2022]
Abstract
E1B-AP5 was initially identified as a target of the early adenovirus E1B-55 kDa protein during the course of lytic infection. E1B-AP5 belongs to the heterogeneous nuclear ribonucleoprotein family and was demonstrated to be involved in mRNA processing and transport [Gabler, Schutt, Groitl, Wolf, Shenk and Dobner (1998) J. Virol. 72, 7960-7971]. In the present paper, we demonstrate that E1B-AP5 differentially regulates basic and ligand-dependent transcription. We found that E1B-AP5 represses basic transcription driven by several virus and cellular promoters, and mapped the repression activity to the N-terminal part of the protein. In contrast with basic repression, E1B-AP5 activated the glucocorticoid-dependent promoter in the absence of dexamethasone, but did not contribute to the dexamethasone-induced activation. Mutant analysis indicated the presence of an additional cellular factor that modulates E1B-AP5 transcriptional activity. Using yeast two-hybrid screening, we identified a novel chromatin-associated bromodomain-containing protein, BRD7, as an E1B-AP5 interaction partner. We confirmed E1B-AP5-BRD7 complex formation in vivo and in vitro. We found that, although BRD7 binds to histones H2A, H2B, H3 and H4 through its bromodomain, this domain was not necessary for the interaction with E1B-AP5. Indeed, the triple complex formation of E1B-AP5, BRD7 and histones was demonstrated. Disruption of the E1B-AP5-BRD7 complex increased E1B-AP5 repression activity for basic transcription and converted it from being an activator of the hormone-dependent promoter into being a strong repressor. We conclude that complex formation between BRD7 and E1B-AP5 links chromatin events with mRNA processing at the level of transcriptional regulation.
Collapse
Affiliation(s)
- Julia Kzhyshkowska
- Universität Heidelberg, Uni-Klinikum Mannheim, Dermatologie, Theodor-Kutzer-Ufer 1-3, D-68167 Mannheim, Germany.
| | | | | | | |
Collapse
|
33
|
Burgert HG, Ruzsics Z, Obermeier S, Hilgendorf A, Windheim M, Elsing A. Subversion of host defense mechanisms by adenoviruses. Curr Top Microbiol Immunol 2002; 269:273-318. [PMID: 12224514 DOI: 10.1007/978-3-642-59421-2_16] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adenoviruses (Ads) cause acute and persistent infections. Alike the much more complex herpesviruses, Ads encode numerous immunomodulatory functions. About a third of the viral genome is devoted to counteract both the innate and the adaptive antiviral immune response. Immediately upon infection, E1A blocks interferon-induced gene expression and the VA-RNA inhibits interferon-induced PKR activity. At the same time, E1A reprograms the cell for DNA synthesis and induces the intrinsic cellular apoptosis program that is interrupted by E1B/19K and E1B/55K proteins, the latter inhibits p53-mediated apoptosis. Most other viral stealth functions are encoded by a separate transcription units, E3. Several E3 products prevent death receptor-mediated apoptosis. E3/14.7K seems to interfere with the cytolytic and pro-inflammatory activities of TNF while E3/10.4K and 14.5K proteins remove Fas and TRAIL receptors from the cell surface by inducing their degradation in lysosomes. These and other functions that may afect granule-mediated cell death might drastically limit lysis by NK cells and cytotoxic T cells (CTL). Moreover, Ads interfere with recognition of infected cell by CTL. The paradigmatic E3/19K protein subverts antigen presentation by MHC class I molecules by inhibiting their transport to the cell surface. In concert, these viral countermeasures ensure prolonged survival in the infected host and, as a consequence, facilitate transmission. Elucidating the molecular mechanisms of Ad-mediated immune evasion has stimulated corresponding research on other viruses. This knowledge will also be instrumental for designing better vectors for gene therapy and vaccination, and may lead to a more rational treatment of life-threatening Ad infections, e.g. in transplantation patients.
Collapse
Affiliation(s)
- H G Burgert
- Max von Pettenkofer-Institut, Lehrstuhl Virologie, Genzentrum der Ludwig-Maximilians-Universität, Feodor-Lynen-Str. 25, 81377 München, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Harada JN, Shevchenko A, Shevchenko A, Pallas DC, Berk AJ. Analysis of the adenovirus E1B-55K-anchored proteome reveals its link to ubiquitination machinery. J Virol 2002; 76:9194-206. [PMID: 12186903 PMCID: PMC136464 DOI: 10.1128/jvi.76.18.9194-9206.2002] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2002] [Accepted: 06/12/2002] [Indexed: 12/26/2022] Open
Abstract
During the early phase of infection, the E1B-55K protein of adenovirus type 5 (Ad5) counters the E1A-induced stabilization of p53, whereas in the late phase, E1B-55K modulates the preferential nucleocytoplasmic transport and translation of the late viral mRNAs. The mechanism(s) by which E1B-55K performs these functions has not yet been clearly elucidated. In this study, we have taken a proteomics-based approach to identify and characterize novel E1B-55K-associated proteins. A multiprotein E1B-55K-containing complex was immunopurified from Ad5-infected HeLa cells and found to contain E4-orf6, as well as several cellular factors previously implicated in the ubiquitin-proteasome-mediated destruction of proteins, including Cullin-5, Rbx1/ROC1/Hrt1, and Elongins B and C. We further demonstrate that a complex containing these as well as other proteins is capable of directing the polyubiquitination of p53 in vitro. These ubiquitin ligase components were found in a high-molecular-mass complex of 800 to 900 kDa. We propose that these newly identified binding partners (Cullin-5, Elongins B and C, and Rbx1) complex with E1B-55K and E4-orf6 during Ad infection to form part of an E3 ubiquitin ligase that targets specific protein substrates for degradation. We further suggest that E1B-55K functions as the principal substrate recognition component of this SCF-type ubiquitin ligase, whereas E4-orf6 may serve to nucleate the assembly of the complex. Lastly, we describe the identification and characterization of two novel E1B-55K interacting factors, importin-alpha 1 and pp32, that may also participate in the functions previously ascribed to E1B-55K and E4-orf6.
Collapse
Affiliation(s)
- Josephine N Harada
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095-1570, USA
| | | | | | | | | |
Collapse
|
35
|
Habib NA, Mitry R, Seth P, Kuppuswamy M, Doronin K, Toth K, Krajcsi P, Tollefson AE, Wold WSM. Adenovirus replication-competent vectors (KD1, KD3) complement the cytotoxicity and transgene expression from replication-defective vectors (Ad-GFP, Ad-Luc). Cancer Gene Ther 2002; 9:651-4. [PMID: 12136425 DOI: 10.1038/sj.cgt.7700481] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2002] [Indexed: 11/09/2022]
Abstract
The successful clinical application of adenovirus (Ad) in cancer control has been of limited success because of the current inability to infect the majority of cancer cells with a large amount of vector. In this study, we show that when human lung tumors growing in immunodeficient nude mice were coinfected with a replication-defective (RD) Ad vector expressing green fluorescent protein and a replication-competent (RC) Ad vector named KD3, KD3 enhanced the expression of green fluorescent protein throughout the tumor. Also, KD3 and another RC vector named KD1 complemented the expression of luciferase from a RD vector in a human liver tumor xenotransplant in nude mice. Altogether, these results suggest that the combination of a RD vector with a RC vector might be a more effective treatment for cancer than either vector alone due to more widespread dissemination of the virus.
Collapse
Affiliation(s)
- Nagy A Habib
- Department of Surgery, Faculty of Medicine, Imperial College, Hammersmith Hospital Campus, London, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Endter C, Kzhyshkowska J, Stauber R, Dobner T. SUMO-1 modification required for transformation by adenovirus type 5 early region 1B 55-kDa oncoprotein. Proc Natl Acad Sci U S A 2001; 98:11312-7. [PMID: 11553772 PMCID: PMC58726 DOI: 10.1073/pnas.191361798] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
SUMO-1 is a small ubiquitin-related modifier protein that is covalently linked to many cellular and viral protein targets. Modification by SUMO-1 is proposed to play a role in protein targeting and/or stability. We show here that adenovirus type 5 early region 1B 55-kDa (E1B-55kDa) oncoprotein can be covalently modified by SUMO-1 in vivo through a major attachment site comprising a single lysine residue at amino acid position 104. The sequence surrounding this lysine matches the proposed PsiKxE consensus motif required for SUMO-1 conjugation. A single mutation (K104R) that abolishes SUMOylation of E1B-55kDa dramatically reduces the ability of the adenovirus type 5 protein to transform primary baby rat kidney cells in cooperation with E1A and to inhibit p53-mediated transactivation. Overexpression of SUMO-1 in adenovirus type 5 E1A/E1B-55kDa-transformed baby rat kidney cells causes the relocalization of E1B-55kDa from the cytoplasm to the nucleus, where it accumulates with SUMO-1 in dot- or track-like structures. Significantly, when SUMO-1 is ectopically expressed in transformed rat cells no effect on the cytoplasmic localization of the E1B-K104R mutant protein is observed. Our results demonstrate that SUMO-1 modification is required for transformation by adenovirus type 5 E1B-55kDa and provide further evidence for the idea that this posttranslational modification plays a role in protein targeting to specific subcellular sites.
Collapse
Affiliation(s)
- C Endter
- Institut für Medizinische Mikrobiologie und Hygiene, Universität Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | | | | | | |
Collapse
|
37
|
Wang G, Cantin GT, Stevens JL, Berk AJ. Characterization of mediator complexes from HeLa cell nuclear extract. Mol Cell Biol 2001; 21:4604-13. [PMID: 11416138 PMCID: PMC87123 DOI: 10.1128/mcb.21.14.4604-4613.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of mammalian multiprotein complexes containing homologs of Saccharomyces cerevisiae Mediator subunits have been described recently. High-molecular-mass complexes (1 to 2 MDa) sharing several subunits but apparently differing in others include the TRAP/SMCC, NAT, DRIP, ARC, and human Mediator complexes. Smaller multiprotein complexes (approximately 500 to 700 kDa), including the murine Mediator, CRSP, and PC2, have also been described that contain subsets of subunits of the larger complexes. To evaluate whether these different multiprotein complexes exist in vivo in a single form or in multiple different forms, HeLa cell nuclear extract was directly resolved over a Superose 6 gel filtration column. Immunoblotting of column fractions using antisera specific for several Mediator subunits revealed one major size class of high-molecular-mass (approximately 2-MDa) complexes containing multiple mammalian Mediator subunits. No peak was apparent at approximately 500 to 700 kDa, indicating that either the smaller complexes reported are much less abundant than the higher-molecular-mass complexes or they are subcomplexes generated by dissociation of larger complexes during purification. Quantitative immunoblotting indicated that there are about 3 x 10(5) to 6 x 10(5) molecules of hSur2 Mediator subunit per HeLa cell, i.e., the same order of magnitude as RNA polymerase II and general transcription factors. Immunoprecipitation of the approximately 2-MDa fraction with anti-Cdk8 antibody indicated that at least two classes of Mediator complexes occur, one containing CDK8 and cyclin C and one lacking this CDK-cyclin pair. The approximately 2-MDa complexes stimulated activated transcription in vitro, whereas a 150-kDa fraction containing a subset of Mediator subunits inhibited activated transcription.
Collapse
Affiliation(s)
- G Wang
- Molecular Biology Institute, University of California, Los Angeles, California 90095-1570, USA
| | | | | | | |
Collapse
|
38
|
Xing J, Sheppard HM, Corneillie SI, Liu X. p53 Stimulates TFIID-TFIIA-promoter complex assembly, and p53-T antigen complex inhibits TATA binding protein-TATA interaction. Mol Cell Biol 2001; 21:3652-61. [PMID: 11340159 PMCID: PMC86992 DOI: 10.1128/mcb.21.11.3652-3661.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Simian virus 40 large T antigen has been shown to inhibit p53-mediated transcription once tethered to p53-responsive promoters through interaction with p53. In this study we report that p53 stimulates transcription by enhancing the recruitment of the basal transcription factors, TFIIA and TFIID, on the promoter (the DA complex) and by inducing a conformational change in the DA complex. Significantly, we have demonstrated that T antigen inhibits p53-mediated transcription by blocking this ability of p53. We investigated the mechanism for this inhibition and found that DA complex formation was resistant to T-antigen repression when the TFIID-DNA complex was formed prior to addition of p53-T antigen complex, indicating that the T antigen, once tethered to the promoter by p53, targets TFIID. Further, we have shown that the p53-T antigen complex prevents the TATA binding protein from binding to the TATA box. Thus, these data suggest a detailed mechanism by which p53 activates transcription and by which T antigen inhibits p53-mediated transcription.
Collapse
Affiliation(s)
- J Xing
- Department of Biochemistry, University of California, Riverside, California 92521
| | | | | | | |
Collapse
|
39
|
Doronin K, Kuppuswamy M, Toth K, Tollefson AE, Krajcsi P, Krougliak V, Wold WS. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy. J Virol 2001; 75:3314-24. [PMID: 11238857 PMCID: PMC114124 DOI: 10.1128/jvi.75.7.3314-3324.2001] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2000] [Accepted: 01/05/2001] [Indexed: 12/25/2022] Open
Abstract
We have previously described two replication-competent adenovirus vectors, named KD1 and KD3, for potential use in cancer gene therapy. KD1 and KD3 have two small deletions in the E1A gene that restrict efficient replication of these vectors to human cancer cell lines. These vectors also have increased capacity to lyse cells and spread from cell to cell because they overexpress the adenovirus death protein, an adenovirus protein required for efficient cell lysis and release of adenovirus from the cell. We now describe a new vector, named KD1-SPB, which is the KD1 vector with the E4 promoter replaced by the promoter for surfactant protein B (SPB). SPB promoter activity is restricted in the adult to type II alveolar epithelial cells and bronchial epithelial cells. Because KD1-SPB has the E1A mutations, it should replicate within and destroy only alveolar and bronchial cancer cells. We show that KD1-SPB replicates, lyses cells, and spreads from cell to cell as well as does KD1 in H441 cells, a human cancer cell line where the SPB promoter is active. KD1-SPB replicates, lyses cells, and spreads only poorly in Hep3B liver cancer cells. Replication was determined by expression of the E4ORF3 protein, viral DNA accumulation, fiber synthesis, and virus yield. Cell lysis and vector spread were measured by lactate dehydrogenase release and a "vector spread" assay. In addition to Hep3B cells, KD1-SPB also did not express E4ORF3 in HT29.14S (colon), HeLa (cervix), KB (nasopharynx), or LNCaP (prostate) cancer cell lines, in which the SPB promoter is not expected to be active. Following injection into H441 or Hep3B tumors growing in nude mice, KD1-SPB caused a three- to fourfold suppression of growth of H441 tumors, similar to that seen with KD1. KD1-SPB had only a minimal effect on the growth of Hep3B tumors, whereas KD1 again caused a three- to fourfold suppression. These results establish that the adenovirus E4 promoter can be replaced by a tissue-specific promoter in a replication-competent vector. The vector has three engineered safety features: the tissue-specific promoter, the mutations in E1A that preclude efficient replication in nondividing cells, and a deletion of the E3 genes which shield the virus from attack by the immune system. KD1-SPB may have use in treating human lung cancers in which the SPB promoter is active.
Collapse
Affiliation(s)
- K Doronin
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Johnstone RW, Gerber M, Landewe T, Tollefson A, Wold WS, Shilatifard A. Functional analysis of the leukemia protein ELL: evidence for a role in the regulation of cell growth and survival. Mol Cell Biol 2001; 21:1672-81. [PMID: 11238904 PMCID: PMC86713 DOI: 10.1128/mcb.21.5.1672-1681.2001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ELL gene encodes an RNA polymerase II transcription factor that frequently undergoes translocation with the MLL gene in acute human myeloid leukemia. Here, we report that ELL can regulate cell proliferation and survival. In order to better understand the physiological role of the ELL protein, we have developed an ELL-inducible cell line. Cells expressing ELL were uniformly inhibited for growth by a loss of the G(1) population and an increase in the G(2)/M population. This decrease in cell growth is followed by the condensation of chromosomal DNA, activation of caspase 3, poly(ADP ribose) polymerase cleavage, and an increase in sub-G(1) population, which are all indicators of the process of programmed cell death. In support of the role of ELL in induction of cell death, expression of an ELL antisense RNA or addition of the caspase inhibitor ZVAD-fmk results in a reversal of ELL-mediated death. We have also demonstrated that the C-terminal domain of ELL, which is conserved among the ELL family of proteins that we have cloned (ELL, ELL2, and ELL3), is required for ELL's activity in the regulation of cell growth. These novel results indicate that ELL can regulate cell growth and survival and may explain how ELL translocations result in the development of human malignancies.
Collapse
MESH Headings
- Amino Acid Chloromethyl Ketones/pharmacology
- Antigens, Differentiation
- Apoptosis
- Blotting, Western
- Caspase 3
- Caspase Inhibitors
- Caspases/metabolism
- Cell Cycle Proteins
- Cell Death
- Cell Division
- Cell Line
- Cell Survival
- Cysteine Proteinase Inhibitors/pharmacology
- DNA/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Enzyme Activation
- Enzyme Inhibitors/pharmacology
- Flow Cytometry
- G1 Phase
- G2 Phase
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Mitosis
- Neoplasm Proteins
- Oligonucleotides, Antisense/metabolism
- Peptide Elongation Factors
- Plasmids/metabolism
- Poly(ADP-ribose) Polymerases/metabolism
- Propidium/pharmacology
- Protein Phosphatase 1
- Proteins/metabolism
- RNA, Messenger/metabolism
- Time Factors
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transcriptional Elongation Factors
- Transfection
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R W Johnstone
- The Peter MacCallum Cancer Institute, Gene Regulation Laboratory, Cancer Immunology Division, East Melbourne, 3002 Victoria, Australia
| | | | | | | | | | | |
Collapse
|
41
|
Schwam DR, Luciano RL, Mahajan SS, Wong L, Wilson AC. Carboxy terminus of human herpesvirus 8 latency-associated nuclear antigen mediates dimerization, transcriptional repression, and targeting to nuclear bodies. J Virol 2000; 74:8532-40. [PMID: 10954554 PMCID: PMC116365 DOI: 10.1128/jvi.74.18.8532-8540.2000] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human herpesvirus 8 (HHV-8; also known as Kaposi's sarcoma-associated herpesvirus) is the causative agent of Kaposi's sarcoma and certain B-cell lymphomas. In most infected cells, HHV-8 establishes a latent infection characterized by the expression of latency-associated nuclear antigen (LANA) encoded by open reading frame 73. Although unrelated by sequence, there are functional similarities between LANA and the EBNA-1 protein of Epstein-Barr virus. Both accumulate as subnuclear speckles and are required for maintenance of the viral episome. EBNA-1 also regulates viral gene expression and is required for cell immortalization, suggesting that LANA performs similar functions in the context of HHV-8 infection. Here we show that LANA forms stable dimers, or possibly higher-order multimers, and that this is mediated by a conserved region in the C terminus. By expressing a series of truncations, we show that both the N- and C-terminal regions localize to the nucleus, although only the C terminus accumulates as nuclear speckles characteristic of the intact protein. Lastly, we show that LANA can function as a potent transcriptional repressor when tethered to constitutively active promoters via a heterologous DNA-binding domain. Domains in both the N and C termini mediate repression. This suggests that one function of LANA is to suppress the expression of the viral lytic genes or cellular genes involved in the antiviral response.
Collapse
Affiliation(s)
- D R Schwam
- Department of Microbiology and Kaplan Comprehensive Cancer Center, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
42
|
Liu Y, Colosimo AL, Yang XJ, Liao D. Adenovirus E1B 55-kilodalton oncoprotein inhibits p53 acetylation by PCAF. Mol Cell Biol 2000; 20:5540-53. [PMID: 10891493 PMCID: PMC86007 DOI: 10.1128/mcb.20.15.5540-5553.2000] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The adenovirus E1B 55-kDa protein binds to cellular tumor suppressor p53 and inactivates its transcriptional transactivation function. p53 transactivation activity is dependent upon its ability to bind to specific DNA sequences near the promoters of its target genes. It was shown recently that p53 is acetylated by transcriptional coactivators p300, CREB bidning protein (CBP), and PCAF and that acetylation of p53 by these proteins enhances p53 sequence-specific DNA binding. Here we show that the E1B 55-kDa protein specifically inhibits p53 acetylation by PCAF in vivo and in vitro, while acetylation of histones and PCAF autoacetylation is not affected. Furthermore, the DNA-binding activity of p53 is diminished in cells expressing the E1B 55-kDa protein. PCAF binds to the E1B 55-kDa protein and to a region near the C terminus of p53 encompassing Lys-320, the specific PCAF acetylation site. We further show that the E1B 55-kDa protein interferes with the physical interaction between PCAF and p53, suggesting that the E1B 55-kDa protein inhibits PCAF acetylase function on p53 by preventing enzyme-substrate interaction. These results underscore the importance of p53 acetylation for its function and suggest that inhibition of p53 acetylation by viral oncoproteins prevent its activation, thereby contributing to viral transformation.
Collapse
Affiliation(s)
- Y Liu
- Department of Microbiology and Infectious Diseases, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | |
Collapse
|
43
|
Punga T, Akusjärvi G. The adenovirus-2 E1B-55K protein interacts with a mSin3A/histone deacetylase 1 complex. FEBS Lett 2000; 476:248-52. [PMID: 10913622 DOI: 10.1016/s0014-5793(00)01739-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The adenovirus E1B-55K protein is a multifunctional phosphoprotein that regulates nuclear to cytoplasmic export of host cell and viral mRNAs during lytic viral growth. E1B-55K also blocks apoptosis by binding and functionally inactivating the human tumor suppressor protein p53. Here, we show that E1B-55K interacts with histone deacetylase 1 (HDAC1) and the transcriptional corepressor protein mSin3A, both in the adenovirus-transformed 293 cell line and during a lytic adenovirus infection. Furthermore, we show that the central amino acids 156-261 in E1B-55K are necessary for efficient HDAC1 interaction. Importantly, the E1B-55K/mSin3A/HDAC1 complex is also enzymatically active, catalyzing deacetylation of a histone substrate peptide. Collectively, our results suggest that E1B-55K interaction with mSin3A/HDAC1 containing complexes may be significant for one or several of the multiple activities ascribed to this protein.
Collapse
Affiliation(s)
- T Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, BMC, Box 582, 751 23, Uppsala, Sweden
| | | |
Collapse
|
44
|
Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WS. Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74:6147-55. [PMID: 10846098 PMCID: PMC112113 DOI: 10.1128/jvi.74.13.6147-6155.2000] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/1999] [Accepted: 03/28/2000] [Indexed: 11/20/2022] Open
Abstract
We have constructed two novel adenovirus (Ad) replication-competent vectors, named KD1 and KD3, that may have use in anticancer therapy. The vectors have two key features. First, they markedly overexpress the Ad death protein (ADP), an Ad nuclear membrane glycoprotein required at late stages of infection for efficient cell lysis and release of Ad from cells. Overexpression of ADP was achieved by deleting the E3 region and reinserting the adp gene. Because ADP is overexpressed, KD1 and KD3 are expected to spread more rapidly and effectively through tumors. Second, KD1 and KD3 have two E1A mutations (from the mutant dl1101/1107) that prevent efficient replication in nondividing cells but allow replication in dividing cancer cells. These E1A mutations preclude binding of E1A proteins to p300 and pRB. As a result, the virus should not be able to drive cells from G(0) to S phase and therefore should not be able to replicate in normal tissues. We show that KD1 and KD3 do not replicate well in quiescent HEL-299 cells or in primary human bronchial epithelial cells, small airway epithelial cells, or endothelial cells; however, they replicate well in proliferating HEL-299 cells and human A549 lung carcinoma cells. In cultured A549 cells, KD1 and KD3 lyse cells and spread from cell to cell more rapidly than their control virus, dl1101/1107, or wild-type Ad. They are also more efficient than dl1101/1107 or wild-type Ad in complementing the spread from cell to cell of an E1(-) E3(-) replication-defective vector expressing beta-galactosidase. A549 cells form rapidly growing solid tumors when injected into the hind flanks of immunodeficient nude mice; however, when A549 cells were infected with 10(-4) PFU of KD3/cell prior to injection into mice, tumor formation was nearly completely suppressed. When established A549 tumors in nude mice were examined, tumors injected with buffer grew 13.3-fold over 5 weeks, tumors injected with dl1101/1107 grew 8-fold, and tumors injected with KD1 or KD3 grew 2.6-fold. Hep 3B tumors injected with buffer grew 12-fold over 3.5 weeks, whereas tumors injected with KD1 or KD3 grew 4-fold. We conclude that KD1 and KD3 show promise as anticancer therapeutics.
Collapse
Affiliation(s)
- K Doronin
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, MO 63104, USA
| | | | | | | | | | | |
Collapse
|
45
|
Yu A, Fan HY, Liao D, Bailey AD, Weiner AM. Activation of p53 or loss of the Cockayne syndrome group B repair protein causes metaphase fragility of human U1, U2, and 5S genes. Mol Cell 2000; 5:801-10. [PMID: 10882116 DOI: 10.1016/s1097-2765(00)80320-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Infection by adenovirus 12, transfection with the Ad12 E1B 55 kDa gene, or activation of p53 cause metaphase fragility of four loci (RNU1, PSU1, RNU2, and RN5S) each containing tandemly repeated genes for an abundant small RNA (U1, U2, and 5S RNA). We now show that loss of the Cockayne syndrome group B protein (CSB) or overexpression of the p53 carboxy-terminal domain induces fragility of the same loci; moreover, p53 interacts with CSB in vivo and in vitro. We propose that CSB functions as an elongation factor for transcription of structured RNAs, including some mRNAs. Activation of p53 would inhibit CSB, stalling transcription complexes and locally blocking chromatin condensation. Impaired transcription elongation may also explain the diverse clinical features of Cockayne syndrome.
Collapse
Affiliation(s)
- A Yu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | |
Collapse
|