1
|
Gordon BH, Silvers R. 1H, 13C, and 15N resonance assignment of the 5'SL-bound La domain of the human La-related protein 6. BIOMOLECULAR NMR ASSIGNMENTS 2025:10.1007/s12104-025-10232-7. [PMID: 40304844 DOI: 10.1007/s12104-025-10232-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/30/2025] [Indexed: 05/02/2025]
Abstract
Human La-related protein 6 (HsLARP6) participates in the post-transcriptional regulation of type I collagen biosynthesis and is involved in the onset and progression of fibroproliferative disease. The RNA-binding protein HsLARP6 recognizes a hairpin structure known as the 5' stem-loop (5'SL) located at the junction of 5' untranslated and coding regions of type I collagen mRNA. Despite extensive biochemical and functional studies of the interaction between HsLARP6 and the 5'SL motif, the lack of high-resolution molecular data significantly hampers our understanding of the binding mechanism. Here, we introduced a shorter 5'SL model, named A2M5, reducing the molecular size of the protein-RNA complex as well as spectral overlap in RNA-based spectra. Furthermore, we reported the near-complete backbone and side chain resonance assignment of the La domain of HsLARP6 in a 1:1 complex with the A2M5 model RNA. These results will provide a significant platform for future NMR spectroscopic studies of 5'SL binding to the La domain of HsLARP6.
Collapse
Affiliation(s)
- Blaine H Gordon
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306, USA
| | - Robert Silvers
- Department of Chemistry & Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL, 32306, USA.
- Institute of Molecular Biophysics, Florida State University, 91 Chieftan Way, Tallahassee, FL, 32306, USA.
| |
Collapse
|
2
|
Gordon B, Blackford N, Silvers R. A Robust Expression and Purification Protocol for the Production of the La Domain of Human LARP6. ACS OMEGA 2025; 10:12699-12709. [PMID: 40191362 PMCID: PMC11966256 DOI: 10.1021/acsomega.5c01045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/09/2025]
Abstract
Human La-related protein 6 (HsLARP6) regulates the highly organized biosynthesis of type I procollagen polypeptides and affects the proper assembly of procollagen peptides into heterotrimers of type I procollagen. HsLARP6-mediated regulation of collagen biosynthesis is mediated through interaction with the 5' stem loop (5'SL) motif found in type I and III collagen mRNA. Recent studies highlight the involvement of HsLARP6 in fibroproliferative diseases and its potential as a target for therapeutic intervention. The intrinsic propensity of the La domain of HsLARP6 to aggregate hampers studies probing the molecular basis of biologically and disease-relevant structure-function relationships, particularly when high concentrations are required. This work provides detailed procedures to produce milligram amounts of RNase-free and functional La domain of HsLARP6. Furthermore, we investigated the effects of the protein construct length and RNA binding on protein stability. C-terminal truncations greatly impact protein stability, while N-terminal truncations have little to no effect on protein aggregation and RNA binding. When in complex with its cognate 5'SL RNA, the La domain shows unprecedented stability compared to the aggregation-prone unbound state. The protein-RNA complex remains stable for at least 50 times longer than the unbound state under identical conditions. These results provide a significant platform for further studies of the molecular recognition of 5'SL by HsLARP6.
Collapse
Affiliation(s)
- Blaine
H. Gordon
- Department
of Chemistry & Biochemistry, Florida
State University, Tallahassee, Florida 32306, United States
- Institute
of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| | - Nolan Blackford
- Department
of Chemistry & Biochemistry, Florida
State University, Tallahassee, Florida 32306, United States
- Institute
of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| | - Robert Silvers
- Department
of Chemistry & Biochemistry, Florida
State University, Tallahassee, Florida 32306, United States
- Institute
of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306, United States
| |
Collapse
|
3
|
Zhang M, Hussain A, Yang H, Zhang J, Liang XJ, Huang Y. mRNA-based modalities for infectious disease management. NANO RESEARCH 2022; 16:672-691. [PMID: 35818566 PMCID: PMC9258466 DOI: 10.1007/s12274-022-4627-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
The novel coronavirus disease 2019 (COVID-19) is still rampant all over the world, causing incalculable losses to the world. Major pharmaceutical organizations around the globe are focusing on vaccine research and drug development to prevent further damage caused by the pandemic. The messenger RNA (mRNA) technology has got ample of attention after the success of the two very effective mRNA vaccines during the recent pandemic of COVID-19. mRNA vaccine has been promoted to the core stage of pharmaceutical industry, and the rapid development of mRNA technology has exceeded expectations. Beyond COVID-19, the mRNA vaccine has been tested for various infectious diseases and undergoing clinical trials. Due to the ability of constant mutation, the viral infections demand abrupt responses and immediate production, and therefore mRNA-based technology offers best answers to sudden outbreaks. The need for mRNA-based vaccine became more obvious due to the recent emergence of new Omicron variant. In this review, we summarized the unique properties of mRNA-based vaccines for infectious diseases, delivery technologies, discussed current challenges, and highlighted the prospects of this promising technology in the future. We also discussed various clinical studies as well preclinical studies conducted on mRNA therapeutics for diverse infectious diseases.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Haiyin Yang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
| | - Jinchao Zhang
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, College of Chemistry and Environmental Science, Hebei University, Baoding, 071002 China
| | - Xing-Jie Liang
- Chinese Academy of Sciences (CAS) Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190 China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology (Institute of Engineering Medicine), Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081 China
- School of Materials and the Environment, Beijing Institute of Technology, Zhuhai, 519085 China
| |
Collapse
|
4
|
Shi R, Zhang Z, Zhu A, Xiong X, Zhang J, Xu J, Sy MS, Li C. Targeting Type I Collagen for Cancer Treatment. Int J Cancer 2022; 151:665-683. [PMID: 35225360 DOI: 10.1002/ijc.33985] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/07/2022]
Abstract
Collagen is the most abundant protein in animals. Interactions between tumor cells and collagen influence every step of tumor development. Type I collagen is the main fibrillar collagen in the extracellular matrix and is frequently up-regulated during tumorigenesis. The binding of type I collagen to its receptors on tumor cells promotes tumor cell proliferation, epithelial-mesenchymal transition, and metastasis. Type I collagen also regulates the efficacy of tumor therapies, such as chemotherapy, radiotherapy, and immunotherapy. Furthermore, type I collagen fragments are diagnostic markers of metastatic tumors and have prognostic value. Inhibition of type I collagen synthesis has been reported to have anti-tumor effects in animal models. However, collagen has also been shown to possess anti-tumor activity. Therefore, the roles that type I collagen plays in tumor biology are complex and tumor type-dependent. In this review, we discuss the expression and regulation of synthesis of type I collagen, as well as the role up-regulated type I collagen plays in various stages of cancer progression. We also discuss the role of collagen in tumor therapy. Finally, we highlight several recent approaches targeting type I collagen for cancer treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Run Shi
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Zhe Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Ankai Zhu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Xingxing Xiong
- Department of Operating Room, Jiangxi Cancer Hospital of Nanchang University, Nanchang, China
| | - Jie Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Chaoyang Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Key Laboratory for Cell Homeostasis and Cancer Research of Guangdong High Education Institute, Guangzhou, China
| |
Collapse
|
5
|
Stefanovic B, Michaels HA, Nefzi A. Discovery of a Lead Compound for Specific Inhibition of Type I Collagen Production in Fibrosis. ACS Med Chem Lett 2021; 12:477-484. [PMID: 33738075 DOI: 10.1021/acsmedchemlett.1c00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is a major medical problem caused by excessive synthesis of the extracellular matrix, composed predominantly of type I collagen, in various tissues. There are no approved antifibrotic drugs, and the major obstacle in finding clinically relevant compounds is the lack of specificity of current experimental drugs for type I collagen. Here we describe the discovery of a lead compound that specifically inhibited secretion of type I collagen by fibroblasts in culture at IC50 = 4.5 μM. The inhibition was specific for type I collagen, because secretion of fibronectin was not affected. In vitro, the compound inhibited binding of LARP6, the master regulator of translation of type I collagen mRNAs, to the 5' stem-loop sequence element which regulates their translation. Because binding of LARP6 to collagen mRNAs is crucial for the development of fibrosis, this inhibitor represents a promising lead for optimization into specific antifibrotic drugs.
Collapse
Affiliation(s)
- Branko Stefanovic
- Florida State University, 1115 West Call Street, Tallahassee, Florida 32306, United States
| | | | - Adel Nefzi
- Florida International University, Port Saint Lucie, Florida 34987, United States
| |
Collapse
|
6
|
Stefanovic L, Stefanovic B. Technology for Discovery of Antifibrotic Drugs: Phenotypic Screening for LARP6 Inhibitors Using Inverted Yeast Three Hybrid System. Assay Drug Dev Technol 2019; 17:116-127. [PMID: 30901265 DOI: 10.1089/adt.2018.904] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is defined by excessive production of type I collagen in various organs. Excessive type I collagen production in fibrosis is stimulated by binding of RNA protein LARP6 to the structural element of collagen mRNAs, the 5' stem loop (5'SL). The LARP6-dependent regulation is specific for type I collagen and critical for fibrosis development. Inhibitors of LARP6 binding have potential to be specific antifibrotic drugs, as evidenced by the discovery of one such inhibitor. To create technology for phenotypic screening of additional compounds we developed an inverted yeast three hybrid system. The system is based on expression of human LARP6 and a short RNA containing the 5'SL of human collagen α1(I) mRNA in Saccharomyces cerevisiae cells. The cells were engineered in such a way that when LARP6 is bound to 5'SL RNA they fail to grow in a specific synthetic medium. Dissociation of LARP6 from 5'SL RNA permits the cell growth, allowing identification of the inhibitors of LARP6 binding. The assay simply involves measuring optical density of cells growing in multiwall plates and is pertinent for high throughput applications. We describe the specificity of the system and its characteristics for high throughput screening. As a proof of principle, the result of one screen using collection of FDA approved drugs is also presented. This screen demonstrates that using this technology discovery of novel LARP6 inhibitors is possible.
Collapse
Affiliation(s)
- Lela Stefanovic
- 1 Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| | - Branko Stefanovic
- 1 Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida
| |
Collapse
|
7
|
Stefanovic B, Manojlovic Z, Vied C, Badger CD, Stefanovic L. Discovery and evaluation of inhibitor of LARP6 as specific antifibrotic compound. Sci Rep 2019; 9:326. [PMID: 30674965 PMCID: PMC6344531 DOI: 10.1038/s41598-018-36841-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/27/2018] [Indexed: 01/17/2023] Open
Abstract
Fibrosis is characterized by excessive production of type I collagen. Biosynthesis of type I collagen in fibrosis is augmented by binding of protein LARP6 to the 5' stem-loop structure (5'SL), which is found exclusively in type I collagen mRNAs. A high throughput screen was performed to discover inhibitors of LARP6 binding to 5'SL, as potential antifibrotic drugs. The screen yielded one compound (C9) which was able to dissociate LARP6 from 5' SL RNA in vitro and to inactivate the binding of endogenous LARP6 in cells. Treatment of hepatic stellate cells (liver cells responsible for fibrosis) with nM concentrations of C9 reduced secretion of type I collagen. In precision cut liver slices, as an ex vivo model of hepatic fibrosis, C9 attenuated the profibrotic response at 1 μM. In prophylactic and therapeutic animal models of hepatic fibrosis C9 prevented development of fibrosis or hindered the progression of ongoing fibrosis when administered at 1 mg/kg. Toxicogenetics analysis revealed that only 42 liver genes changed expression after administration of C9 for 4 weeks, suggesting minimal off target effects. Based on these results, C9 represents the first LARP6 inhibitor with significant antifibrotic activity.
Collapse
Affiliation(s)
- Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA.
| | - Zarko Manojlovic
- Keck School of Medicine of University of Southern California, 1450 Biggy Street, NRT 4510, Los Angeles, CA, 90033, USA
| | - Cynthia Vied
- Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| | - Crystal-Dawn Badger
- Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
- Proteomics and Metabolomics Facility, Colorado State University, 401 West Pitkin Street, Fort Collins, CO, 80521, USA
| | - Lela Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL, 32306, USA
| |
Collapse
|
8
|
Zhang S, Gong Y, Xiao J, Chai Y, Lei J, Huang H, Xiang T, Shen W. A COL1A1 Promoter-Controlled Expression of TGF-β Soluble Receptor Inhibits Hepatic Fibrosis Without Triggering Autoimmune Responses. Dig Dis Sci 2018; 63:2662-2672. [PMID: 29934723 DOI: 10.1007/s10620-018-5168-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/09/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Soluble TGF-β1 type II receptor (sTβRII) via TGF-β1 inhibition could inhibit hepatic fibrosis, but over-dosage triggers autoimmune responses. AIM To test whether the use of a TGF-β1-responsive collagen I promoter COL1A1, via generating a feedback loop to TGF-β1 level, could offer accurate control on sTβRII expression. METHODS Recombinant adenoviruses with COL1A1 (Ad-COL-sTβRII/Luc) or CMV promoter (Ad-CMV-sTβRII/Luc) were constructed and characterized. Inhibition of TGF-β activity was determined both in vitro and in vivo. Total and bioactive TGF-β, hepatic fibrosis scale, α-SMA, collagen levels, and liver function were determined. RESULTS COL1A1, but not CMV, responded to TGF-β1 in vitro. Both in vitro and in vivo, Ad-COL-sTβRII could significantly, but not completely inhibit TGF-β1 activity while Ad-CMV-sTβRII almost completely inhibited TGF-β1 activity. As evidenced by fibrosis scale, α-SMA, and collagen levels in liver tissue, Ad-COL-sTβRII and Ad-CMV-sTβRII had comparable efficacies in treating hepatic fibrosis. Ad-COL-sTβRII was better than Ad-CMV-sTβRII in liver function restore. Ad-CMV-sTβRII, but not Ad-COL-sTβRII, induced high level of anti-dsDNA and anti-Sm antibodies in rats. CONCLUSIONS COL1A1 can precisely control sTβRII expression to inhibit excessive bioactive TGF-β level and thus inhibit hepatic fibrosis but without inducing autoimmune responses.
Collapse
Affiliation(s)
- Shouhua Zhang
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Yuanqi Gong
- Department of Comprehensive Intensive Care Unit, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, China.,Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, China
| | - Yong Chai
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Jun Lei
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Hui Huang
- Department of General Surgery, Jiangxi Provincial Children's Hospital, Nanchang, 330006, China
| | - Tianxin Xiang
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Road, Nanchang, 330006, China.
| | - Wei Shen
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, No. 1 Minde Road, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
9
|
Maraia RJ, Mattijssen S, Cruz-Gallardo I, Conte MR. The La and related RNA-binding proteins (LARPs): structures, functions, and evolving perspectives. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:10.1002/wrna.1430. [PMID: 28782243 PMCID: PMC5647580 DOI: 10.1002/wrna.1430] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/12/2017] [Accepted: 05/15/2017] [Indexed: 01/02/2023]
Abstract
La was first identified as a polypeptide component of ribonucleic protein complexes targeted by antibodies in autoimmune patients and is now known to be a eukaryote cell-ubiquitous protein. Structure and function studies have shown that La binds to a common terminal motif, UUU-3'-OH, of nascent RNA polymerase III (RNAP III) transcripts and protects them from exonucleolytic decay. For precursor-tRNAs, the most diverse and abundant of these transcripts, La also functions as an RNA chaperone that helps to prevent their misfolding. Related to this, we review evidence that suggests that La and its link to RNAP III were significant in the great expansions of the tRNAomes that occurred in eukaryotes. Four families of La-related proteins (LARPs) emerged during eukaryotic evolution with specialized functions. We provide an overview of the high-resolution structural biology of La and LARPs. LARP7 family members most closely resemble La but function with a single RNAP III nuclear transcript, 7SK, or telomerase RNA. A cytoplasmic isoform of La protein as well as LARPs 6, 4, and 1 function in mRNA metabolism and translation in distinct but similar ways, sometimes with the poly(A)-binding protein, and in some cases by direct binding to poly(A)-RNA. New structures of LARP domains, some complexed with RNA, provide novel insights into the functional versatility of these proteins. We also consider LARPs in relation to ancestral La protein and potential retention of links to specific RNA-related pathways. One such link may be tRNA surveillance and codon usage by LARP-associated mRNAs. WIREs RNA 2017, 8:e1430. doi: 10.1002/wrna.1430 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Richard J. Maraia
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
- Commissioned Corps, U.S. Public Health Service, Rockville, MD USA
| | - Sandy Mattijssen
- Intramural Research Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Isabel Cruz-Gallardo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| |
Collapse
|
10
|
Guo Y, Tang CY, Man XF, Tang HN, Tang J, Zhou CL, Tan SW, Wang M, Feng YZ, Zhou HD. Insulin-like growth factor-1 promotes osteogenic differentiation and collagen I alpha 2 synthesis via induction of mRNA-binding protein LARP6 expression. Dev Growth Differ 2017; 59:94-103. [PMID: 28211947 DOI: 10.1111/dgd.12342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/21/2017] [Accepted: 01/22/2017] [Indexed: 11/30/2022]
Abstract
This study explored the mechanism underlying the stimulation of collagen synthesis and osteoblastic differentiation by insulin-like growth factor 1 (IGF1) in primary mouse osteoblasts. Primary mouse calvarial osteoblasts were cultured and treated with various doses of IGF1 before transfection with siRNA targeting the collagen type I alpha 2 (Col1a2) or La ribonucleoprotein domain family member 6 (Larp6) genes. Alkaline phosphatase (ALP) activity, osteocalcin staining, alizarin red quantification and the expression level of runt-related transcription factor 2 (RUNX2) were performed to assess the differentiation of pre-osteoblasts. Based on Western blot analysis, IGF1 up-regulated COL1A2 protein expression in the primary osteoblasts in a dose- and time-dependent manner. In addition, Col1a2 interference inhibited the differentiation and mineralization of osteoblasts. IGF1 also stimulated the differentiation of mouse primary osteoblasts and increased LARP6 expression during osteogenic differentiation. RNA-Immunoprecipitation (IP) indicated that LARP6 could bind to Col1a2 mRNA after IGF1 stimulation. However, transfection of Larp6-specific siRNA significantly reduced collagen and ALP secretion, mineralization and inhibited the expression of osteocalcin and RUNX2, indicating that Larp6 interference inhibited the differentiation ability of primary mouse calvarial osteoblasts, and these effects could not be reversed by IGF1. Thus, IGF1 could promote COL1A2 expression and osteoblast differentiation in primary mouse calvarial pre-osteoblasts by increasing LARP6 expression via a posttranscriptional mechanism.
Collapse
Affiliation(s)
- Yue Guo
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Chen-Yi Tang
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Xiao-Fei Man
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Hao-Neng Tang
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Jun Tang
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Ci-La Zhou
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Shu-Wen Tan
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Min Wang
- Department of Metabolism & Endocrinology, Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| | - Hou-De Zhou
- Department of Metabolism & Endocrinology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, ChangSha, Hunan, China
| |
Collapse
|
11
|
Stijnen P, Ramos-Molina B, O'Rahilly S, Creemers JWM. PCSK1 Mutations and Human Endocrinopathies: From Obesity to Gastrointestinal Disorders. Endocr Rev 2016; 37:347-71. [PMID: 27187081 DOI: 10.1210/er.2015-1117] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prohormone convertase 1/3, encoded by the PCSK1 gene, is a serine endoprotease that is involved in the processing of a variety of proneuropeptides and prohormones. Humans who are homozygous or compound heterozygous for loss-of-function mutations in PCSK1 exhibit a variable and pleiotropic syndrome consisting of some or all of the following: obesity, malabsorptive diarrhea, hypogonadotropic hypogonadism, altered thyroid and adrenal function, and impaired regulation of plasma glucose levels in association with elevated circulating proinsulin-to-insulin ratio. Recently, more common variants in the PCSK1 gene have been found to be associated with alterations in body mass index, increased circulating proinsulin levels, and defects in glucose homeostasis. This review provides an overview of the endocrinopathies and other disorders observed in prohormone convertase 1/3-deficient patients, discusses the possible biochemical basis for these manifestations of the disease, and proposes a model whereby certain missense mutations in PCSK1 may result in proteins with a dominant negative action.
Collapse
Affiliation(s)
- Pieter Stijnen
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Bruno Ramos-Molina
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Stephen O'Rahilly
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - John W M Creemers
- Laboratory for Biochemical Neuroendocrinology (P.S., B.R.-M., J.W.M.C.), Department of Human Genetics, KU Leuven, Leuven 3000, Belgium; and Medical Research Council (MRC) Metabolic Diseases Unit (S.O.), Wellcome Trust-MRC Institute of Metabolic Science, National Institute for Health Research, Cambridge Biomedical Research Centre, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| |
Collapse
|
12
|
Zhang Y, Stefanovic B. Akt mediated phosphorylation of LARP6; critical step in biosynthesis of type I collagen. Sci Rep 2016; 6:22597. [PMID: 26932461 PMCID: PMC4773855 DOI: 10.1038/srep22597] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 02/17/2016] [Indexed: 12/31/2022] Open
Abstract
La ribonucleoprotein domain family, member 6 (LARP6) is the RNA binding protein, which regulates translation of collagen mRNAs and synthesis of type I collagen. Posttranslational modifications of LARP6 and how they affect type I collagen synthesis have not been studied. We show that in lung fibroblasts LARP6 is phosphorylated at 8 serines, 6 of which are located within C-terminal domain. Phosphorylation of LARP6 follows a hierarchical order; S451 phosphorylation being a prerequisite for phosphorylations of other serines. Inhibition of PI3K/Akt pathway reduced the phosphorylation of LARP6, but had no effect on the S451A mutant, suggesting that PI3K/Akt pathway targets S451 and we have identified Akt as the responsible kinase. Overexpression of S451A mutant had dominant negative effect on collagen biosynthesis; drastically reduced secretion of collagen and induced hyper-modifications of collagen α2 (I) polypeptides. This indicates that LARP6 phosphorylation at S451 is critical for regulating translation and folding of collagen polypeptides. Akt inhibitor, GSK-2141795, which is in clinical trials for treatment of solid tumors, reduced collagen production by human lung fibroblasts with EC50 of 150 nM. This effect can be explained by inhibition of LARP6 phosphorylation and suggests that Akt inhibitors may be effective in treatment of various forms of fibrosis.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
13
|
Giraudi PJ, Becerra VJB, Marin V, Chavez-Tapia NC, Tiribelli C, Rosso N. The importance of the interaction between hepatocyte and hepatic stellate cells in fibrogenesis induced by fatty accumulation. Exp Mol Pathol 2014; 98:85-92. [PMID: 25533546 DOI: 10.1016/j.yexmp.2014.12.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/18/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS Non-alcoholic fatty liver disease is characterized by an initial accumulation of triglycerides that can progress to non-alcoholic steatohepatitis, which can ultimately evolve to cirrhosis and hepatocellular carcinoma. Hepatic stellate cells play a key role in liver fibrogenesis by an increased activation and an altered profile of genes involved in the turnover of extracellular matrix components. To reproduce in-vitro the functional cell connections observed in vivo it is essential to consider cell-to-cell proximity and interaction. The aim of this study was to determine the response to free fatty acids in a simultaneous co-culture model of hepatocytes and hepatic stellate cells. METHODS Simultaneous co-culture model and monoculture of each cell type (control) were exposed to FFA for 24 up to 144 h. Quantification of steatosis; stellate cell activation; assessment of fibrogenic response; expression and activity of metalloproteinases as well as collagen biosynthesis were evaluated. RESULTS Free fatty acids induced comparable steatosis in simultaneous co-culture and monoculture. However, the activation of the stellate cells assessed by alpha-smooth muscle actin expression is greater when cells were in close contact. Furthermore, a time-dependent increment of tissue inhibitor metalloproteinase-2 protein was observed, which was inversely correlated with protein expression and activity of matrix-metalloproteinases, suggesting enhanced collagen biosynthesis. This behavior was absent in cell monoculture. CONCLUSIONS These data indicate that cell-to-cell proximity between hepatocytes and stellate cells is necessary for the initiation of the fibrotic process.
Collapse
Affiliation(s)
- Pablo J Giraudi
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy
| | - Varenka J Barbero Becerra
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy; Liver Research Unit, Médica Sur Clinic & Foundation, Puente de Piedra 150, Col. Toriello Guerra, Tlalpan, C.P. 14050 Mexico City, Mexico
| | - Veronica Marin
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy
| | - Norberto C Chavez-Tapia
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy; Liver Research Unit, Médica Sur Clinic & Foundation, Puente de Piedra 150, Col. Toriello Guerra, Tlalpan, C.P. 14050 Mexico City, Mexico
| | - Claudio Tiribelli
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy; Department of Medical Sciences, University of Trieste, 34100 Trieste, Italy
| | - Natalia Rosso
- Fondazione Italiana Fegato, Centro Studi Fegato, Area Science Park Basovizza Bldg. Q SS14 Km 163.5, 34149 Trieste, Italy.
| |
Collapse
|
14
|
Abstract
Hepatic stellate cells are resident perisinusoidal cells distributed throughout the liver, with a remarkable range of functions in normal and injured liver. Derived embryologically from septum transversum mesenchyme, their precursors include submesothelial cells that invade the liver parenchyma from the hepatic capsule. In normal adult liver, their most characteristic feature is the presence of cytoplasmic perinuclear droplets that are laden with retinyl (vitamin A) esters. Normal stellate cells display several patterns of intermediate filaments expression (e.g., desmin, vimentin, and/or glial fibrillary acidic protein) suggesting that there are subpopulations within this parental cell type. In the normal liver, stellate cells participate in retinoid storage, vasoregulation through endothelial cell interactions, extracellular matrix homeostasis, drug detoxification, immunotolerance, and possibly the preservation of hepatocyte mass through secretion of mitogens including hepatocyte growth factor. During liver injury, stellate cells activate into alpha smooth muscle actin-expressing contractile myofibroblasts, which contribute to vascular distortion and increased vascular resistance, thereby promoting portal hypertension. Other features of stellate cell activation include mitogen-mediated proliferation, increased fibrogenesis driven by connective tissue growth factor, and transforming growth factor beta 1, amplified inflammation and immunoregulation, and altered matrix degradation. Evolving areas of interest in stellate cell biology seek to understand mechanisms of their clearance during fibrosis resolution by either apoptosis, senescence, or reversion, and their contribution to hepatic stem cell amplification, regeneration, and hepatocellular cancer.
Collapse
Affiliation(s)
- Juan E Puche
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai Hospital, New York, New York, New York
| | | | | |
Collapse
|
15
|
Screening for antifibrotic compounds using high throughput system based on fluorescence polarization. BIOLOGY 2014; 3:281-94. [PMID: 24833510 PMCID: PMC4085608 DOI: 10.3390/biology3020281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/28/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023]
Abstract
Fibroproliferative diseases are one of the leading causes of death worldwide. They are characterized by reactive fibrosis caused by uncontrolled synthesis of type I collagen. There is no cure for fibrosis and development of therapeutics that can inhibit collagen synthesis is urgently needed. Collagen α1(I) mRNA and α2(I) mRNA encode for type I collagen and they have a unique 5' stem-loop structure in their 5' untranslated regions (5'SL). Collagen 5'SL binds protein LARP6 with high affinity and specificity. The interaction between LARP6 and the 5'SL is critical for biosynthesis of type I collagen and development of fibrosis in vivo. Therefore, this interaction represents is an ideal target to develop antifibrotic drugs. A high throughput system to screen for chemical compounds that can dissociate LARP6 from 5'SL has been developed. It is based on fluorescence polarization and can be adapted to screen for inhibitors of other protein-RNA interactions. Screening of 50,000 chemical compounds yielded a lead compound that can inhibit type I collagen synthesis at nanomolar concentrations. The development, characteristics, and critical appraisal of this assay are presented.
Collapse
|
16
|
Blackstock CD, Higashi Y, Sukhanov S, Shai SY, Stefanovic B, Tabony AM, Yoshida T, Delafontaine P. Insulin-like growth factor-1 increases synthesis of collagen type I via induction of the mRNA-binding protein LARP6 expression and binding to the 5' stem-loop of COL1a1 and COL1a2 mRNA. J Biol Chem 2014; 289:7264-74. [PMID: 24469459 PMCID: PMC3953245 DOI: 10.1074/jbc.m113.518951] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 01/15/2014] [Indexed: 12/27/2022] Open
Abstract
Collagen content in atherosclerotic plaque is a hallmark of plaque stability. Our earlier studies showed that insulin-like growth factor-1 (IGF-1) increases collagen content in atherosclerotic plaques of Apoe(-/-) mice. To identify mechanisms we investigated the effect of IGF-1 on the la ribonucleoprotein domain family member 6 (LARP6). LARP6 binds a stem-loop motif in the 5'-UTR of the mRNAs encoding the collagen type I α-subunits (α1(I) and α2(I)), and coordinates their translation into the heterotrimeric collagen type I molecule. In human aortic smooth muscle cells (SMCs), IGF-1 rapidly increased LARP6 expression and the rate of collagen synthesis and extracellular accumulation. IGF-1 increased both LARP6 and collagen type I expression via a post-transcriptional and translation-dependent mechanism involving PI3K/Akt/p70S6k-signaling. Immunoprecipitation of LARP6, followed by qPCR indicated that IGF-1 increased the level of COL1a1 and COL1a2 mRNA bound to LARP6. Mutation of the 5' stem-loop of Col1a1 mRNA, which inhibits binding of LARP6, abolished the ability of IGF-1 to increase synthesis of collagen type I. Furthermore, overexpression of a 5' stem-loop RNA molecular decoy that sequesters LARP6, prevented the ability of IGF-1 to increase pro-α1(I) and mature α1(I) expression in cultured medium. IGF-1 infusion in Apoe(-/-) mice increased expression of LARP6 and pro-α1(I) in aortic lysates, and SMC-specific IGF-1-overexpression robustly increased collagen fibrillogenesis in atherosclerotic plaque. In conclusion, we identify LARP6 as a critical mediator by which IGF-1 augments synthesis of collagen type I in vascular smooth muscle, which may play an important role in promoting atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Christopher D. Blackstock
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Yusuke Higashi
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Sergiy Sukhanov
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Shaw-Yung Shai
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Branko Stefanovic
- the Department of Biomedical Science, College of Medicine, Florida State University, Tallahassee, Florida 32306
| | - A. Michael Tabony
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Tadashi Yoshida
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| | - Patrice Delafontaine
- From the Heart and Vascular Institute, and Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana 70112 and
| |
Collapse
|
17
|
Stefanovic L, Longo L, Zhang Y, Stefanovic B. Characterization of binding of LARP6 to the 5' stem-loop of collagen mRNAs: implications for synthesis of type I collagen. RNA Biol 2014; 11:1386-401. [PMID: 25692237 PMCID: PMC4615758 DOI: 10.1080/15476286.2014.996467] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 10/31/2014] [Indexed: 01/11/2023] Open
Abstract
Type I collagen is composed of 2 polypeptides, α1(I) and α2(I), which fold into triple helix. Collagen α1(I) and α2(I) mRNAs have a conserved stem-loop structure in their 5' UTRs, the 5'SL. LARP6 binds the 5'SL to regulate type I collagen expression. We show that 5 nucleotides within the single stranded regions of 5'SL contribute to the high affinity of LARP6 binding. Mutation of individual nucleotides abolishes the binding in gel mobility shift assay. LARP6 binding to 5'SL of collagen α2(I) mRNA is more stable than the binding to 5'SL of α1(I) mRNA, although the equilibrium binding constants are similar. The more stable binding to α2(I) mRNA may favor synthesis of the heterotrimeric type I collagen. LARP6 needs 2 domains to contact 5'SL, the La domain and the RRM. T133 in the La domain is critical for folding of the protein, while loop 3 in the RRM is critical for binding 5'SL. Loop 3 is also involved in the interaction of LARP6 and protein translocation channel SEC61. This interaction is essential for type I collagen synthesis, because LARP6 mutant which binds 5'SL but which does not interact with SEC61, suppresses collagen synthesis in a dominant negative manner. We postulate that LARP6 directly targets collagen mRNAs to the SEC61 translocons to facilitate coordinated translation of the 2 collagen mRNAs. The unique sequences of LARP6 identified in this work may have evolved to enable its role in type I collagen biosynthesis.
Collapse
Affiliation(s)
- Lela Stefanovic
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | - Liam Longo
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | - Yujie Zhang
- Department of Biomedical Sciences; College of Medicine; Florida State University; Tallahassee, FL USA
- Current affiliation: Molecular Biophysics; Florida State University; Tallahassee, FL USA
| | | |
Collapse
|
18
|
Vukmirovic M, Manojlovic Z, Stefanovic B. Serine-threonine kinase receptor-associated protein (STRAP) regulates translation of type I collagen mRNAs. Mol Cell Biol 2013; 33:3893-906. [PMID: 23918805 PMCID: PMC3811873 DOI: 10.1128/mcb.00195-13] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/08/2013] [Indexed: 11/20/2022] Open
Abstract
Type I collagen is the most abundant protein in the human body and is composed of two α1(I) and one α2(I) polypeptides which assemble into a triple helix. For the proper assembly of the collagen triple helix, the individual polypeptides must be translated in coordination. Here, we show that serine-threonine kinase receptor-associated protein (STRAP) is tethered to collagen mRNAs by interaction with LARP6. LARP6 is a protein which directly binds the 5' stem-loop (5'SL) present in collagen α1(I) and α2(I) mRNAs, but it interacts with STRAP with its C-terminal domain, which is not involved in binding 5'SL. Being tethered to collagen mRNAs, STRAP prevents unrestricted translation, primarily that of collagen α2(I) mRNAs, by interacting with eukaryotic translation initiation factor 4A (eIF4A). In the absence of STRAP, more collagen α2(I) mRNA can be pulled down with eIF4A, and collagen α2(I) mRNA is unrestrictedly loaded onto the polysomes. This results in an imbalance of synthesis of α1(I) and α2(I) polypeptides, in hypermodifications of α1(I) polypeptide, and in inefficient assembly of the polypeptides into a collagen trimer and their secretion as monomers. These defects can be partially restored by supplementing STRAP. Thus, we discovered STRAP as a novel regulator of the coordinated translation of collagen mRNAs.
Collapse
Affiliation(s)
- Milica Vukmirovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, USA
| | | | | |
Collapse
|
19
|
Stefanovic B. RNA protein interactions governing expression of the most abundant protein in human body, type I collagen. WILEY INTERDISCIPLINARY REVIEWS. RNA 2013; 4:535-45. [PMID: 23907854 PMCID: PMC3748166 DOI: 10.1002/wrna.1177] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Type I collagen is the most abundant protein in human body. The protein turns over slowly and its replacement synthesis is low. However, in wound healing or in pathological fibrosis the cells can increase production of type I collagen several hundred fold. This increase is predominantly due to posttranscriptional regulation, including increased half-life of collagen messenger RNAs (mRNAs) and their increased translatability. Type I collagen is composed of two α1 and one α2 polypeptides that fold into a triple helix. This stoichiometry is strictly regulated to prevent detrimental synthesis of α1 homotrimers. Collagen polypeptides are co-translationally modified and the rate of modifications is in dynamic equilibrium with the rate of folding, suggesting coordinated translation of collagen α1(I) and α2(I) polypeptides. Collagen α1(I) mRNA has in the 3' untranslated region (UTR) a C-rich sequence that binds protein αCP, this binding stabilizes the mRNA in collagen producing cells. In the 5' UTR both collagen mRNAs have a conserved stem-loop (5' SL) structure. The 5' SL is critical for high collagen expression, knock in mice with disruption of the 5' SL are resistant to liver fibrosis. the 5' SL binds protein LARP6 with strict sequence specificity and high affinity. LARP6 recruits RNA helicase A to facilitate translation initiation and associates collagen mRNAs with vimentin and nonmuscle myosin filaments. Binding to vimentin stabilizes collagen mRNAs, while nonmuscle myosin regulates coordinated translation of α1(I) and α2(I) mRNAs. When nonmuscle myosin filaments are disrupted the cells secrete only α1 homotrimers. Thus, the mechanism governing high collagen expression involves two RNA binding proteins and development of cytoskeletal filaments.
Collapse
Affiliation(s)
- Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
20
|
Wang HL, Li ZX, Wang LJ, He H, Yang J, Chen L, Niu FB, Liu Y, Guo JZ, Liu XL. Polymorphism in PGLYRP-1 gene by PCR-RFLP and its association with somatic cell score in Chinese Holstein. Res Vet Sci 2013; 95:508-14. [PMID: 23820447 DOI: 10.1016/j.rvsc.2013.06.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
Bovine peptidoglycan recognition protein 1 (PGLYRP-1), an important pattern recognition molecule (PRM) of the innate immune system, is an effector molecule in killing different microorganisms directly. To investigate whether the PGLYRP-1 gene was associated with mastitis and milk production traits in dairy cattle, the polymorphism of this gene was analyzed by PCR-RFLP in a population of 524 Chinese Holstein. A total of ten single nucleotide polymorphism (SNP) loci were identified. The association analysis of single SNP locus showed that T-35A, T-12G and G+102C were significantly associated (P<0.05) with somatic cell score (SCS), while G+102C and G+649C were significantly associated (P<0.05) with 305-day milk yield. Association analysis between combined haplotypes and SCS, milk production traits indicated that H3H3 was associated with the lower SCS (P<0.01), and H2H2 was associated with the lower 305-day milk yield (P<0.01). These findings demonstrated that polymorphisms in PGLYRP-1 gene associated with mastitis resistance and 305-day milk yield, and the H3H3 would provide a useful genetic marker of combined haplotypes for mastitis resistance selection and breeding in Chinese Holstein.
Collapse
Affiliation(s)
- H L Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Manojlovic Z, Blackmon J, Stefanovic B. Tacrolimus (FK506) prevents early stages of ethanol induced hepatic fibrosis by targeting LARP6 dependent mechanism of collagen synthesis. PLoS One 2013; 8:e65897. [PMID: 23755290 PMCID: PMC3670911 DOI: 10.1371/journal.pone.0065897] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/29/2013] [Indexed: 01/06/2023] Open
Abstract
Tacrolimus (FK506) is a widely used immunosuppressive drug. Its effects on hepatic fibrosis have been controversial and attributed to immunosuppression. We show that in vitro FK506, inhibited synthesis of type I collagen polypeptides, without affecting expression of collagen mRNAs. In vivo, administration of FK506 at a dose of 4 mg/kg completely prevented development of alcohol/carbon tetrachloride induced liver fibrosis in rats. Activation of hepatic stellate cells (HSCs) was absent in the FK506 treated livers and expression of collagen α2(I) mRNA was at normal levels. Collagen α1(I) mRNA was increased in the FK506 treated livers, but this mRNA was not translated into α1(I) polypeptide. No significant inflammation was associated with the fibrosis model used. FK506 binding protein 3 (FKBP3) is one of cellular proteins which binds FK506 with high affinity. We discovered that FKBP3 interacts with LARP6 and LARP6 is the major regulator of translation and stability of collagen mRNAs. In the presence of FK506 the interaction between FKBP3 and LARP6 is weakened and so is the pull down of collagen mRNAs with FKBP3. We postulate that FK506 inactivates FKBP3 and that lack of interaction of LARP6 and FKBP3 results in aberrant translation of collagen mRNAs and prevention of fibrosis. This is the first report of such activity of FK506 and may renew the interest in using this drug to alleviate hepatic fibrosis.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - John Blackmon
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| |
Collapse
|
22
|
Stefanovic L, Stefanovic B. Role of cytokine receptor-like factor 1 in hepatic stellate cells and fibrosis. World J Hepatol 2012; 4:356-64. [PMID: 23355913 PMCID: PMC3554799 DOI: 10.4254/wjh.v4.i12.356] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 07/06/2012] [Accepted: 11/14/2012] [Indexed: 02/06/2023] Open
Abstract
AIM To elucidate the role of cytokine receptor-like factor 1 (CRLF1) in hepatic stellate cells and liver fibrosis. METHODS Rat hepatic stellate cells (HSCs) were isolated by Nykodenz gradient centrifugation and activated by culturing in vitro. Differentially expressed genes in quiescent and culture activated HSCs were identified using microarrays. Injections of carbon tetrachloride (CCl(4)) for 4 wk were employed to induce liver fibrosis. The degree of fibrosis was assessed by Sirius red staining. Adenovirus expressing CRLF1 was injected through tail vein into mice to achieve overexpression of CRLF1 in the liver. The same adenovirus was used to overexpress CRLF1 in quiescent HSCs cultured in vitro. Expression of CRLF1, CLCF1 and ciliary neurotrophic factor receptor (CNTFR) in hepatic stellate cells and fibrotic livers was analyzed by semi-quantitative reverse transcription-polymerase chain reaction and Western blotting. Expression of profibrotic cytokines and collagens was analyzed by the same method. RESULTS CRLF1 is a secreted cytokine with unknown function. Human mutations suggested a role in development of autonomous nervous system and a role of CRLF1 in immune response was implied by its similarity to interleukin (IL)-6. Here we show that expression of CRLF1 was undetectable in quiescent HSCs and was highly upregulated in activated HSCs. Likewise, expression of CRLF1 was very low in normal livers, but was highly upregulated in fibrotic livers, where its expression correlated with the degree of fibrosis. A cofactor of CLRF1, cardiotrophin-like cytokine factor 1 (CLCF1), and the receptor which binds CRLF1/CLCF1 dimer, the CNTFR, were expressed to similar levels in quiescent and activated HSCs and in normal and fibrotic livers, indicating a constitutive expression. Overexpression of CLRF1 alone in the normal liver did not stimulate expression of profibrotic cytokines, suggesting that the factor itself is not pro-inflammatory. Ectopic expression in quiescent HSCs, however, retarded their activation into myofibroblasts and specifically decreased expression of type III collagen. Inhibition of type III collagen expression by CRLF1 was also seen in the whole liver. Our results suggest that CLRF1 is the only component of the CRLF1/CLCF1/CNTFR signaling system that is inducible by a profibrotic stimulus and that activation of this system by CLRF1 may regulate expression of type III collagen in fibrosis. CONCLUSION By regulating activation of HSCs and expression of type III collagen, CRLF1 may have an ability to change the composition of extracellular matrix in fibrosis.
Collapse
Affiliation(s)
- Lela Stefanovic
- Lela Stefanovic, Branko Stefanovic, Department of Biomedical sciences, College of Medicine, Florida State University, Tallahassee, FL 32306, United States
| | | |
Collapse
|
23
|
Challa AA, Vukmirovic M, Blackmon J, Stefanovic B. Withaferin-A reduces type I collagen expression in vitro and inhibits development of myocardial fibrosis in vivo. PLoS One 2012; 7:e42989. [PMID: 22900077 PMCID: PMC3416765 DOI: 10.1371/journal.pone.0042989] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/17/2012] [Indexed: 12/27/2022] Open
Abstract
Type I collagen is the most abundant protein in the human body. Its excessive synthesis results in fibrosis of various organs. Fibrosis is a major medical problem without an existing cure. Excessive synthesis of type I collagen in fibrosis is primarily due to stabilization of collagen mRNAs. We recently reported that intermediate filaments composed of vimentin regulate collagen synthesis by stabilizing collagen mRNAs. Vimentin is a primary target of Withaferin-A (WF-A). Therefore, we hypothesized that WF-A may reduce type I collagen production by disrupting vimentin filaments and decreasing the stability of collagen mRNAs. This study is to determine if WF-A exhibits anti-fibrotic properties in vitro and in vivo and to elucidate the molecular mechanisms of its action. In lung, skin and heart fibroblasts WF-A disrupted vimentin filaments at concentrations of 0.5-1.5 µM and reduced 3 fold the half-lives of collagen α1(I) and α2(I) mRNAs and protein expression. In addition, WF-A inhibited TGF-β1 induced phosphorylation of TGF-β1 receptor I, Smad3 phosphorylation and transcription of collagen genes. WF-A also inhibited in vitro activation of primary hepatic stellate cells and decreased their type I collagen expression. In mice, administration of 4 mg/kg WF-A daily for 2 weeks reduced isoproterenol-induced myocardial fibrosis by 50%. Our findings provide strong evidence that Withaferin-A could act as an anti-fibrotic compound against fibroproliferative diseases, including, but not limited to, cardiac interstitial fibrosis.
Collapse
Affiliation(s)
- Azariyas A. Challa
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Milica Vukmirovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - John Blackmon
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America
- * E-mail:
| |
Collapse
|
24
|
SUN JIAJIE, XUE JING, ZHANG CHUNLEI, LAN XIANYONG, LEI CHUZHAO, CHEN HONG. Haplotype combination of the caprine PC1 gene sequence variants and association with growth traits in Chinese Haimen breed. J Genet 2012. [DOI: 10.1007/s12041-012-0145-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Manojlovic Z, Stefanovic B. A novel role of RNA helicase A in regulation of translation of type I collagen mRNAs. RNA (NEW YORK, N.Y.) 2012; 18:321-34. [PMID: 22190748 PMCID: PMC3264918 DOI: 10.1261/rna.030288.111] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 11/04/2011] [Indexed: 05/30/2023]
Abstract
Type I collagen is composed of two α1(I) polypeptides and one α2(I) polypeptide and is the most abundant protein in the human body. Expression of type I collagen is primarily controlled at the level of mRNA stability and translation. Coordinated translation of α(I) and α2(I) mRNAs is necessary for efficient folding of the corresponding peptides into the collagen heterotrimer. In the 5' untranslated region (5' UTR), collagen mRNAs have a unique 5' stem-loop structure (5' SL). La ribonucleoprotein domain family member 6 (LARP6) is the protein that binds 5' SL with high affinity and specificity and coordinates their translation. Here we show that RNA helicase A (RHA) is tethered to the 5' SL of collagen mRNAs by interaction with the C-terminal domain of LARP6. In vivo, collagen mRNAs immunoprecipitate with RHA in an LARP6-dependent manner. Knockdown of RHA prevents formation of polysomes on collagen mRNAs and dramatically reduces synthesis of collagen protein, without affecting the level of the mRNAs. A reporter mRNA with collagen 5' SL is translated three times more efficiently in the presence of RHA than the same reporter without the 5' SL, indicating that the 5' SL is the cis-acting element conferring the regulation. During activation of quiescent cells into collagen-producing cells, expression of RHA is highly up-regulated. We postulate that RHA is recruited to the 5' UTR of collagen mRNAs by LARP6 to facilitate their translation. Thus, RHA has been discovered as a critical factor for synthesis of the most abundant protein in the human body.
Collapse
Affiliation(s)
- Zarko Manojlovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA
| |
Collapse
|
26
|
Challa AA, Stefanovic B. A novel role of vimentin filaments: binding and stabilization of collagen mRNAs. Mol Cell Biol 2011; 31:3773-89. [PMID: 21746880 PMCID: PMC3165730 DOI: 10.1128/mcb.05263-11] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 07/04/2011] [Indexed: 12/17/2022] Open
Abstract
The stem-loop in the 5' untranslated region (UTR) of collagen α1(I) and α2(I) mRNAs (5'SL) is the key element regulating their stability and translation. Stabilization of collagen mRNAs is the predominant mechanism for high collagen expression in fibrosis. LARP6 binds the 5'SL of α1(I) and α2(I) mRNAs with high affinity. Here, we report that vimentin filaments associate with collagen mRNAs in a 5'SL- and LARP6-dependent manner and stabilize collagen mRNAs. LARP6 interacts with vimentin filaments through its La domain and colocalizes with the filaments in vivo. Knockdown of LARP6 by small interfering RNA (siRNA) or mutation of the 5'SL abrogates the interaction of collagen mRNAs with vimentin filaments. Vimentin knockout fibroblasts produce reduced amounts of type I collagen due to decreased stability of collagen α1(I) and α2(I) mRNAs. Disruption of vimentin filaments using a drug or by expression of dominant-negative desmin reduces type I collagen expression, primarily due to decreased stability of collagen mRNAs. RNA fluorescence in situ hybridization (FISH) experiments show that collagen α1(I) and α2(I) mRNAs are associated with vimentin filaments in vivo. Thus, vimentin filaments may play a role in the development of tissue fibrosis by stabilizing collagen mRNAs. This finding will serve as a rationale for targeting vimentin in the development of novel antifibrotic therapies.
Collapse
Affiliation(s)
- Azariyas A. Challa
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, Florida 32306
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, Florida 32306
| |
Collapse
|
27
|
Wojtysiak D, Kaczor U. Effect of polymorphisms at the ghrelin gene locus on carcass, microstructure and physicochemical properties of longissimus lumborum muscle of Polish Landrace pigs. Meat Sci 2011; 89:514-8. [PMID: 21669497 DOI: 10.1016/j.meatsci.2011.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 05/20/2011] [Accepted: 05/23/2011] [Indexed: 11/16/2022]
Abstract
The influence of RFLP-BsrI polymorphisms at the ghrelin gene locus on carcass, meat quality parameters and muscle fiber characteristics of longissimus lumborum was studied in 168 barrows of the Polish Landrace breed. Analysis revealed a high frequency of the 1 allele (0.60) with the frequencies of the 11, 12 and 22 genotypes being 0.45, 0.30 and 0.25, respectively. The most favorable parameters of meat traits were characteristic of pigs with the 22 genotype, together with a higher carcass and loin weight and lower thermal loss compared to 12 heterozygotes. The highest fat content was found in pigs with the 11 genotype, which had the highest abdominal fat weight and mean backfat thickness. Meanwhile, the 12 heterozygotes were characterized by the largest loin eye areas, highest lightness (L*) and yellowness (b*) values, and lowest redness (a*) values, as well as the greatest hardness and chewiness and largest diameter of type IIB muscle fibers compared to the other genotypes.
Collapse
Affiliation(s)
- Dorota Wojtysiak
- Department of Reproduction and Animal Anatomy, Agricultural University of Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland.
| | | |
Collapse
|
28
|
Shan L, Sun J, Zhang C, Fang X, Lei C, Lan X, Chen H. The polymorphisms of bovine PCSK1 gene and their associations with growth traits. Genes Genomics 2011. [DOI: 10.1007/s13258-010-0049-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Parsons CJ, Stefanovic B, Seki E, Aoyama T, Latour AM, Marzluff WF, Rippe RA, Brenner DA. Mutation of the 5'-untranslated region stem-loop structure inhibits α1(I) collagen expression in vivo. J Biol Chem 2010; 286:8609-8619. [PMID: 21193410 DOI: 10.1074/jbc.m110.189118] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Type I collagen is a heterotrimeric extracellular matrix protein consisting of two α1(I) chains and one α2(I) chain. During liver fibrosis, activated hepatic stellate cells (HSCs) are the major source of the type I collagen that accumulates in the damaged tissue. Expression of α1(I) and α2(I) collagen mRNA is increased 60-fold compared with quiescent stellate cells and is due predominantly to post-transcriptional message regulation. Specifically, a stem-loop structure in the 5'-untranslated region of α1(I) collagen mRNA may regulate mRNA expression in activated HSCs through its interaction with stem-loop binding proteins. The stem-loop may also be necessary for efficient production and folding of the type I collagen heterotrimer. To assess the role of the stem-loop in type I collagen expression in vivo, we generated a knock-in mouse harboring a mutation that abolished the stem-loop structure. Heterozygous and homozygous knock-in mice exhibited a normal phenotype. However, steady-state levels of α1(I) collagen mRNA decreased significantly in homozygous mutant MEFs as well as HSCs; intracellular and secreted type I collagen protein levels also decreased. Homozygous mutant mice developed less liver fibrosis. These results confirm an important role of the 5' stem-loop in regulating type I collagen mRNA and protein expression and provide a mouse model for further study of collagen-associated diseases.
Collapse
Affiliation(s)
| | - Branko Stefanovic
- the Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, Florida 32306-4300, and
| | - Ekihiro Seki
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | - Tomonori Aoyama
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093
| | | | | | - Richard A Rippe
- the Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina 27599-7080
| | - David A Brenner
- the Department of Medicine, University of California, San Diego, School of Medicine, La Jolla, California 92093.
| |
Collapse
|
30
|
Cai L, Fritz D, Stefanovic L, Stefanovic B. Nonmuscle myosin-dependent synthesis of type I collagen. J Mol Biol 2010; 401:564-78. [PMID: 20603131 DOI: 10.1016/j.jmb.2010.06.057] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Revised: 06/09/2010] [Accepted: 06/25/2010] [Indexed: 01/15/2023]
Abstract
Type I collagen, synthesized in all tissues as the heterotrimer of two alpha1(I) polypeptides and one alpha2(I) polypeptide, is the most abundant protein in the human body. Here we show that intact nonmuscle myosin filaments are required for the synthesis of heterotrimeric type I collagen. Conserved 5' stem-loop in collagen alpha1(I) and alpha2(I) mRNAs binds the RNA-binding protein LARP6. LARP6 interacts with nonmuscle myosin through its C-terminal domain and associates collagen mRNAs with the filaments. Dissociation of nonmuscle myosin filaments results in secretion of collagen alpha1(I) homotrimer, diminished intracellular colocalization of collagen alpha1(I) and alpha2(I) polypeptides (required for folding of the heterotrimer), and their increased intracellular degradation. Inhibition of the motor function of myosin has similar collagen-specific effects, while disruption of actin filaments has a general effect on protein secretion. Nonmuscle myosin copurifies with polysomes, and there is a subset of polysomes involved in myosin-dependent translation of collagen mRNAs. These results indicate that association of collagen mRNAs with nonmuscle myosin filaments is necessary to coordinately synthesize collagen alpha1(I) and alpha2(I) polypeptides. We postulate that LARP6/myosin-dependent mechanism regulates the synthesis of heterotrimeric type I collagen by coordinating the translation of collagen mRNAs.
Collapse
Affiliation(s)
- Le Cai
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
31
|
Novel Single Nucleotide Polymorphisms of the Caprine PC1 Gene and Association with Growth Traits. Biochem Genet 2010; 48:779-88. [DOI: 10.1007/s10528-010-9359-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
|
32
|
Qu Y, Liu Y, Ma L, Sweeney S, Lan X, Chen Z, Li Z, Lei C, Chen H. Novel SNPs of butyrophilin (BTN1A1) and milk fat globule epidermal growth factor (EGF) 8 (MFG-E8) are associated with milk traits in dairy goat. Mol Biol Rep 2010; 38:371-7. [PMID: 20361262 DOI: 10.1007/s11033-010-0118-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2009] [Accepted: 03/17/2010] [Indexed: 11/30/2022]
Abstract
Butyrophilin (BTN1A1) and milk fat globule epidermal growth factor (EGF) 8 (MFG-E8) genes are both milk fat globule membrane proteins. BTN1A1 plays a key role in the secretion of milk lipid and production which has effects on performance traits, while the MFG-E8 is vital for the development of the mammary gland and phagocytic clearance of apoptotic cells. Therefore, BTN1A1 and MFG-E8 gene are candidate genes for quantitative traits in mammalian animals with respect to milk performance traits. The objective of this study is to investigate variations in goat BTN1A1 and MFG-E8 gene and analyze their associations with growth trait and milk performance. In this study, the goat BTN1A1 gene showed a novel single-nucleotide polymorphism (SNP): XM_001494179:g.8659C>T, resulting in a missense mutation: CTT (Leu)>TTT (Phe) at position 377 aa of the BTN1A1 (526 aa); the goat MFG-E8 gene showed four novel SNPs: NC_007319: g.843delA, 6417delC, 14892T>C and 14996A>C, only the 14892T>C result in a synonymous mutation. The associations between genotypes and production traits were analyzed. Significant statistical results implied that HinfI locus of BTN1A1 gene is associated with milk fat yield (P=0.004), total solid (P=0.002), solid-non fat (P=0.018) and first milk yield (P=0.030). The DA and EcoRV loci of MFG-E8 gene are associated with milk fat yield (DA locus: P=0.000; EcoRV locus: P=0.033) and total solid (DA locus: P=0.002; EcoRV locus: P=0.015) in the Xinong Saanen dairy goat.
Collapse
Affiliation(s)
- Yujiao Qu
- College of Animal Science and Technology, Shaanxi Key Laboratory of Molecular Biology for Agriculture, Northwest A&F University, No. 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Sun J, Jin Q, Zhang C, Fang X, Gu C, Lei C, Wang J, Chen H. Polymorphisms in the bovine ghrelin precursor (GHRL) and Syndecan-1 (SDC1) genes that are associated with growth traits in cattle. Mol Biol Rep 2010; 38:3153-60. [PMID: 20140707 DOI: 10.1007/s11033-010-9986-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Accepted: 01/20/2010] [Indexed: 11/29/2022]
Affiliation(s)
- Jiajie Sun
- Institute of Cellular and Molecular Biology, College of Life Science, Xuzhou Normal University, Xuzhou, Jiangsu 221116, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Cai L, Fritz D, Stefanovic L, Stefanovic B. Binding of LARP6 to the conserved 5' stem-loop regulates translation of mRNAs encoding type I collagen. J Mol Biol 2010; 395:309-26. [PMID: 19917293 PMCID: PMC2826804 DOI: 10.1016/j.jmb.2009.11.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Revised: 11/05/2009] [Accepted: 11/09/2009] [Indexed: 10/20/2022]
Abstract
Type I collagen is the most abundant protein in the human body, produced by folding of two alpha1(I) polypeptides and one alpha2(I) polypeptide into the triple helix. A conserved stem-loop structure is found in the 5' untranslated region of collagen mRNAs, encompassing the translation start codon. We cloned La ribonucleoprotein domain family member 6 (LARP6) as the protein that binds the collagen 5' stem-loop in a sequence-specific manner. LARP6 has a distinctive bipartite RNA binding domain not found in other members of the La superfamily. LARP6 interacts with the two single-stranded regions of the 5' stem-loop. The K(d) for binding of LARP6 to the 5' stem-loop is 1.4 nM. LARP6 binds the 5' stem-loop in both the nucleus and the cytoplasm. In the cytoplasm, LARP6 does not associate with polysomes; however, overexpression of LARP6 blocks ribosomal loading on collagen mRNAs. Knocking down LARP6 by small interfering RNA also decreased polysomal loading of collagen mRNAs, suggesting that it regulates translation. Collagen protein is synthesized at discrete regions of the endoplasmic reticulum. Using collagen-GFP (green fluorescent protein) reporter protein, we could reproduce this focal pattern of synthesis, but only when the reporter was encoded by mRNA with the 5' stem-loop and in the presence of LARP6. When the reporter was encoded by mRNA without the 5' stem-loop, or in the absence of LARP6, it accumulated diffusely throughout the endoplasmic reticulum. This indicates that LARP6 activity is needed for focal synthesis of collagen polypeptides. We postulate that the LARP6-dependent mechanism increases local concentration of collagen polypeptides for more efficient folding of the collagen heterotrimer.
Collapse
Affiliation(s)
- Le Cai
- Department of Biomedical Sciences, College of Medicine, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
35
|
Cai L, Fritz D, Stefanovic L, Stefanovic B. Coming together: liver fibrosis, collagen mRNAs and the RNA binding protein. Expert Rev Gastroenterol Hepatol 2009; 3:1-3. [PMID: 19210106 DOI: 10.1586/17474124.3.1.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Abstract
Substantial improvements in the treatment of chronic liver disease have accelerated interest in uncovering the mechanisms underlying hepatic fibrosis and its resolution. Activation of resident hepatic stellate cells into proliferative, contractile, and fibrogenic cells in liver injury remains a dominant theme driving the field. However, several new areas of rapid progress in the past 5-10 years also have taken root, including: (1) identification of different fibrogenic populations apart from resident stellate cells, for example, portal fibroblasts, fibrocytes, and bone-marrow-derived cells, as well as cells derived from epithelial mesenchymal transition; (2) emergence of stellate cells as finely regulated determinants of hepatic inflammation and immunity; (3) elucidation of multiple pathways controlling gene expression during stellate cell activation including transcriptional, post-transcriptional, and epigenetic mechanisms; (4) recognition of disease-specific pathways of fibrogenesis; (5) re-emergence of hepatic macrophages as determinants of matrix degradation in fibrosis resolution and the importance of matrix cross-linking and scar maturation in determining reversibility; and (6) hints that hepatic stellate cells may contribute to hepatic stem cell behavior, cancer, and regeneration. Clinical and translational implications of these advances have become clear, and have begun to impact significantly on the management and outlook of patients with chronic liver disease.
Collapse
|
37
|
Endothelin-1 mediated regulation of extracellular matrix collagens in cells of human lamina cribrosa. Exp Eye Res 2008; 86:886-94. [PMID: 18420197 DOI: 10.1016/j.exer.2008.03.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 01/11/2008] [Accepted: 03/05/2008] [Indexed: 11/21/2022]
Abstract
Endothelin-1 (ET-1), a potent vaso-active peptide, mediates extracellular matrix regulation resulting in an increase in collagen deposition in various cell types and tissues and has been proposed to play a key role in glaucoma pathology. The role of ET-1 in the regulation of extracellular matrix collagens at the level of optic nerve head is not known. In this study we have examined the role of ET-1 in extracellular matrix collagen regulation in primary cultures of human lamina cribrosa cells. Our hypothesis is that ET-1 increases remodeling of the ECM of cells of the lamina cribrosa. Such actions could contribute to the development of optic neuropathy. QPCR analysis revealed that ET-1 mediated an increase in mRNA levels of collagen type I alpha1 and collagen type VI alpha1 chains at all doses of ET-1 with a significant increase at 1nM and 10nM concentration in LC cells. A dose-dependent increase in collagen type I and type VI protein deposition and secretion was also observed by Western blot in response to ET-1 and was significant at 10nM and 100nM concentrations of ET-1. ET-1 increased the [3H] proline uptake in LC cells suggesting that ET-1 contributed to an increase in total collagen synthesis in LC cells. ET-1-mediated increase in collagen type I, type VI and total collagen synthesis was significantly blocked by the ET(A) receptor antagonist, BQ610, as well as with the ET(B) receptor antagonist, BQ788, suggesting the involvement of both receptor subtypes in ET-1 mediated collagen synthesis in LC cells. These results suggest that ET-1 regulates extracellular matrix collagen synthesis in LC cells and may contribute to ECM remodeling at the level of LC of POAG subjects who have elevated plasma and aqueous humor levels of endothelin-1.
Collapse
|
38
|
Homeobox Gene Prx1 Is Expressed in Activated Hepatic Stellate Cells and Transactivates Collagen α1(I) Promoter. Exp Biol Med (Maywood) 2008; 233:286-96. [DOI: 10.3181/0707-rm-177] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hepatic stellate cells (HSCs) are mesenchymal cells of the liver, which are normally in quiescent state and synthesize tracing amounts of extracellular matrix proteins. Upon fibrogenic stimulus, HSCs become activated and increase synthesis of type I collagen 50–100 fold. Prx1 and Prx2 are two homeobox transcription factors which are required for mesenchymal tissue formation during embryogenesis. The present study shows that Prx1 mRNA is expressed in in vivo and in vitro activated HSCs, but not in quiescent HSCs. Prx1 is also expressed in fibrotic livers, while it is undetectable in normal livers. Overexpression of Prx1a in quiescent HSCs cultured in vitro induced collagen α1(I) mRNA and TGFβ3 mRNA expression. Prx1 transactivated TGFβ3 promoter 3 fold in transient transfection experiments. In the whole liver, Prx1a induced expression of collagen α1(I), α2(I), α1(III) and α-smooth muscle mRNAs, which are the markers of activation of HSCs. Prx1 also increased expression of collagen α1(I) mRNA after acute liver injury. This suggests that Prx1a promotes activation of HSCs and expression of type I collagen. Several regions in the collagen α1(I) promoter were identified which mediate transcriptional induction by Prx1. The regions are scattered throughout the promoter and individually have modest effects; however, the cumulative effect of all sequences is >50 fold. This is the first description of the effects of Prx1 in HSCs and in the liver, and identification of the two Prx1 target genes, which play a pivotal role in development of liver fibrosis, is a novel finding for liver pathophysiology.
Collapse
|
39
|
Abstract
The hepatic stellate cell has surprised and engaged physiologists, pathologists, and hepatologists for over 130 years, yet clear evidence of its role in hepatic injury and fibrosis only emerged following the refinement of methods for its isolation and characterization. The paradigm in liver injury of activation of quiescent vitamin A-rich stellate cells into proliferative, contractile, and fibrogenic myofibroblasts has launched an era of astonishing progress in understanding the mechanistic basis of hepatic fibrosis progression and regression. But this simple paradigm has now yielded to a remarkably broad appreciation of the cell's functions not only in liver injury, but also in hepatic development, regeneration, xenobiotic responses, intermediary metabolism, and immunoregulation. Among the most exciting prospects is that stellate cells are essential for hepatic progenitor cell amplification and differentiation. Equally intriguing is the remarkable plasticity of stellate cells, not only in their variable intermediate filament phenotype, but also in their functions. Stellate cells can be viewed as the nexus in a complex sinusoidal milieu that requires tightly regulated autocrine and paracrine cross-talk, rapid responses to evolving extracellular matrix content, and exquisite responsiveness to the metabolic needs imposed by liver growth and repair. Moreover, roles vital to systemic homeostasis include their storage and mobilization of retinoids, their emerging capacity for antigen presentation and induction of tolerance, as well as their emerging relationship to bone marrow-derived cells. As interest in this cell type intensifies, more surprises and mysteries are sure to unfold that will ultimately benefit our understanding of liver physiology and the diagnosis and treatment of liver disease.
Collapse
Affiliation(s)
- Scott L Friedman
- Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York 10029-6574, USA.
| |
Collapse
|
40
|
Fritz D, Stefanovic B. RNA-binding protein RBMS3 is expressed in activated hepatic stellate cells and liver fibrosis and increases expression of transcription factor Prx1. J Mol Biol 2007; 371:585-95. [PMID: 17586524 PMCID: PMC1976254 DOI: 10.1016/j.jmb.2007.06.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 06/04/2007] [Accepted: 06/05/2007] [Indexed: 12/01/2022]
Abstract
Hepatic stellate cells (HSCs) are mesenchymal cells of the liver, activation of which is responsible for excessive synthesis of extracellular matrix, including type I collagen, and development of liver fibrosis. The activation of HSCs is driven by transcription factors and pair-related homeobox transcription factor Prx1 was identified as one of the transcription factors involved in this process, because transcription of collagen alpha1(I) gene is stimulated by Prx1 in HSCs and in the liver. Here, we show that expression of the RNA-binding protein RBMS3 is upregulated in the activation of HSCs and fibrotic livers. Immunoprecipitation followed by differential display identified Prx1 mRNA as one of the mRNAs interacting with RBMS3. The RBMS3 sequence-specific binding site was mapped to 60 nt located 1946 nt 3' of the stop codon of Prx1 mRNA. Ectopic expression of RBMS3 in quiescent HSCs, which express trace amounts of type I collagen, increased expression of Prx1 mRNA and collagen alpha1(I) mRNA. Expression of reporter Prx1 mRNA containing the RBMS3 binding site was higher than the mRNA lacking this site. Over-expression of RBMS3 further increased the steady-state level of the reporter mRNA-containing RBMS3 binding site, but had no effect on the mRNA lacking this site. Binding of RBMS3 to the Prx1 3' UTR increased the half-life of this mRNA, resulting in increased protein synthesis. These results suggest that RBMS3, by binding Prx1 mRNA in a sequence-specific manner, controls Prx1 expression and indirectly collagen synthesis. This is the first description of the function of RBMS3, as a key regulator of profibrotic potential of HSCs, representing a novel mechanism by which activated HSCs contribute to liver fibrosis.
Collapse
Affiliation(s)
- Dillon Fritz
- Department of Biomedical Science, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | | |
Collapse
|
41
|
Iredale JP. Models of liver fibrosis: exploring the dynamic nature of inflammation and repair in a solid organ. J Clin Invest 2007; 117:539-48. [PMID: 17332881 PMCID: PMC1804370 DOI: 10.1172/jci30542] [Citation(s) in RCA: 680] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Models of liver fibrosis, which include cell culture models, explanted and biopsied human material, and experimental animal models, have demonstrated that liver fibrosis is a highly dynamic example of solid organ wound healing. Recent work in human and animal models has shown that liver fibrosis is potentially reversible and, in specific circumstances, demonstrates resolution with a restoration of near normal architecture. This Review highlights the manner in which studies of models of liver fibrosis have contributed to the paradigm of dynamic wound healing in this solid organ.
Collapse
Affiliation(s)
- John P Iredale
- Medical Research Council/University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, United Kingdom.
| |
Collapse
|
42
|
Emerald BS, Chen Y, Zhu T, Zhu Z, Lee KO, Gluckman PD, Lobie PE. AlphaCP1 mediates stabilization of hTERT mRNA by autocrine human growth hormone. J Biol Chem 2006; 282:680-90. [PMID: 17085453 DOI: 10.1074/jbc.m600224200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We herein demonstrate that autocrine human growth hormone production in human mammary carcinoma cells results in increased telomerase activity as a result of specific up-regulation of telomerase catalytic subunit (human telomerase reverse transcriptase (hTERT)) mRNA and protein. This increase in hTERT gene expression is not due to increased transcriptional activation of the hTERT promoter but is the result of increased stability of hTERT mRNA exerted by CU-rich cis-regulatory sequences present in the 3'-untranslated region of TERT mRNA. Autocrine human growth hormone up-regulates two poly(C)-binding proteins, alphaCP1 and alphaCP2, which bind to these cis-regulatory elements and stabilize hTERT mRNA. We have therefore demonstrated that post-transcriptional modulation of the level of hTERT mRNA is one mechanism for regulation of cellular telomerase activity.
Collapse
Affiliation(s)
- B Starling Emerald
- Liggins Institute and the National Research Centre for Growth and Development, University of Auckland, Auckland, New Zealand
| | | | | | | | | | | | | |
Collapse
|
43
|
Stefanovic L, Stefanovic B. Mechanism of direct hepatotoxic effect of KC chemokine: sequential activation of gene expression and progression from inflammation to necrosis. J Interferon Cytokine Res 2006; 26:760-70. [PMID: 17032170 DOI: 10.1089/jir.2006.26.760] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
This work aimed to show that an important, yet unrecognized, role of KC chemokine in the liver is regulation of gene expression. KC expression in the liver stimulated three classes of genes in this temporal order: immediate-early genes, proinflammatory genes, and profibrotic genes. Transcription factors E2F5 and early growth response 1 (EGR1), Ca(2+) signaling molecules S100A8 and S100A9, and two oxidative stress-induced genes were identified as immediate-early genes of KC. Expression of these genes was stimulated at 3-5-fold increased KC concentrations. Expression of proinflammatory genes was activated 6 h after the immediateearly genes, and they included interleukin-1alpha (IL-1alpha) and IL-1beta. KC receptor gene CXCR2 was also upregulated, suggesting that KC may act through a positive feedback loop. Stimulation of expression of profibrotic genes, including type I collagen, was seen only after the proinflammatory genes were highly expressed for 12 h. KC is a potent regulator of gene expression that proceeds in a sequential manner. Immediate-early genes of KC stimulation were identified. The positive feedback regulation and an increased oxidative stress induced by KC may explain the poor prognosis in liver patients with elevated levels of CXC chemokines.
Collapse
Affiliation(s)
- Lela Stefanovic
- Department of Biomedical Science, College of Medicine, Florida State University, Tallahassee, FL 32306-4300, USA
| | | |
Collapse
|
44
|
Abstract
Alcohol abuse is a main cause of liver fibrosis and cirrhosis in the western world. Although the major mechanisms of fibrogenesis are independent of the origin of liver injury, alcoholic liver fibrosis features distinctive characteristics, including the pronounced inflammatory response of immune cells due to elevated gut-derived endotoxin plasma levels, increased formation of reactive oxygen species (ROS), ethanol-induced pericentral hepatic hypoxia or formation of cell-toxic and pro-fibrogenic ethanol metabolites (e.g., acetaldehyde or lipid oxidation products). These factors are together responsible for increased hepatocellular cell death and activation of hepatic stellate cells (HSCs), the key cell type of liver fibrogenesis. To date, removing the causative agent is the most effective intervention to prevent the manifestation of liver cirrhosis. A novel experimental approach in fibrosis therapy is the selective induction of cell death in HSCs. Substances such as gliotoxin, anandamide or antibody against tissue inhibitor of metalloproteinase (TIMP)-1 can selectively induce cell death in activated HSCs. These new results in basic science are encouraging for the search of new antifibrotic treatment.
Collapse
Affiliation(s)
- Sören V Siegmund
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
45
|
Stefanovic L, Brenner DA, Stefanovic B. Direct hepatotoxic effect of KC chemokine in the liver without infiltration of neutrophils. Exp Biol Med (Maywood) 2005; 230:573-86. [PMID: 16118408 DOI: 10.1177/153537020523000809] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
KC is a mouse homolog of human chemokine gro-alpha (CXCL1), expression of which is increased in liver diseases. We show that activated, but not quiescent, hepatic stellate cells (HSCs) express KC. Hepatic stellate cells constitutively express the KC receptor, CXCR2. Addition of recombinant KC to HSCs undergoing activation in culture increases secretion and processing of Type I collagen. Overexpression of endogenous KC in the mouse liver could be achieved by an intraperitoneal injection of CCl(4), followed after 24 hrs by an injection of recombinant KC into circulation. This protocol resulted in about a 14-fold increase in concentration of KC protein in the liver. Overexpression of KC was associated with upregulation of the mRNA for CXCR2 and MIP-2 and with necrosis and increased synthesis of Type I collagen. This suggests that KC has a direct hepatotoxic effect, which led to a massive liver necrosis after 48 hrs. No accumulation of neutrophils was seen in the livers as judged by histology and reverse transcriptase-polymerase chain reaction analysis of myeloperoxidase mRNA. Autostimulation of KC and CXCR2 expression by recombinant KC protein in the mice with preexisting liver injury indicates a positive feedback regulation. Such regulation and direct hepatotoxicity of KC with increased collagen synthesis represent novel findings about the role of KC/ gro-alpha in liver pathology.
Collapse
Affiliation(s)
- Lela Stefanovic
- Department of Biomedical Science, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | | | | |
Collapse
|
46
|
Tsukada S, Parsons CJ, Rippe RA. Mechanisms of liver fibrosis. Clin Chim Acta 2005; 364:33-60. [PMID: 16139830 DOI: 10.1016/j.cca.2005.06.014] [Citation(s) in RCA: 283] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 06/07/2005] [Accepted: 06/08/2005] [Indexed: 01/18/2023]
Abstract
Liver fibrosis represents a significant health problem worldwide of which no acceptable therapy exists. The most characteristic feature of liver fibrosis is excess deposition of type I collagen. A great deal of research has been performed to understand the molecular mechanisms responsible for the development of liver fibrosis. The activated hepatic stellate cell (HSC) is the primary cell type responsible for the excess production of collagen. Following a fibrogenic stimulus, HSCs change from a quiescent to an activated, collagen-producing cell. Numerous changes in gene expression are associated with HSC activation including the induction of several intracellular signaling cascades, which help maintain the activated phenotype and control the fibrogenic and proliferative state of the cell. Detailed analyses in understanding the molecular basis of collagen gene regulation have revealed a complex process offering the opportunity for multiple potential therapeutic strategies. However, further research is still needed to gain a better understanding of HSC activation and how this cell maintains its fibrogenic nature. In this review we describe many of the molecular events that occur following HSC activation and collagen gene regulation that contribute to the fibrogenic nature of these cells and provide a review of therapeutic strategies to treat this disease.
Collapse
Affiliation(s)
- Shigeki Tsukada
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, NC 27599-7032, USA
| | | | | |
Collapse
|
47
|
Stefanovic L, Stephens CE, Boykin D, Stefanovic B. Inhibitory effect of dicationic diphenylfurans on production of type I collagen by human fibroblasts and activated hepatic stellate cells. Life Sci 2005; 76:2011-26. [PMID: 15707883 DOI: 10.1016/j.lfs.2004.09.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 09/23/2004] [Indexed: 11/19/2022]
Abstract
Excessive production of extracellular matrix is responsible for clinical manifestations of fibroproliferative disorders and drugs which can inhibit excessive synthesis of type I collagen are needed for the therapy. Several dicationic diphenylfurans were synthesized and were found to bind RNA. Two of these type compounds were able to reduce synthesis of type I collagen by human fibroblasts and human activated hepatic stellate cells (HSCs). Activated HSCs are responsible for collagen production in liver fibrosis. When added at 40 microM compound 588 reduced intracellular level and secretion of procollagen alpha1(I) by 50%, while compound 654 reduced these parameters by more than 80% at 20 microM. 654 also significantly reduced secretion of fibronectin. Toxic effects were observed at 80 microM for 588 and 40 microM for 654. 654 reduced expression of a reporter gene with collagen signal peptide, while expression of the same gene without signal peptide was unaffected. Also, expression of intracellular proteins tubulin and calnexin was unchanged. 654 accumulated inside the cell in the cytoplasm and did not change the steady-state level of collagen mRNAs. Treatment of cells with proteosome inhibitor MG132 did not change the inhibitory effect of 654, suggesting that 654 acts as suppressor of translation of proteins containing a signal peptide. Most secreted proteins of fibroblasts and activated HSCs are components of extracellular matrix. Therefore inhibition of their production, as shown here for procollagen alpha1(I) and fibronectin, may be a useful property of some of diphenylfurans, making these compounds a basis for development of antifibrotic drugs.
Collapse
Affiliation(s)
- Lela Stefanovic
- Department of Biomedical Science, Florida State University College of Medicine, Tallahassee, FL 32306, USA
| | | | | | | |
Collapse
|
48
|
Abstract
Alcohol abuse is a major cause of liver fibrosis and cirrhosis in developed countries. Before alcoholic liver fibrosis becomes evident, the liver undergoes several stages of alcoholic liver disease including steatosis and steatohepatitis. Although the main mechanisms of fibrogenesis are independent of the etiology of liver injury, alcoholic liver fibrosis is distinctively characterized by a pronounced inflammatory response due to elevated gut-derived endotoxin plasma levels, an augmented generation of oxidative stress with pericentral hepatic hypoxia and the formation of cell-toxic and profibrogenic ethanol metabolites (e.g. acetaldehyde or lipid oxidation products). These factors, based on a complex network of cytokine actions, together result in increased hepatocellular damage and activation of hepatic stellate cells, the key cell type of liver fibrogenesis. Although to date removal of the causative agent, i.e. alcohol, still represents the most effective intervention to prevent the manifestation of alcoholic liver disease, sophisticated molecular approaches are underway, aiming to specifically blunt profibrogenic signaling pathways in liver cells or specifically induce cell death in activated hepatic stellate cells to decrease the scarring of the liver.
Collapse
Affiliation(s)
- Soren V Siegmund
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
49
|
Sato M, Shegogue D, Hatamochi A, Yamazaki S, Trojanowska M. Lysophosphatidic acid inhibits TGF-β-mediated stimulation of type I collagen mRNA stability via an ERK-dependent pathway in dermal fibroblasts. Matrix Biol 2004; 23:353-61. [PMID: 15533756 DOI: 10.1016/j.matbio.2004.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 07/21/2004] [Accepted: 07/22/2004] [Indexed: 11/18/2022]
Abstract
Lysophosphatidic acid (LPA) is a serum-derived pleiotropic mediator with a potential role in wound repair. Since extracellular matrix (ECM) deposition is a critical part of wound healing, this study was designed to examine whether LPA is involved in ECM regulation. Using human dermal fibroblasts, we demonstrate that LPA counteracts transforming growth factor-beta (TGF-beta) stimulation of type I collagen mRNA and protein. This factor elicits its inhibitory effects at the posttranscriptional level via destabilization of type I collagen mRNA. Furthermore, using the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059, we show that the extracellular signal-regulated kinase (ERK) pathway is a negative regulator of the TGF-beta-induced stabilization of type I collagen mRNA, and that the activation of the ERK pathway by LPA mediates their inhibitory effects on collagen production. In conclusion, this study describes a novel function for LPA as an antagonist of TGF-beta induced ECM deposition. These findings may be relevant to physiologic wound repair and may be useful in designing therapeutic agents to prevent excessive scarring.
Collapse
Affiliation(s)
- Madoka Sato
- Department of Dermatology, Dokkyo University School of Medicine, Mibu, Tochigi, 321-0293, Japan.
| | | | | | | | | |
Collapse
|
50
|
Stefanovic B, Stefanovic L, Schnabl B, Bataller R, Brenner DA. TRAM2 protein interacts with endoplasmic reticulum Ca2+ pump Serca2b and is necessary for collagen type I synthesis. Mol Cell Biol 2004; 24:1758-68. [PMID: 14749390 PMCID: PMC344171 DOI: 10.1128/mcb.24.4.1758-1768.2004] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cotranslational insertion of type I collagen chains into the lumen of the endoplasmic reticulum (ER) and their subsequent folding into a heterotrimeric helix is a complex process which requires coordinated action of the translation machinery, components of translocons, molecular chaperones, and modifying enzymes. Here we describe a role for the protein TRAM2 in collagen type I expression in hepatic stellate cells (HSCs) and fibroblasts. Activated HSCs are collagen-producing cells in the fibrotic liver. Quiescent HSCs produce trace amounts of type I collagen, while upon activation collagen synthesis increases 50- to 70-fold. Likewise, expression of TRAM2 dramatically increases in activated HSCs. TRAM2 shares 53% amino acid identity with the protein TRAM, which is a component of the translocon. However, TRAM2 has a C terminus with only a 15% identity. The C-terminal part of TRAM2 interacts with the Ca(2+) pump of the ER, SERCA2b, as demonstrated in a Saccharomyces cerevisiae two-hybrid screen and by immunoprecipitations in human cells. TRAM2 also coprecipitates with anticollagen antibody, suggesting that these two proteins interact. Deletion of the C-terminal part of TRAM2 inhibits type I collagen synthesis during activation of HSCs. The pharmacological inhibitor of SERCA2b, thapsigargin, has a similar effect. Depletion of ER Ca(2+) with thapsigargin results in inhibition of triple helical collagen folding and increased intracellular degradation. We propose that TRAM2, as a part of the translocon, is required for the biosynthesis of type I collagen by coupling the activity of SERCA2b with the activity of the translocon. This coupling may increase the local Ca(2+) concentration at the site of collagen synthesis, and a high Ca(2+) concentration may be necessary for the function of molecular chaperones involved in collagen folding.
Collapse
Affiliation(s)
- Branko Stefanovic
- Department of Biomedical Science, College of Medicine, Florida State University, Tallahassee, Florida 32306, USA.
| | | | | | | | | |
Collapse
|