1
|
Smith PR, Campbell ZT. RNA-binding proteins in pain. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1843. [PMID: 38576117 PMCID: PMC11003723 DOI: 10.1002/wrna.1843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/06/2024]
Abstract
RNAs are meticulously controlled by proteins. Through direct and indirect associations, every facet in the brief life of an mRNA is subject to regulation. RNA-binding proteins (RBPs) permeate biology. Here, we focus on their roles in pain. Chronic pain is among the largest challenges facing medicine and requires new strategies. Mounting pharmacologic and genetic evidence obtained in pre-clinical models suggests fundamental roles for a broad array of RBPs. We describe their diverse roles that span RNA modification, splicing, stability, translation, and decay. Finally, we highlight opportunities to expand our understanding of regulatory interactions that contribute to pain signaling. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications Translation > Regulation RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- Patrick R. Smith
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
| | - Zachary T. Campbell
- Department of Anaesthesiology, University of Wisconsin-Madison, Madison, WI, USA 53792
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA 53792
| |
Collapse
|
2
|
Khan FA, Fang N, Zhang W, Ji S. The multifaceted role of Fragile X-Related Protein 1 (FXR1) in cellular processes: an updated review on cancer and clinical applications. Cell Death Dis 2024; 15:72. [PMID: 38238286 PMCID: PMC10796922 DOI: 10.1038/s41419-023-06413-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/22/2024]
Abstract
RNA-binding proteins (RBPs) modulate the expression level of several target RNAs (such as mRNAs) post-transcriptionally through interactions with unique binding sites in the 3'-untranslated region. There is mounting information that suggests RBP dysregulation plays a significant role in carcinogenesis. However, the function of FMR1 autosomal homolog 1(FXR1) in malignancies is just beginning to be unveiled. Due to the diversity of their RNA-binding domains and functional adaptability, FXR1 can regulate diverse transcript processing. Changes in FXR1 interaction with RNA networks have been linked to the emergence of cancer, although the theoretical framework defining these alterations in interaction is insufficient. Alteration in FXR1 expression or localization has been linked to the mRNAs of cancer suppressor genes, cancer-causing genes, and genes involved in genomic expression stability. In particular, FXR1-mediated gene regulation involves in several cellular phenomena related to cancer growth, metastasis, epithelial-mesenchymal transition, senescence, apoptosis, and angiogenesis. FXR1 dysregulation has been implicated in diverse cancer types, suggesting its diagnostic and therapeutic potential. However, the molecular mechanisms and biological effects of FXR1 regulation in cancer have yet to be understood. This review highlights the current knowledge of FXR1 expression and function in various cancer situations, emphasizing its functional variety and complexity. We further address the challenges and opportunities of targeting FXR1 for cancer diagnosis and treatment and propose future directions for FXR1 research in oncology. This work intends to provide an in-depth review of FXR1 as an emerging oncotarget with multiple roles and implications in cancer biology and therapy.
Collapse
Affiliation(s)
- Faiz Ali Khan
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China
- Department of Basic Sciences Research, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH&RC), Lahore, Pakistan
| | - Na Fang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Weijuan Zhang
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
| | - Shaoping Ji
- Huaihe Hospital,Medical School, Henan University, Kaifeng, China.
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng, China.
- Zhengzhou Shuqing Medical College, Zhengzhou, China.
| |
Collapse
|
3
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
4
|
Rodríguez-Gómez G, Paredes-Villa A, Cervantes-Badillo MG, Gómez-Sonora JP, Jorge-Pérez JH, Cervantes-Roldán R, León-Del-Río A. Tristetraprolin: A cytosolic regulator of mRNA turnover moonlighting as transcriptional corepressor of gene expression. Mol Genet Metab 2021; 133:137-147. [PMID: 33795191 DOI: 10.1016/j.ymgme.2021.03.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023]
Abstract
Tristetraprolin (TTP) is a nucleocytoplasmic 326 amino acid protein whose sequence is characterized by possessing two CCCH-type zinc finger domains. In the cytoplasm TTP function is to promote the degradation of mRNAs that contain adenylate/uridylate-rich elements (AREs). Mechanistically, TTP promotes the recruitment of poly(A)-specific deadenylases and exoribonucleases. By reducing the half-life of about 10% of all the transcripts in the cell TTP has been shown to participate in multiple cell processes that include regulation of gene expression, cell proliferation, metabolic homeostasis and control of inflammation and immune responses. However, beyond its role in mRNA decay, in the cell nucleus TTP acts as a transcriptional coregulator by interacting with chromatin modifying enzymes. TTP has been shown to repress the transactivation of NF-κB and estrogen receptor suggesting the possibility that it participates in the transcriptional regulation of hundreds of genes in human cells and its possible involvement in breast cancer progression. In this review, we discuss the cytoplasmic and nuclear functions of TTP and the effect of the dysregulation of its protein levels in the development of human diseases. We suggest that TTP be classified as a moonlighting tumor supressor protein that regulates gene expression through two different mechanims; the decay of ARE-mRNAs and a transcriptional coregulatory function.
Collapse
Affiliation(s)
- Gabriel Rodríguez-Gómez
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alejandro Paredes-Villa
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mayte Guadalupe Cervantes-Badillo
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jessica Paola Gómez-Sonora
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Jesús H Jorge-Pérez
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Rafael Cervantes-Roldán
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Alfonso León-Del-Río
- Programa de Investigación en Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| |
Collapse
|
5
|
The Regulatory Properties of the Ccr4-Not Complex. Cells 2020; 9:cells9112379. [PMID: 33138308 PMCID: PMC7692201 DOI: 10.3390/cells9112379] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 12/12/2022] Open
Abstract
The mammalian Ccr4–Not complex, carbon catabolite repression 4 (Ccr4)-negative on TATA-less (Not), is a large, highly conserved, multifunctional assembly of proteins that acts at different cellular levels to regulate gene expression. In the nucleus, it is involved in the regulation of the cell cycle, chromatin modification, activation and inhibition of transcription initiation, control of transcription elongation, RNA export, nuclear RNA surveillance, and DNA damage repair. In the cytoplasm, the Ccr4–Not complex plays a central role in mRNA decay and affects protein quality control. Most of our original knowledge of the Ccr4–Not complex is derived, primarily, from studies in yeast. More recent studies have shown that the mammalian complex has a comparable structure and similar properties. In this review, we summarize the evidence for the multiple roles of both the yeast and mammalian Ccr4–Not complexes, highlighting their similarities.
Collapse
|
6
|
Saaoud F, Wang J, Iwanowycz S, Wang Y, Altomare D, Shao Y, Liu J, Blackshear PJ, Lessner SM, Murphy EA, Wang H, Yang X, Fan D. Bone marrow deficiency of mRNA decaying protein Tristetraprolin increases inflammation and mitochondrial ROS but reduces hepatic lipoprotein production in LDLR knockout mice. Redox Biol 2020; 37:101609. [PMID: 32591281 PMCID: PMC7767740 DOI: 10.1016/j.redox.2020.101609] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/30/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022] Open
Abstract
Tristetraprolin (TTP), an mRNA binding and decaying protein, plays a significant role in controlling inflammation by decaying mRNAs encoding inflammatory cytokines such as TNFalpha. We aimed to test a hypothesis that TTP in bone marrow (BM) cells regulates atherogenesis by modulating inflammation and lipid metabolism through the modulation of oxidative stress pathways by TTP target genes. In a BM transplantation study, lethally irradiated atherogenic LDLR-/- mice were reconstituted with BM cells from either wild type (TTP+/+) or TTP knockout (TTP-/-) mice, and fed a Western diet for 12 weeks. We made the following observations: (1) TTP-/- BM recipients display a significantly higher systemic and multi-organ inflammation than TTP+/+ BM recipients; (2) BM TTP deficiency modulates hepatic expression of genes, detected by microarray, involved in lipid metabolism, inflammatory responses, and oxidative stress; (3) TTP-/- BM derived macrophages increase production of mitochondrial reactive oxygen species (mtROS); (4) BM-TTP-/- mice display a significant reduction in serum VLDL/LDL levels, and attenuated hepatic steatosis compared to controls; and (5) Reduction of serum VLDL/LDL levels offsets the increased inflammation, resulting in no changes in atherosclerosis. These findings provide a novel mechanistic insight into the roles of TTP-mediated mRNA decay in bone marrow-derived cells in regulating systemic inflammation, oxidative stress, and liver VLDL/LDL biogenesis.
Collapse
Affiliation(s)
- Fatma Saaoud
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA; Centers for Inflammation, Translational & Clinical Lung Research, Departments of Microbiology and Immunology and Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 14190, USA
| | - Junfeng Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Stephen Iwanowycz
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Yuzhen Wang
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Diego Altomare
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, 29208, USA
| | - Ying Shao
- Centers for Inflammation, Translational & Clinical Lung Research, Departments of Microbiology and Immunology and Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 14190, USA
| | - Jianguo Liu
- Division of Infectious Diseases, Allergy and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Susan M Lessner
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, 29209, USA
| | - Hong Wang
- Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Microbiology and Immunology, and Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 14190, USA
| | - Xiaofeng Yang
- Centers for Inflammation, Translational & Clinical Lung Research, Departments of Microbiology and Immunology and Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 14190, USA; Metabolic Disease Research, Cardiovascular Research, and Thrombosis Research, Departments of Microbiology and Immunology, and Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 14190, USA.
| | - Daping Fan
- Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC, 29209, USA.
| |
Collapse
|
7
|
Tu Y, Wu X, Yu F, Dang J, Wei Y, Yu H, Liao W, Zhang Y, Wang J. Tristetraprolin-RNA interaction map reveals a novel TTP-RelB regulatory network for innate immunity gene expression. Mol Immunol 2020; 121:59-71. [DOI: 10.1016/j.molimm.2020.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/03/2020] [Accepted: 02/07/2020] [Indexed: 02/03/2023]
|
8
|
Tu Y, Wu X, Yu F, Dang J, Wang J, Wei Y, Cai Z, Zhou Z, Liao W, Li L, Zhang Y. Tristetraprolin specifically regulates the expression and alternative splicing of immune response genes in HeLa cells. BMC Immunol 2019; 20:13. [PMID: 31046669 PMCID: PMC6498542 DOI: 10.1186/s12865-019-0292-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 04/08/2019] [Indexed: 01/03/2023] Open
Abstract
Background Tristetraprolin (TTP) is an RNA binding protein that plays a critical role in regulating proinflammatory immune responses by destabilizing target mRNAs via binding to their AU-rich elements (AREs) in the 3′-UTRs of mRNAs. A recent CLIP-seq study revealed that TTP-binding sites are enriched in the intronic regions of RNA. TTP is also a nuclear protein that exhibits putative DNA-binding activity. These features suggested that TTP might regulate gene transcription and/or alternative splicing of pre-mRNAs in the absence of stimulation. Results To elucidate the regulatory pattern of TTP, we cloned and overexpressed the human TTP-encoding gene, ZFP36, in HeLa cells in the absence of inflammatory stimuli. The transcriptomes of the control and ZFP36-overexpressing cells were sequenced and subjected to analysis and validation. Upon ZFP36 overexpression, the expression of genes associated with innate immunity, including those in the type I interferon signaling pathway and viral response, were specifically upregulated, implying a transcriptional regulatory mechanism associated with the predicted DNA binding activity of TTP. TTP preferentially regulated the alternative splicing of genes involved in the positive regulation of the I-κB/NF-κB cascade and the TRIF-dependent toll-like receptor, MAPK, TNF, and T cell receptor signaling pathways. Conclusions Our findings indicated that TTP may regulate the immune response via the regulation of alternative splicing and potentially transcription, which greatly expands the current understanding of the mechanisms of TTP-mediated gene regulation. Electronic supplementary material The online version of this article (10.1186/s12865-019-0292-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yafang Tu
- Nephrology Department, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China.
| | - Xiongfei Wu
- Nephrology Department, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Fengyun Yu
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China.,Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China
| | - Jianzhong Dang
- Department of Geriatrics, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Juan Wang
- Nephrology Department, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China
| | - Zhitao Cai
- Nephrology Department, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Zhipeng Zhou
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China.,Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China
| | - Wenliang Liao
- Nephrology Department, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Lian Li
- Nephrology Department, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, Hubei, China
| | - Yi Zhang
- Laboratory for Genome Regulation and Human Health, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China.,Center for Genome Analysis, ABLife Inc., Optics Valley International Biomedical Park, East Lake High-Tech Development Zone, 388 Gaoxin 2nd Road, Wuhan, 430075, Hubei, China
| |
Collapse
|
9
|
Production of a Human Cell Line with a Plant Chromosome. Methods Mol Biol 2018. [PMID: 29754235 DOI: 10.1007/978-1-4939-7795-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
It is a major challenge in biology to know whether chromosome functions of replication, segregation, gene expression, inheritance, etc. are conserved among evolutionary distant organisms where common structural features are maintained. Establishment of hybrid cell lines between evolutionary distant organisms, such as humans and plants, would be one of the promising synthetic approaches to study the evolutionary conservation of chromosome functions. In this chapter, we describe the protocol for successful establishment of human cell lines with a functional plant chromosome. Systematic analyses of hybrid cells will facilitate the evolutionary study of organisms with respect to chromosome functions. It will also provide a basic platform for genome writing and construction of chromosomal shuttle vectors .
Collapse
|
10
|
Abstract
Ribonucleic acid (RNA) homeostasis is dynamically modulated in response to changing physiological conditions. Tight regulation of RNA abundance through both transcription and degradation determines the amount, timing, and location of protein translation. This balance is of particular importance in neurons, which are among the most metabolically active and morphologically complex cells in the body. As a result, any disruptions in RNA degradation can have dramatic consequences for neuronal health. In this chapter, we will first discuss mechanisms of RNA stabilization and decay. We will then explore how the disruption of these pathways can lead to neurodegenerative disease.
Collapse
|
11
|
Ezegbunam W, Foronjy R. Posttranscriptional control of airway inflammation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2017; 9. [PMID: 29071794 DOI: 10.1002/wrna.1455] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
Acute inflammation in the lungs is a vital protective response, efficiently and swiftly eliminating inciters of tissue injury. However, in respiratory diseases characterized by chronic inflammation, such as chronic obstructive pulmonary disease and asthma, enhanced expression of inflammatory mediators leads to tissue damage and impaired lung function. Although transcription is an essential first step in the induction of proinflammatory genes, tight regulation of inflammation requires more rapid, flexible responses. Increasing evidence shows that such responses are achieved by posttranscriptional mechanisms directly affecting mRNA stability and translation initiation. RNA-binding proteins, microRNAs, and long noncoding RNAs interact with messenger RNA and each other to impact the stability and/or translation of mRNAs implicated in lung inflammation. Recent research has shown that these biological processes play a central role in the pathogenesis of several important pulmonary conditions. This review will highlight several posttranscriptional control mechanisms that influence lung inflammation and the known associations of derangements in these mechanisms with common respiratory diseases. WIREs RNA 2018, 9:e1455. doi: 10.1002/wrna.1455 This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Wendy Ezegbunam
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Robert Foronjy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| |
Collapse
|
12
|
Shang J, Zhao Z. Emerging role of HuR in inflammatory response in kidney diseases. Acta Biochim Biophys Sin (Shanghai) 2017; 49:753-763. [PMID: 28910975 DOI: 10.1093/abbs/gmx071] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 06/21/2017] [Indexed: 12/14/2022] Open
Abstract
Human antigen R (HuR) is a member of the embryonic lethal abnormal vision (ELAV) family which can bind to the A/U rich elements in 3' un-translated region of mRNA and regulate mRNA splicing, transportation, and stability. Unlike other members of the ELAV family, HuR is ubiquitously expressed. Early studies mainly focused on HuR function in malignant diseases. As researches proceed, more and more proofs demonstrate its relationship with inflammation. Since most kidney diseases involve pathological changes of inflammation, HuR is now suggested to play a pivotal role in glomerular nephropathy, tubular ischemia-reperfusion damage, renal fibrosis and even renal tumors. By regulating the mRNAs of target genes, HuR is causally linked to the onset and progression of kidney diseases. Reports on this topic are steadily increasing, however, the detailed function and mechanism of action of HuR are still not well understood. The aim of this review article is to summarize the present understanding of the role of HuR in inflammation in kidney diseases, and we anticipate that future research will ultimately elucidate the therapeutic value of this novel target.
Collapse
Affiliation(s)
- Jin Shang
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zhanzheng Zhao
- Nephrology Hospital, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
13
|
Khalaj K, Ahn SH, Bidarimath M, Nasirzadeh Y, Singh SS, Fazleabas AT, Young SL, Lessey BA, Koti M, Tayade C. A balancing act: RNA binding protein HuR/TTP axis in endometriosis patients. Sci Rep 2017; 7:5883. [PMID: 28724967 PMCID: PMC5517625 DOI: 10.1038/s41598-017-06081-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
Endometriosis, a major reproductive pathology affecting 8-10% of women is characterized by chronic inflammation and immune dysfunction. Human antigen R (HuR) and Tristetraprolin (TTP) are RNA binding proteins that competitively bind to cytokines involved in inflammation including: tumor necrosis factor alpha (TNF-α), granulocyte macrophage colony stimulating factor (GM-CSF), interleukin 6 (IL-6) among others, and stabilize and destabilize them, respectively. The aim of this study was to examine RNA binding protein (RNABP) HuR/TTP axis in endometriosis patients compared to menstrual stage matched healthy fertile controls in hopes of better understanding their contribution to the pathogenesis of endometriosis. Additionally, using a targeted in vitro siRNA approach, we examined whether knock-down of TTP can play a functional role on other RNABPs that competitively bind to inflammatory targets of TTP in both endometriotic and endometrial epithelial cell lines. Our results suggest that RNABPs TTP and HuR are dysregulated in endometriotic lesions compared to matched eutopic patient samples as well endometrium from healthy controls. Silencing of TTP in endometriotic and endometrial epithelial cells revealed differential response to inflammatory cytokines and other RNABPs. Our results suggest potential involvement of HuR/TTP RNA binding protein axis in regulation of inflammation in endometriosis.
Collapse
Affiliation(s)
- Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Mallikarjun Bidarimath
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Yasmin Nasirzadeh
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Sukhbir S Singh
- Department of Obstetrics and Gynecology, University of Ottawa, Ottawa, Ontario, K1H 7W9, Canada
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, MI, 49503, USA
| | - Steven L Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, North Carolina, NC, 27514, USA
| | - Bruce A Lessey
- Department of Obstetrics and Gynecology, Greenville Health Systems, Greenville, South Carolina, SC, 29605, USA
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
14
|
Pterostilbene 4'- β-Glucoside Protects against DSS-Induced Colitis via Induction of Tristetraprolin. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9427583. [PMID: 28607633 PMCID: PMC5451844 DOI: 10.1155/2017/9427583] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/27/2017] [Accepted: 04/11/2017] [Indexed: 11/18/2022]
Abstract
Pterostilbene, a dimethyl ester analog of resveratrol, has anti-inflammatory and antioxidative effects and alters cell proliferation. Tristetraprolin (TTP) promotes the degradation of proinflammatory mediators via binding to adenosine and uridine- (AU-) rich elements (ARE) located in the 3′-untranslated regions of mRNAs. Here, we utilized pterostilbene 4′-β-glucoside (4-PG), a compound derived from pterostilbene, to investigate whether it has anti-inflammatory effects on dextran sulfate sodium- (DSS-) induced colitis via TTP enhancement. TTP expression was increased in 4-PG dose- and time-dependent manners in RAW264.7 cells. The production of proinflammatory cytokine, such as TNF-α, was reduced by 4-PG in vitro. To investigate the role of TTP in the anti-inflammatory effects of 4-PG, we used DSS–induced colitis in TTP WT and KO mice as models. The expression levels of TTP and proinflammatory cytokines were determined in serum and colon tissue. 4-PG increased the expression of TTP while suppressing proinflammatory cytokines both in vitro and in vivo. These findings suggest that treatment with 4-PG mediates the anti-inflammatory effects of 4-PG on DSS-induced colitis via enhancing TTP expression.
Collapse
|
15
|
Nowotarski SL, Origanti S, Sass-Kuhn S, Shantz LM. Destabilization of the ornithine decarboxylase mRNA transcript by the RNA-binding protein tristetraprolin. Amino Acids 2016; 48:2303-11. [PMID: 27193233 DOI: 10.1007/s00726-016-2261-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 05/12/2016] [Indexed: 01/25/2023]
Abstract
Ornithine decarboxylase (ODC) is the first and usually rate-limiting enzyme in the polyamine biosynthetic pathway. In a normal physiological state, ODC is tightly regulated. However, during neoplastic transformation, ODC expression becomes upregulated. The studies described here show that the ODC mRNA transcript is destabilized by the RNA-binding protein tristetraprolin (TTP). We show that TTP is able to bind to the ODC mRNA transcript in both non-transformed RIE-1 cells and transformed Ras12V cells. Moreover, using mouse embryonic fibroblast cell lines that are devoid of a functional TTP protein, we demonstrate that in the absence of TTP both ODC mRNA stability and ODC enzyme activity increase when compared to wild-type cells. Finally, we show that the ODC 3' untranslated region contains cis acting destabilizing elements that are affected by, but not solely dependent on, TTP expression. Together, these data support the hypothesis that TTP plays a role in the post-transcriptional regulation of the ODC mRNA transcript.
Collapse
Affiliation(s)
- Shannon L Nowotarski
- Division of Science, The Pennsylvania State University Berks Campus, Reading, PA, 19610, USA.
| | - Sofia Origanti
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Suzanne Sass-Kuhn
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Lisa M Shantz
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
16
|
Ganguly K, Giddaluru J, August A, Khan N. Post-transcriptional Regulation of Immunological Responses through Riboclustering. Front Immunol 2016; 7:161. [PMID: 27199986 PMCID: PMC4850162 DOI: 10.3389/fimmu.2016.00161] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/15/2016] [Indexed: 12/22/2022] Open
Abstract
Immunological programing of immune cells varies in response to changing environmental signals. This process is facilitated by modifiers that regulate the translational fate of mRNAs encoding various immune mediators, including cytokines and chemokines, which in turn determine the rapid activation, tolerance, and plasticity of the immune system. RNA-binding proteins (RBPs) recruited by the specific sequence elements in mRNA transcripts are one such modifiers. These RBPs form RBP-RNA complexes known as "riboclusters." These riboclusters serve as RNA sorting machinery, where depending upon the composition of the ribocluster, translation, degradation, or storage of mRNA is controlled. Recent findings suggest that this regulation of mRNA homeostasis is critical for controlling the immune response. Here, we present the current knowledge of the ribocluster-mediated post-transcriptional regulation of immune mediators and highlight recent findings regarding their implications for the pathogenesis of acute or chronic inflammatory diseases.
Collapse
Affiliation(s)
- Koelina Ganguly
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| | - Jeevan Giddaluru
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University , New York, NY , USA
| | - Nooruddin Khan
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad , Hyderabad , India
| |
Collapse
|
17
|
Huang CY, Shih CM, Tsao NW, Lin YW, Shih CC, Chiang KH, Shyue SK, Chang YJ, Hsieh CK, Lin FY. The GroEL protein of Porphyromonas gingivalis regulates atherogenic phenomena in endothelial cells mediated by upregulating toll-like receptor 4 expression. Am J Transl Res 2016; 8:384-404. [PMID: 27158334 PMCID: PMC4846891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 01/02/2016] [Indexed: 06/05/2023]
Abstract
Porphyromonas gingivalis (P. gingivalis) is a bacterial species that causes periodontitis. GroEL from P. gingivalis may possess biological activity and may be involved in the destruction of periodontal tissues. However, it is unclear whether P. gingivalis GroEL enhances the appearance of atherogenic phenomena in endothelial cells and vessels. Here, we constructed recombinant GroEL from P. gingivalis to investigate its effects in human coronary artery endothelial cells (HCAECs) in vitro and on aortas of high-cholesterol (HC)-fed B57BL/6 and B57BL/6-Tlr4(lps-del) mice in vivo. The results showed that GroEL impaired tube-formation capacity under non-cytotoxic conditions in HCAECs. GroEL increased THP-1 cell/HCAEC adhesion by increasing the expression of intracellular adhesion molecule (ICAM)-1 and vascular adhesion molecule (VCAM)-1 in endothelial cells. Additionally, GroEL increased DiI-oxidized low density lipoprotein (oxLDL) uptake, which may be mediated by elevated lectin-like oxLDL receptor (LOX)-1 but not scavenger receptor expressed by endothelial cells (SREC) and scavenger receptor class B1 (SR-B1) expression. Furthermore, GroEL interacts with toll-like receptor 4 (TLR4) and plays a causal role in atherogenesis in HCAECs. Human antigen R (HuR), an RNA-binding protein with a high affinity for the 3' untranslated region (3'UTR) of TLR4 mRNA, contributes to the up-regulation of TLR4 induced by GroEL in HCAECs. In a GroEL animal administration study, GroEL elevated ICAM-1, VCAM-1, LOX-1 and TLR4 expression in the aortas of HC diet-fed wild C57BL/6 but not C57BL/6-Tlr4(lps-del) mice. Taken together, our findings suggest that P. gingivalis GroEL may contribute to cardiovascular disorders by affecting TLR4 expression.
Collapse
Affiliation(s)
- Chun-Yao Huang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University HospitalTaipei, Taiwan
| | - Chun-Ming Shih
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University HospitalTaipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Nai-Wen Tsao
- Division of Cardiovascular Surgery, Taipei Medical University HospitalTaipei
| | - Yi-Wen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
- Institute of Oral Biology, National Yang-Ming UniversityTaipei, Taiwan
| | - Chun-Che Shih
- Division of Cardiovascular Surgery, Taipei Veterans General HospitalTaipei, Taiwan
| | - Kuang-Hsing Chiang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University HospitalTaipei, Taiwan
| | - Song-Kun Shyue
- Institute of Biomedical Sciences, Academia SinicaTaipei, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Chi-Kun Hsieh
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
- Division of Cardiology and Cardiovascular Research Center, Department of Internal Medicine, Taipei Medical University HospitalTaipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
18
|
Zurla C, Jung J, Santangelo PJ. Can we observe changes in mRNA "state"? Overview of methods to study mRNA interactions with regulatory proteins relevant in cancer related processes. Analyst 2016; 141:548-62. [PMID: 26605378 PMCID: PMC4701657 DOI: 10.1039/c5an01959a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA binding proteins (RBP) regulate the editing, localization, stabilization, translation, and degradation of ribonucleic acids (RNA) through their interactions with specific cis-acting elements within target RNAs. Post-transcriptional regulatory mechanisms are directly involved in the control of the immune response and stress response and their alterations play a crucial role in cancer related processes. In this review, we discuss mRNAs and RNA binding proteins relevant to tumorigenesis, current methodologies for detecting RNA interactions, and last, we describe a novel method to detect such interactions, which combines peptide modified, RNA imaging probes (FMTRIPs) with proximity ligation (PLA) and rolling circle amplification (RCA). This assay detects native RNA in a sequence specific and single RNA sensitive manner, and PLA allows for the quantification and localization of protein-mRNA interactions with single-interaction sensitivity in situ.
Collapse
Affiliation(s)
- C Zurla
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Blgd, Atlanta, GA 30332, USA.
| | - J Jung
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Blgd, Atlanta, GA 30332, USA.
| | - P J Santangelo
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Blgd, Atlanta, GA 30332, USA.
| |
Collapse
|
19
|
T-cells require post-transcriptional regulation for accurate immune responses. Biochem Soc Trans 2015; 43:1201-7. [DOI: 10.1042/bst20150154] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cytotoxic T-cells are crucial to protect us from intracellular pathogens and malignant cells. When T-cells become activated, they rapidly secrete cytokines, chemokines and cytotoxic granules that are critical to clear infected cells. However, when not properly regulated, these toxic effector molecules become one of the key mediators of autoimmune diseases. Therefore, a tight and multi-layered regulation of gene expression and protein production is required to ensure a protective yet balanced immune response. In this review, we describe how post-transcriptional events modulate the production of effector molecules in T-cells. In particular, we will focus on the role of cis-regulatory elements within the 3′-UTR of specific mRNAs and on RNA-binding proteins (RBPs) and non-coding RNAs that control the initiation and resolution of T-cell responses.
Collapse
|
20
|
Joe Y, Kim SK, Chen Y, Yang JW, Lee JH, Cho GJ, Park JW, Chung HT. Tristetraprolin mediates anti-inflammatory effects of carbon monoxide on lipopolysaccharide-induced acute lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2867-74. [PMID: 26348577 DOI: 10.1016/j.ajpath.2015.07.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Low-dose inhaled carbon monoxide is reported to suppress inflammatory responses and exhibit a therapeutic effect in models of lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the precise mechanism by which carbon monoxide confers protection against ALI is not clear. Tristetraprolin (TTP; official name ZFP36) exerts anti-inflammatory effects by enhancing decay of proinflammatory cytokine mRNAs. With the use of TTP knockout mice, we demonstrate here that the protection by carbon monoxide against LPS-induced ALI is mediated by TTP. Inhalation of carbon monoxide substantially increased the pulmonary expression of TTP. carbon monoxide markedly enhanced the decay of mRNA-encoding inflammatory cytokines, blocked the expression of inflammatory cytokines, and decreased tissue damage in LPS-treated lung tissue. Moreover, knockout of TTP abrogated the anti-inflammatory and tissue-protective effects of carbon monoxide in LPS-induced ALI. These results suggest that carbon monoxide-induced TTP mediates the protective effect of carbon monoxide against LPS-induced ALI by enhancing the decay of mRNA encoding proinflammatory cytokines.
Collapse
Affiliation(s)
- Yeonsoo Joe
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Seul-Ki Kim
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Yingqing Chen
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea
| | - Jung Wook Yang
- Department of Pathology, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Hee Lee
- Department of Pathology, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Gyeong Jae Cho
- Department of Anatomy, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong Woo Park
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea.
| | - Hun Taeg Chung
- Department of Biological Sciences, University of Ulsan, Ulsan, Republic of Korea.
| |
Collapse
|
21
|
Griseri P, Pagès G. Control of pro-angiogenic cytokine mRNA half-life in cancer: the role of AU-rich elements and associated proteins. J Interferon Cytokine Res 2015; 34:242-54. [PMID: 24697202 DOI: 10.1089/jir.2013.0140] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Control of mRNA half-life plays a central role in normal development and disease. Several pathological conditions, such as inflammation and cancer, tightly correlate with deregulation in mRNA stability of pro-inflammatory genes. Among these, pro-angiogenesis cytokines, which play a crucial role in the formation of new blood vessels, normally show rapid mRNA decay patterns. The mRNA half-life of these genes appears to be regulated by mRNA-binding proteins that interact with AU-rich elements (AREs) in the 3'-untranslated region of mRNAs. Some of these RNA-binding proteins, such as tristetraprolin (TTP), ARE RNA-binding protein 1, and KH-type splicing regulatory protein, normally promote mRNA degradation. Conversely, other proteins, such as embryonic lethal abnormal vision-like protein 1 (HuR) and polyadenylate-binding protein-interacting protein 2, act as antagonists, stabilizing the mRNA. The steady state levels of mRNA-binding proteins and their relative ratio is often perturbed in human cancers and associated with invasion and aggressiveness. Compelling evidence also suggests that underexpression of TTP and overexpression of HuR may be a useful prognostic and predictive marker in breast, colon, prostate, and brain cancers, indicating a potential therapeutic approach for these tumors. In this review, we summarize the main mechanisms involved in the regulation of mRNA decay of pro-angiogenesis cytokines in different cancers and discuss the interactions between the AU-rich-binding proteins and their mRNA targets.
Collapse
Affiliation(s)
- Paola Griseri
- 1 U.O.C Medical Genetics, Institute Giannina Gaslini , Genoa, Italy
| | | |
Collapse
|
22
|
Abstract
SIGNIFICANCE Production of proteins requires the synthesis, maturation, and export of mRNAs before their translation in the cytoplasm. Endogenous and exogenous sources of DNA damage pose a challenge to the co-ordinated regulation of gene expression, because the integrity of the DNA template can be compromised by DNA lesions. Cells recognize and respond to this DNA damage through a variety of DNA damage responses (DDRs). Failure to deal with DNA damage appropriately can lead to genomic instability and cancer. RECENT ADVANCES The p53 tumor suppressor plays a dominant role in DDR-dependent changes in gene expression, but this transcription factor is not solely responsible for all changes. Recent evidence indicates that RNA metabolism is integral to DDRs as well. In particular, post-transcriptional processes are emerging as important contributors to these complex responses. CRITICAL ISSUES Transcriptional, post-transcriptional, and translational regulation of gene expression is subject to changes in response to DNA damage. How these processes are intertwined in the unfolding of DDR is not fully understood. FUTURE DIRECTIONS Many complex regulatory responses combine to determine cell fate after DNA damage. Understanding how transcriptional, post-transcriptional, and translational processes interdigitate to create a web of regulatory interactions will be one of the key challenges to fully understand DDRs.
Collapse
Affiliation(s)
- Bruce C McKay
- Department of Biology, Institute of Biochemistry, Carleton University , Ottawa, Canada
| |
Collapse
|
23
|
Abstract
Post-transcriptional mechanisms that modulate global and/or transcript-specific mRNA stability and translation contribute to the rapid and flexible control of gene expression in immune effector cells. These mechanisms rely on RNA-binding proteins (RBPs) that direct regulatory complexes (e.g. exosomes, deadenylases, decapping complexes, RNA-induced silencing complexes) to the 3'-untranslated regions of specific immune transcripts. Here, we review the surprising variety of post-transcriptional control mechanisms that contribute to gene expression in the immune system and discuss how defects in these pathways can contribute to autoimmune disease.
Collapse
Affiliation(s)
- Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | | |
Collapse
|
24
|
Casper I, Nowag S, Koch K, Hubrich T, Bollmann F, Henke J, Schmitz K, Kleinert H, Pautz A. Post-transcriptional regulation of the human inducible nitric oxide synthase (iNOS) expression by the cytosolic poly(A)-binding protein (PABP). Nitric Oxide 2013; 33:6-17. [DOI: 10.1016/j.niox.2013.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 05/14/2013] [Accepted: 05/16/2013] [Indexed: 12/21/2022]
|
25
|
Twyffels L, Wauquier C, Soin R, Decaestecker C, Gueydan C, Kruys V. A masked PY-NLS in Drosophila TIS11 and its mammalian homolog tristetraprolin. PLoS One 2013; 8:e71686. [PMID: 23951221 PMCID: PMC3739726 DOI: 10.1371/journal.pone.0071686] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 07/07/2013] [Indexed: 12/11/2022] Open
Abstract
Many RNA-binding proteins (RBPs) dynamically shuttle between the nucleus and the cytoplasm, often exerting different functions in each compartment. Therefore, the nucleo-cytoplasmic distribution of RBPs has a strong impact on their activity. Here we describe the localization and the shuttling properties of the tandem zinc finger RBP dTIS11, which is the Drosophila homolog of mammalian TIS11 proteins. Drosophila and mammalian TIS11 proteins act as destabilizing factors in ARE-mediated decay. At equilibrium, dTIS11 is concentrated mainly in the cytoplasm. We show that dTIS11 is a nucleo-cytoplasmic shuttling protein whose nuclear export is mediated by the exportin CRM1 through the recognition of a nuclear export signal (NES) located in a different region comparatively to its mammalian homologs. We also identify a cryptic Transportin-dependent PY nuclear localization signal (PY-NLS) in the tandem zinc finger region of dTIS11 and show that it is conserved across the TIS11 protein family. This NLS partially overlaps the second zinc finger ZnF2. Importantly, mutations disrupting the capacity of the ZnF2 to coordinate a Zinc ion unmask dTIS11 and TTP NLS and promote nuclear import. All together, our results indicate that the nuclear export of TIS11 proteins is mediated by CRM1 through diverging NESs, while their nuclear import mechanism may rely on a highly conserved PY-NLS whose activity is negatively regulated by ZnF2 folding.
Collapse
Affiliation(s)
- Laure Twyffels
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| | - Corinne Wauquier
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Romuald Soin
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Christine Decaestecker
- Center for Microscopy and Molecular Imaging, Gosselies, Belgium
- Laboratory of Image Synthesis and Analysis - Ecole Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Cyril Gueydan
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratoire de Biologie Moléculaire du Gène, Faculté des Sciences, Université Libre de Bruxelles (ULB), Gosselies, Belgium
- Center for Microscopy and Molecular Imaging, Gosselies, Belgium
| |
Collapse
|
26
|
Brooks SA, Blackshear PJ. Tristetraprolin (TTP): interactions with mRNA and proteins, and current thoughts on mechanisms of action. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1829:666-79. [PMID: 23428348 PMCID: PMC3752887 DOI: 10.1016/j.bbagrm.2013.02.003] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/25/2013] [Accepted: 02/04/2013] [Indexed: 12/14/2022]
Abstract
Changes in mRNA stability and translation are critical control points in the regulation of gene expression, particularly genes encoding growth factors, inflammatory mediators, and proto-oncogenes. Adenosine and uridine (AU)-rich elements (ARE), often located in the 3' untranslated regions (3'UTR) of mRNAs, are known to target transcripts for rapid decay. They are also involved in the regulation of mRNA stability and translation in response to extracellular cues. This review focuses on one of the best characterized ARE binding proteins, tristetraprolin (TTP), the founding member of a small family of CCCH tandem zinc finger proteins. In this survey, we have reviewed the current status of TTP interactions with mRNA and proteins, and discussed current thinking about TTP's mechanism of action to promote mRNA decay. We also review the proposed regulation of TTP's functions by phosphorylation. Finally, we have discussed emerging evidence for TTP operating as a translational regulator. This article is part of a Special Issue entitled: RNA Decay mechanisms.
Collapse
Affiliation(s)
- Seth A. Brooks
- Veterans Affairs Medical Center, White River Junction, Vermont, USA
- Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Perry J. Blackshear
- The Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina USA
| |
Collapse
|
27
|
ZFP36L1 negatively regulates plasmacytoid differentiation of BCL1 cells by targeting BLIMP1 mRNA. PLoS One 2012; 7:e52187. [PMID: 23284928 PMCID: PMC3527407 DOI: 10.1371/journal.pone.0052187] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 11/09/2012] [Indexed: 12/03/2022] Open
Abstract
The ZFP36/Tis11 family of zinc-finger proteins regulate cellular processes by binding to adenine uridine rich elements in the 3′ untranslated regions of various mRNAs and promoting their degradation. We show here that ZFP36L1 expression is largely extinguished during the transition from B cells to plasma cells, in a reciprocal pattern to that of ZFP36 and the plasma cell transcription factor, BLIMP1. Enforced expression of ZFP36L1 in the mouse BCL1 cell line blocked cytokine-induced differentiation while shRNA-mediated knock-down enhanced differentiation. Reconstruction of regulatory networks from microarray gene expression data using the ARACNe algorithm identified candidate mRNA targets for ZFP36L1 including BLIMP1. Genes that displayed down-regulation in plasma cells were significantly over-represented (P = <0.0001) in a set of previously validated ZFP36 targets suggesting that ZFP36L1 and ZFP36 target distinct sets of mRNAs during plasmacytoid differentiation. ShRNA-mediated knock-down of ZFP36L1 in BCL1 cells led to an increase in levels of BLIMP1 mRNA and protein, but not for mRNAs of other transcription factors that regulate plasmacytoid differentiation (xbp1, irf4, bcl6). Finally, ZFP36L1 significantly reduced the activity of a BLIMP1 3′ untranslated region-driven luciferase reporter. Taken together, these findings suggest that ZFP36L1 negatively regulates plasmacytoid differentiation, at least in part, by targeting the expression of BLIMP1.
Collapse
|
28
|
Milke L, Schulz K, Weigert A, Sha W, Schmid T, Brüne B. Depletion of tristetraprolin in breast cancer cells increases interleukin-16 expression and promotes tumor infiltration with monocytes/macrophages. Carcinogenesis 2012; 34:850-7. [PMID: 23241166 DOI: 10.1093/carcin/bgs387] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The RNA-binding protein tristetraprolin (TTP) destabilizes target messenger RNAs (mRNAs) containing AU-rich elements within their 3' untranslated region. Thereby, it controls the expression of multiple inflammatory and tumor-associated transcripts. Moreover, a loss of TTP in tumors predicts disease-associated survival. Although tumor intrinsic functions of TTP have previously been studied, the impact of TTP on the interaction of tumors with their microenvironment remains elusive. As immune cell infiltration into tumors is a critical determinant for tumor progression, this study aimed at determining the influence of tumor cell TTP on the interaction between tumor and immune cells, specifically monocytes (MO)/macrophages (MΦ). Knockdown (k/d) of TTP in T47D breast cancer cells enhanced tumor growth both in vitro and in vivo and increased infiltration of MO into 3D tumor spheroids in vitro and of MΦ into tumor xenografts in vivo. Enhanced migration of MO toward supernatants of TTP-deficient tumor spheroids was determined as the underlying principle. Interestingly, we noticed interleukin-16 (IL-16) mRNA stabilization when TTP was depleted. In line, IL-16 protein levels were elevated in TTP-deficient spheroids and their supernatants as well as in TTP k/d tumor xenografts and critically contributed to the enhanced chemotactic behavior. In summary, we show that the loss of TTP in tumors not only affects tumor cell proliferation and survival but also enhances infiltration of MO/MΦ into the tumors, which is typically associated with poor prognosis. Moreover, we identified IL-16 as a critical TTP-regulated chemotactic factor that contributes to MO/MΦ migration.
Collapse
Affiliation(s)
- Larissa Milke
- Institute of Biochemistry I, Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Masuda K, Kuwano Y, Nishida K, Rokutan K. General RBP expression in human tissues as a function of age. Ageing Res Rev 2012; 11:423-31. [PMID: 22326651 DOI: 10.1016/j.arr.2012.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/09/2012] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
Abstract
Gene expression patterns vary dramatically in a tissue-specific and age-dependent manner. RNA-binding proteins that regulate mRNA turnover and/or translation (TTR-RBPs) critically affect the subsets of expressed proteins. Although many proteins implicated in age-related processes are encoded by mRNAs that are targets of TTR-RBPs, very little is known regarding the tissue- and age-dependent expression of TTR-RBPs in humans. Recent analysis of TTR-RBPs expression using human tissue microarray has provided us interesting insight into their possibly physiologic roles as a function of age. This analysis has also revealed striking discrepancies between the levels of TTR-RBPs in senescent human diploid fibroblasts (HDFs), widely used as an in vitro model of aging, and the levels of TTR-RBPs in tissues from individuals of advancing age. In this article, we will review our knowledge of human TTR-RBP expression in different tissues as a function of age.
Collapse
|
30
|
Huang CY, Shih CM, Tsao NW, Chen YH, Li CY, Chang YJ, Chang NC, Ou KL, Lin CY, Lin YW, Nien CH, Lin FY. GroEL1, from Chlamydia pneumoniae, induces vascular adhesion molecule 1 expression by p37(AUF1) in endothelial cells and hypercholesterolemic rabbit. PLoS One 2012; 7:e42808. [PMID: 22900050 PMCID: PMC3416774 DOI: 10.1371/journal.pone.0042808] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/11/2012] [Indexed: 12/20/2022] Open
Abstract
The expression of vascular adhesion molecule-1 (VCAM-1) by endothelial cells may play a major role in atherogenesis. The actual mechanisms of chlamydia pneumoniae (C. pneumoniae) relate to atherogenesis are unclear. We investigate the influence of VCAM-1 expression in the GroEL1 from C. pneumoniae-administered human coronary artery endothelial cells (HCAECs) and hypercholesterolemic rabbits. In this study, we constructed the recombinant GroEL1 from C. pneumoniae. The HCAECs/THP-1 adhesion assay, tube formation assay, western blotting, enzyme-linked immunosorbent assay, actinomycin D chase experiment, luciferase reporter assay, and immunohistochemical stainings were performed. The results show that GroEL1 increased both VCAM-1expression and THP-1 cell adhesives, and impaired tube-formation capacity in the HCAECs. GroEL1 significantly increased the VCAM-1 mRNA stability and cytosolic AU-binding factor 1 (AUF1) level. Overexpression of the p37AUF1 significantly increased VCAM-1 gene expression in GroEL1-induced bovine aortic endothelial cells (BAECs). GroEL1 prolonged the stability of VCAM-1 mRNA by increasing both p37AUF1 and the regulation of the 5′ untranslated region (UTR) of the VCAM-1 mRNA in BAECs. In hypercholesterolemic rabbits, GroEL1 administration enhanced fatty-streak and macrophage infiltration in atherosclerotic lesions, which may be mediated by elevated VCAM-1 expression. In conclusion, GroEL1 induces VCAM-1 expression by p37AUF1 in endothelial cells and enhances atherogenesis in hypercholesterolemic rabbits.
Collapse
Affiliation(s)
- Chun-Yao Huang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Research Center For Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Ming Shih
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Nai-Wen Tsao
- Division of Cardiovascular Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yung-Hsiang Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Chi-Yuan Li
- Graduate Institute of Clinical Medical Sciences, China Medical University and Department of Anesthesiology, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Jia Chang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Nen-Chung Chang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Keng-Liang Ou
- Research Center For Biomedical Implants and Microsurgery Devices, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Yen Lin
- Department of Computer Science and Information Management, Hung Kuang University, Taichung, Taiwan
| | - Yi-Wen Lin
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chih-Hao Nien
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Feng-Yen Lin
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Cardiovascular Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
31
|
Huotari N, Hömmö T, Taimi V, Nieminen R, Moilanen E, Korhonen R. Regulation of tristetraprolin expression by mitogen-activated protein kinase phosphatase-1. APMIS 2012; 120:988-99. [DOI: 10.1111/j.1600-0463.2012.02927.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 05/01/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Noora Huotari
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Tuija Hömmö
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Ville Taimi
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Riina Nieminen
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| | - Riku Korhonen
- The Immunopharmacology Research Group; University of Tampere School of Medicine; and Tampere University Hospital; Tampere; Finland
| |
Collapse
|
32
|
Jin WJ, Chen CF, Liao HY, Gong LL, Yuan XH, Zhao BB, Zhang D, Feng X, Liu JJ, Wang Y, Chen GF, Yan HP, He YW. Downregulation of the AU-rich RNA-binding protein ZFP36 in chronic HBV patients: implications for anti-inflammatory therapy. PLoS One 2012; 7:e33356. [PMID: 22428029 PMCID: PMC3302862 DOI: 10.1371/journal.pone.0033356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/13/2012] [Indexed: 12/12/2022] Open
Abstract
Inflammation caused by chronic hepatitis B virus (HBV) infection is associated with the development of cirrhosis and hepatocellular carcinoma; however, the mechanisms by which HBV infection induces inflammation and inflammatory cytokine production remain largely unknown. We analyzed the gene expression patterns of lymphocytes from chronic HBV-infected patients and found that the expression of ZFP36, an AU-rich element (ARE)-binding protein, was dramatically reduced in CD4(+) and CD8(+) T lymphocytes from chronic HBV patients. ZFP36 expression was also reduced in CD14(+) monocytes and in total PBMCs from chronic HBV patients. To investigate the functional consequences of reduced ZFP36 expression, we knocked down ZFP36 in PBMCs from healthy donors using siRNA. siRNA-mediated silencing of ZFP36 resulted in dramatically increased expression of multiple inflammatory cytokines, most of which were also increased in the plasma of chronic HBV patients. Furthermore, we found that IL-8 and RANTES induced ZFP36 downregulation, and this effect was mediated through protein kinase C. Importantly, we found that HBsAg stimulated PBMCs to express IL-8 and RANTES, resulting in decreased ZFP36 expression. Our results suggest that an inflammatory feedback loop involving HBsAg, ZFP36, and inflammatory cytokines may play a critical role in the pathogenesis of chronic HBV and further indicate that ZFP36 may be an important target for anti-inflammatory therapy during chronic HBV infection.
Collapse
Affiliation(s)
- Wen-Jing Jin
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Cai-Feng Chen
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Hui-Yu Liao
- Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China
| | - Lu-Lu Gong
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Xiao-Hui Yuan
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Bin-Bin Zhao
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Ding Zhang
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Xia Feng
- Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China
| | - Jing-Jun Liu
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
| | - Yu Wang
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Guo-Feng Chen
- Fibrosis Noninvasive Diagnosis and Treatment Center, 302 Hospital, Beijing, China
| | - Hui-Ping Yan
- Center for Infection and Immunity, YouAn Hospital, The Beijing Capital Medical University, Beijing, China
| | - You-Wen He
- Key Laboratory of Systems Biology of Pathogens, Ministry of Health, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Dongcheng District, Beijing, China
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
33
|
Schott J, Stoecklin G. Networks controlling mRNA decay in the immune system. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:432-56. [PMID: 21956941 DOI: 10.1002/wrna.13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The active control of mRNA degradation has emerged as a key regulatory mechanism required for proper gene expression in the immune system. An adenosine/uridine (AU)-rich element (ARE) is at the heart of a first regulatory system that promotes the rapid degradation of a multitude of cytokine and chemokine mRNAs. AREs serve as binding sites for a number of regulatory proteins that either destabilize or stabilize the mRNA. Several kinase pathways regulate the activity of ARE-binding proteins and thereby coordinate the expression of their target mRNAs. Small regulatory micro (mi)-RNAs represent a second system that enhances the degradation of several mRNAs encoding important components of signal transduction cascades that are activated during adaptive and innate immune responses. Specific miRNAs are important for the differentiation of T helper cells, class switch recombination in B cells, and the maturation of dendritic cells. Excitement in this area of research is fueled by the discovery of novel RNA elements and regulatory proteins that exert control over specific mRNAs, as exemplified by an endonuclease that was found to directly cleave interleukin-6 mRNA. Together, these systems make up an extensive regulatory network that controls decay rates of individual mRNAs in a precise manner and thereby orchestrates the dynamic expression of many factors essential for adaptive and innate immune responses. In this review, we provide an overview of relevant factors regulated at the level of mRNA stability, summarize RNA-binding proteins and miRNAs that control their degradation rates, and discuss signaling pathways operating within this regulatory network.
Collapse
Affiliation(s)
- Johanna Schott
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | |
Collapse
|
34
|
Pfeiffer JR, Brooks SA. Cullin 4B is recruited to tristetraprolin-containing messenger ribonucleoproteins and regulates TNF-α mRNA polysome loading. THE JOURNAL OF IMMUNOLOGY 2012; 188:1828-39. [PMID: 22262661 DOI: 10.4049/jimmunol.1102837] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
TNF-α is a central mediator of inflammation and critical for host response to infection and injury. TNF-α biosynthesis is controlled by transcriptional and posttranscriptional mechanisms allowing for rapid, transient production. Tristetraprolin (TTP) is an AU-rich element binding protein that regulates the stability of the TNF-α mRNA. Using a screen to identify TTP-interacting proteins, we identified Cullin 4B (Cul4B), a scaffolding component of the Cullin ring finger ligase family of ubiquitin E3 ligases. Short hairpin RNA knockdown of Cul4B results in a significant reduction in TNF-α protein and mRNA in LPS-stimulated mouse macrophage RAW264.7 cells as well as a reduction in TTP protein. TNF-α message t(1/2) was reduced from 69 to 33 min in LPS-stimulated cells. TNF-3' untranslated region luciferase assays utilizing wild-type and mutant TTP-AA (S52A, S178A) indicate that TTP function is enhanced in Cul4B short hairpin RNA cells. Importantly, the fold induction of TNF-α mRNA polysome loading in response to LPS stimulation is reduced by Cul4B knockdown. Cul4B is present on the polysomes and colocalizes with TTP to exosomes and processing bodies, which are sites of mRNA decay. We conclude that Cul4B licenses the TTP-containing TNF-α messenger ribonucleoprotein for loading onto polysomes, and reduction of Cul4B expression shunts the messenger ribonucleoproteins into the degradative pathway.
Collapse
Affiliation(s)
- Jason R Pfeiffer
- Veterans Administration Medical Center, White River Junction, VT 05009, USA
| | | |
Collapse
|
35
|
Sanduja S, Blanco FF, Young LE, Kaza V, Dixon DA. The role of tristetraprolin in cancer and inflammation. Front Biosci (Landmark Ed) 2012; 17:174-88. [PMID: 22201737 DOI: 10.2741/3920] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Messenger RNA decay is a critical mechanism to control the expression of many inflammation- and cancer-associated genes. These transcripts are targeted for rapid degradation through AU-rich element (ARE) motifs present in the mRNA 3' untranslated region (3'UTR). Tristetraprolin (TTP) is an RNA-binding protein that plays a significant role in regulating the expression of ARE-containing mRNAs. Through its ability to bind AREs and target the bound mRNA for rapid degradation, TTP can limit the expression of a number of critical genes frequently overexpressed in inflammation and cancer. Regulation of TTP occurs on multiple levels through cellular signaling events to control transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TTP's ability to promote ARE-mediated mRNA decay along with decay-independent functions of TTP. This review summarizes the current understanding of post-transcriptional regulation of ARE-containing gene expression by TTP and discusses its role in maintaining homeostasis and the pathological consequences of losing TTP expression.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC 29203, USA
| | | | | | | | | |
Collapse
|
36
|
Frasca D, Romero M, Diaz A, Alter-Wolf S, Ratliff M, Landin AM, Riley RL, Blomberg BB. A molecular mechanism for TNF-α-mediated downregulation of B cell responses. THE JOURNAL OF IMMUNOLOGY 2011; 188:279-86. [PMID: 22116831 DOI: 10.4049/jimmunol.1003964] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
B cell function with age is decreased in class switch recombination (CSR), activation-induced cytidine deaminase (AID), and stability of E47 mRNA. The latter is regulated, at least in part, by tristetraprolin (TTP), which is increased in aged B cells and also negatively regulates TNF-α. In this study, we investigated whether B cells produce TNF-α, whether this changes with age, and how this affects their function upon stimulation. Our hypothesis is that in aging there is a feedback mechanism of autocrine inflammatory cytokines (TNF-α) that lowers the expression of AID and CSR. Our results showed that unstimulated B cells from old BALB/c mice make significantly more TNF-α mRNA and protein than do B cells from young mice, but after stimulation the old make less than the young; thus, they are refractory to stimulation. The increase in TNF-α made by old B cells is primarily due to follicular, but not minor, subsets of B cells. Incubation of B cells with TNF-α before LPS stimulation decreased both young and old B cell responses. Importantly, B cell function was restored by adding anti-TNF-α Ab to cultured B cells. To address a molecular mechanism, we found that incubation of B cells with TNF-α before LPS stimulation induced TTP, a physiological regulator of mRNA stability of the transcription factor E47, which is crucial for CSR. Finally, anti-TNF-α given in vivo increased B cell function in old, but not in young, follicular B cells. These results suggest new molecular mechanisms that contribute to reduced Ab responses in aging.
Collapse
Affiliation(s)
- Daniela Frasca
- Department of Microbiology and Immunology, University of Miami, Miami, FL 33101, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Louis IVS, Bohjanen PR. Coordinate regulation of mRNA decay networks by GU-rich elements and CELF1. Curr Opin Genet Dev 2011; 21:444-51. [PMID: 21497082 PMCID: PMC3146975 DOI: 10.1016/j.gde.2011.03.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 03/21/2011] [Indexed: 01/03/2023]
Abstract
The GU-rich element (GRE) was identified as a conserved sequence enriched in the 3' UTR of human transcripts that exhibited rapid mRNA turnover. In mammalian cells, binding to GREs by the protein CELF1 coordinates mRNA decay of networks of transcripts involved in cell growth, migration, and apoptosis. Depending on the context, GREs and CELF1 also regulate pre-mRNA splicing and translation. GREs are highly conserved throughout evolution and play important roles in the development of organisms ranging from worms to man. In humans, abnormal GRE-mediated regulation contributes to disease states and cancer. Thus, GREs and CELF proteins serve critical functions in gene expression regulation and define an important evolutionarily conserved posttranscriptional regulatory network.
Collapse
Affiliation(s)
- Irina Vlasova-St. Louis
- Department of Microbiology, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, USA
| | - Paul R. Bohjanen
- Department of Microbiology, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, USA
- Department of Medicine, Center for Infectious Diseases and Microbiology Translational Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
38
|
Joe Y, Kim HJ, Kim S, Chung J, Ko MS, Lee WH, Chang KC, Park JW, Chung HT. Tristetraprolin mediates anti-inflammatory effects of nicotine in lipopolysaccharide-stimulated macrophages. J Biol Chem 2011; 286:24735-42. [PMID: 21606497 DOI: 10.1074/jbc.m110.204859] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nicotine inhibits the release of TNF-α from macrophage through activation of STAT3. Tristetraprolin (TTP) is known to destabilize pro-inflammatory transcripts containing AU-rich elements (ARE) in 3'-untranslated region (3'-UTR). Here we show that in LPS-stimulated human macrophages the anti-inflammatory action of nicotine is mediated by TTP. Nicotine induced activation of STAT3 enhanced STAT3 binding to the TTP promoter, increased TTP promoter activity, and increased TTP expression resulting in the suppression of LPS-stimulated TNF-α production. Overexpression of a dominant negative mutant of STAT3 (R382W) or down-regulation of STAT3 by siRNA abolished nicotine-induced TTP expression and suppression of LPS-stimulated TNF-α production. Nicotine enhanced the decay of TNF-α mRNA and decreased luciferase expression of a TNF-α 3'-UTR reporter plasmid in U937 cells. However, siRNA to TTP abrogated these effects of nicotine. In this experiment, we are reporting for the first time the involvement of TTP in the cholinergic anti-inflammatory cascade consisting of nicotine-STAT3-TTP-dampening inflammation.
Collapse
Affiliation(s)
- Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan 680-749, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sandler H, Kreth J, Timmers HTM, Stoecklin G. Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 2011; 39:4373-86. [PMID: 21278420 PMCID: PMC3105394 DOI: 10.1093/nar/gkr011] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The carbon catabolite repressor protein 4 (Ccr4)–Negative on TATA (Not) complex controls gene expression at two levels. In the nucleus, it regulates the basal transcription machinery, nuclear receptor-mediated transcription and histone modifications. In the cytoplasm, the complex is required for messenger RNA (mRNA) turnover through its two associated deadenylases, Ccr4 and Caf1. Not1 is the largest protein of the Ccr4–Not complex and serves as a scaffold for other subunits of the complex. Here, we provide evidence that human Not1 in the cytoplasm associates with the C-terminal domain of tristetraprolin (TTP), an RNA binding protein that mediates rapid degradation of mRNAs containing AU-rich elements (AREs). Not1 shows extensive interaction through its central region with TTP, whereas binding of Caf1 is restricted to a smaller central domain within Not1. Importantly, Not1 is required for the rapid decay of ARE-mRNAs, and TTP can recruit the Caf1 deadenylase only in presence of Not1. Thus, cytoplasmic Not1 provides a platform that allows a specific RNA binding protein to recruit the Caf1 deadenylase and thereby trigger decay of its target mRNAs.
Collapse
Affiliation(s)
- Heike Sandler
- Helmholtz Junior Research Group Posttranscriptional Control of Gene Expression, German Cancer Research Center, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
40
|
Sanduja S, Blanco FF, Dixon DA. The roles of TTP and BRF proteins in regulated mRNA decay. WILEY INTERDISCIPLINARY REVIEWS. RNA 2011; 2:42-57. [PMID: 21278925 PMCID: PMC3030256 DOI: 10.1002/wrna.28] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adenylate- and uridylate-rich element (ARE) motifs are cis-acting elements present in the 3′ untranslated region of mRNA transcripts that encode many inflammation- and cancer-associated genes. The TIS11 family of RNA-binding proteins, composed of tristetraprolin (TTP) and butyrate response factors 1 and 2 (BRF-1 and -2), plays a critical role in regulating the expression of ARE-containing mRNAs. Through their ability to bind and target ARE-containing mRNAs for rapid degradation, this class of RNA-binding proteins serves a fundamental role in limiting the expression of a number of critical genes, thereby exerting anti-inflammatory and anti-cancer effects. Regulation of TIS11 family members occurs on a number of levels through cellular signaling events to control their transcription, mRNA turnover, phosphorylation status, cellular localization, association with other proteins, and proteosomal degradation, all of which impact TIS11 members' ability to promote ARE-mediated mRNA decay along with decay-independent functions. This review summarizes our current understanding of posttranscriptional regulation of ARE-containing gene expression by TIS11 family members and discusses their role in maintaining normal physiological processes and the pathological consequences in their absence.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC 29203
| | - Fernando F. Blanco
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC 29203
| | - Dan A. Dixon
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC 29203
| |
Collapse
|
41
|
Khabar KSA. Post-transcriptional control during chronic inflammation and cancer: a focus on AU-rich elements. Cell Mol Life Sci 2010; 67:2937-55. [PMID: 20495997 PMCID: PMC2921490 DOI: 10.1007/s00018-010-0383-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/01/2010] [Accepted: 04/21/2010] [Indexed: 12/21/2022]
Abstract
A considerable number of genes that code for AU-rich mRNAs including cytokines, growth factors, transcriptional factors, and certain receptors are involved in both chronic inflammation and cancer. Overexpression of these genes is affected by aberrations or by prolonged activation of several signaling pathways. AU-rich elements (ARE) are important cis-acting short sequences in the 3'UTR that mediate recognition of an array of RNA-binding proteins and affect mRNA stability and translation. This review addresses the cellular and molecular mechanisms that are common between inflammation and cancer and that also govern ARE-mediated post-transcriptional control. The first part examines the role of the ARE-genes in inflammation and cancer and sequence characteristics of AU-rich elements. The second part addresses the common signaling pathways in inflammation and cancer that regulate the ARE-mediated pathways and how their deregulations affect ARE-gene regulation and disease outcome.
Collapse
Affiliation(s)
- Khalid S A Khabar
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, 11211, Saudi Arabia.
| |
Collapse
|
42
|
Al-Souhibani N, Al-Ahmadi W, Hesketh JE, Blackshear PJ, Khabar KSA. The RNA-binding zinc-finger protein tristetraprolin regulates AU-rich mRNAs involved in breast cancer-related processes. Oncogene 2010; 29:4205-15. [PMID: 20498646 PMCID: PMC3422647 DOI: 10.1038/onc.2010.168] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 04/03/2010] [Accepted: 04/09/2010] [Indexed: 12/22/2022]
Abstract
Tristetraprolin (TTP or ZFP36) is a tandem CCCH zinc-finger RNA-binding protein that regulates the stability of certain AU-rich element (ARE) mRNAs. Recent work suggests that TTP is deficient in cancer cells when compared with normal cell types. In this study we found that TTP expression was lower in invasive breast cancer cells (MDAMB231) compared with normal breast cell lines MCF12A and MCF-10. TTP targets were probed using a novel approach by expressing the C124R zinc-finger TTP mutant that functions as dominant negative and increases target mRNA expression. In contrast to wild-type TTP, C124R TTP was able to increase certain ARE-mRNA expressions in serum-stimulated breast cancer cells. Using an ARE-gene microarray, novel targets of TTP regulation were identified, namely, urokinase plasminogen activator (uPA), uPA receptor and matrix metalloproteinase-1, all known to have prominent roles in breast cancer invasion and metastasis. Expression of these targets was upregulated in tumorigenic types, particularly in highly invasive MDAMB231. The mRNA half-lives of these TTP-regulated genes were increased in TTP-knockout embryonic mouse fibroblasts, as assessed using real-time polymerase chain reaction, whereas forced restoration of TTP by transfection led to a reduction in their mRNA levels. RNA immunoprecipitation confirmed an association of TTP, but not C124R, with these target transcripts. Moreover, TTP reduced, whereas the mutant C124R TTP increased, the activity of reporter constructs fused to target ARE. As a result of TTP regulation, invasiveness of MDAMB231 cells was reduced. The data suggest that TTP, in a 3' untranslated region-and ARE-dependent manner, regulates an important subset of cancer-related genes that are involved in cellular growth, invasion and metastasis.
Collapse
Affiliation(s)
- Norah Al-Souhibani
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia 11211
| | - Wijdan Al-Ahmadi
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia 11211
| | - John E. Hesketh
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, NIEHS, National Institutes of Health, Research Triangle, NC 27709, U.S
| | - Khalid S. A. Khabar
- Program in BioMolecular Research, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia 11211
| |
Collapse
|
43
|
Stumpo DJ, Lai WS, Blackshear PJ. Inflammation: cytokines and RNA-based regulation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 1:60-80. [PMID: 21956907 DOI: 10.1002/wrna.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The outcome of an inflammatory response depends upon the coordinated regulation of a variety of both pro-inflammatory and anti-inflammatory cytokines and other proteins. Regulation of these inflammation mediators can occur at multiple levels, including transcription, mRNA translation, post-translational modifications, and mRNA degradation. Post-transcriptional regulation has been shown to play an important role in controlling the expression of these mediators, allowing for normal initiation and resolution of the inflammatory response. Many inflammatory mediators have unstable mRNAs due, in part, to the presence of AU-rich elements in their 3'-untranslated regions. Increasing numbers of RNA-binding proteins have been identified that can bind to these AU-rich elements and then regulate the stability and/or translation of the mRNA. This review summarizes current knowledge about the role of several RNA-binding proteins that act through AU-rich elements to post-transcriptionally regulate the biosynthesis of proteins involved in inflammation.
Collapse
Affiliation(s)
- Deborah J Stumpo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | | | |
Collapse
|
44
|
Anderson P. Post-transcriptional regulons coordinate the initiation and resolution of inflammation. Nat Rev Immunol 2010; 10:24-35. [PMID: 20029446 DOI: 10.1038/nri2685] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transcriptional control mechanisms chart the course of the inflammatory response by synthesizing mRNAs encoding proteins that promote or inhibit inflammation. Because these mRNAs can be long-lived, turning off their synthesis does not rapidly stop or change the direction of inflammation. Post-transcriptional mechanisms that modify mRNA stability and/or translation provide more rapid and flexible control of this process and are particularly important in coordinating the initiation and resolution of inflammation. Here, I review the surprising variety of post-transcriptional control mechanisms that regulate the initiation and resolution of inflammation and discuss how these mechanisms are integrated to coordinate this essential process.
Collapse
Affiliation(s)
- Paul Anderson
- Department of Medicine, Division of Rheumatology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| |
Collapse
|
45
|
Moraes KCM. RNA surveillance: molecular approaches in transcript quality control and their implications in clinical diseases. Mol Med 2010; 16:53-68. [PMID: 19829759 PMCID: PMC2761007 DOI: 10.2119/molmed.2009.00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 10/06/2009] [Indexed: 11/06/2022] Open
Abstract
Production of mature mRNAs that encode functional proteins involves highly complex pathways of synthesis, processing and surveillance. At numerous steps during the maturation process, the mRNA transcript undergoes scrutiny by cellular quality control machinery. This extensive RNA surveillance ensures that only correctly processed mature mRNAs are translated and precludes production of aberrant transcripts that could encode mutant or possibly deleterious proteins. Recent advances in elucidating the molecular mechanisms of mRNA processing have demonstrated the existence of an integrated network of events, and have revealed that a variety of human diseases are caused by disturbances in the well-coordinated molecular equilibrium of these events. From a medical perspective, both loss and gain of function are relevant, and a considerable number of different diseases exemplify the importance of the mechanistic function of RNA surveillance in a cell. Here, mechanistic hallmarks of mRNA processing steps are reviewed, highlighting the medical relevance of their deregulation and how the understanding of such mechanisms can contribute to the development of therapeutic strategies.
Collapse
Affiliation(s)
- Karen C M Moraes
- Molecular Biology Laboratory, IP&D, Universidade do Vale do Paraíba, São José dos Campos, São Paulo, CEP-12244-000, Brazil.
| |
Collapse
|
46
|
Leppänen T, Jalonen U, Korhonen R, Tuominen RK, Moilanen E. Inhibition of protein kinase Cdelta reduces tristetraprolin expression by destabilizing its mRNA in activated macrophages. Eur J Pharmacol 2009; 628:220-5. [PMID: 19925787 DOI: 10.1016/j.ejphar.2009.11.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 10/22/2009] [Accepted: 11/05/2009] [Indexed: 11/24/2022]
Abstract
Tristetraprolin (TTP) binds to AU-rich elements within the mRNAs of several inflammatory genes and causes destabilization of the target mRNAs. The protein kinase C (PKC) pathway represents a major signalling system in inflammation and PKCdelta is one of the key isoenzymes in the regulation of inflammatory processes. In the present study, we investigated the role of PKCdelta in the regulation of the expression of tristetraprolin in activated macrophages by using the PKCdelta inhibitor, rottlerin, and by downregulating PKCdelta expression by using PKCdelta siRNA. TTP protein and mRNA expression were measured by Western blotting and quantitative RT-PCR, respectively. TTP and TNFalpha mRNA decays were studied by the actinomycin D assay. In addition, we measured nuclear translocation of transcription factors believed to be important for TTP transcription, i.e. NF-kappaB, AP-2, SP1 and EGR1. Downregulation of PKCdelta by siRNA decreased significantly TTP expression in activated macrophages. Rottlerin also decreased TTP expression in wild type cells but not in cells in which PKCdelta had been downregulated by siRNA. Rottlerin decreased TTP mRNA half-life as measured by actinomycin D assay but it did not affect the nuclear translocation of transcription factors NF-kappaB, Sp1, AP-2 or EGR1 (which have been shown to be involved in TTP transcription). In addition, rottlerin reduced the decay of TNFalpha mRNA, which is an important target of TTP. The results suggest that PKCdelta up-regulates the expression of TTP by stabilizing its mRNA which may serve as a feed-back loop to regulate the inflammatory response.
Collapse
Affiliation(s)
- Tiina Leppänen
- The Immunopharmacology Research Group, University of Tampere Medical School and Research Unit, Tampere University Hospital, Tampere, Finland
| | | | | | | | | |
Collapse
|
47
|
Sanduja S, Kaza V, Dixon DA. The mRNA decay factor tristetraprolin (TTP) induces senescence in human papillomavirus-transformed cervical cancer cells by targeting E6-AP ubiquitin ligase. Aging (Albany NY) 2009; 1:803-17. [PMID: 20157568 PMCID: PMC2815738 DOI: 10.18632/aging.100086] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2009] [Accepted: 09/08/2009] [Indexed: 12/31/2022]
Abstract
The RNA-binding
protein tristetraprolin (TTP) regulates expression of many
cancer-associated and proinflammatory factors through binding AU-rich
elements (ARE) in the 3'-untranslated region (3'UTR) and facilitating rapid
mRNA decay. Here we report on the ability of TTP to act in an
anti-proliferative capacity in HPV18-positive HeLa cells by inducing
senescence. HeLa cells maintain a dormant p53 pathway and elevated
telomerase activity resulting from HPV-mediated transformation, whereas TTP
expression counteracted this effect by stabilizing p53 protein and
inhibiting hTERT expression. Presence of TTP did not alter E6 and E7 viral
mRNA levels indicating that these are not TTP targets. It was found that
TTP promoted rapid mRNA decay of the cellular
ubiquitin ligase E6-associated protein (E6-AP). RNA-binding studies
demonstrated TTP and E6-AP mRNA interaction and deletion of the E6-AP mRNA
ARE-containing 3'UTR imparts resistance to TTP-mediated downregulation.
Similar results were obtained with high-risk HPV16-positive cells that
employ the E6-AP pathway to control p53 and hTERT levels. Furthermore, loss
of TTP expression was consistently observed in cervical cancer tissue
compared to normal tissue. These findings demonstrate the ability of TTP to
act as a tumor suppressor by inhibiting the E6-AP pathway
and indicate TTP loss to be a critical event during HPV-mediated
carcinogenesis.
Collapse
Affiliation(s)
- Sandhya Sanduja
- Department of Biological Sciences and Cancer Research Center, University of South Carolina, Columbia, SC 29203, USA
| | | | | |
Collapse
|
48
|
TIS11 family proteins and their roles in posttranscriptional gene regulation. J Biomed Biotechnol 2009; 2009:634520. [PMID: 19672455 PMCID: PMC2722025 DOI: 10.1155/2009/634520] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 05/18/2009] [Indexed: 12/20/2022] Open
Abstract
Posttranscriptional regulation of gene expression of mRNAs containing adenine-uridine rich elements (AREs) in their 3′ untranslated regions is mediated by a number of different proteins that interact with these elements to either stabilise or destabilise them. The present review concerns the TPA-inducible sequence 11 (TIS11) protein family, a small family of proteins, that appears to interact with ARE-containing mRNAs and promote their degradation. This family of proteins has been extensively studied in the past decade. Studies have focussed on determining their biochemical functions, identifying their target mRNAs, and determining their roles in cell functions and diseases.
Collapse
|
49
|
Tissue- and age-dependent expression of RNA-binding proteins that influence mRNA turnover and translation. Aging (Albany NY) 2009; 1:681-98. [PMID: 20157551 PMCID: PMC2806049 DOI: 10.18632/aging.100073] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/24/2009] [Indexed: 12/25/2022]
Abstract
Gene expression
patterns vary dramatically in a tissue-specific and age-dependent manner.
RNA-binding proteins that regulate mRNA turnover and/or translation
(TTR-RBPs) critically affect the subsets of expressed proteins. However,
very little is known regarding the tissue- and age-dependent expression of
TTR-RBPs in humans. Here, we use human tissue arrays containing a panel of
organ biopsies from donors of different ages, to study the distribution and
abundance of four TTR-RBPs: HuR, AUF1, TIA-1, and TTP. HuR and AUF1 were
expressed with remarkably similar patterns. Both TTR-RBPs were present in
high percentages of cells and displayed elevated intensities in many age
groups and tissues, most notably in the gastrointestinal and reproductive
systems; they were moderately expressed in the urinary and immune systems,
and were almost undetectable in muscle and brain. TIA-1 was also abundant
in many tissues and age groups; TIA-1 was expressed at high levels in the
gastrointestinal, immune, urinary, and reproductive systems, and at low
levels in brain and muscle. By contrast, TTP-expressing cells, as well as
TTP signal intensities declined with advancing age, particularly in the
immune, nervous, and muscular systems; however, TTP levels remained
elevated in the gastrointestinal tract. The widespread abundance of HuR,
AUF1, and TIA-1 throughout the body and in all age groups was in stark
contrast with their declining levels in human diploid fibroblasts (HDFs)
undergoing replicative senescence, a cultured-cell model of aging.
Conversely, TTP levels increased in senescent HDFs, while TTP levels
decreased with advancing age. Our studies provide a framework for the
study of human TTR-RBP function in different tissues, throughout the human
life span.
Collapse
|
50
|
Ogilvie RL, Sternjohn JR, Rattenbacher B, Vlasova IA, Williams DA, Hau HH, Blackshear PJ, Bohjanen PR. Tristetraprolin mediates interferon-gamma mRNA decay. J Biol Chem 2009; 284:11216-23. [PMID: 19258311 PMCID: PMC2670126 DOI: 10.1074/jbc.m901229200] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 03/02/2009] [Indexed: 01/08/2023] Open
Abstract
Tristetraprolin (TTP) regulates expression at the level of mRNA decay of several cytokines, including the T cell-specific cytokine, interleukin-2. We performed experiments to determine whether another T cell-specific cytokine, interferon-gamma (IFN-gamma), is also regulated by TTP and found that T cell receptor-activated T cells from TTP knock-out mice overproduced IFN-gamma mRNA and protein compared with activated T cells from wild-type mice. The half-life of IFN-gamma mRNA was 23 min in anti-CD3-stimulated T cells from wild-type mice, whereas it was 51 min in anti-CD3-stimulated T cells from TTP knock-out mice, suggesting that the overexpression of IFN-gamma mRNA in TTP knock-out mice was due to stabilization of IFN-gamma mRNA. Insertion of a 70-nucleotide AU-rich sequence from the murine IFN-gamma 3'-untranslated region, which contained a high affinity binding site for TTP, into the 3'-untranslated region of a beta-globin reporter transcript conferred TTP-dependent destabilization on the beta-globin transcript. Together these results suggest that TTP binds to a functional AU-rich element in the 3'-untranslated region of IFN-gamma mRNA and mediates rapid degradation of the IFN-gamma transcript. Thus, TTP plays an important role in turning off IFN-gamma expression at the appropriate time during an immune response.
Collapse
Affiliation(s)
- Rachel L Ogilvie
- Centers for Infectious Diseases and Microbiology Translational Research and Immunology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | |
Collapse
|