1
|
Zhgun AA. Comparative Genomic Analysis Reveals Key Changes in the Genome of Acremonium chrysogenum That Occurred During Classical Strain Improvement for Production of Antibiotic Cephalosporin C. Int J Mol Sci 2024; 26:181. [PMID: 39796039 PMCID: PMC11719821 DOI: 10.3390/ijms26010181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
From the 1950s to the present, the main tool for obtaining fungal industrial producers of secondary metabolites remains the so-called classical strain improvement (CSI) methods associated with multi-round random mutagenesis and screening for the level of target products. As a result of the application of such techniques, the yield of target secondary metabolites in high-yielding (HY) strains was increased hundreds of times compared to the wild-type (WT) parental strains. However, the events that occur at the molecular level during CSI programs are still unknown. In this paper, an attempt was made to identify characteristic changes at the genome level that occurred during CSI of the Acremonium chrysogenum WT strain (ATCC 11550) and led to the creation of the A. chrysogenum HY strain (RNCM F-4081D), which produces 200-300 times more cephalosporin C, the starting substance for obtaining cephalosporin antibiotics of the 1st-5th generations. We identified 3730 mutational changes, 56 of which led to significant disturbances in protein synthesis and concern: (i) enzymes of primary and secondary metabolism; (ii) transporters, including MDR; (iii) regulators, including cell cycle and chromatin remodeling; (iv) other processes. There was also a focus on mutations occurring in the biosynthetic gene clusters (BGCs) of the HY strain; polyketide synthases were found to be hot spots for mutagenesis. The obtained data open up the possibility not only for understanding the molecular basis for the increase in cephalosporin C production in A. chrysogenum HY, but also show the universal events that occur when improving mold strains for the production of secondary metabolites by classical methods.
Collapse
Affiliation(s)
- Alexander A Zhgun
- Group of Fungal Genetic Engineering, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prosp. 33-2, 119071 Moscow, Russia
| |
Collapse
|
2
|
Thomé V, Ferreira PB, Lubini G, Nogueira FM, Strini EJ, Pinoti VF, Cruz JO, San Martin JAB, Quiapim AC, daSilva LLP, Goldman MHS. Unveiling the Movement of RanBP1 During the Cell Cycle and Its Interaction with a Cyclin-Dependent Kinase (CDK) in Plants. Int J Mol Sci 2024; 26:46. [PMID: 39795905 PMCID: PMC11720235 DOI: 10.3390/ijms26010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/18/2024] [Accepted: 12/21/2024] [Indexed: 01/25/2025] Open
Abstract
In the Nicotiana tabacum flower development study, we identified SCI1 (Stigma/style Cell-cycle Inhibitor 1), a regulator of cell proliferation. SCI1 interacts with NtCDKG;2 (N. tabacum Cyclin-Dependent Kinase G;2), a homolog of human CDK11, which is responsible for RanGTP-dependent microtubule stabilization, regulating spindle assembly rate. In a Y2H screening of a cDNA library using NtCDKG;2 as bait, a RanBP1 (Ran-Binding Protein 1) was revealed as its interaction partner. RanBP1 is an essential regulatory protein of the RanGTPase system, contributing to the formation of the Ran gradient, which modulates different important cellular processes. RanBP1 is crucial in the nuclear import/export machinery during interphase and spindle checkpoint formation during cell division. These processes are well studied in animals, but very little is known about them in plants. We confirmed NtCDKG;2 and NtRanBP1 interaction by pairwise Y2H and characterized the localization of both proteins during plant cell division. We demonstrated the presence of NtRanBP1 in the cytoplasm during interphase and its nuclear arrest at mitosis onset. Meanwhile, we showed that NtCDKG;2 is localized in the mitotic spindle during cell division, indicating an analogous function to the human CDK11. We propose that the phosphorylation of the nuclear export signal at RanBP1 by NtCDKG;2 may be responsible for the reported nuclear arrest.
Collapse
Affiliation(s)
- Vanessa Thomé
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (V.T.); (P.B.F.); (G.L.); (E.J.S.); (V.F.P.); (J.O.C.); (J.A.B.S.M.); (A.C.Q.)
- PPG Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14001-970, SP, Brazil
| | - Pedro B. Ferreira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (V.T.); (P.B.F.); (G.L.); (E.J.S.); (V.F.P.); (J.O.C.); (J.A.B.S.M.); (A.C.Q.)
- PPG Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14001-970, SP, Brazil
| | - Greice Lubini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (V.T.); (P.B.F.); (G.L.); (E.J.S.); (V.F.P.); (J.O.C.); (J.A.B.S.M.); (A.C.Q.)
- PPG Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14001-970, SP, Brazil
| | - Fernanda M. Nogueira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (V.T.); (P.B.F.); (G.L.); (E.J.S.); (V.F.P.); (J.O.C.); (J.A.B.S.M.); (A.C.Q.)
| | - Edward J. Strini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (V.T.); (P.B.F.); (G.L.); (E.J.S.); (V.F.P.); (J.O.C.); (J.A.B.S.M.); (A.C.Q.)
- PPG Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14001-970, SP, Brazil
| | - Vitor F. Pinoti
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (V.T.); (P.B.F.); (G.L.); (E.J.S.); (V.F.P.); (J.O.C.); (J.A.B.S.M.); (A.C.Q.)
- PPG Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14001-970, SP, Brazil
| | - Joelma O. Cruz
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (V.T.); (P.B.F.); (G.L.); (E.J.S.); (V.F.P.); (J.O.C.); (J.A.B.S.M.); (A.C.Q.)
- PPG Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14001-970, SP, Brazil
| | - Juca A. B. San Martin
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (V.T.); (P.B.F.); (G.L.); (E.J.S.); (V.F.P.); (J.O.C.); (J.A.B.S.M.); (A.C.Q.)
| | - Andréa C. Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (V.T.); (P.B.F.); (G.L.); (E.J.S.); (V.F.P.); (J.O.C.); (J.A.B.S.M.); (A.C.Q.)
| | - Luis L. P. daSilva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, SP, Brazil;
| | - Maria Helena S. Goldman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil; (V.T.); (P.B.F.); (G.L.); (E.J.S.); (V.F.P.); (J.O.C.); (J.A.B.S.M.); (A.C.Q.)
- PPG Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14001-970, SP, Brazil
| |
Collapse
|
3
|
Functional analysis of an essential Ran-binding protein gene, CpRbp1, from the chestnut blight fungus Cryphonectria parasitica using heterokaryon rescue. Sci Rep 2020; 10:8111. [PMID: 32415177 PMCID: PMC7229160 DOI: 10.1038/s41598-020-65036-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
A Ran binding protein (RanBP) homolog, CpRbp1, from Cryphonectria parasitica, has been identified as a protein that is affected by hypovirus infection or tannic acid supplementation. In this study, functional analyses of CpRbp1 were performed by constructing a knockout mutant and analyzing the resulting heterokaryon. Transformation-mediated gene replacement resulted in two putative CpRbp1-null mutants and genotype analyses identified these two mutants as heterokaryotic transformants consisting of two types of nuclei, one with the wild-type CpRbp1 allele and another with the CpRbp1-null mutant allele. Although stable mycelial growth of the heterokaryotic transformant was observed on selective medium containing hygromycin B, neither germination nor growth of the resulting conidia, which were single-cell monokaryotic progeny, was observed on the medium. In trans complementation of heterokaryons using a full-length wild-type allele of the CpRbp1 gene resulted in complemented transformants. These transformants sporulated single-cell monokaryotic conidia that were able to grow on media selective for replacing and/or complementing markers. These results clearly indicate that CpRbp1 is an essential gene, and heterokaryons allowed the fungus to maintain lethal CpRbp1-null mutant nuclei. Moreover, in trans complementation of heterokaryons using chimeric structures of the CpRbp1 gene allowed for analysis of its functional domains, which was previously hampered due to the lethality of the gene. In addition, in trans complementation using heterologous RanBP genes from Aspergillus nidulans was successful, suggesting that the function of RanBP is conserved during evolution. Furthermore, in trans complementation allowed for functional analyses of lethal orthologs. This study demonstrates that our fungal heterokaryon system can be applied effectively to determine whether a gene of interest is essential, perform functional analyses of a lethal gene, and analyze corresponding heterologous genes.
Collapse
|
4
|
Li Y, Zhou J, Min S, Zhang Y, Zhang Y, Zhou Q, Shen X, Jia D, Han J, Sun Q. Distinct RanBP1 nuclear export and cargo dissociation mechanisms between fungi and animals. eLife 2019; 8:e41331. [PMID: 31021318 PMCID: PMC6524963 DOI: 10.7554/elife.41331] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 04/24/2019] [Indexed: 02/05/2023] Open
Abstract
Ran binding protein 1 (RanBP1) is a cytoplasmic-enriched and nuclear-cytoplasmic shuttling protein, playing important roles in nuclear transport. Much of what we know about RanBP1 is learned from fungi. Intrigued by the long-standing paradox of harboring an extra NES in animal RanBP1, we discovered utterly unexpected cargo dissociation and nuclear export mechanisms for animal RanBP1. In contrast to CRM1-RanGTP sequestration mechanism of cargo dissociation in fungi, animal RanBP1 solely sequestered RanGTP from nuclear export complexes. In fungi, RanBP1, CRM1 and RanGTP formed a 1:1:1 nuclear export complex; in contrast, animal RanBP1, CRM1 and RanGTP formed a 1:1:2 nuclear export complex. The key feature for the two mechanistic changes from fungi to animals was the loss of affinity between RanBP1-RanGTP and CRM1, since residues mediating their interaction in fungi were not conserved in animals. The biological significances of these different mechanisms in fungi and animals were also studied.
Collapse
Affiliation(s)
- Yuling Li
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Jinhan Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Sui Min
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Yang Zhang
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre for BiotherapyChengduChina
| | - Yuqing Zhang
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Qiao Zhou
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| | - Xiaofei Shen
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of NeurologyWest China Second University Hospital, Sichuan UniversityChengduChina
| | - Junhong Han
- Division of Abdominal Cancer, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre for BiotherapyChengduChina
| | - Qingxiang Sun
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer CenterWest China Hospital, Sichuan University, Collaborative Innovation Centre of BiotherapyChengduChina
| |
Collapse
|
5
|
Hu Z, Wang Y, Yu L, Mahanty SK, Mendoza N, Elion EA. Mapping regions in Ste5 that support Msn5-dependent and -independent nuclear export. Biochem Cell Biol 2016; 94:109-28. [PMID: 26824509 DOI: 10.1139/bcb-2015-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Careful control of the available pool of the MAPK scaffold Ste5 is important for mating-pathway activation and the prevention of inappropriate mating differentiation in haploid Saccharomyces cerevisiae. Ste5 shuttles constitutively through the nucleus, where it is degraded by a ubiquitin-dependent mechanism triggered by G1 CDK phosphorylation. Here we narrow-down regions of Ste5 that mediate nuclear export. Four regions in Ste5 relocalize SV40-TAgNLS-GFP-GFP from nucleus to cytoplasm. One region is N-terminal, dependent on exportin Msn5/Ste21/Kap142, and interacts with Msn5 in 2 hybrid assays independently of mating pheromone, Fus3, Kss1, Ptc1, the NLS/PM, and RING-H2. A second region overlaps the PH domain and Ste11 binding site and 2 others are on the vWA domain and include residues essential for MAPK activation. We find no evidence for dependence on Crm1/Xpo1, despite numerous potential nuclear export sequences (NESs) detected by LocNES and NetNES1.1 predictors. Thus, Msn5 (homolog of human Exportin-5) and one or more exportins or adaptor molecules besides Crm1/Xpo1 may regulate Ste5 through multiple recognition sites.
Collapse
Affiliation(s)
- Zhenhua Hu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Yunmei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Lu Yu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Sanjoy K Mahanty
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Natalia Mendoza
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Elaine A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
6
|
Kırlı K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, Urlaub H, Görlich D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife 2015; 4:e11466. [PMID: 26673895 PMCID: PMC4764573 DOI: 10.7554/elife.11466] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/13/2015] [Indexed: 12/23/2022] Open
Abstract
CRM1 is a highly conserved, RanGTPase-driven exportin that carries proteins and RNPs from the nucleus to the cytoplasm. We now explored the cargo-spectrum of CRM1 in depth and identified surprisingly large numbers, namely >700 export substrates from the yeast S. cerevisiae, ≈1000 from Xenopus oocytes and >1050 from human cells. In addition, we quantified the partitioning of ≈5000 unique proteins between nucleus and cytoplasm of Xenopus oocytes. The data suggest new CRM1 functions in spatial control of vesicle coat-assembly, centrosomes, autophagy, peroxisome biogenesis, cytoskeleton, ribosome maturation, translation, mRNA degradation, and more generally in precluding a potentially detrimental action of cytoplasmic pathways within the nuclear interior. There are also numerous new instances where CRM1 appears to act in regulatory circuits. Altogether, our dataset allows unprecedented insights into the nucleocytoplasmic organisation of eukaryotic cells, into the contributions of an exceedingly promiscuous exportin and it provides a new basis for NES prediction.
Collapse
Affiliation(s)
- Koray Kırlı
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samir Karaca
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heinz Jürgen Dehne
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Matthias Samwer
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kuan Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
7
|
Matsuura Y. Mechanistic Insights from Structural Analyses of Ran-GTPase-Driven Nuclear Export of Proteins and RNAs. J Mol Biol 2015; 428:2025-39. [PMID: 26519791 DOI: 10.1016/j.jmb.2015.09.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/28/2015] [Indexed: 12/13/2022]
Abstract
Understanding how macromolecules are rapidly exchanged between the nucleus and the cytoplasm through nuclear pore complexes is a fundamental problem in biology. Exportins are Ran-GTPase-dependent nuclear transport factors that belong to the karyopherin-β family and mediate nuclear export of a plethora of proteins and RNAs, except for bulk mRNA nuclear export. Exportins bind cargo macromolecules in a Ran-GTP-dependent manner in the nucleus, forming exportin-cargo-Ran-GTP complexes (nuclear export complexes). Transient weak interactions between exportins and nucleoporins containing characteristic FG (phenylalanine-glycine) repeat motifs facilitate nuclear pore complex passage of nuclear export complexes. In the cytoplasm, nuclear export complexes are disassembled, thereby releasing the cargo. GTP hydrolysis by Ran promoted in the cytoplasm makes the disassembly reaction virtually irreversible and provides thermodynamic driving force for the overall export reaction. In the past decade, X-ray crystallography of some of the exportins in various functional states coupled with functional analyses, single-particle electron microscopy, molecular dynamics simulations, and small-angle solution X-ray scattering has provided rich insights into the mechanism of cargo binding and release and also begins to elucidate how exportins interact with the FG repeat motifs. The knowledge gained from structural analyses of nuclear export is being translated into development of clinically useful inhibitors of nuclear export to treat human diseases such as cancer and influenza.
Collapse
Affiliation(s)
- Yoshiyuki Matsuura
- Division of Biological Science and Structural Biology Research Center, Graduate School of Science, Nagoya University, Nagoya 466-8550, Japan.
| |
Collapse
|
8
|
Proteomic Analysis of Mature Lagenaria siceraria Seed. Appl Biochem Biotechnol 2015; 175:3643-56. [DOI: 10.1007/s12010-015-1532-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/27/2015] [Indexed: 12/16/2022]
|
9
|
Cautain B, Hill R, de Pedro N, Link W. Components and regulation of nuclear transport processes. FEBS J 2014; 282:445-62. [PMID: 25429850 PMCID: PMC7163960 DOI: 10.1111/febs.13163] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 12/27/2022]
Abstract
The spatial separation of DNA replication and gene transcription in the nucleus and protein translation in the cytoplasm is a uniform principle of eukaryotic cells. This compartmentalization imposes a requirement for a transport network of macromolecules to shuttle these components in and out of the nucleus. This nucleo‐cytoplasmic transport of macromolecules is critical for both cell physiology and pathology. Consequently, investigating its regulation and disease‐associated alterations can reveal novel therapeutic approaches to fight human diseases, such as cancer or viral infection. The characterization of the nuclear pore complex, the identification of transport signals and transport receptors, as well as the characterization of the Ran system (providing the energy source for efficient cargo transport) has greatly facilitated our understanding of the components, mechanisms and regulation of the nucleo‐cytoplasmic transport of proteins in our cells. Here we review this knowledge with a specific emphasis on the selection of disease‐relevant molecular targets for potential therapeutic intervention.
Collapse
Affiliation(s)
- Bastien Cautain
- Fundacion MEDINA Parque tecnológico ciencias de la salud, Granada, Spain
| | | | | | | |
Collapse
|
10
|
Fung HYJ, Chook YM. Atomic basis of CRM1-cargo recognition, release and inhibition. Semin Cancer Biol 2014; 27:52-61. [PMID: 24631835 PMCID: PMC4108548 DOI: 10.1016/j.semcancer.2014.03.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 11/19/2022]
Abstract
CRM1 or XPO1 is the major nuclear export receptor in the cell, which controls the nuclear-cytoplasmic localization of many proteins and RNAs. CRM1 is also a promising cancer drug target as the transport receptor is overexpressed in many cancers where some of its cargos are misregulated and mislocalized to the cytoplasm. Atomic level understanding of CRM1 function has greatly facilitated recent drug discovery and development of CRM1 inhibitors to target a variety of malignancies. Numerous atomic resolution CRM1 structures are now available, explaining how the exporter recognizes nuclear export signals in its cargos, how RanGTP and cargo bind with positive cooperativity, how RanBP1 causes release of export cargos in the cytoplasm and how diverse inhibitors such as Leptomycin B and the new KPT-SINE compounds block nuclear export. This review summarizes structure-function studies that explain CRM1-cargo recognition, release and inhibition.
Collapse
Affiliation(s)
- Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park, Dallas, TX 75390-9041, USA.
| |
Collapse
|
11
|
Mumbanza FM, Kiggundu A, Tusiime G, Tushemereirwe WK, Niblett C, Bailey A. In vitro antifungal activity of synthetic dsRNA molecules against two pathogens of banana, Fusarium oxysporum f. sp. cubense and Mycosphaerella fijiensis. PEST MANAGEMENT SCIENCE 2013; 69:1155-62. [PMID: 23471899 DOI: 10.1002/ps.3480] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 11/14/2012] [Accepted: 01/03/2013] [Indexed: 05/25/2023]
Abstract
BACKGROUND A key challenge for designing RNAi-based crop protection strategies is the identification of effective target genes in the pathogenic organism. In this study, in vitro antifungal activities of a set of synthetic double-stranded RNA molecules on spore germination of two major pathogenic fungi of banana, Fusarium oxysporum Schlecht f. sp. cubense WC Snyder & HN Hans (Foc) and Mycosphaerella fijiensis Morelet (Mf) were evaluated. RESULTS All the tested synthetic dsRNAs successfully triggered the silencing of target genes and displayed varying degrees of potential to inhibit spore germination of both tested banana pathogens. When Foc dsRNAs were applied to Foc spores, inhibition ranged from 79.8 to 93.0%, and from 19.9 to 57.8% when Foc dsRNAs were applied to Mf spores. However, when Mf dsRNAs were applied on Mf spores, inhibition ranged from 34.4 to 72.3%, and from 89.7 to 95.9% when Mf dsRNAs were applied to Foc spores. CONCLUSION The dsRNAs for adenylate cyclase, DNA polymerase alpha subunit and DNA polymerase delta subunit showed high levels of spore germination inhibition during both self- and cross-species tests, making them the most promising targets for RNA-mediated resistance in banana against these fungal pathogens. © 2013 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francis M Mumbanza
- National Banana Research Programme, National Agriculture Research Organisation, Kampala, Uganda.
| | | | | | | | | | | |
Collapse
|
12
|
Fernández-Cid A, Vega M, Herrero P, Moreno F. Yeast importin-β is required for nuclear import of the Mig2 repressor. BMC Cell Biol 2012; 13:31. [PMID: 23131016 PMCID: PMC3531251 DOI: 10.1186/1471-2121-13-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 11/04/2012] [Indexed: 12/25/2022] Open
Abstract
Background Mig2 has been described as a transcriptional factor that in the absence of Mig1 protein is required for glucose repression of the SUC2 gene. Recently it has been reported that Mig2 has two different subcellular localizations. In high-glucose conditions it is a nuclear modulator of several Mig1-regulated genes, but in low-glucose most of the Mig2 protein accumulates in mitochondria. Thus, the Mig2 protein enters and leaves the nucleus in a glucose regulated manner. However, the mechanism by which Mig2 enters into the nucleus was unknown until now. Results Here, we report that the Mig2 protein is an import substrate of the carrier Kap95 (importin-β). The Mig2 nuclear import mechanism bypasses the requirement for Kap60 (importin-α) as an adaptor protein, since Mig2 directly binds to Kap95 in the presence of Gsp1(GDP). We also show that the Mig2 nuclear import and the binding of Mig2 with Kap95 are not glucose-dependent processes and require a basic NLS motif, located between lysine-32 and arginine-37. Mig2 interaction with Kap95 was assessed in vitro using purified proteins, demonstrating that importin-β, together with the GTP-binding protein Gsp1, is able to mediate efficient Mig2-Kap95 interaction in the absence of the importin-α (Kap60). It was also demonstrated, that the directionality of Mig2 transport is regulated by association with the small GTPase Gsp1 in the GDP- or GTP-bound forms, which promote cargo recognition and release, respectively. Conclusions The Mig2 protein accumulates in the nucleus through a Kap95 and NLS-dependent nuclear import pathway, which is independent of importin-α in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Alejandra Fernández-Cid
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006, Oviedo, Spain
| | | | | | | |
Collapse
|
13
|
Peláez R, Fernández-García P, Herrero P, Moreno F. Nuclear import of the yeast hexokinase 2 protein requires α/β-importin-dependent pathway. J Biol Chem 2011; 287:3518-29. [PMID: 22157003 DOI: 10.1074/jbc.m111.317230] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hexokinase 2 (Hxk2) from Saccharomyces cerevisiae was one of the first metabolic enzymes described as a multifunctional protein. Hxk2 has a double subcellular localization and role, it functions as a glycolytic enzyme in the cytoplasm and as a regulator of gene transcription of several Mig1-regulated genes in the nucleus. However, the mechanism by which Hxk2 enters in the nucleus was unknown until now. Here, we report that the Hxk2 protein is an import substrate of the carriers α-importin (Kap60 in yeast) and β-importin (Kap95 in yeast). We also show that the Hxk2 nuclear import and the binding of Hxk2 with Kap60 are glucose-dependent and involve one lysine-rich nuclear localization sequence (NLS), located between lysine 6 and lysine 12. Moreover, Kap95 facilitates the recognition of the Hxk2 NLS1 motif by Kap60 and both importins are essential for Hxk2 nuclear import. It is also demonstrated that Hxk2 nuclear import and its binding to Kap95 and Kap60 depend on the Gsp1-GTP/GDP protein levels. Thus, our study uncovers Hxk2 as a new cargo for the α/β-importin pathway of S. cerevisiae.
Collapse
Affiliation(s)
- Rafael Peláez
- Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
| | | | | | | |
Collapse
|
14
|
McGuire AT, Mangroo D. Cex1p facilitates Rna1p-mediated dissociation of the Los1p-tRNA-Gsp1p-GTP export complex. Traffic 2011; 13:234-56. [PMID: 22008473 DOI: 10.1111/j.1600-0854.2011.01304.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 10/17/2011] [Accepted: 10/17/2011] [Indexed: 01/17/2023]
Abstract
Nuclear tRNA export plays an essential role in key cellular processes such as regulation of protein synthesis, cell cycle progression, response to nutrient availability and DNA damage and development. Like other nuclear export processes, assembly of the nuclear tRNA export complex in the nucleus is dependent on Ran-GTP/Gsp1p-GTP, and dissociation of the export receptor-tRNA-Ran-GTP/Gsp1p-GTP complex in the cytoplasm requires RanBP1/Yrb1p and RanGAP/Rna1p to activate the GTPase activity of Ran-GTP/Gsp1p-GTP. The Saccharomyces cerevisiae Cex1p and Human Scyl1 have also been proposed to participate in unloading of the tRNA export receptors at the cytoplasmic face of the nuclear pore complex (NPC). Here, we provide evidence suggesting that Cex1p is required for activation of the GTPase activity of Gsp1p and dissociation of the receptor-tRNA-Gsp1p export complex in S. cerevisiae. The data suggest that Cex1p recruits Rna1p from the cytoplasm to the NPC and facilitates Rna1p activation of the GTPase activity of Gsp1p by enabling Rna1p to gain access to Gsp1p-GTP bound to the export receptor tRNA complex. It is possible that this tRNA unloading mechanism is conserved in evolutionarily diverse organisms and that other Gsp1p-GTP-dependent export processes use a pathway-specific component to recruit Rna1p to the NPC.
Collapse
Affiliation(s)
- Andrew T McGuire
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
15
|
Lee SJ, Jiko C, Yamashita E, Tsukihara T. Selective nuclear export mechanism of small RNAs. Curr Opin Struct Biol 2010; 21:101-8. [PMID: 21145229 DOI: 10.1016/j.sbi.2010.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 10/28/2010] [Accepted: 11/13/2010] [Indexed: 02/07/2023]
Abstract
The timely nuclear-cytoplasmic translocation of proteins and RNAs by importins and exportins is important for controlling biological processes. Since the 2004 publication of the first exportin structure, Cse1p, the X-ray structures of exportin-5 complexed with pre-microRNA, exportin-t complexed with tRNA, and three CRM1-related structures have revealed the binding mechanism involved in specific cargo recognition. Pre-microRNA and tRNA have conserved 3' 2-4-nucleotide overhang motifs and similar short double-stranded regions. Exportin-5 and exportin-t bind a conserved 3' overhang strongly, and they weakly enclose the short double-stranded stems, each in a different manner. The structures of the nuclear export complexes of small double-stranded RNAs, pre-microRNAs, and tRNAs provide information about the specificities of the two exportins in the context of transcription and translation control.
Collapse
Affiliation(s)
- Soo Jae Lee
- College of Pharmacy, Chungbuk National University, Heungduk-gu, Cheongju, Chungbuk, Republic of Korea.
| | | | | | | |
Collapse
|
16
|
Koyama M, Matsuura Y. An allosteric mechanism to displace nuclear export cargo from CRM1 and RanGTP by RanBP1. EMBO J 2010; 29:2002-13. [PMID: 20485264 PMCID: PMC2892370 DOI: 10.1038/emboj.2010.89] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 04/16/2010] [Indexed: 11/09/2022] Open
Abstract
The karyopherin CRM1 mediates nuclear export of proteins and ribonucleoproteins bearing a leucine-rich nuclear export signal (NES). To elucidate the precise mechanism by which NES-cargos are dissociated from CRM1 in the cytoplasm, which is important for transport directionality, we determined a 2.0-A resolution crystal structure of yeast CRM1:RanBP1:RanGTP complex, an intermediate in the disassembly of the CRM1 nuclear export complex. The structure shows that on association of Ran-binding domain (RanBD) of RanBP1 with CRM1:NES-cargo:RanGTP complex, RanBD and the C-terminal acidic tail of Ran induce a large movement of the intra-HEAT9 loop of CRM1. The loop moves to the CRM1 inner surface immediately behind the NES-binding site and causes conformational rearrangements in HEAT repeats 11 and 12 so that the hydrophobic NES-binding cleft on the CRM1 outer surface closes, squeezing out the NES-cargo. This allosteric mechanism accelerates dissociation of NES by over two orders of magnitude. Structure-based mutagenesis indicated that the HEAT9 loop also functions as an allosteric autoinhibitor to stabilize CRM1 in a conformation that is unable to bind NES-cargo in the absence of RanGTP.
Collapse
Affiliation(s)
- Masako Koyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| | - Yoshiyuki Matsuura
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
- Structural Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan
| |
Collapse
|
17
|
Peláez R, Herrero P, Moreno F. Nuclear export of the yeast hexokinase 2 protein requires the Xpo1 (Crm1)-dependent pathway. J Biol Chem 2009; 284:20548-55. [PMID: 19525230 PMCID: PMC2742819 DOI: 10.1074/jbc.m109.013730] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 06/06/2009] [Indexed: 11/06/2022] Open
Abstract
Hexokinase 2 (Hxk2) from Saccharomyces cerevisiae was one of the first metabolic enzymes described as a multifunctional protein. Hxk2 has a double subcellular localization; it functions as a glycolytic enzyme in the cytoplasm and as a regulator of gene transcription of several Mig1-regulated genes in the nucleus. However, the mechanism by which Hxk2 enters and leaves the nucleus is still unknown. In low glucose conditions, Hxk2 is phosphorylated at serine 14, but how this phosphorylation may affect glucose signaling is also unknown at the moment. Here we report that the Hxk2 protein is an export substrate of the carrier protein Xpo1 (Crm1). We also show that the Hxk2 nuclear export and the binding of Hxk2 and Xpo1 involve two leucine-rich nuclear export signals (NES) located between leucine 23 and isoleucine 33 (NES1) and between leucine 310 and leucine 318 (NES2). We also show that the Hxk2 phosphorylation at serine 14 promotes Hxk2 export by facilitating the association of Hxk2 with Xpo1. Our study uncovers a new cargo for the Xpo1 yeast exportin and identifies Hxk2 phosphorylation at serine 14 as a regulatory mechanism that controls its nuclear exit in function of the glucose levels.
Collapse
Affiliation(s)
- Rafael Peláez
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Pilar Herrero
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
| | - Fernando Moreno
- From the Department of Biochemistry and Molecular Biology, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
18
|
Lonhienne TG, Forwood JK, Marfori M, Robin G, Kobe B, Carroll BJ. Importin-beta is a GDP-to-GTP exchange factor of Ran: implications for the mechanism of nuclear import. J Biol Chem 2009; 284:22549-58. [PMID: 19549784 DOI: 10.1074/jbc.m109.019935] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ran-GTP interacts strongly with importin-beta, and this interaction promotes the release of the importin-alpha-nuclear localization signal cargo from importin-beta. Ran-GDP also interacts with importin-beta, but this interaction is 4 orders of magnitude weaker than the Ran-GTP.importin-beta interaction. Here we use the yeast complement of nuclear import proteins to show that the interaction between Ran-GDP and importin-beta promotes the dissociation of GDP from Ran. The release of GDP from the Ran-GDP-importin-beta complex stabilizes the complex, which cannot be dissociated by importin-alpha. Although Ran has a higher affinity for GDP compared with GTP, Ran in complex with importin-beta has a higher affinity for GTP. This feature is responsible for the generation of Ran-GTP from Ran-GDP by importin-beta. Ran-binding protein-1 (RanBP1) activates this reaction by forming a trimeric complex with Ran-GDP and importin-beta. Importin-alpha inhibits the GDP exchange reaction by sequestering importin-beta, whereas RanBP1 restores the GDP nucleotide exchange by importin-beta by forming a tetrameric complex with importin-beta, Ran, and importin-alpha. The exchange is also inhibited by nuclear-transport factor-2 (NTF2). We suggest a mechanism for nuclear import, additional to the established RCC1 (Ran-guanine exchange factor)-dependent pathway that incorporates these results.
Collapse
Affiliation(s)
- Thierry G Lonhienne
- Australian Research Council Centre of Excellence for Integrative Legume Research, School of Chemistry and Molecular Biosciences, University of Queensland, QLD 4072, St. Lucia, Australia.
| | | | | | | | | | | |
Collapse
|
19
|
Jani D, Lutz S, Marshall NJ, Fischer T, Köhler A, Ellisdon AM, Hurt E, Stewart M. Sus1, Cdc31, and the Sac3 CID region form a conserved interaction platform that promotes nuclear pore association and mRNA export. Mol Cell 2009; 33:727-37. [PMID: 19328066 PMCID: PMC2726291 DOI: 10.1016/j.molcel.2009.01.033] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Revised: 01/19/2009] [Accepted: 01/30/2009] [Indexed: 11/25/2022]
Abstract
The yeast Sac3:Cdc31:Sus1:Thp1 (TREX-2) complex facilitates the repositioning and association of actively transcribing genes with nuclear pores (NPCs)-"gene gating"-that is central to integrating transcription, processing, and mRNA nuclear export. We present here the crystal structure of Sus1 and Cdc31 bound to a central region of Sac3 (the CID domain) that is crucial for its function. Sac3(CID) forms a long, gently undulating alpha helix around which one Cdc31 and two Sus1 chains are wrapped. Sus1 has an articulated helical hairpin fold that facilitates its wrapping around Sac3. In vivo studies using engineered mutations that selectively disrupted binding of individual chains to Sac3 indicated that Sus1 and Cdc31 function synergistically to promote NPC association of TREX-2 and mRNA nuclear export. These data indicate Sac3(CID) provides a scaffold within TREX-2 to integrate interactions between protein complexes to facilitate the coupling of transcription and mRNA export during gene expression.
Collapse
Affiliation(s)
- Divyang Jani
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Sheila Lutz
- Biochemie-Zentrum der Universität Heidelberg, INF328, D-69120 Heidelberg, Germany
| | - Neil J. Marshall
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | - Tamás Fischer
- Biochemie-Zentrum der Universität Heidelberg, INF328, D-69120 Heidelberg, Germany
| | - Alwin Köhler
- Biochemie-Zentrum der Universität Heidelberg, INF328, D-69120 Heidelberg, Germany
| | | | - Ed Hurt
- Biochemie-Zentrum der Universität Heidelberg, INF328, D-69120 Heidelberg, Germany
| | - Murray Stewart
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| |
Collapse
|
20
|
Neuber A, Franke J, Wittstruck A, Schlenstedt G, Sommer T, Stade K. Nuclear export receptor Xpo1/Crm1 is physically and functionally linked to the spindle pole body in budding yeast. Mol Cell Biol 2008; 28:5348-58. [PMID: 18573877 PMCID: PMC2519715 DOI: 10.1128/mcb.02043-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2007] [Revised: 12/28/2007] [Accepted: 06/16/2008] [Indexed: 01/13/2023] Open
Abstract
The spindle pole body (SPB) represents the microtubule organizing center in the budding yeast Saccharomyces cerevisiae. It is a highly structured organelle embedded in the nuclear membrane, which is required to anchor microtubules on both sides of the nuclear envelope. The protein Spc72, a component of the SPB, is located at the cytoplasmic face of this organelle and serves as a receptor for the gamma-tubulin complex. In this paper we show that it is also a binding partner of the nuclear export receptor Xpo1/Crm1. Xpo1 binds its cargoes in a Ran-dependent fashion via a short leucine-rich nuclear export signal (NES). We show that binding of Spc72 to Xpo1 depends on Ran-GTP and a functional NES in Spc72. Mutations in this NES have severe consequences for mitotic spindle morphology in vivo. This is also the case for xpo1 mutants, which show a reduction in cytoplasmic microtubules. In addition, we find a subpopulation of Xpo1 localized at the SPB. Based on these data, we propose a functional link between Xpo1 and the SPB and discuss a role for this exportin in spindle biogenesis in budding yeast.
Collapse
Affiliation(s)
- Anja Neuber
- Max Delbrück Centrum für Molekulare Medizin, Robert Rössle Str. 10, 13092 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
21
|
Rtr1 is the Saccharomyces cerevisiae homolog of a novel family of RNA polymerase II-binding proteins. EUKARYOTIC CELL 2008; 7:938-48. [PMID: 18408053 DOI: 10.1128/ec.00042-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cells must rapidly sense and respond to a wide variety of potentially cytotoxic external stressors to survive in a constantly changing environment. In a search for novel genes required for stress tolerance in Saccharomyces cerevisiae, we identified the uncharacterized open reading frame YER139C as a gene required for growth at 37 degrees C in the presence of the heat shock mimetic formamide. YER139C encodes the closest yeast homolog of the human RPAP2 protein, recently identified as a novel RNA polymerase II (RNAPII)-associated factor. Multiple lines of evidence support a role for this gene family in transcription, prompting us to rename YER139C RTR1 (regulator of transcription). The core RNAPII subunits RPB5, RPB7, and RPB9 were isolated as potent high-copy-number suppressors of the rtr1Delta temperature-sensitive growth phenotype, and deletion of the nonessential subunits RPB4 and RPB9 hypersensitized cells to RTR1 overexpression. Disruption of RTR1 resulted in mycophenolic acid sensitivity and synthetic genetic interactions with a number of genes involved in multiple phases of transcription. Consistently, rtr1Delta cells are defective in inducible transcription from the GAL1 promoter. Rtr1 constitutively shuttles between the cytoplasm and nucleus, where it physically associates with an active RNAPII transcriptional complex. Taken together, our data reveal a role for members of the RTR1/RPAP2 family as regulators of core RNAPII function.
Collapse
|
22
|
Sorokin AV, Kim ER, Ovchinnikov LP. Nucleocytoplasmic transport of proteins. BIOCHEMISTRY (MOSCOW) 2008; 72:1439-57. [PMID: 18282135 DOI: 10.1134/s0006297907130032] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.
Collapse
Affiliation(s)
- A V Sorokin
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
23
|
Quan X, Yu J, Bussey H, Stochaj U. The localization of nuclear exporters of the importin-beta family is regulated by Snf1 kinase, nutrient supply and stress. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1773:1052-61. [PMID: 17544521 DOI: 10.1016/j.bbamcr.2007.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2006] [Revised: 04/19/2007] [Accepted: 04/20/2007] [Indexed: 10/23/2022]
Abstract
In the budding yeast Saccharomyces cerevisiae, four members of the importin-beta family of nuclear carriers, Xpo1p/Crm1p, Cse1p, Msn5p and Los1p, function as exporters of protein and tRNA. Under normal growth conditions GFP-tagged exporters are predominantly associated with nuclei. The presence of Snf1 kinase, a key regulator of cell growth and a metabolic sensor, controls the localization of GFP-exporters. Additional glucose-dependent, but Snf1-independent, mechanisms regulate carrier distribution and a switch from fermentable to non-fermentable carbon sources relocates all of the carriers, suggesting a link to the nutritional status of the cell. Moreover, stress controls the proper localization of GFP-exporters, which mislocalize upon exposure to heat, ethanol and starvation. Stress may activate the MAPK cell integrity cascade, and we tested the role of this pathway in exporter localization. Under non-stress conditions, the proper distribution of GFP-Cse1p and Xpo1p/Crm1p-GFP requires kinases of the cell integrity cascade. By contrast, Msn5p-GFP and Los1p-GFP rely on the MAPK module to relocate to the cytoplasm when cells are stressed with ethanol. Our results indicate that the association of nuclear exporters with nuclei is controlled by multiple mechanisms that are organized in a hierarchical fashion and linked to the physiological state of the cell.
Collapse
Affiliation(s)
- XinXin Quan
- Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
24
|
Fries T, Betz C, Sohn K, Caesar S, Schlenstedt G, Bailer SM. A novel conserved nuclear localization signal is recognized by a group of yeast importins. J Biol Chem 2007; 282:19292-301. [PMID: 17485461 DOI: 10.1074/jbc.m700217200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nucleo-cytoplasmic transport of proteins is mostly mediated by specific interaction between transport receptors of the importin beta family and signal sequences present in their cargo. While several signal sequences, in particular the classical nuclear localization signal (NLS) recognized by the heterodimeric importin alpha/beta complex are well known, the signals recognized by other importin beta-like transport receptors remain to be characterized in detail. Here we present the systematic analysis of the nuclear import of Saccharomyces cerevisiae Asr1p, a nonessential alcohol-responsive Ring/PHD finger protein that shuttles between nucleus and cytoplasm but accumulates in the nucleus upon alcohol stress. Nuclear import of Asr1p is constitutive and mediated by its C-terminal domain. A short sequence comprising residues 243-280 is sufficient and necessary for active targeting to the nucleus. Moreover, the nuclear import signal is conserved from yeast to mammals. In vitro, the nuclear localization signal of Asr1p directly interacts with the importins Kap114p, Kap95p, Pse1p, Kap123p, or Kap104p, interactions that are sensitive to the presence of RanGTP. In vivo, these importins cooperate in nuclear import. Interestingly, the same importins mediate nuclear transport of histone H2A. Based on mutational analysis and sequence comparison with a region mediating nuclear import of histone H2A, we identified a novel type of NLS with the consensus sequence R/KxxL(x)(n)V/YxxV/IxK/RxxxK/R that is recognized by five yeast importins and connects them into a highly efficient network for nuclear import of proteins.
Collapse
Affiliation(s)
- Thomas Fries
- Universität des Saarlandes, Medizinische Biochemie und Molekularbiologie, Gebaüde 61.4, D-66421 Homburg/Saar, Germany
| | | | | | | | | | | |
Collapse
|
25
|
Pandey A, Choudhary MK, Bhushan D, Chattopadhyay A, Chakraborty S, Datta A, Chakraborty N. The Nuclear Proteome of Chickpea (Cicer arietinumL.) Reveals Predicted and Unexpected Proteins. J Proteome Res 2006; 5:3301-11. [PMID: 17137331 DOI: 10.1021/pr060147a] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nuclear proteins constitute a highly organized, complex network that plays diverse roles during cellular development and other physiological processes. The yeast nuclear proteome corresponds to about one-fourth of the total cellular proteins, suggesting the involvement of the nucleus in a number of diverse functions. In an attempt to understand the complexity of plant nuclear proteins, we have developed a proteome reference map of a legume, chickpea, using two-dimensional gel electrophoresis (2-DE). Approximately, 600 protein spots were detected, and LC-ESI-MS/MS analyses led to the identification of 150 proteins that have been implicated in a variety of cellular functions. The largest percentage of the identified proteins was involved in signaling and gene regulation (36%), while 17% were involved in DNA replication and transcription. The chickpea nuclear proteome indicates the presence of few new nuclear proteins of unknown functions vis-à-vis many known resident proteins. To the best of our knowledge, this is the first report of a nuclear proteome of an unsequenced genome.
Collapse
Affiliation(s)
- Aarti Pandey
- National Centre for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | | | | | | | | | | | | |
Collapse
|
26
|
Nishijima H, Nakayama JI, Yoshioka T, Kusano A, Nishitani H, Shibahara KI, Nishimoto T. Nuclear RanGAP is required for the heterochromatin assembly and is reciprocally regulated by histone H3 and Clr4 histone methyltransferase in Schizosaccharomyces pombe. Mol Biol Cell 2006; 17:2524-36. [PMID: 16540522 PMCID: PMC1474784 DOI: 10.1091/mbc.e05-09-0893] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Although the Ran GTPase-activating protein RanGAP mainly functions in the cytoplasm, several lines of evidence indicate a nuclear function of RanGAP. We found that Schizosaccharomyces pombe RanGAP, SpRna1, bound the core of histone H3 (H3) and enhanced Clr4-mediated H3-lysine 9 (K9) methylation. This enhancement was not observed for methylation of the H3-tail containing K9 and was independent of SpRna1-RanGAP activity, suggesting that SpRna1 itself enhances Clr4-mediated H3-K9 methylation via H3. Although most SpRna1 is in the cytoplasm, some cofractionated with H3. Sprna1(ts) mutations caused decreases in Swi6 localization and H3-K9 methylation at all three heterochromatic regions of S. pombe. Thus, nuclear SpRna1 seems to be involved in heterochromatin assembly. All core histones bound SpRna1 and inhibited SpRna1-RanGAP activity. In contrast, Clr4 abolished the inhibitory effect of H3 on the RanGAP activity of SpRna1 but partially affected the other histones. SpRna1 formed a trimeric complex with H3 and Clr4, suggesting that nuclear SpRna1 is reciprocally regulated by histones, especially H3, and Clr4 on the chromatin to function for higher order chromatin assembly. We also found that SpRna1 formed a stable complex with Xpo1/Crm1 plus Ran-GTP, in the presence of H3.
Collapse
Affiliation(s)
- Hitoshi Nishijima
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; and
| | - Jun-ichi Nakayama
- Laboratory for Chromatin Dynamics, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | - Tomoko Yoshioka
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Ayumi Kusano
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hideo Nishitani
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | - Kei-ichi Shibahara
- Department of Integrated Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; and
| | - Takeharu Nishimoto
- *Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Address correspondence to: Takeharu Nishimoto (
)
| |
Collapse
|
27
|
Izawa S, Ikeda K, Kita T, Inoue Y. Asr1, an alcohol-responsive factor of Saccharomyces cerevisiae, is dispensable for alcoholic fermentation. Appl Microbiol Biotechnol 2006; 72:560-5. [PMID: 16391921 DOI: 10.1007/s00253-005-0294-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 12/02/2005] [Accepted: 12/07/2005] [Indexed: 10/25/2022]
Abstract
Yeast Asr1 is the first reported protein whose intracellular distribution changes specifically in response to alcohol (Betz et al. (2004) J Biol Chem 279:28174-28181). It was reported that Asr1 is required for tolerance to alcohol and plays an important role in the alcohol stress response. Therefore, Asr1 is of interest to brewers and winegrowers attempting to improve the techniques of alcoholic fermentation. We verified the importance of Asr1 in the alcohol stress response during alcoholic fermentation. Although we reconfirmed the alcohol-responsive changes in the intracellular localization of Asr1, we could not detect the effects of Asr1-deficiency on Japanese sake brewing or winemaking. In addition, we could not reconfirm the hypersensitivity of Asr1-deficient mutants to alcohol and sodium dodecyl sulfate. Instead, we conclude that Asr1 is not required and nor important for tolerance to alcohol stress.
Collapse
Affiliation(s)
- Shingo Izawa
- Laboratory of Molecular Microbiology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| | | | | | | |
Collapse
|
28
|
Brune C, Munchel SE, Fischer N, Podtelejnikov AV, Weis K. Yeast poly(A)-binding protein Pab1 shuttles between the nucleus and the cytoplasm and functions in mRNA export. RNA (NEW YORK, N.Y.) 2005; 11:517-31. [PMID: 15769879 PMCID: PMC1370741 DOI: 10.1261/rna.7291205] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Accepted: 01/08/2005] [Indexed: 05/22/2023]
Abstract
Pab1 is the major poly(A)-binding protein in yeast. It is a multifunctional protein that mediates many cellular functions associated with the 3'-poly(A)-tail of messenger RNAs. Here, we characterize Pab1 as an export cargo of the protein export factor Xpo1/Crm1. Pab1 is a major Xpo1/Crm1-interacting protein in yeast extracts and binds directly to Xpo1/Crm1 in a RanGTP-dependent manner. Pab1 shuttles rapidly between the nucleus and the cytoplasm and partially accumulates in the nucleus when the function of Xpo1/Crm1 is inhibited. However, Pab1 can also be exported by an alternative pathway, which is dependent on the MEX67-mRNA export pathway. Import of Pab1 is mediated by the import receptor Kap108/Sxm1 through a nuclear localization signal in its fourth RNA-binding domain. Interestingly, inhibition of Pab1's nuclear import causes a kinetic delay in the export of mRNA. Furthermore, the inviability of a pab1 deletion strain is suppressed by a mutation in the 5'-3' exoribonuclease RRP6, a component of the nuclear exosome. Therefore, nuclear Pab1 may be required for efficient mRNA export and may function in the quality control of mRNA in the nucleus.
Collapse
Affiliation(s)
- Christiane Brune
- Department of Molecular and Cell Biology, Division of Cell and Developmental Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | | | | | | | | |
Collapse
|
29
|
Betz C, Schlenstedt G, Bailer SM. Asr1p, a novel yeast ring/PHD finger protein, signals alcohol stress to the nucleus. J Biol Chem 2004; 279:28174-81. [PMID: 15117954 DOI: 10.1074/jbc.m401595200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During fermentation, yeast cells are exposed to increasing amounts of alcohol, which is stressful and affects both growth and viability. On the molecular level, numerous aspects of alcohol stress signaling remain unresolved. We have identified a novel yeast Ring/PHD finger protein that constitutively shuttles between nucleus and cytoplasm but accumulates in the nucleus upon exposure to ethanol, 2-propanol, or 1-butanol. Subcellular localization of this protein is not altered by osmotic, oxidative, or heat stress or during nitrogen or glucose starvation. Because of its exclusive sensitivity to environmental alcohol, the protein was called Asr1p for Alcohol Sensitive Ring/PHD finger 1 protein. Nuclear accumulation of Asr1p is rapid, reversible, and requires a functional Ran/Gsp1p gradient. Asr1p contains two N terminally located leucine-rich nuclear export sequences (NES) required for nuclear export. Consistently, it accumulates in the nucleus of xpo1-1 cells at restrictive temperature and forms a trimeric complex with the exportin Xpo1p and Ran-GTP. Deletion of ASR1 leads to sensitivity in growth on medium containing alcohol or detergent, consistent with a function of Asr1p in alcohol-related signaling. Asr1p is the first reported protein that changes its subcellular localization specifically upon exposure to alcohol and therefore represents a key element in the analysis of alcohol-responsive signaling.
Collapse
Affiliation(s)
- Christian Betz
- Universität des Saarlandes, Medizinische Biochemie und Molekularbiologie, Gebäude 44, D-66421 Homburg/Saar, Germany
| | | | | |
Collapse
|
30
|
Miyaji-Yamaguchi M, Kato K, Nakano R, Akashi T, Kikuchi A, Nagata K. Involvement of nucleocytoplasmic shuttling of yeast Nap1 in mitotic progression. Mol Cell Biol 2003; 23:6672-84. [PMID: 12944491 PMCID: PMC193709 DOI: 10.1128/mcb.23.18.6672-6684.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nucleosome assembly protein 1 (Nap1) is widely conserved from yeasts to humans and facilitates nucleosome formation in vitro as a histone chaperone. Nap1 is generally localized in the cytoplasm, except that subcellular localization of Drosophila melanogaster Nap1 is dynamically regulated between the cytoplasm and nucleus during early development. The cytoplasmic localization of Nap1 is seemingly incompatible with the proposed role of Nap1 in nucleosome formation, which should occur in the nucleus. Here, we have examined the roles of a putative nuclear export signal (NES) sequence in yeast Nap1 (yNap1). yNap1 mutants lacking the NES-like sequence were localized predominantly in the nucleus. Deletion of NAP1 in cells harboring a single mitotic cyclin gene is known to cause mitotic delay and temperature-sensitive growth. A wild-type NAP1 complemented these phenotypes while nap1 mutant genes lacking the NES-like sequence or carboxy-terminal region did not. These and other results suggest that yNap1 is a nucleocytoplasmic shuttling protein and that its shuttling is important for yNap1 function during mitotic progression. This study also provides a possible explanation for Nap1's involvement in nucleosome assembly and/or remodeling in the nucleus.
Collapse
Affiliation(s)
- Mary Miyaji-Yamaguchi
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Braunwarth A, Fromont-Racine M, Legrain P, Bischoff FR, Gerstberger T, Hurt E, Kunzler M. Identification and characterization of a novel RanGTP-binding protein in the yeast Saccharomyces cerevisiae. J Biol Chem 2003; 278:15397-405. [PMID: 12578832 DOI: 10.1074/jbc.m210630200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small Ras-like GTPase Ran plays an essential role in the transport of macromolecules in and out of the nucleus and has been implicated in spindle (1,2 ) and nuclear envelope formation (3,4 ) during mitosis in higher eukaryotes. We identified Saccharomyces cerevisiae open reading frame YGL164c encoding a novel RanGTP-binding protein, termed Yrb30p. The protein competes with yeast RanBP1 (Yrb1p) for binding to the GTP-bound form of yeast Ran (Gsp1p) and is, like Yrb1p, able to form trimeric complexes with RanGTP and some of the karyopherins. In contrast to Yrb1p, Yrb30p does not coactivate but inhibits RanGAP1(Rna1p)-mediated GTP hydrolysis on Ran, like the karyopherins. At steady state, Yrb30p localizes exclusively to the cytoplasm, but the presence of a functional nuclear export signal and the localization of truncated forms of Yrb30p suggest that the protein shuttles between nucleus and cytoplasm and is exported via two alternative pathways, dependent on the nuclear export receptor Xpo1p/Crm1p and on RanGTP binding. Whereas overproduction of the full-length protein and complete deletion of the open reading frame reveal no obvious phenotype, overproduction of C-terminally truncated forms of the protein inhibits yeast vegetative growth. Based on these results and the exclusive conservation of the protein in the fungal kingdom, we hypothesize that Yrb30p represents a novel modulator of the Ran GTPase switch related to fungal lifestyle.
Collapse
Affiliation(s)
- Andreas Braunwarth
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Kim SH, Roux SJ. An Arabidopsis Ran-binding protein, AtRanBP1c, is a co-activator of Ran GTPase-activating protein and requires the C-terminus for its cytoplasmic localization. PLANTA 2003; 216:1047-1052. [PMID: 12687374 DOI: 10.1007/s00425-002-0959-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2002] [Accepted: 11/16/2002] [Indexed: 05/24/2023]
Abstract
Ran-binding proteins (RanBPs) are a group of proteins that bind to Ran (Ras-related nuclear small GTP-binding protein), and thus either control the GTP/GDP-bound states of Ran or help couple the Ran GTPase cycle to a cellular process. AtRanBP1c is a Ran-binding protein from Arabidopsis thaliana (L.) Heynh. that was recently shown to be critically involved in the regulation of auxin-induced mitotic progression [S.-H. Kim et al. (2001) Plant Cell 13:2619-2630]. Here we report that AtRanBP1c inhibits the EDTA-induced release of GTP from Ran and serves as a co-activator of Ran-GTPase-activating protein (RanGAP) in vitro. Transient expression of AtRanBP1c fused to a beta-glucuronidase (GUS) reporter reveals that the protein localizes primarily to the cytosol. Neither the N- nor C-terminus of AtRanBP1c, which flank the Ran-binding domain (RanBD), is necessary for the binding of PsRan1-GTP to the protein, but both are needed for the cytosolic localization of GUS-fused AtRanBP1c. These findings, together with a previous report that AtRanBP1c is critically involved in root growth and development, imply that the promotion of GTP hydrolysis by the Ran/RanGAP/AtRanBP1c complex in the cytoplasm, and the resulting concentration gradient of Ran-GDP to Ran-GTP across the nuclear membrane could be important in the regulation of auxin-induced mitotic progression in root tips of A. thaliana.
Collapse
Affiliation(s)
- Soo-Hwan Kim
- Section of Molecular Cell and Developmental Biology, University of Texas, Austin, TX 78712, USA
| | | |
Collapse
|
33
|
Panse VG, Küster B, Gerstberger T, Hurt E. Unconventional tethering of Ulp1 to the transport channel of the nuclear pore complex by karyopherins. Nat Cell Biol 2003; 5:21-7. [PMID: 12471376 DOI: 10.1038/ncb893] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2002] [Revised: 09/13/2002] [Accepted: 10/28/2002] [Indexed: 11/08/2022]
Abstract
The ubiquitin-like protein SUMO-1 (small ubiquitin-related modifier 1) is covalently attached to substrate proteins by ligases and cleaved by isopeptidases. Yeast has two SUMO-1-deconjugating enzymes, Ulp1 and Ulp2, which are located at nuclear pores and in the nucleoplasm, respectively. Here we show that the catalytic C-domain of Ulp1 must be excluded from the nucleoplasm for cell viability. This is achieved by the noncatalytic N-domain, which tethers Ulp1 to the nuclear pores. The bulk of cellular Ulp1 is not associated with nucleoporins but instead associates with three karyopherins (Pse1, Kap95 and Kap60), in a complex that is not dissociated by RanGTP in vitro. The Ulp1 N-domain has two distinct binding sites for Pse1 and Kap95/Kap60, both of which are required for anchoring to the nuclear pore complex. We propose that Ulp1 is tethered to the nuclear pores by a Ran-insensitive interaction with karyopherins associated with nucleoporins. This location could allow Ulp1 to remove SUMO-1 from sumoylated cargo proteins during their passage through the nuclear pore channel.
Collapse
|
34
|
Steggerda SM, Paschal BM. Regulation of nuclear import and export by the GTPase Ran. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 217:41-91. [PMID: 12019565 DOI: 10.1016/s0074-7696(02)17012-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review focuses on the control of nuclear import and export pathways by the small GTPase Ran. Transport of signal-containing cargo substrates is mediated by receptors that bind to the cargo proteins and RNAs and deliver them to the appropriate cellular compartment. Ran is an evolutionarily conserved member of the Ras superfamily that regulates all receptor-mediated transport between the nucleus and the cytoplasm. We describe the identification and characterization of the RanGTPase and its binding partners: the guanine nucleotide exchange factor, RanGEF; the GTPase activating protein, RanGAP; the soluble import and export receptors; Ran-binding domain-(RBD) containing proteins; and NTF2 and related factors.
Collapse
Affiliation(s)
- Susanne M Steggerda
- Center for Cell Signaling and Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville 22908, USA
| | | |
Collapse
|
35
|
Fornerod M, Ohno M. Exportin-mediated nuclear export of proteins and ribonucleoproteins. Results Probl Cell Differ 2002; 35:67-91. [PMID: 11791409 DOI: 10.1007/978-3-540-44603-3_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Maarten Fornerod
- EMBL, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
36
|
Affiliation(s)
- F Ralf Bischoff
- Division for Molecular Biology of Mitosis, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
37
|
Lischka P, Rosorius O, Trommer E, Stamminger T. A novel transferable nuclear export signal mediates CRM1-independent nucleocytoplasmic shuttling of the human cytomegalovirus transactivator protein pUL69. EMBO J 2001; 20:7271-83. [PMID: 11743003 PMCID: PMC125785 DOI: 10.1093/emboj/20.24.7271] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2001] [Revised: 10/18/2001] [Accepted: 10/26/2001] [Indexed: 11/13/2022] Open
Abstract
The best studied nuclear export processes are mediated by classical leucine-rich nuclear export signals that specify recognition by the CRM1 export receptor. However, details concerning alternative nuclear export signals and pathways are beginning to emerge. Within the family of Herpesviridae, a set of homologous regulatory proteins that are exemplified by the ICP27 of herpes simplex virus were described recently as nucleocytoplasmic shuttling proteins. Here we report that pUL69 of the beta-herpesvirus human cytomegalovirus is a nuclear protein that is able to shuttle between the nucleus and the cytoplasm independently of virus-encoded cofactors. In contrast to proteins containing a leucine-rich export signal, the shuttling activity of pUL69 was not affected by leptomycin B, indicating that pUL69 trafficking is not mediated by the export receptor CRM1. Importantly, we identified and characterized a novel type of transferable, leptomycin B-insensitive export signal that is distinct from other export signals described previously and is required for pUL69-mediated activation of gene expression. These data suggest that pUL69 is exported via a novel nuclear export pathway, based on a so far unique nuclear export signal of 28 amino acids.
Collapse
Affiliation(s)
| | - Olaf Rosorius
- Institut für Klinische und Molekulare Virologie and
Institut für Biochemie der Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany Corresponding author e-mail:
| | | | - Thomas Stamminger
- Institut für Klinische und Molekulare Virologie and
Institut für Biochemie der Universität Erlangen-Nürnberg, D-91054 Erlangen, Germany Corresponding author e-mail:
| |
Collapse
|
38
|
Abstract
A defining characteristic of eukaryotic cells is the possession of a nuclear envelope. Transport of macromolecules between the nuclear and cytoplasmic compartments occurs through nuclear pore complexes that span the double membrane of this envelope. The molecular basis for transport has been revealed only within the last few years. The transport mechanism lacks motors and pumps and instead operates by a process of facilitated diffusion of soluble carrier proteins, in which vectoriality is provided by compartment-specific assembly and disassembly of cargo-carrier complexes. The carriers recognize localization signals on the cargo and can bind to pore proteins. They also bind a small GTPase, Ran, whose GTP-bound form is predominantly nuclear. Ran-GTP dissociates import carriers from their cargo and promotes the assembly of export carriers with cargo. The ongoing discovery of numerous carriers, Ran-independent transport mechanisms, and cofactors highlights the complexity of the nuclear transport process. Multiple regulatory mechanisms are also being identified that control cargo-carrier interactions. Circadian rhythms, cell cycle, transcription, RNA processing, and signal transduction are all regulated at the level of nucleocytoplasmic transport. This review focuses on recent discoveries in the field, with an emphasis on the carriers and cofactors involved in transport and on possible mechanisms for movement through the nuclear pores.
Collapse
Affiliation(s)
- I G Macara
- Center for Cell Signaling, University of Virginia, Charlottesville, Virginia 22908-0577, USA.
| |
Collapse
|
39
|
Abstract
The Ran GTPase plays a key role in nucleocytoplasmic transport. In its GTP-bound form, it directly interacts with members of the importin β family of nuclear transport receptors and modulates their association with cargo. Work in cell-free higher-eukaryote systems has demonstrated additional roles for Ran in spindle and nuclear envelope formation during mitosis. However, until recently, no Ran-target proteins in these cellular processes were known. Several groups have now identified importin β as one important target of Ran during mitotic spindle formation. This finding suggests that Ran uses the same effectors to regulate different cellular processes.
Collapse
Affiliation(s)
- M Künzler
- Biochemie-Zentrum Heidelberg (BZH), Im Neuenheimer Feld 328, 4. OG, Heidelberg 69120, Germany.
| | | |
Collapse
|
40
|
Jenkins Y, Sanchez PV, Meyer BE, Malim MH. Nuclear export of human immunodeficiency virus type 1 Vpr is not required for virion packaging. J Virol 2001; 75:8348-52. [PMID: 11483780 PMCID: PMC115079 DOI: 10.1128/jvi.75.17.8348-8352.2001] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 Vpr protein is both packaged into virions and efficiently localized to the nucleus. In this report, we show that a significant fraction of Vpr also accumulates in the cytoplasm of virus-producing cells. Although Vpr shuttles between the nucleus and the cytoplasm, studies with an export-deficient Vpr mutant reveal that nuclear export is not required for virion incorporation.
Collapse
Affiliation(s)
- Y Jenkins
- Departments of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | |
Collapse
|
41
|
Nicolás FJ, Moore WJ, Zhang C, Clarke PR. XMog1, a nuclear Ran-binding protein in Xenopus, is a functional homologue of Schizosaccharomyces pombe Mog1p that co-operates with RanBP1 to control generation of Ran-GTP. J Cell Sci 2001; 114:3013-23. [PMID: 11686304 DOI: 10.1242/jcs.114.16.3013] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ran is a multifunctional small GTPase of the Ras superfamily that plays roles in nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. By screening a Xenopus oocyte cDNA library for Ran-GTP-binding proteins using the two-hybrid system of co-expression in yeast, we identified XMog1, a 20.4 kDa polypeptide related to Mog1p in Saccharomyces cerevisiae and similar gene products in Schizosaccharomyces pombe, Arabidopsis and mammals. We show that cDNAs encoding XMog1 and S. cerevisiae Mog1p rescue the growth defect of S. pombe cells lacking mog1, demonstrating conservation of their functions. In Xenopus somatic cells and transfected mammalian cells, XMog1 is localised to the nucleus. XMog1 alone does not stimulate Ran GTPase activity or nucleotide exchange, but causes nucleotide release from Ran-GTP and forms a complex with nucleotide-free Ran. However, in combination with Ran-binding protein 1 (RanBP1), XMog1 promotes the release of GDP and the selective binding of GTP to Ran. XMog1 and RanBP1 also promote selective GTP loading onto Ran catalysed by the nuclear guanine nucleotide exchange factor, RCC1. We propose that Mog1-related proteins, together with RanBP1, facilitate the generation of Ran-GTP from Ran-GDP in the nucleus.
Collapse
Affiliation(s)
- F J Nicolás
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | | | | | | |
Collapse
|
42
|
Dilworth DJ, Suprapto A, Padovan JC, Chait BT, Wozniak RW, Rout MP, Aitchison JD. Nup2p dynamically associates with the distal regions of the yeast nuclear pore complex. J Cell Biol 2001; 153:1465-78. [PMID: 11425876 PMCID: PMC2150724 DOI: 10.1083/jcb.153.7.1465] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2001] [Accepted: 04/19/2001] [Indexed: 11/22/2022] Open
Abstract
Nucleocytoplasmic transport is mediated by the interplay between soluble transport factors and nucleoporins resident within the nuclear pore complex (NPC). Understanding this process demands knowledge of components of both the soluble and stationary phases and the interface between them. Here, we provide evidence that Nup2p, previously considered to be a typical yeast nucleoporin that binds import- and export-bound karyopherins, dynamically associates with the NPC in a Ran-facilitated manner. When bound to the NPC, Nup2p associates with regions corresponding to the nuclear basket and cytoplasmic fibrils. On the nucleoplasmic face, where the Ran--GTP levels are predicted to be high, Nup2p binds to Nup60p. Deletion of NUP60 renders Nup2p nucleoplasmic and compromises Nup2p-mediated recycling of Kap60p/Srp1p. Depletion of Ran--GTP by metabolic poisoning, disruption of the Ran cycle, or in vitro by cell lysis, results in a shift of Nup2p from the nucleoplasm to the cytoplasmic face of the NPC. This mobility of Nup2p was also detected using heterokaryons where, unlike nucleoporins, Nup2p was observed to move from one nucleus to the other. Together, our data support a model in which Nup2p movement facilitates the transition between the import and export phases of nucleocytoplasmic transport.
Collapse
Affiliation(s)
- David J. Dilworth
- Institute for Systems Biology, Seattle, Washington, 98105
- Department of Cell Biology, University of Alberta, Edmonton, Canada, T6G 2H7
| | | | | | | | - Richard W. Wozniak
- Department of Cell Biology, University of Alberta, Edmonton, Canada, T6G 2H7
| | - Michael P. Rout
- Department of Cell Biology, University of Alberta, Edmonton, Canada, T6G 2H7
| | - John D. Aitchison
- Institute for Systems Biology, Seattle, Washington, 98105
- Department of Cell Biology, University of Alberta, Edmonton, Canada, T6G 2H7
| |
Collapse
|
43
|
Grosshans H, Deinert K, Hurt E, Simos G. Biogenesis of the signal recognition particle (SRP) involves import of SRP proteins into the nucleolus, assembly with the SRP-RNA, and Xpo1p-mediated export. J Cell Biol 2001; 153:745-62. [PMID: 11352936 PMCID: PMC2192394 DOI: 10.1083/jcb.153.4.745] [Citation(s) in RCA: 109] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2000] [Accepted: 03/29/2001] [Indexed: 11/22/2022] Open
Abstract
The signal recognition particle (SRP) targets nascent secretory proteins to the ER, but how and where the SRP assembles is largely unknown. Here we analyze the biogenesis of yeast SRP, which consists of an RNA molecule (scR1) and six proteins, by localizing all its components. Although scR1 is cytoplasmic in wild-type cells, nuclear localization was observed in cells lacking any one of the four SRP "core proteins" Srp14p, Srp21p, Srp68p, or Srp72p. Consistently, a major nucleolar pool was detected for these proteins. Sec65p, on the other hand, was found in both the nucleoplasm and the nucleolus, whereas Srp54p was predominantly cytoplasmic. Import of the core proteins into the nucleolus requires the ribosomal protein import receptors Pse1p and Kap123p/Yrb4p, which might, thus, constitute a nucleolar import pathway. Nuclear export of scR1 is mediated by the nuclear export signal receptor Xpo1p, is distinct from mRNA transport, and requires, as evidenced by the nucleolar accumulation of scR1 in a dis3/rrp44 exosome component mutant, an intact scR1 3' end. A subset of nucleoporins, including Nsp1p and Nup159p (Rat7p), are also necessary for efficient translocation of scR1 from the nucleus to the cytoplasm. We propose that assembly of the SRP requires import of all SRP core proteins into the nucleolus, where they assemble into a pre-SRP with scR1. This particle can then be targeted to the nuclear pores and is subsequently exported to the cytoplasm in an Xpo1p-dependent way.
Collapse
Affiliation(s)
| | - Karina Deinert
- Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| | - Ed Hurt
- Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| | - George Simos
- Biochemie-Zentrum Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
44
|
Renault L, Kuhlmann J, Henkel A, Wittinghofer A. Structural basis for guanine nucleotide exchange on Ran by the regulator of chromosome condensation (RCC1). Cell 2001; 105:245-55. [PMID: 11336674 DOI: 10.1016/s0092-8674(01)00315-4] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
RCC1 (regulator of chromosome condensation), a beta propeller chromatin-bound protein, is the guanine nucleotide exchange factor (GEF) for the nuclear GTP binding protein Ran. We report here the 1.8 A crystal structure of a Ran*RCC1 complex in the absence of nucleotide, an intermediate in the multistep GEF reaction. In contrast to previous structures, the phosphate binding region of the nucleotide binding site is perturbed only marginally, possibly due to the presence of a polyvalent anion in the P loop. Biochemical experiments show that a sulfate ion stabilizes the Ran*RCC1 complex and inhibits dissociation by guanine nucleotides. Based on the available structural and biochemical evidence, we present a unified scenario for the GEF mechanism where interaction of the P loop lysine with an acidic residue is a crucial element for the overall reaction.
Collapse
Affiliation(s)
- L Renault
- Max-Planck-Institut für Molekulare Physiologie, Postfach 50 02 47, 44202, Dortmund, Germany
| | | | | | | |
Collapse
|
45
|
Maurer P, Redd M, Solsbacher J, Bischoff FR, Greiner M, Podtelejnikov AV, Mann M, Stade K, Weis K, Schlenstedt G. The nuclear export receptor Xpo1p forms distinct complexes with NES transport substrates and the yeast Ran binding protein 1 (Yrb1p). Mol Biol Cell 2001; 12:539-49. [PMID: 11251069 PMCID: PMC30962 DOI: 10.1091/mbc.12.3.539] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2000] [Revised: 10/18/2000] [Accepted: 01/09/2001] [Indexed: 11/11/2022] Open
Abstract
Xpo1p (Crm1p) is the nuclear export receptor for proteins containing a leucine-rich nuclear export signal (NES). Xpo1p, the NES-containing protein, and GTP-bound Ran form a complex in the nucleus that translocates across the nuclear pore. We have identified Yrb1p as the major Xpo1p-binding protein in Saccharomyces cerevisiae extracts in the presence of GTP-bound Gsp1p (yeast Ran). Yrb1p is cytoplasmic at steady-state but shuttles continuously between the cytoplasm and the nucleus. Nuclear import of Yrb1p is mediated by two separate nuclear targeting signals. Export from the nucleus requires Xpo1p, but Yrb1p does not contain a leucine-rich NES. Instead, the interaction of Yrb1p with Xpo1p is mediated by Gsp1p-GTP. This novel type of export complex requires the acidic C-terminus of Gsp1p, which is dispensable for the binding to importin beta-like transport receptors. A similar complex with Xpo1p and Gsp1p-GTP can be formed by Yrb2p, a relative of Yrb1p predominantly located in the nucleus. Yrb1p also functions as a disassembly factor for NES/Xpo1p/Gsp1p-GTP complexes by displacing the NES protein from Xpo1p/Gsp1p. This Yrb1p/Xpo1p/Gsp1p complex is then completely dissociated after GTP hydrolysis catalyzed by the cytoplasmic GTPase activating protein Rna1p.
Collapse
Affiliation(s)
- P Maurer
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, 66421 Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Künzler M, Trueheart J, Sette C, Hurt E, Thorner J. Mutations in the YRB1 gene encoding yeast ran-binding-protein-1 that impair nucleocytoplasmic transport and suppress yeast mating defects. Genetics 2001; 157:1089-105. [PMID: 11238397 PMCID: PMC1461573 DOI: 10.1093/genetics/157.3.1089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We identified two temperature-sensitive (ts) mutations in the essential gene, YRB1, which encodes the yeast homolog of Ran-binding-protein-1 (RanBP1), a known coregulator of the Ran GTPase cycle. Both mutations result in single amino acid substitutions of evolutionarily conserved residues (A91D and R127K, respectively) in the Ran-binding domain of Yrb1. The altered proteins have reduced affinity for Ran (Gsp1) in vivo. After shift to restrictive temperature, both mutants display impaired nuclear protein import and one also reduces poly(A)+ RNA export, suggesting a primary defect in nucleocytoplasmic trafficking. Consistent with this conclusion, both yrb1ts mutations display deleterious genetic interactions with mutations in many other genes involved in nucleocytoplasmic transport, including SRP1 (alpha-importin) and several beta-importin family members. These yrb1ts alleles were isolated by their ability to suppress two different types of mating-defective mutants (respectively, fus1Delta and ste5ts), indicating that reduction in nucleocytoplasmic transport enhances mating proficiency. Indeed, in both yrb1ts mutants, Ste5 (scaffold protein for the pheromone response MAPK cascade) is mislocalized to the cytosol, even in the absence of pheromone. Also, both yrb1ts mutations suppress the mating defect of a null mutation in MSN5, which encodes the receptor for pheromone-stimulated nuclear export of Ste5. Our results suggest that reimport of Ste5 into the nucleus is important in downregulating mating response.
Collapse
Affiliation(s)
- M Künzler
- Department of Molecular and Cell Biology, Division of Biochemistry and Molecular Biology, University of California, Berkeley, California 94720-3202, USA.
| | | | | | | | | |
Collapse
|
47
|
Bäumer M, Künzler M, Steigemann P, Braus GH, Irniger S. Yeast Ran-binding protein Yrb1p is required for efficient proteolysis of cell cycle regulatory proteins Pds1p and Sic1p. J Biol Chem 2000; 275:38929-37. [PMID: 10991951 DOI: 10.1074/jbc.m007925200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-dependent proteolysis of specific target proteins is required for several important steps during the cell cycle. Degradation of such proteins is strictly cell cycle-regulated and triggered by two large ubiquitin ligases, termed anaphase-promoting complex (APC) and Skp1/Cullin/F-box complex (SCF). Here we show that yeast Ran-binding protein 1 (Yrb1p), a predominantly cytoplasmic protein implicated in nucleocytoplasmic transport, is required for cell cycle regulated protein degradation. Depletion of Yrb1p results in the accumulation of unbudded G(1) cells and of cells arrested in mitosis implying a function of Yrb1p in the G(1)/S transition and in the progression through mitosis. Temperature-sensitive yrb1-51 mutants are defective in APC-mediated degradation of the anaphase inhibitor protein Pds1p and in degradation of the cyclin-dependent kinase inhibitor Sic1p, a target of SCF. Thus, Yrb1p is crucial for efficient APC- and SCF-mediated proteolysis of important cell cycle regulatory proteins. We have identified the UBS1 gene as a multicopy suppressor of yrb1-51 mutants. Ubs1p is a nuclear protein, and its deletion is synthetic lethal with a yrb1-51 mutation. Interestingly, UBS1 was previously identified as a multicopy suppressor of cdc34-2 mutants, which are defective in SCF activity. We suggest that Ubs1p may represent a link between nucleocytoplasmic transport and ubiquitin ligase activity.
Collapse
Affiliation(s)
- M Bäumer
- Institute of Microbiology and Genetics, Georg-August-University, Grisebachstrasse 8, D-37077 Göttingen, Germany
| | | | | | | | | |
Collapse
|
48
|
|