1
|
Maharati A, Rajabloo Y, Moghbeli M. Molecular mechanisms of mTOR-mediated cisplatin response in tumor cells. Heliyon 2025; 11:e41483. [PMID: 39834411 PMCID: PMC11743095 DOI: 10.1016/j.heliyon.2024.e41483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025] Open
Abstract
Cisplatin (CDDP) is one of the main chemotherapeutic drugs that is widely used in many cancers. However, CDDP resistance is a frequent therapeutic challenge that reduces prognosis in cancer patients. Since, CDDP has noticeable side effects in normal tissues and organs, it is necessary to assess the molecular mechanisms associated with CDDP resistance to improve the therapeutic methods in cancer patients. Drug efflux, detoxifying systems, DNA repair mechanisms, and drug-induced apoptosis are involved in multidrug resistance in CDDP-resistant tumor cells. Mammalian target of rapamycin (mTOR), as a serine/threonine kinase has a pivotal role in various cellular mechanisms such as autophagy, metabolism, drug efflux, and cell proliferation. Although, mTOR is mainly activated by PI3K/AKT pathway, it can also be regulated by many other signaling pathways. PI3K/Akt/mTOR axis functions as a key modulator of drug resistance and unfavorable prognosis in different cancers. Regarding, the pivotal role of mTOR in CDDP response, in the present review we discussed the molecular mechanisms that regulate mTOR mediated CDDP response in tumor cells.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yasamin Rajabloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Mavroeidi D, Georganta A, Stefanou DT, Papanikolaou C, Syrigos KN, Souliotis VL. DNA Damage Response Network and Intracellular Redox Status in the Clinical Outcome of Patients with Lung Cancer. Cancers (Basel) 2024; 16:4218. [PMID: 39766117 PMCID: PMC11726754 DOI: 10.3390/cancers16244218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/15/2025] Open
Abstract
Background/Objectives: DNA damage response (DDR) is a network of molecular pathways associated with the pathogenesis and progression of several diseases, as well as the outcome of chemotherapy. Moreover, the intracellular redox status is essential for maintaining cell viability and controlling cellular signaling. Herein, we analyzed DDR signals and redox status in peripheral blood mononuclear cells (PBMCs) from patients with lung cancer with different response rates to platinum-based chemotherapy. Methods: Several DDR-associated signals and redox status, expressed as the GSH/GSSG ratio, were measured in two lung cancer cell lines (A549, H1299), two normal fibroblast cell lines (WS1, 1BR3hT), and PBMCs from 20 healthy controls and 32 patients with lung cancer at baseline (17 responders and 15 non-responders to subsequent platinum-based chemotherapy). Results: Higher levels of endogenous/baseline DNA damage, decreased GSH/GSSG ratios, and augmented apurinic/apyrimidinic sites, as well as lower nucleotide excision repair (NER) and increased interstrand cross-links (ICLs) repair efficiencies, were observed in lung cancer cell lines compared with normal ones (all p < 0.05). Moreover, PBMCs from patients with lung cancer showed reduced GSH/GSSG ratios, augmented apurinic/apyrimidinic sites, decreased NER and ICL repair capacities, and lower apoptosis rates, compared with healthy controls (all p < 0.001). Interestingly, PBMCs from patients who are responders are characterized by reduced GSH/GSSG ratios, augmented apurinic/apyrimidinic sites, decreased NER and ICL repair capacities, and higher apoptosis rates compared with patients who are non-responders (all p < 0.01). Conclusions: Together, DDR-associated parameters and redox status measured in PBMCs from patients with lung cancer at baseline are associated with the therapeutic benefit of platinum-based chemotherapy.
Collapse
Affiliation(s)
- Dimitra Mavroeidi
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.M.); (C.P.)
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.); (K.N.S.)
| | - Anastasia Georganta
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.); (K.N.S.)
| | - Dimitra T. Stefanou
- First Department of Internal Medicine, Laikon General Hospital, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Christina Papanikolaou
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.M.); (C.P.)
| | - Konstantinos N. Syrigos
- Third Department of Medicine, Sotiria General Hospital for Chest Diseases, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.G.); (K.N.S.)
| | - Vassilis L. Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece; (D.M.); (C.P.)
| |
Collapse
|
3
|
Shah R, Aslam MA, Spanjaard A, de Groot D, Zürcher LM, Altelaar M, Hoekman L, Pritchard CEJ, Pilzecker B, van den Berk PCM, Jacobs H. Dual role of proliferating cell nuclear antigen monoubiquitination in facilitating Fanconi anemia-mediated interstrand crosslink repair. PNAS NEXUS 2024; 3:pgae242. [PMID: 38957451 PMCID: PMC11217772 DOI: 10.1093/pnasnexus/pgae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
The Fanconi anemia (FA) repair pathway governs repair of highly genotoxic DNA interstrand crosslinks (ICLs) and relies on translesion synthesis (TLS). TLS is facilitated by REV1 or site-specific monoubiquitination of proliferating cell nuclear antigen (PCNA) (PCNA-Ub) at lysine 164 (K164). A PcnaK164R/K164R but not Rev1-/- mutation renders mammals hypersensitive to ICLs. Besides the FA pathway, alternative pathways have been associated with ICL repair (1, 2), though the decision making between those remains elusive. To study the dependence and relevance of PCNA-Ub in FA repair, we intercrossed PcnaK164R/+; Fancg-/+ mice. A combined mutation (PcnaK164R/K164R; Fancg-/- ) was found embryonically lethal. RNA-seq of primary double-mutant (DM) mouse embryonic fibroblasts (MEFs) revealed elevated levels of replication stress-induced checkpoints. To exclude stress-induced confounders, we utilized a Trp53 knock-down to obtain a model to study ICL repair in depth. Regarding ICL-induced cell toxicity, cell cycle arrest, and replication fork progression, single-mutant and DM MEFs were found equally sensitive, establishing PCNA-Ub to be critical for FA-ICL repair. Immunoprecipitation and spectrometry-based analysis revealed an unknown role of PCNA-Ub in excluding mismatch recognition complex MSH2/MSH6 from being recruited to ICLs. In conclusion, our results uncovered a dual function of PCNA-Ub in ICL repair, i.e. exclude MSH2/MSH6 recruitment to channel the ICL toward canonical FA repair, in addition to its established role in coordinating TLS opposite the unhooked ICL.
Collapse
Affiliation(s)
- Ronak Shah
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Muhammad Assad Aslam
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
- Department/Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Bosan Road, 60800 Multan, Pakistan
| | - Aldo Spanjaard
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Daniel de Groot
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Lisa M Zürcher
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maarten Altelaar
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research, Utrecht Institute for Pharmaceutical Sciences, Utrecht University and Netherlands Proteomics Centre, Utrecht, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Liesbeth Hoekman
- Proteomics Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, The Netherlands
| | - Colin E J Pritchard
- Mouse Clinic for Cancer and Aging Transgenic Facility, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Bas Pilzecker
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Paul C M van den Berk
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Heinz Jacobs
- Department of Tumor Biology and Immunology, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
4
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
5
|
Nakahara R, Aki S, Sugaya M, Hirose H, Kato M, Maeda K, Sakamoto DM, Kojima Y, Nishida M, Ando R, Muramatsu M, Pan M, Tsuchida R, Matsumura Y, Yanai H, Takano H, Yao R, Sando S, Shibuya M, Sakai J, Kodama T, Kidoya H, Shimamura T, Osawa T. Hypoxia activates SREBP2 through Golgi disassembly in bone marrow-derived monocytes for enhanced tumor growth. EMBO J 2023; 42:e114032. [PMID: 37781951 PMCID: PMC10646561 DOI: 10.15252/embj.2023114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023] Open
Abstract
Bone marrow-derived cells (BMDCs) infiltrate hypoxic tumors at a pre-angiogenic state and differentiate into mature macrophages, thereby inducing pro-tumorigenic immunity. A critical factor regulating this differentiation is activation of SREBP2-a well-known transcription factor participating in tumorigenesis progression-through unknown cellular mechanisms. Here, we show that hypoxia-induced Golgi disassembly and Golgi-ER fusion in monocytic myeloid cells result in nuclear translocation and activation of SREBP2 in a SCAP-independent manner. Notably, hypoxia-induced SREBP2 activation was only observed in an immature lineage of bone marrow-derived cells. Single-cell RNA-seq analysis revealed that SREBP2-mediated cholesterol biosynthesis was upregulated in HSCs and monocytes but not in macrophages in the hypoxic bone marrow niche. Moreover, inhibition of cholesterol biosynthesis impaired tumor growth through suppression of pro-tumorigenic immunity and angiogenesis. Thus, our findings indicate that Golgi-ER fusion regulates SREBP2-mediated metabolic alteration in lineage-specific BMDCs under hypoxia for tumor progression.
Collapse
Affiliation(s)
- Ryuichi Nakahara
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Sho Aki
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Maki Sugaya
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Haruka Hirose
- Department of Systems Biology, Graduate School of MedicineNagoya UniversityNagoyaJapan
- Present address:
Department of Computational and Systems Biology, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Miki Kato
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Keisuke Maeda
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Daichi M Sakamoto
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Yasuhiro Kojima
- Department of Systems Biology, Graduate School of MedicineNagoya UniversityNagoyaJapan
| | - Miyuki Nishida
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Ritsuko Ando
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Masashi Muramatsu
- Division of Molecular and Vascular Biology, IRDAKumamoto UniversityKumamotoJapan
| | - Melvin Pan
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Rika Tsuchida
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | | | - Hideyuki Yanai
- Department of Inflammology, RCASTThe University of TokyoTokyoJapan
| | - Hiroshi Takano
- Department of Cell BiologyJapanese Foundation for Cancer ResearchTokyoJapan
| | - Ryoji Yao
- Department of Cell BiologyJapanese Foundation for Cancer ResearchTokyoJapan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
- Department of Bioengineering, Graduate School of EngineeringThe University of TokyoTokyoJapan
| | - Masabumi Shibuya
- Institute of Physiology and MedicineJobu UniversityTakasakiJapan
| | - Juro Sakai
- Division of Metabolic Medicine, RCASTThe University of TokyoTokyoJapan
- Division of Molecular Physiology and Metabolism, Graduate School of MedicineTohoku UniversitySendaiJapan
| | - Tatsuhiko Kodama
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
| | - Hiroyasu Kidoya
- Department of Signal Transduction, RIMDOsaka UniversityOsakaJapan
- Department of Integrative Vascular Biology, Faculty of Medical SciencesUniversity of FukuiFukuiJapan
| | - Teppei Shimamura
- Department of Systems Biology, Graduate School of MedicineNagoya UniversityNagoyaJapan
- Present address:
Department of Computational and Systems Biology, Medical Research InstituteTokyo Medical and Dental UniversityTokyoJapan
| | - Tsuyoshi Osawa
- Division of Nutriomics and Oncology, RCASTThe University of TokyoTokyoJapan
- Department of Chemistry and Biotechnology, Graduate School of EngineeringThe University of TokyoTokyoJapan
| |
Collapse
|
6
|
Yin H, Fu XY, Gao HY, Ma YN, Yao JF, Du SS, Qi YK, Wang KW. Design, synthesis and anticancer evaluation of novel oncolytic peptide-chlorambucil conjugates. Bioorg Chem 2023; 138:106674. [PMID: 37331169 DOI: 10.1016/j.bioorg.2023.106674] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/27/2023] [Accepted: 06/08/2023] [Indexed: 06/20/2023]
Abstract
Nitrogen mustards (NMs) are an important class of chemotherapeutic drugs and have been widely employed for the treatment of various cancers. However, due to the high reactivity of nitrogen mustard, most NMs react with proteins and phospholipids within the cell membrane. Therefore, only a very small fraction of NMs can reach the reach nucleus, alkylating and cross-linking DNA. To efficiently penetrate the cell membrane barrier, the hybridization of NMs with a membranolytic agent may be an effective strategy. Herein, the chlorambucil (CLB, a kind of NM) hybrids were first designed by conjugation with membranolytic peptide LTX-315. However, although LTX-315 could help large amounts of CLB penetrate the cytomembrane and enter the cytoplasm, CLB still did not readily reach the nucleus. Our previous work demonstrated that the hybrid peptide NTP-385 obtained by covalent conjugation of rhodamine B with LTX-315 could accumulate in the nucleus. Hence, the NTP-385-CLB conjugate, named FXY-3, was then designed and systematically evaluated both in vitro and in vivo. FXY-3 displayed prominent localization in the cancer cell nucleus and induced severe DNA double-strand breaks (DSBs) to trigger cell apoptosis. Especially, compared with CLB and LTX-315, FXY-3 exhibited significantly increased in vitro cytotoxicity against a panel of cancer cell lines. Moreover, FXY-3 showed superior in vivo anticancer efficiency in the mouse cancer model. Collectively, this study established an effective strategy to increase the anticancer activity and the nuclear accumulation of NMs, which will provide a valuable reference for future nucleus-targeting modification of nitrogen mustards.
Collapse
Affiliation(s)
- Hao Yin
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| | - Xing-Yan Fu
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Han-Yu Gao
- School of Stomatology, Jining Medical University, #133 Hehua Road, Jining 272067, China
| | - Yan-Nan Ma
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Jing-Fang Yao
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China
| | - Shan-Shan Du
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yun-Kun Qi
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China.
| | - Ke-Wei Wang
- School of Pharmacy, Qingdao University Medical College, Qingdao University, #1 Ningde Road, Qingdao 266073, China; Institute of Innovative Drugs, Qingdao University, #38 Dengzhou Road, Qingdao 266021, China
| |
Collapse
|
7
|
Petrilla C, Galloway J, Kudalkar R, Ismael A, Cottini F. Understanding DNA Damage Response and DNA Repair in Multiple Myeloma. Cancers (Basel) 2023; 15:4155. [PMID: 37627183 PMCID: PMC10453069 DOI: 10.3390/cancers15164155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by several genetic abnormalities, including chromosomal translocations, genomic deletions and gains, and point mutations. DNA damage response (DDR) and DNA repair mechanisms are altered in MM to allow for tumor development, progression, and resistance to therapies. Damaged DNA rarely induces an apoptotic response, given the presence of ataxia-telangiectasia mutated (ATM) loss-of-function or mutations, as well as deletions, mutations, or downregulation of tumor protein p53 (TP53) and tumor protein p73 (TP73). Moreover, DNA repair mechanisms are either hyperactive or defective to allow for rapid correction of the damage or permissive survival. Medications used to treat patients with MM can induce DNA damage, by either direct effects (mono-adducts induced by melphalan), or as a result of reactive oxygen species (ROS) production by proteasome inhibitors such as bortezomib. In this review, we will describe the mechanisms of DDR and DNA repair in normal tissues, the contribution of these pathways to MM disease progression and other phenotypes, and the potential therapeutic opportunities for patients with MM.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Cottini
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
8
|
Kitagawa A, Osawa T, Noda M, Kobayashi Y, Aki S, Nakano Y, Saito T, Shimizu D, Komatsu H, Sugaya M, Takahashi J, Kosai K, Takao S, Motomura Y, Sato K, Hu Q, Fujii A, Wakiyama H, Tobo T, Uchida H, Sugimachi K, Shibata K, Utsunomiya T, Kobayashi S, Ishii H, Hasegawa T, Masuda T, Matsui Y, Niida A, Soga T, Suzuki Y, Miyano S, Aburatani H, Doki Y, Eguchi H, Mori M, Nakayama KI, Shimamura T, Shibata T, Mimori K. Convergent genomic diversity and novel BCAA metabolism in intrahepatic cholangiocarcinoma. Br J Cancer 2023; 128:2206-2217. [PMID: 37076565 PMCID: PMC10241955 DOI: 10.1038/s41416-023-02256-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 03/08/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Driver alterations may represent novel candidates for driver gene-guided therapy; however, intrahepatic cholangiocarcinoma (ICC) with multiple genomic aberrations makes them intractable. Therefore, the pathogenesis and metabolic changes of ICC need to be understood to develop new treatment strategies. We aimed to unravel the evolution of ICC and identify ICC-specific metabolic characteristics to investigate the metabolic pathway associated with ICC development using multiregional sampling to encompass the intra- and inter-tumoral heterogeneity. METHODS We performed the genomic, transcriptomic, proteomic and metabolomic analysis of 39-77 ICC tumour samples and eleven normal samples. Further, we analysed their cell proliferation and viability. RESULTS We demonstrated that intra-tumoral heterogeneity of ICCs with distinct driver genes per case exhibited neutral evolution, regardless of their tumour stage. Upregulation of BCAT1 and BCAT2 indicated the involvement of 'Val Leu Ile degradation pathway'. ICCs exhibit the accumulation of ubiquitous metabolites, such as branched-chain amino acids including valine, leucine, and isoleucine, to negatively affect cancer prognosis. We revealed that this metabolic pathway was almost ubiquitously altered in all cases with genomic diversity and might play important roles in tumour progression and overall survival. CONCLUSIONS We propose a novel ICC onco-metabolic pathway that could enable the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Akihiro Kitagawa
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Tsuyoshi Osawa
- Division of Integrative Nutiriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Miwa Noda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Sho Aki
- Division of Integrative Nutiriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Yusuke Nakano
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Tomoko Saito
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Hisateru Komatsu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Maki Sugaya
- Division of Integrative Nutiriomics and Oncology, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Junichi Takahashi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Keisuke Kosai
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Seiichiro Takao
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Yushi Motomura
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Qingjiang Hu
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Atsushi Fujii
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Hiroaki Wakiyama
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Hiroki Uchida
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Keishi Sugimachi
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Kohei Shibata
- Department of Gastroenterological Surgery, Oitaken Koseiren Tsurumi Hospital, 4333 Tsurumihara, Beppu, 874-8585, Japan
| | - Tohru Utsunomiya
- Department of Surgery, Oita Prefectural Hospital, 2-8-1 Bunyo, Oita, 870-8511, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Hideshi Ishii
- Department of Frontier Science for Cancer and Chemotherapy, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Takanori Hasegawa
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan
| | - Yusuke Matsui
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Atsushi Niida
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Kakuganji, Tsuruoka, 997-0052, Japan
| | - Yutaka Suzuki
- Laboratory of Systems Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Satoru Miyano
- Division of Health Medical Computational Science, Health Intelligence Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
- Laboratory of DNA Information Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, 565-0871, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, Fukuoka, 812-8582, Japan
| | - Teppei Shimamura
- Division of Systems Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, 466-8550, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, 4546 Tsurumihara, Beppu, 874-0838, Japan.
| |
Collapse
|
9
|
Szurman-Zubrzycka M, Jędrzejek P, Szarejko I. How Do Plants Cope with DNA Damage? A Concise Review on the DDR Pathway in Plants. Int J Mol Sci 2023; 24:ijms24032404. [PMID: 36768727 PMCID: PMC9916837 DOI: 10.3390/ijms24032404] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
DNA damage is induced by many factors, some of which naturally occur in the environment. Because of their sessile nature, plants are especially exposed to unfavorable conditions causing DNA damage. In response to this damage, the DDR (DNA damage response) pathway is activated. This pathway is highly conserved between eukaryotes; however, there are some plant-specific DDR elements, such as SOG1-a transcription factor that is a central DDR regulator in plants. In general, DDR signaling activates transcriptional and epigenetic regulators that orchestrate the cell cycle arrest and DNA repair mechanisms upon DNA damage. The cell cycle halts to give the cell time to repair damaged DNA before replication. If the repair is successful, the cell cycle is reactivated. However, if the DNA repair mechanisms fail and DNA lesions accumulate, the cell enters the apoptotic pathway. Thereby the proper maintenance of DDR is crucial for plants to survive. It is particularly important for agronomically important species because exposure to environmental stresses causing DNA damage leads to growth inhibition and yield reduction. Thereby, gaining knowledge regarding the DDR pathway in crops may have a huge agronomic impact-it may be useful in breeding new cultivars more tolerant to such stresses. In this review, we characterize different genotoxic agents and their mode of action, describe DDR activation and signaling and summarize DNA repair mechanisms in plants.
Collapse
|
10
|
Yu J, Wang CG. Relationship between polymorphisms in homologous recombination repair genes RAD51 G172T、XRCC2 & XRCC3 and risk of breast cancer: A meta-analysis. Front Oncol 2023; 13:1047336. [PMID: 36761956 PMCID: PMC9903134 DOI: 10.3389/fonc.2023.1047336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Background Genetic variability in DNA double-strand break repair genes such as RAD51 gene and its paralogs XRCC2、XRCC3 may contribute to the occurrence and progression of breast cancer. To obtain a complete evaluation of the above association, we performed a meta-analysis of published studies. Methods Electronic databases, including PubMed, EMBASE, Web of Science, and Cochrane Library, were comprehensively searched from inception to September 2022. The Newcastle-Ottawa Scale (NOS) checklist was used to assess all included non-randomized studies. Odds ratios (OR) with 95% confidence intervals (CI) were calculated by STATA 16.0 to assess the strength of the association between single nucleotide polymorphisms (SNPs) in these genes and breast cancer risk. Subsequently, the heterogeneity between studies, sensitivity, and publication bias were performed. We downloaded data from The Cancer Genome Atlas (TCGA) and used univariate and multivariate Cox proportional hazard regression (CPH) models to validate the prognostic value of these related genes in the R software. Results The combined results showed that there was a significant correlation between the G172T polymorphism and the susceptibility to breast cancer in the homozygote model (OR= 1.841, 95% CI=1.06-3.21, P=0.03). Furthermore, ethnic analysis showed that SNP was associated with the risk of breast cancer in Arab populations in homozygous models (OR=3.52, 95% CI=1.13-11.0, P= 0.003). For the XRCC2 R188H polymorphism, no significant association was observed. Regarding polymorphism in XRCC3 T241M, a significantly increased cancer risk was only observed in the allelic genetic model (OR=1.05, 95% CI= 1.00-1.11, P=0.04). Conclusions In conclusion, this meta-analysis suggests that Rad51 G172T polymorphism is likely associated with an increased risk of breast cancer, significantly in the Arab population. The relationship between the XRCC2 R188H polymorphism and breast cancer was not obvious. And T241M in XRCC3 may be associated with breast cancer risk, especially in the Asian population.
Collapse
|
11
|
Kim JH, Youn Y, Hwang JH. NCAPH Stabilizes GEN1 in Chromatin to Resolve Ultra-Fine DNA Bridges and Maintain Chromosome Stability. Mol Cells 2022; 45:792-805. [PMID: 36380731 PMCID: PMC9676985 DOI: 10.14348/molcells.2022.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/11/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Repairing damaged DNA and removing all physical connections between sister chromosomes is important to ensure proper chromosomal segregation by contributing to chromosomal stability. Here, we show that the depletion of non-SMC condensin I complex subunit H (NCAPH) exacerbates chromosome segregation errors and cytokinesis failure owing to sister-chromatid intertwinement, which is distinct from the ultra-fine DNA bridges induced by DNA inter-strand crosslinks (DNA-ICLs). Importantly, we identified an interaction between NCAPH and GEN1 in the chromatin involving binding at the N-terminus of NCAPH. DNA-ICL activation, using ICL-inducing agents, increased the expression and interaction between NCAPH and GEN1 in the soluble nuclear and chromatin, indicating that the NCAPH-GEN1 interaction participates in repairing DNA damage. Moreover, NCAPH stabilizes GEN1 within chromatin at the G2/M-phase and is associated with DNA-ICL-induced damage repair. Therefore, NCAPH resolves DNA-ICL-induced ultra-fine DNA bridges by stabilizing GEN1 and ensures proper chromosome separation and chromosome structural stability.
Collapse
Affiliation(s)
- Jae Hyeong Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Yuna Youn
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
| | - Jin-Hyeok Hwang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| |
Collapse
|
12
|
Classen S, Rahlf E, Jungwirth J, Albers N, Hebestreit LP, Zielinski A, Poole L, Groth M, Koch P, Liehr T, Kankel S, Cordes N, Petersen C, Rothkamm K, Pospiech H, Borgmann K. Partial Reduction in BRCA1 Gene Dose Modulates DNA Replication Stress Level and Thereby Contributes to Sensitivity or Resistance. Int J Mol Sci 2022; 23:13363. [PMID: 36362151 PMCID: PMC9656774 DOI: 10.3390/ijms232113363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024] Open
Abstract
BRCA1 is a well-known breast cancer risk gene, involved in DNA damage repair via homologous recombination (HR) and replication fork protection. Therapy resistance was linked to loss and amplification of the BRCA1 gene causing inferior survival of breast cancer patients. Most studies have focused on the analysis of complete loss or mutations in functional domains of BRCA1. How mutations in non-functional domains contribute to resistance mechanisms remains elusive and was the focus of this study. Therefore, clones of the breast cancer cell line MCF7 with indels in BRCA1 exon 9 and 14 were generated using CRISPR/Cas9. Clones with successful introduced BRCA1 mutations were evaluated regarding their capacity to perform HR, how they handle DNA replication stress (RS), and the consequences on the sensitivity to MMC, PARP1 inhibition, and ionizing radiation. Unexpectedly, BRCA1 mutations resulted in both increased sensitivity and resistance to exogenous DNA damage, despite a reduction of HR capacity in all clones. Resistance was associated with improved DNA double-strand break repair and reduction in replication stress (RS). Lower RS was accompanied by increased activation and interaction of proteins essential for the S phase-specific DNA damage response consisting of HR proteins, FANCD2, and CHK1.
Collapse
Affiliation(s)
- Sandra Classen
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elena Rahlf
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Johannes Jungwirth
- Project Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Nina Albers
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Luca Philipp Hebestreit
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Alexandra Zielinski
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lena Poole
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Marco Groth
- CF Next-Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Philipp Koch
- CF Life Science Computing, Leibniz Institute on Aging-Fritz Lipmann Institute, Beutenbergstrasse 11, 07745 Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Stefanie Kankel
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Am Klinikum 1, 07747 Jena, Germany
| | - Nils Cordes
- OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 41, 01307 Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden: German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, PF 50, 01307 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiooncology-OncoRay, Bautzner Landstr. 400, 01328 Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69192 Heidelberg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radiooncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Helmut Pospiech
- Project Group Biochemistry, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, 90014 Oulu, Finland
| | - Kerstin Borgmann
- Laboratory of Radiobiology and Experimental Radiooncology, Center of Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
13
|
Gazo I, Naraine R, Lebeda I, Tomčala A, Dietrich M, Franěk R, Pšenička M, Šindelka R. Transcriptome and Proteome Analyses Reveal Stage-Specific DNA Damage Response in Embryos of Sturgeon ( Acipenser ruthenus). Int J Mol Sci 2022; 23:6392. [PMID: 35742841 PMCID: PMC9223696 DOI: 10.3390/ijms23126392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/27/2022] Open
Abstract
DNA damage during early life stages may have a negative effect on embryo development, inducing mortality and malformations that have long-lasting effects during adult life. Therefore, in the current study, we analyzed the effect of DNA damage induced by genotoxicants (camptothecin (CPT) and olaparib) at different stages of embryo development. The survival, DNA fragmentation, transcriptome, and proteome of the endangered sturgeon Acipenser ruthenus were analyzed. Sturgeons are non-model fish species that can provide new insights into the DNA damage response and embryo development. The transcriptomic and proteomic patterns changed significantly after exposure to genotoxicants in a stage-dependent manner. The results of this study indicate a correlation between phenotype formation and changes in transcriptomic and proteomic profiles. CPT and olaparib downregulated oxidative phosphorylation and metabolic pathways, and upregulated pathways involved in nucleotide excision repair, base excision repair, and homologous recombination. We observed the upregulated expression of zona pellucida sperm-binding proteins in all treatment groups, as well as the upregulation of several glycolytic enzymes. The analysis of gene expression revealed several markers of DNA damage response and adaptive stress response, which could be applied in toxicological studies on fish embryos. This study is the first complex analysis of the DNA damage response in endangered sturgeons.
Collapse
Affiliation(s)
- Ievgeniia Gazo
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Ravindra Naraine
- Laboratory of Gene Expression, Institute of Biotechnology—Biocev, Academy of Science of Czech Republic, 252 50 Vestec, Czech Republic; (R.N.); (R.Š.)
| | - Ievgen Lebeda
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Aleš Tomčala
- Institute of Aquaculture and Protection of Waters, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Husova tř. 458/102, 370 05 České Budějovice, Czech Republic;
| | - Mariola Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland;
| | - Roman Franěk
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Martin Pšenička
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Zátiší 728/II, 389 25 Vodňany, Czech Republic; (I.L.); (R.F.); (M.P.)
| | - Radek Šindelka
- Laboratory of Gene Expression, Institute of Biotechnology—Biocev, Academy of Science of Czech Republic, 252 50 Vestec, Czech Republic; (R.N.); (R.Š.)
| |
Collapse
|
14
|
Deng J, Chernikova SB, Wang Y, Rodriguez ML, Andersen SJ, Umeh-Garcia MC, Godfrey BO, Ahmadian SS, Fischer WN, Koller KJ, Jandeleit B, Ringold GM, Gephart MH. A Novel Brain-Permeant Chemotherapeutic Agent for the Treatment of Brain Metastasis in Triple-Negative Breast Cancer. Mol Cancer Ther 2021; 20:2110-2116. [PMID: 34635566 DOI: 10.1158/1535-7163.mct-21-0140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/18/2021] [Accepted: 07/26/2021] [Indexed: 02/05/2023]
Abstract
Development of metastases to central nervous system (CNS) is an increasing clinical issue following the diagnosis of advanced breast cancer. The propensity to metastasize to CNS varies by breast cancer subtype. Of the four breast cancer subtypes, triple-negative breast cancers (TNBC) have the highest rates of both parenchymal brain metastasis and leptomeningeal metastasis (LM). LM is rapidly fatal due to poor detection and limited therapeutic options. Therapy of TNBC brain metastasis and LM is challenged by multifocal brain metastasis and diffuse spread of LM, and must balance brain penetration, tumor cytotoxicity, and the avoidance of neurotoxicity. Thus, there is an urgent need for novel therapeutic options in TNBCs CNS metastasis. QBS10072S is a novel chemotherapeutic that leverages TNBC-specific defects in DNA repair and LAT1 (L-amino acid transporter type 1)-dependent transport into the brain. In our study, activity of QBS10072S was investigated in vitro with various cell lines including the human TNBC cell line MDA-MB-231 and its brain-tropic derivative MDA-MB-231-BR3. QBS10072S was preferentially toxic to TNBC cells. The efficacy of QBS10072S against brain metastasis and LM was tested using a model of brain metastasis based on the internal carotid injection of luciferase-expressing tumor cells into NuNu mice. The compound was well tolerated, delayed tumor growth and reduced leptomeningeal dissemination, resulting in significant extension of survival. Given that current treatments for LM are palliative with only few studies reporting a survival benefit, QBS10072S is planned to be investigated in clinical trials as a therapeutic for TNBC LM. SIGNIFICANCE: TNBC brain metastasis often involves dissemination into leptomeninges. Treatment options for TNBC leptomeningeal metastasis are limited and are mostly palliative. Our study demonstrates significant efficacy of the brain-penetrating agent QBS10072S against TNBC brain metastasis and leptomeningeal spread.
Collapse
Affiliation(s)
- Jiaojiao Deng
- Department of Neurosurgery, Stanford University, Stanford, California.,Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | | - Yuelong Wang
- Department of Neurosurgery, Stanford University, Stanford, California.,Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | - Bryanna O Godfrey
- Department of Neurosurgery, Stanford University, Stanford, California
| | - Saman S Ahmadian
- Department of Pathology, Stanford University, Stanford, California
| | | | | | | | | | | |
Collapse
|
15
|
Marchal L, Hamsanathan S, Karthikappallil R, Han S, Shinglot H, Gurkar AU. Analysis of representative mutants for key DNA repair pathways on healthspan in Caenorhabditis elegans. Mech Ageing Dev 2021; 200:111573. [PMID: 34562508 DOI: 10.1016/j.mad.2021.111573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/26/2021] [Accepted: 09/21/2021] [Indexed: 12/30/2022]
Abstract
Although the link between DNA damage and aging is well accepted, the role of different DNA repair proteins on functional/physiological aging is not well-defined. Here, using Caenorhabditis elegans, we systematically examined the effect of three DNA repair genes involved in key genome stability pathways. We assayed multiple health proxies including molecular, functional and resilience measures to define healthspan. Loss of XPF-1/ERCC-1, a protein involved in nucleotide excision repair (NER), homologous recombination (HR) and interstrand crosslink (ICL) repair, showed the highest impairment of functional and stress resilience measures along with a shortened lifespan. brc-1 mutants, with a well-defined role in HR and ICL are short-lived and highly sensitive to acute stressors, specifically oxidative stress. In contrast, ICL mutant, fcd-2 did not impact lifespan or most healthspan measures. Our efforts also uncover that DNA repair mutants show high sensitivity to oxidative stress with age, suggesting that this measure could act as a primary proxy for healthspan. Together, these data suggest that impairment of multiple DNA repair genes can drive functional/physiological aging. Further studies to examine specific DNA repair genes in a tissue specific manner will help dissect the importance and mechanistic role of these repair systems in biological aging.
Collapse
Affiliation(s)
- Lucile Marchal
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Shruthi Hamsanathan
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Roshan Karthikappallil
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA; Medical Sciences Division, University of Oxford, Oxford, UK
| | - Suhao Han
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Himaly Shinglot
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA
| | - Aditi U Gurkar
- Aging Institute of UPMC and the University of Pittsburgh School of Medicine, 100 Technology Dr, Pittsburgh, PA, 15219, USA; Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh School of Medicine, 3471 Fifth Avenue, Kaufmann Medical Building Suite 500, Pittsburgh, PA, 15213, USA; Geriatric Research, Education and Clinical Centre, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, 15240, USA.
| |
Collapse
|
16
|
Alkassis S, Yazdanpanah O, Philip PA. BRCA mutations in pancreatic cancer and progress in their targeting. Expert Opin Ther Targets 2021; 25:547-557. [PMID: 34289788 DOI: 10.1080/14728222.2021.1957462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Introduction: Genomic instability resulting from DNA damage repair (DDR) deficiencies is a hallmark of cancer and offers treatment opportunities. Homologous recombination DDR defect is a result of multiple critical gene mutations, including BRCA1/2. Targeting DNA DDR defects in pancreatic cancer (PC) is emerging as a potential treatment strategy with current focus on BRCA mutations.Areas covered: Challenges in treating patients with PC are explained. We review DDR defects as a treatment target in PC, specifically, germline BRCA mutation and sensitivity to platinum compounds and exploiting the strategy of synthetic lethality using poly (ADP-ribose) polymerase (PARP) inhibition. Literature review was undertaken through PubMed, Google Scholar, and Clinicaltrials.gov website.Expert opinion: DDR defects are promising targets for novel therapies in PC. Early application of such strategy is in patient subgroup with BRCA germline mutation, which is seen in only 5-7% of the PC population. The oral PARP inhibitor olaparib in the maintenance setting represents the first targeted therapy in metastatic PC based on a phase 3 study. There is a very modest benefit for patients with PC using PARP inhibitors. Future work must improve our understanding of mechanisms of sensitivity and resistance to PARP inhibitors in PC and enhance the molecular selection of patients for such therapy.
Collapse
Affiliation(s)
- Samer Alkassis
- Internal Medicine Department, Wayne State University/Detroit Medical Center, Detroit, MI, USA
| | - Omid Yazdanpanah
- Internal Medicine Department, Wayne State University/Detroit Medical Center, Detroit, MI, USA
| | - Philip Agop Philip
- Division of Hematology/Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| |
Collapse
|
17
|
Wu CN, Chang WS, Shih LC, Wang YC, Lee HT, Yu CC, Wang ZH, Mong MC, Hsia TC, Tsai CW, Bau DAT. Interaction of DNA Repair Gene XPC With Smoking and Betel Quid Chewing Behaviors of Oral Cancer. Cancer Genomics Proteomics 2021; 18:441-449. [PMID: 33994366 DOI: 10.21873/cgp.20270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM Xeroderma pigmentosum complementation group C (XPC) is reported to play important roles in DNA integrity and genomic instability, however, the contribution of XPC to oral carcinogenesis is largely uncertain. Therefore, we aimed at examining the contribution of XPC genotypes to oral cancer. MATERIALS AND METHODS The genotypes of XPC rs2228001 and rs2228000 were examined among 958 oral cancer patients and 958 control subjects by polymerase chain reaction-restriction fragment length polymorphism methodology and corresponding DNA repair capacity was checked. RESULTS First, the percentages of XPC rs2228001 AC and CC were higher among oral cancer patients than controls. Second, no significant association was observed regarding XPC rs2228000. Third, there was a synergistic influence of smoking and betel quid chewing behaviors and XPC rs2228001 genotype on oral cancer risk. Last, functional experiments showed DNA repair capacity was lower for AC/CC carriers than AA carriers. CONCLUSION XPC rs2228001 C allele, which was associated with decreased DNA repair capacity, may interact with smoking and betel quid chewing behaviors on oral cancer risk.
Collapse
Affiliation(s)
- Cheng-Nan Wu
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Liang-Chun Shih
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Otorhinolaryngology, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Hsu-Tung Lee
- Cancer Prevention Center, Taichung Veterans General Hospital, Taichung, Taiwan, R.O.C
| | - Chien-Chih Yu
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.,School of Pharmacy, China Medical University, Taichung, Taiwan, R.O.C
| | - Zhi-Hong Wang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Mei-Chin Mong
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan, R.O.C.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.; .,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
18
|
Hoppe MM, Jaynes P, Wardyn JD, Upadhyayula SS, Tan TZ, Lie S, Lim DGZ, Pang BNK, Lim S, P S Yeong J, Karnezis A, Chiu DS, Leung S, Huntsman DG, Sedukhina AS, Sato K, Topp MD, Scott CL, Choi H, Patel NR, Brown R, Kaye SB, Pitt JJ, Tan DSP, Jeyasekharan AD. Quantitative imaging of RAD51 expression as a marker of platinum resistance in ovarian cancer. EMBO Mol Med 2021; 13:e13366. [PMID: 33709473 PMCID: PMC8103098 DOI: 10.15252/emmm.202013366] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 12/23/2022] Open
Abstract
Early relapse after platinum chemotherapy in epithelial ovarian cancer (EOC) portends poor survival. A-priori identification of platinum resistance is therefore crucial to improve on standard first-line carboplatin-paclitaxel treatment. The DNA repair pathway homologous recombination (HR) repairs platinum-induced damage, and the HR recombinase RAD51 is overexpressed in cancer. We therefore designed a REMARK-compliant study of pre-treatment RAD51 expression in EOC, using fluorescent quantitative immunohistochemistry (qIHC) to overcome challenges in quantitation of protein expression in situ. In a discovery cohort (n = 284), RAD51-High tumours had shorter progression-free and overall survival compared to RAD51-Low cases in univariate and multivariate analyses. The association of RAD51 with relapse/survival was validated in a carboplatin monotherapy SCOTROC4 clinical trial cohort (n = 264) and was predominantly noted in HR-proficient cancers (Myriad HRDscore < 42). Interestingly, overexpression of RAD51 modified expression of immune-regulatory pathways in vitro, while RAD51-High tumours showed exclusion of cytotoxic T cells in situ. Our findings highlight RAD51 expression as a determinant of platinum resistance and suggest possible roles for therapy to overcome immune exclusion in RAD51-High EOC. The qIHC approach is generalizable to other proteins with a continuum instead of discrete/bimodal expression.
Collapse
Affiliation(s)
- Michal M Hoppe
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Patrick Jaynes
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Joanna D Wardyn
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | | | - Tuan Zea Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Stefanus Lie
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Diana G Z Lim
- Department of PathologyNational University HospitalSingapore
| | - Brendan N K Pang
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of PathologyNational University HospitalSingapore
| | - Sherlly Lim
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Joe P S Yeong
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - Anthony Karnezis
- British Columbia Cancer AgencyVancouverBCCanada
- Present address:
Pathology and Lab medicineUC Davis Medical CentreSacramentoCAUSA
| | | | | | | | - Anna S Sedukhina
- Department of PharmacogenomicsSt. Marianna UniversityKawasakiJapan
| | - Ko Sato
- Department of PharmacogenomicsSt. Marianna UniversityKawasakiJapan
| | - Monique D Topp
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Clare L Scott
- The Walter and Eliza Hall Institute of Medical ResearchParkvilleVic.Australia
| | - Hyungwon Choi
- Saw Swee Hock School of Public HealthNational University of SingaporeSingapore
| | | | - Robert Brown
- Division of CancerImperial College LondonLondonUK
| | - Stan B Kaye
- Department of Haematology‐OncologyNational University HospitalSingapore
| | - Jason J Pitt
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
| | - David S P Tan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of Haematology‐OncologyNational University HospitalSingapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of SingaporeNational University of SingaporeSingapore
- Department of Haematology‐OncologyNational University HospitalSingapore
| |
Collapse
|
19
|
Chen LH, Shen TC, Li CH, Chiu KL, Hsiau YC, Wang YC, Gong CL, Wang ZH, Chang WS, Tsai CW, Hsia TC, Bau DAT. The Significant Interaction of Excision Repair Cross-complementing Group 1 Genotypes and Smoking to Lung Cancer Risk. Cancer Genomics Proteomics 2021; 17:571-577. [PMID: 32859635 DOI: 10.21873/cgp.20213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The study aims to evaluate the contribution of excision repair cross-complementing group 1 (ERCC1), which plays an important role in genome integrity maintenance, to lung cancer risk. MATERIALS AND METHODS ERCC1 rs11615 and rs3212986 genotypes were identified by polymerase chain reaction-restriction fragment length polymorphism analysis and their association with lung cancer risk was examined among 358 lung cancer patients and 716 controls. RESULTS The proportions of CC, CT and TT for the rs11615 genotype were 43.6%, 41.6% and 14.8% in the case group and 50.0%, 41.1% and 8.9% in the control group, respectively (p for trend=0.0082). Allelic analysis showed that ERCC1 rs11615 T-allele carriers have a 1.32-fold higher risk of lung cancer than wild-type C-allele carriers [95%confidence interval (CI)=1.09-1.60, p=0.0039]. In addition, a significant interaction between the rs11615 genotype and smoking status was observed. CONCLUSION The T allele of ERCC1 rs11615 jointly with smoking habits may contribute to a higher lung cancer risk in Taiwan.
Collapse
Affiliation(s)
- Li-Hsiou Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C
| | - Te-Chun Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Hsiang Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Kuo-Liang Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Division of Chest Medicine, Department of Internal Medicine, Taichung Tzu Chi Hospital, Taichung, Taiwan, R.O.C
| | - Yu-Chen Hsiau
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Yun-Chi Wang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chi-Li Gong
- Department of Physiology, China Medical University, Taichung, Taiwan, R.O.C
| | - Zhi-Hong Wang
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan, R.O.C
| | - Wen-Shin Chang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Chia-Wen Tsai
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C.,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - Te-Chun Hsia
- Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C
| | - DA-Tian Bau
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan, R.O.C. .,Terry Fox Cancer Research Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan, R.O.C.,Department of Bioinformatics and Medical Engineering, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
20
|
Abstract
DNA interstrand cross-links (ICLs) covalently connect the two strands of the double helix and are extremely cytotoxic. Defective ICL repair causes the bone marrow failure and cancer predisposition syndrome, Fanconi anemia, and upregulation of repair causes chemotherapy resistance in cancer. The central event in ICL repair involves resolving the cross-link (unhooking). In this review, we discuss the chemical diversity of ICLs generated by exogenous and endogenous agents. We then describe how proliferating and nonproliferating vertebrate cells unhook ICLs. We emphasize fundamentally new unhooking strategies, dramatic progress in the structural analysis of the Fanconi anemia pathway, and insights into how cells govern the choice between different ICL repair pathways. Throughout, we highlight the many gaps that remain in our knowledge of these fascinating DNA repair pathways.
Collapse
Affiliation(s)
- Daniel R Semlow
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Current affiliation: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Johannes C Walter
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA; .,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
21
|
Perkhofer L, Gout J, Roger E, Kude de Almeida F, Baptista Simões C, Wiesmüller L, Seufferlein T, Kleger A. DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut 2021; 70:606-617. [PMID: 32855305 PMCID: PMC7873425 DOI: 10.1136/gutjnl-2019-319984] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/12/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022]
Abstract
Complex rearrangement patterns and mitotic errors are hallmarks of most pancreatic ductal adenocarcinomas (PDAC), a disease with dismal prognosis despite some therapeutic advances in recent years. DNA double-strand breaks (DSB) bear the greatest risk of provoking genomic instability, and DNA damage repair (DDR) pathways are crucial in preserving genomic integrity following a plethora of damage types. Two major repair pathways dominate DSB repair for safeguarding the genome integrity: non-homologous end joining and homologous recombination (HR). Defective HR, but also alterations in other DDR pathways, such as BRCA1, BRCA2, ATM and PALB2, occur frequently in both inherited and sporadic PDAC. Personalised treatment of pancreatic cancer is still in its infancy and predictive biomarkers are lacking. DDR deficiency might render a PDAC vulnerable to a potential new therapeutic intervention that increases the DNA damage load beyond a tolerable threshold, as for example, induced by poly (ADP-ribose) polymerase inhibitors. The Pancreas Cancer Olaparib Ongoing (POLO) trial, in which olaparib as a maintenance treatment improved progression-free survival compared with placebo after platinum-based induction chemotherapy in patients with PDAC and germline BRCA1/2 mutations, raised great hopes of a substantially improved outcome for this patient subgroup. This review summarises the relationship between DDR and PDAC, the prevalence and characteristics of DNA repair mutations and options for the clinical management of patients with PDAC and DNA repair deficiency.
Collapse
Affiliation(s)
- Lukas Perkhofer
- Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | - Johann Gout
- Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | - Elodie Roger
- Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | | | - Carolina Baptista Simões
- Hospital de Santa Maria, Centro Hospitalar De Lisboa Norte E.P.E. (CHLN), Gastroenterology, Lisboa, Portugal
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - Thomas Seufferlein
- Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| | - Alexander Kleger
- Department of Internal Medicine 1, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
22
|
Testicular Germ Cell Tumors Acquire Cisplatin Resistance by Rebalancing the Usage of DNA Repair Pathways. Cancers (Basel) 2021; 13:cancers13040787. [PMID: 33668653 PMCID: PMC7917736 DOI: 10.3390/cancers13040787] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Germ cell tumors are a model of curable solid tumors due to their unique sensitivity to cisplatin-based chemotherapy. Patients are typically young adults, and despite high cure rate, about 20% of them do not achieve remission or relapse, and 50% of them succumb to the disease. The mechanisms behind their resistance to therapy are largely unknown. By using Testicular Germ Cell Tumor (TGCT) cell lines as a model, we investigated the mechanism of acquired resistance to cisplatin. We demonstrated that resistance occurred by a fine modulation of the DNA repair pathway choice. Namely, in resistant cells, repair of double-strand breaks by non-homologous end joining was dampened by the reduced expression of TP53-binding protein 1 (53BP1) and DNA-dependent protein kinase (DNA-PKcs). However, cisplatin-induced damage was repaired efficiently by homologous recombination. Additionally, we demonstrate that pharmacological inhibition of poly (ADP-ribose) polymerase (PARP) combined with cisplatin had an additive/synergistic effect on cisplatin-resistant cells, which represents the proof of concept for introducing PARP inhibitors in salvage therapy. Abstract Despite germ cell tumors (GCTs) responding to cisplatin-based chemotherapy at a high rate, a subset of patients does not respond to treatment and have significantly worse prognosis. The biological mechanisms underlying the resistance remain unknown. In this study, by using two TGCT cell lines that have acquired cisplatin resistance after chronic exposure to the drug, we identified some key proteins and mechanisms of acquired resistance. We show that cisplatin-resistant cell lines had a non-homologous end-joining (NHEJ)-less phenotype. This correlated with a reduced basal expression of TP53-binding protein 1 (53BP1) and DNA-dependent protein kinase (DNA-PKcs) proteins and reduced formation of 53BP1 foci after cisplatin treatment. Consistent with these observations, modulation of 53BP1 protein expression altered the cell line’s resistance to cisplatin, and inhibition of DNA-PKcs activity antagonized cisplatin cytotoxicity. Dampening of NHEJ was accompanied by a functional increase in the repair of DNA double-strand breaks (DSBs) by the homologous recombination repair pathway. As a result, cisplatin-resistant cells were more resistant to PARP inhibitor (PARPi) monotherapy. Moreover, when PARPi was given in combination with cisplatin, it exerted an additive/synergistic effect, and reduced the cisplatin dose for cytotoxicity. These results suggest that treatment of cisplatin-refractory patients may benefit from low-dose cisplatin therapy combined with PARPi.
Collapse
|
23
|
Tsao N, Schärer OD, Mosammaparast N. The complexity and regulation of repair of alkylation damage to nucleic acids. Crit Rev Biochem Mol Biol 2021; 56:125-136. [PMID: 33430640 DOI: 10.1080/10409238.2020.1869173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
DNA damaging agents have been a cornerstone of cancer therapy for nearly a century. The discovery of many of these chemicals, particularly the alkylating agents, are deeply entwined with the development of poisonous materials originally intended for use in warfare. Over the last decades, their anti-proliferative effects have focused on the specific mechanisms by which they damage DNA, and the factors involved in the repair of such damage. Due to the variety of aberrant adducts created even for the simplest alkylating agents, numerous pathways of repair are engaged as a defense against this damage. More recent work has underscored the role of RNA damage in the cellular response to these agents, although the understanding of their role in relation to established DNA repair pathways is still in its infancy. In this review, we discuss the chemistry of alkylating agents, the numerous ways in which they damage nucleic acids, as well as the specific DNA and RNA repair pathways which are engaged to counter their effects.
Collapse
Affiliation(s)
- Ning Tsao
- Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea.,Department of Biological Sciences, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Nima Mosammaparast
- Department of Pathology and Immunology, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Tissue-Specific DNA Repair Activity of ERCC-1/XPF-1. Cell Rep 2021; 34:108608. [PMID: 33440146 DOI: 10.1016/j.celrep.2020.108608] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 10/30/2020] [Accepted: 12/15/2020] [Indexed: 01/14/2023] Open
Abstract
Hereditary DNA repair defects affect tissues differently, suggesting that in vivo cells respond differently to DNA damage. Knowledge of the DNA damage response, however, is largely based on in vitro and cell culture studies, and it is currently unclear whether DNA repair changes depending on the cell type. Here, we use in vivo imaging of the nucleotide excision repair (NER) endonuclease ERCC-1/XPF-1 in C. elegans to demonstrate tissue-specific NER activity. In oocytes, XPF-1 functions as part of global genome NER (GG-NER) to ensure extremely rapid removal of DNA-helix-distorting lesions throughout the genome. In contrast, in post-mitotic neurons and muscles, XPF-1 participates in NER of transcribed genes only. Strikingly, muscle cells appear more resistant to the effects of DNA damage than neurons. These results suggest a tissue-specific organization of the DNA damage response and may help to better understand pleiotropic and tissue-specific consequences of accumulating DNA damage.
Collapse
|
25
|
Pasadi S, Muniyappa K. Evidence for functional and regulatory cross-talk between Wnt/β-catenin signalling and Mre11-Rad50-Nbs1 complex in the repair of cisplatin-induced DNA cross-links. Oncotarget 2020; 11:4028-4044. [PMID: 33216839 PMCID: PMC7646826 DOI: 10.18632/oncotarget.27777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
The canonical Wnt/β-catenin signalling pathway plays a crucial role in a variety of functions including cell proliferation and differentiation, tumorigenic processes and radioresistance in cancer cells. The Mre11–Rad50–Nbs1 (MRN) complex has a pivotal role in sensing and repairing DNA damage. However, it remains unclear whether a connection exists between Wnt/β-catenin signalling and the MRN complex in the repair of cisplatin-induced DNA interstrand cross-links (ICLs). Here, we report that (1) cisplatin exposure results in a significant increase in the levels of MRN complex subunits in human tumour cells; (2) cisplatin treatment stimulates Wnt/β-catenin signalling through increased β-catenin expression; (3) the functional perturbation of Wnt/β-catenin signalling results in aberrant cell cycle dynamics and the activation of DNA damage response and apoptosis; (4) a treatment with CHIR99021, a potent and selective GSK3β inhibitor, augments cisplatin-induced cell death in cancer cells. On the other hand, inactivation of the Wnt/β-catenin signalling with FH535 promotes cell survival. Consistently, the staining pattern of γH2AX-foci is significantly reduced in the cells exposed simultaneously to cisplatin and FH535; and (5) inhibition of Wnt/β-catenin signalling impedes cisplatin-induced phosphorylation of Chk1, abrogates the G2/M phase arrest and impairs recombination-based DNA repair. Our data further show that Wnt signalling positively regulates the expression of β-catenin, Mre11 and FANCD2 at early time points, but declining thereafter due to negative feedback regulation. These results support a model wherein Wnt/β-catenin signalling and MRN complex crosstalk during DNA ICL repair, thereby playing an important role in the maintenance of genome stability.
Collapse
Affiliation(s)
- Sanjeev Pasadi
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Kalappa Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
Sinitsky MY, Kutikhin AG, Tsepokina AV, Shishkova DK, Asanov MA, Yuzhalin AE, Minina VI, Ponasenko AV. Mitomycin C induced genotoxic stress in endothelial cells is associated with differential expression of proinflammatory cytokines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2020; 858-860:503252. [DOI: 10.1016/j.mrgentox.2020.503252] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/08/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022]
|
27
|
Schoch S, Gajewski S, Rothfuß J, Hartwig A, Köberle B. Comparative Study of the Mode of Action of Clinically Approved Platinum-Based Chemotherapeutics. Int J Mol Sci 2020; 21:ijms21186928. [PMID: 32967255 PMCID: PMC7555145 DOI: 10.3390/ijms21186928] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022] Open
Abstract
Platinum drugs are among the most effective anticancer agents, but their mode of action is still not fully understood. We therefore carried out a systematic investigation on the cellular activities of cisplatin, carboplatin and oxaliplatin in A498 kidney cancer cells. Cytotoxicity was higher for cisplatin and oxaliplatin compared to carboplatin, with induction of apoptosis as the preferred mode of cell death. Gene expression profiling displayed modulation of genes related to DNA damage response/repair, cell cycle regulation and apoptosis which was more pronounced upon oxaliplatin treatment. Furthermore, repression of specific DNA repair genes was restricted to oxaliplatin. Transcriptional level observations were further analyzed on the functional level. Uptake studies revealed low intracellular platinum accumulation and DNA platination upon carboplatin treatment. Removal of overall DNA platination was comparable for the three drugs. However, no processing of oxaliplatin-induced interstrand crosslinks was observed. Cisplatin and carboplatin influenced cell cycle distribution comparably, while oxaliplatin had no effect. Altogether, we found a similar mode of action for cisplatin and carboplatin, while the activity of oxaliplatin appeared to differ. This might be clinically relevant as due to the difference in mode of action oxaliplatin could be active in tumors which show resistance towards cisplatin and carboplatin.
Collapse
Affiliation(s)
- Sarah Schoch
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (S.S.); (S.G.); (J.R.); (A.H.)
- Department of Laboratory Medicine, Lund University, Scheelevägen 2, 22381 Lund, Sweden
| | - Sabine Gajewski
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (S.S.); (S.G.); (J.R.); (A.H.)
| | - Jana Rothfuß
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (S.S.); (S.G.); (J.R.); (A.H.)
| | - Andrea Hartwig
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (S.S.); (S.G.); (J.R.); (A.H.)
| | - Beate Köberle
- Department of Food Chemistry and Toxicology, Karlsruhe Institute of Technology, Adenauerring 20a, 76131 Karlsruhe, Germany; (S.S.); (S.G.); (J.R.); (A.H.)
- Correspondence: ; Tel.: +49-721-608-42933
| |
Collapse
|
28
|
Osawa T, Shimamura T, Saito K, Hasegawa Y, Ishii N, Nishida M, Ando R, Kondo A, Anwar M, Tsuchida R, Hino S, Sakamoto A, Igarashi K, Saitoh K, Kato K, Endo K, Yamano S, Kanki Y, Matsumura Y, Minami T, Tanaka T, Anai M, Wada Y, Wanibuchi H, Hayashi M, Hamada A, Yoshida M, Yachida S, Nakao M, Sakai J, Aburatani H, Shibuya M, Hanada K, Miyano S, Soga T, Kodama T. Phosphoethanolamine Accumulation Protects Cancer Cells under Glutamine Starvation through Downregulation of PCYT2. Cell Rep 2020; 29:89-103.e7. [PMID: 31577958 DOI: 10.1016/j.celrep.2019.08.087] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/02/2019] [Accepted: 08/27/2019] [Indexed: 01/01/2023] Open
Abstract
Tolerance to severe tumor microenvironments, including hypoxia and nutrient starvation, is a common feature of aggressive cancer cells and can be targeted. However, metabolic alterations that support cancer cells upon nutrient starvation are not well understood. Here, by comprehensive metabolome analyses, we show that glutamine deprivation leads to phosphoethanolamine (PEtn) accumulation in cancer cells via the downregulation of PEtn cytidylyltransferase (PCYT2), a rate-limiting enzyme of phosphatidylethanolamine biosynthesis. PEtn accumulation correlated with tumor growth under nutrient starvation. PCYT2 suppression was partially mediated by downregulation of the transcription factor ELF3. Furthermore, PCYT2 overexpression reduced PEtn levels and tumor growth. In addition, PEtn accumulation and PCYT2 downregulation in human breast tumors correlated with poor prognosis. Thus, we show that glutamine deprivation leads to tumor progression by regulating PE biosynthesis via the ELF3-PCYT2 axis. Furthermore, manipulating glutamine-responsive genes could be a therapeutic approach to limit cancer progression.
Collapse
Affiliation(s)
- Tsuyoshi Osawa
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | - Teppei Shimamura
- Department of Systems Biology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan.
| | - Kyoko Saito
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Yoko Hasegawa
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Naoko Ishii
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Miyuki Nishida
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ritsuko Ando
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Ayano Kondo
- Division of Genome Science, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Muyassar Anwar
- Division of Genome Science, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Rika Tsuchida
- Division of Integrative Nutriomics and Oncology, RCAST, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Shinjiro Hino
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Akihisa Sakamoto
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Kaori Igarashi
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Kaori Saitoh
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Keiko Kato
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Keiko Endo
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan
| | - Shotaro Yamano
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Yasuharu Kanki
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yoshihiro Matsumura
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Takashi Minami
- Division of Molecular and Vascular Biology, IRDA, Kumamoto University, Kumamoto 860-0811, Japan
| | - Toshiya Tanaka
- Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Motonobu Anai
- Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Youichiro Wada
- Isotope Science Center, The University of Tokyo, Tokyo 113-0032, Japan
| | - Hideki Wanibuchi
- Department of Molecular Pathology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | - Mitsuhiro Hayashi
- Division of Clinical Pharmacology and Translational Research, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Akinobu Hamada
- Division of Molecular Pharmacology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Masayuki Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Juro Sakai
- Division of Metabolic Medicine, RCAST, The University of Tokyo, Tokyo 153-8904, Japan; Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Hiroyuki Aburatani
- Division of Genome Science, RCAST, The University of Tokyo, Tokyo 153-8904, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, 634-1 Toyazuka-machi, Isesaki, Gunma 372-8588, Japan
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Satoru Miyano
- Human Genome Center, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka 997-0052, Japan.
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, RCAST, The University of Tokyo, Tokyo 153-8904, Japan.
| |
Collapse
|
29
|
Sriramkumar S, Matthews TD, Ghobashi AH, Miller SA, VanderVere-Carozza PS, Pawelczak KS, Nephew KP, Turchi JJ, O'Hagan HM. Platinum-Induced Ubiquitination of Phosphorylated H2AX by RING1A Is Mediated by Replication Protein A in Ovarian Cancer. Mol Cancer Res 2020; 18:1699-1710. [PMID: 32801161 DOI: 10.1158/1541-7786.mcr-20-0396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/10/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022]
Abstract
Platinum resistance is a common occurrence in high-grade serous ovarian cancer and a major cause of ovarian cancer deaths. Platinum agents form DNA cross-links, which activate nucleotide excision repair (NER), Fanconi anemia, and homologous recombination repair (HRR) pathways. Chromatin modifications occur in the vicinity of DNA damage and play an integral role in the DNA damage response (DDR). Chromatin modifiers, including polycomb repressive complex 1 (PRC1) members, and chromatin structure are frequently dysregulated in ovarian cancer and can potentially contribute to platinum resistance. However, the role of chromatin modifiers in the repair of platinum DNA damage in ovarian cancer is not well understood. We demonstrate that the PRC1 complex member RING1A mediates monoubiquitination of lysine 119 of phosphorylated H2AX (γH2AXub1) at sites of platinum DNA damage in ovarian cancer cells. After platinum treatment, our results reveal that NER and HRR both contribute to RING1A localization and γH2AX monoubiquitination. Importantly, replication protein A, involved in both NER and HRR, mediates RING1A localization to sites of damage. Furthermore, RING1A deficiency impairs the activation of the G2-M DNA damage checkpoint, reduces the ability of ovarian cancer cells to repair platinum DNA damage, and increases sensitivity to platinum. IMPLICATIONS: Elucidating the role of RING1A in the DDR to platinum agents will allow for the identification of therapeutic targets to improve the response of ovarian cancer to standard chemotherapy regimens.
Collapse
Affiliation(s)
- Shruthi Sriramkumar
- Cell, Molecular and Cancer Biology Graduate Program and Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Timothy D Matthews
- Cell, Molecular and Cancer Biology Graduate Program and Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana
| | - Ahmed H Ghobashi
- Genome, Cell and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana
| | - Samuel A Miller
- Genome, Cell and Developmental Biology, Department of Biology, Indiana University Bloomington, Bloomington, Indiana
| | - Pamela S VanderVere-Carozza
- Department of Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Kenneth P Nephew
- Cell, Molecular and Cancer Biology Graduate Program and Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana.,Department of Anatomy, Cell Biology and Physiology; Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, Indiana
| | - John J Turchi
- Department of Medicine and Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| | - Heather M O'Hagan
- Cell, Molecular and Cancer Biology Graduate Program and Medical Sciences Program, Indiana University School of Medicine, Bloomington, Indiana. .,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana.,Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
30
|
Corbett S, Huang S, Zammarchi F, Howard PW, van Berkel PH, Hartley JA. The Role of Specific ATP-Binding Cassette Transporters in the Acquired Resistance to Pyrrolobenzodiazepine Dimer-Containing Antibody-Drug Conjugates. Mol Cancer Ther 2020; 19:1856-1865. [PMID: 32669316 DOI: 10.1158/1535-7163.mct-20-0222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/14/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
Antibody-drug conjugates (ADC) containing pyrrolobenzodiazepine (PBD) dimers are being evaluated clinically in both hematologic and solid tumors. These include ADCT-301 (camidanlumab tesirine) and ADCT-402 (loncastuximab tesirine) in pivotal phase II trials that contain the payload tesirine, which releases the PBD dimer warhead SG3199. An important consideration in future clinical development is acquired resistance. The aim was to generate and characterize PBD acquired resistant cell lines in both hematologic and solid tumor settings. Human Karpas-299 (ALCL) and NCI-N87 (gastric cancer) cells were incubated with increasing IC50 doses of ADC (targeting CD25 and HER2, respectively) or SG3199 in a pulsed manner until stable acquired resistance was established. The level of resistance achieved was approximately 3,000-fold for ADCT-301 and 3-fold for SG3199 in Karpas-299, and 8-fold for ADCT-502 and 4-fold for SG3199 in NCI-N87. Cross-resistance between ADC and SG3199, and with an alternative PBD-containing ADC or PBD dimer was observed. The acquired resistant lines produced fewer DNA interstrand cross-links, indicating an upstream mechanism of resistance. Loss of antibody binding or internalization was not observed. A human drug transporter PCR Array revealed several genes upregulated in all the resistant cell lines, including ABCG2 and ABCC2, but not ABCB1(MDR1). These findings were confirmed by RT-PCR and Western blot, and inhibitors and siRNA knockdown of ABCG2 and ABCC2 recovered drug sensitivity. These data show that acquired resistance to PBD-ADCs and SG3199 can involve specific ATP-binding cassette drug transporters. This has clinical implications as potential biomarkers of resistance and for the rational design of drug combinations.
Collapse
Affiliation(s)
- Simon Corbett
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom
| | - Shiran Huang
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom
| | - Francesca Zammarchi
- ADC Therapeutics (UK) Limited, QMB Innovation Centre, London, United Kingdom
| | - Philip W Howard
- AstraZeneca/Spirogen, QMB Innovation Centre, London, United Kingdom
| | | | - John A Hartley
- Cancer Research UK Drug-DNA Interactions Research Group, UCL Cancer Institute, London, United Kingdom. .,ADC Therapeutics (UK) Limited, QMB Innovation Centre, London, United Kingdom
| |
Collapse
|
31
|
Chitapanarux I, Lekawanvijit S, Sripan P, Mahanupab P, Chakrabandhu S, Onchan W, Sittitrai P, Boonlert D, Klibngern H, Samuckkeethum W. The prognostic value of excision repair cross-complementing Group 1 expression in nasopharyngeal cancer patients. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2020; 25:34. [PMID: 32582340 PMCID: PMC7306241 DOI: 10.4103/jrms.jrms_787_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 11/04/2022]
Abstract
Background Overexpression of excision repair cross-complementing Group 1 (ERCC-1) is related to cisplatin resistance and defective repair of radiation damage. The purpose of this study was to evaluate the clinical significance of excision (ERCC-1) expression in nasopharyngeal cancer (NPC). Materials and Methods We conducted a retrospective review of patients diagnosed with NPC between 2000 and 2013. The archived tissues were analyzed using immunohistochemistry to determine ERCC-1 expression. The ERCC-1 expression level along with other clinical factors and overall survival (OS) were analyzed. Hazard ratio (HR) with a 95% confidence interval was calculated to assess the risk. Results The analysis of ERCC-1 expression was available in 262 NPC patients who had medical records at our hospital. Among those patients, 221 (84%) were treated with curative radiotherapy (RT)/concurrent chemoradiotherapy, 22 (7%) were treated with palliative RT alone, and 19 (9%) were given best supportive care. There was no correlation between ERCC-1 expression and stage of cancer or OS. No difference in 5-year OS was found between patients with low ERCC-1 expression and high ERCC-1 expression (38% vs. 36%; P = 0.981). The adjusted HR (aHR) of cancer death increased with cancer stage (aHR = 2.93 for advanced Stages III-IV; P = 0.001) and age (aHR = 2.11 for age >55; P ≤ 0.001). ERCC-1 expression exhibited no prognostic significance in our study (aHR = 1). Conclusion In this study, ERCC-1 expression has no statistical significance to be considered a prognostic factor for OS among NPC patients. On the other hand, cancer stage, age, and types of treatment can be prognostic factors in NPC patients.
Collapse
Affiliation(s)
- Imjai Chitapanarux
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Chiang Mai Cancer Registry, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Suree Lekawanvijit
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patumrat Sripan
- Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Chiang Mai Cancer Registry, Maharaj Nakorn Chiang Mai Hospital, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Pongsak Mahanupab
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Somvilai Chakrabandhu
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wimrak Onchan
- Division of Radiation Oncology, Department of Radiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pichit Sittitrai
- Department of Otolaryngology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Donyarat Boonlert
- Department of Otolaryngology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hanpon Klibngern
- Department of Otolaryngology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wisarut Samuckkeethum
- Department of Otolaryngology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
32
|
Affiliation(s)
- Peter J. McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
33
|
Acetylation of XPF by TIP60 facilitates XPF-ERCC1 complex assembly and activation. Nat Commun 2020; 11:786. [PMID: 32034146 PMCID: PMC7005904 DOI: 10.1038/s41467-020-14564-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 01/17/2020] [Indexed: 01/27/2023] Open
Abstract
The XPF-ERCC1 heterodimer is a structure-specific endonuclease that is essential for nucleotide excision repair (NER) and interstrand crosslink (ICL) repair in mammalian cells. However, whether and how XPF binding to ERCC1 is regulated has not yet been established. Here, we show that TIP60, also known as KAT5, a haplo-insufficient tumor suppressor, directly acetylates XPF at Lys911 following UV irradiation or treatment with mitomycin C and that this acetylation is required for XPF-ERCC1 complex assembly and subsequent activation. Mechanistically, acetylation of XPF at Lys911 disrupts the Glu907-Lys911 salt bridge, thereby leading to exposure of a previously unidentified second binding site for ERCC1. Accordingly, loss of XPF acetylation impairs the damage-induced XPF-ERCC1 interaction, resulting in defects in both NER and ICL repair. Our results not only reveal a mechanism that regulates XPF-ERCC1 complex assembly and activation, but also provide important insight into the role of TIP60 in the maintenance of genome stability. The XPF-ERCC1 heterodimer is an endonuclease involved in nucleotide excision (NER) and interstrand crosslink (ICL) repair in mammalian cells. Here, the authors provide insights into its regulation by revealing that TIP60 regulates XPF-ERCC1 complex assembly and activation.
Collapse
|
34
|
Abstract
Gel electrophoresis of DNA is one of the most frequently used techniques in molecular biology. Typically, it is used in the following: the analysis of in vitro reactions and purification of DNA fragments, analysis of PCR reactions, characterization of enzymes involved in DNA reactions, and sequencing. With some ingenuity gel electrophoresis of DNA is also used for the analysis of cellular biochemical reactions. For example, DNA breaks that accumulate in cells are analyzed by the comet assay and pulsed-field gel electrophoresis (PFGE). Furthermore, DNA replication intermediates are analyzed with two-dimensional (2D) gel electrophoresis. Moreover, several new methods for analyzing various chromosomal functions in cells have been developed. In this chapter, a brief introduction to these is given.
Collapse
Affiliation(s)
- Katsuhiro Hanada
- Clinical Engineering Research Center, Faculty of Medicine, Oita University, Yufu, Oita, Japan.
| |
Collapse
|
35
|
Swift LP, Castle L, McHugh PJ. Analysis of DNA Interstrand Cross-Links and their Repair by Modified Comet Assay. Methods Mol Biol 2020; 2119:79-88. [PMID: 31989516 DOI: 10.1007/978-1-0716-0323-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
DNA interstrand cross-links (ICLs) are an extremely toxic form of DNA damage that cells experience upon exposure to natural metabolites. Moreover, ICLs are cytotoxic lesions produced by a range of clinically important anticancer agents. Therefore, improving our understanding of ICL induction and processing has important implications in biology and medicine. The sensitive detection of ICLs in mammalian cells is challenging but has been aided by the development of a modified form of the single-cell gel electrophoresis (SCGE) assay, also known as the "comet assay." Here we describe this method and how it can be used to sensitively monitor the induction and removal of ICLs in single mammalian cells.
Collapse
Affiliation(s)
- Lonnie P Swift
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Lianne Castle
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Peter J McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Grenda A, Błach J, Szczyrek M, Krawczyk P, Nicoś M, Kuźnar Kamińska B, Jakimiec M, Balicka G, Chmielewska I, Batura-Gabryel H, Sawicki M, Milanowski J. Promoter polymorphisms of TOP2A and ERCC1 genes as predictive factors for chemotherapy in non-small cell lung cancer patients. Cancer Med 2019; 9:605-614. [PMID: 31797573 PMCID: PMC6970032 DOI: 10.1002/cam4.2743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/29/2019] [Accepted: 11/15/2019] [Indexed: 12/11/2022] Open
Abstract
Background Topoisomerase 2‐alpha (TOP2A) is an enzyme that controls topologic changes in DNA during transcription and replication. ERCC1 is an enzyme that takes part in DNA repair processes. The purpose of this study was to assess the predictive role of particular single nucleotide polymorphisms (SNPs) in the promoter regions of TOP2A and ERCC1 genes in non‐small cell lung cancer patients (NSCLC) treated with chemotherapy. Materials and methods We enrolled 113 NSCLC patients treated in the first line with platinum‐based chemotherapy. Effectiveness was available for 71 patients. DNA was isolated from whole blood using the Qiamp DNA Blood Mini kit (Qiagen). We examined five SNPs: rs11615 (ERCC1), rs3212986 (ERCC1), rs13695 (TOP2A), rs34300454 (TOP2A), rs11540720 (TOP2A). Quantitative PCR using the TaqMan probe (ThermoFisher) was performed on a Eco Illumina Real‐Time PCR system device (Illumina Inc). Results Patients with the A/A genotype in rs11615 of the ERCC1 gene had significantly longer median progression free survival (PFS) (8.5 months; P = .0088). Patients with the C/C genotype in rs3212986 of the ERCC1 gene had longer median PFS (7 months; P = .05). Patients with the C/C genotype in rs34300454 of TOP2A gene had significantly higher median PFS (7.5 months; P = .0029). Carriers of the C/C genotype in rs34300454 of the TOP2A gene had significantly longer median OS (15.5 months; P = .0017). Patients with the A/A genotype in rs11615 of the ERCC1 gene had significantly higher risk of neutropenia (P = .0133). Conclusions Polymorphisms of the TOP2A and ERCC1 genes may be a predictive factor of toxicities and survival for chemotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Justyna Błach
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland.,Department of Clinical Immunology, Medical University of Lublin, Lublin, Poland
| | - Michał Szczyrek
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland.,Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Barbara Kuźnar Kamińska
- Department of Pulmonology, Allergology and Respiratory Oncology, University of Medical Sciences in Poznań, Poznań, Poland
| | - Monika Jakimiec
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Grażyna Balicka
- Department of Thoracic Surgery, Medical University of Lublin, Lublin, Poland
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Halina Batura-Gabryel
- Department of Pulmonology, Allergology and Respiratory Oncology, University of Medical Sciences in Poznań, Poznań, Poland
| | - Marek Sawicki
- Department of Thoracic Surgery, Medical University of Lublin, Lublin, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
37
|
Zhang H, Chen Z, Ye Y, Ye Z, Cao D, Xiong Y, Srivastava M, Feng X, Tang M, Wang C, Tainer JA, Chen J. SLX4IP acts with SLX4 and XPF-ERCC1 to promote interstrand crosslink repair. Nucleic Acids Res 2019; 47:10181-10201. [PMID: 31495888 PMCID: PMC6821277 DOI: 10.1093/nar/gkz769] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 08/03/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Interstrand crosslinks (ICLs) are highly toxic DNA lesions that are repaired via a complex process requiring the coordination of several DNA repair pathways. Defects in ICL repair result in Fanconi anemia, which is characterized by bone marrow failure, developmental abnormalities, and a high incidence of malignancies. SLX4, also known as FANCP, acts as a scaffold protein and coordinates multiple endonucleases that unhook ICLs, resolve homologous recombination intermediates, and perhaps remove unhooked ICLs. In this study, we explored the role of SLX4IP, a constitutive factor in the SLX4 complex, in ICL repair. We found that SLX4IP is a novel regulatory factor; its depletion sensitized cells to treatment with ICL-inducing agents and led to accumulation of cells in the G2/M phase. We further discovered that SLX4IP binds to SLX4 and XPF-ERCC1 simultaneously and that disruption of one interaction also disrupts the other. The binding of SLX4IP to both SLX4 and XPF-ERCC1 not only is vital for maintaining the stability of SLX4IP protein, but also promotes the interaction between SLX4 and XPF-ERCC1, especially after DNA damage. Collectively, these results demonstrate a new regulatory role for SLX4IP in maintaining an efficient SLX4-XPF-ERCC1 complex in ICL repair.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yin Ye
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zu Ye
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Dan Cao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yun Xiong
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mrinal Srivastava
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xu Feng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mengfan Tang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John A Tainer
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Zhang Y, Wu S, Zhou X, Huang F, Chen R, Wang Y, Wu J. Association between nucleotide excision repair gene polymorphism and colorectal cancer risk. J Clin Lab Anal 2019; 33:e22956. [PMID: 31568607 PMCID: PMC6805325 DOI: 10.1002/jcla.22956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The nucleotide excision repair system removes a wide variety of DNA lesions from the human genome, and plays an important role in maintaining genomic stability. Single nucleotide polymorphisms (SNPs) in nucleotide excision repair are associated with the various forms of tumor susceptibility. However, the relationship between NER polymorphism and colorectal cancer is not clear. METHODS In this study, three candidate SNPs including ERCC4 (rs6498486), ERCC1 (rs3212986), and ERCC5 (rs17655) were analyzed in 1101colorectal cancer patients and 1175 healthy control patients from Jiangsu province (China). Then, we performed Immunohistochemistry, qPCR, and luciferase assay to determine the potential mechanisms. RESULTS The ERCC4 rs6498486 AC/CC genotypes show lower susceptibility to CRC than those carrying rs6498486 AA (Adjusted OR = 0.82, 95% CI = 0.69-0.97). However, we did not observe any association between the colorectal cancer risk and the rs3212986(ERCC1) and rs17655(ERCC5) polymorphisms. Immunohistochemistry, qPCR, and luciferase assay revealed that rs6498486 A > C polymorphism in the ERCC4 promoter region could lessen the expression level of ERCC4 by impacting the binding ability of the transcription factor NF-kB, thereby affecting the transcription activity of the ERCC4 gene and decreased ERCC4 gene expression. CONCLUSION In brief, our finding demonstrated that ERCC4 rs6498486 serves as a potential biomarker of CRC susceptibility for the development of colorectal cancer.
Collapse
Affiliation(s)
- Yujie Zhang
- College of Life and Medicine Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Shenshen Wu
- Key Laboratory of Environmental Medicine Engineering School of Public Health, Southeast University, Nanjing, China
| | - Xiumei Zhou
- College of Life and Medicine Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Rui Chen
- Key Laboratory of Environmental Medicine Engineering School of Public Health, Southeast University, Nanjing, China
| | - Yigang Wang
- College of Life and Medicine Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiong Wu
- College of Life and Medicine Sciences, Zhejiang Sci-Tech University, Hangzhou, China.,Jiangsu Provincial Key Lab of Pharmaceutical Botany, Jiangsu Normal university, Xuzhou, China
| |
Collapse
|
39
|
Li S, Lu H, Wang Z, Hu Q, Wang H, Xiang R, Chiba T, Wu X. ERCC1/XPF Is Important for Repair of DNA Double-Strand Breaks Containing Secondary Structures. iScience 2019; 16:63-78. [PMID: 31153042 PMCID: PMC6543133 DOI: 10.1016/j.isci.2019.05.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/02/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
The structure-specific endonuclease ERCC1/XPF plays an important role in nucleotide excision repair and interstrand cross-link repair. In this study, we identified new functions of ERCC1/XPF in DNA double-strand break (DSB) repair. We found that the conserved function of ERCC1/XPF to remove non-homologous sequences at DSBs is a rate-limiting step for homologous recombination in mammalian cells, and more importantly, we uncovered an indispensable role of ERCC1/XPF in repair of DSBs containing DNA secondary structures, including the structure-prone AT-rich DNA sequences derived from common fragile sites and G-quadruplexes (G4s). We also demonstrated a synthetic lethal interaction of XPF with DNA translocase FANCM that is involved in removing DNA secondary structures. Furthermore, inactivation of XPF sensitizes FANCM-deficient cells to G4-interacting compounds. These results suggest an important function of ERCC1/XPF in protecting DNA secondary structures and provide a rationale for targeted treatment of FANCM-deficient tumors through inhibition of XPF.
Collapse
Affiliation(s)
- Shibo Li
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongyan Lu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Zi Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Qing Hu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Hongjun Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Rong Xiang
- School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Department of Health Science and Social Welfare, School of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa 359-1192, Japan
| | - Xiaohua Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Yang F, Mu X, Bian C, Zhang H, Yi T, Zhao X, Lin X. Association of excision repair cross-complimentary group 1 gene polymorphisms with breast and ovarian cancer susceptibility. J Cell Biochem 2019; 120:15635-15647. [PMID: 31081240 DOI: 10.1002/jcb.28830] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/20/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
The role of excision repair cross-complimentary group 1 (ERCC1) gene polymorphisms in breast and ovarian cancer development has long been controversial and existing data were inconsistent. Here, we conducted a comprehensive meta-analysis to better clarify the association. Case-control studies published from December 2008 to November 2018 were assessed. The statistical analyses of the pooled odds ratios (ORs) and the corresponding 95% confidence intervals (CIs) were calculated. Fifteen articles with 24 case-control studies and 3 ERCC1 polymorphisms were enrolled. A total of 20 923 participants including 9896 cases and 11 027 controls were analyzed. The results showed that C to T variation in the ERCC1 rs11615 (C/T) polymorphisms was correlated with breast cancer susceptibility (T vs C: OR = 1.19, 95% CI = 1.02-1.38; TT + CT vs CC: OR = 1.24, 95% CI = 1.12-1.36). ERCC1 rs3212986 (C/A) polymorphisms posed an increased risk for breast and ovarian cancer as whole (A vs C: OR = 1.12, 95% CI = 1.01-1.25; AA + CA vs CC: OR = 1.11, 95% CI = 1.02-1.22), and presented especially higher risk for ovarian cancer (A vs C: OR = 1.31, 95% CI = 1.05-1.63; AA vs CA + CC: OR = 1.66, 95% CI = 1.12-2.47; AA vs CC: OR = 1.72, 95% CI = 1.12-2.64). Meanwhile, neither overall group analyses nor stratified analyses displayed any association of ERCC1 rs2298881 (A/C) polymorphisms in breast and ovarian cancer susceptibility. This meta-analysis suggested that ERCC1 rs11615 (C/T) polymorphisms were associated with breast cancer susceptibility and rs3212986 (C/A) polymorphisms were especially correlated with ovarian cancer risk. More case-control studies with well-adjusted data and diverse populations are essential for validation of our conclusion.
Collapse
Affiliation(s)
- Fan Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Xiyan Mu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Ce Bian
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Huan Zhang
- Department of Obstetrics and Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, P R China
| | - Tao Yi
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Xia Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| | - Xiaojuan Lin
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, P R China
| |
Collapse
|
41
|
Heyza JR, Lei W, Watza D, Zhang H, Chen W, Back JB, Schwartz AG, Bepler G, Patrick SM. Identification and Characterization of Synthetic Viability with ERCC1 Deficiency in Response to Interstrand Crosslinks in Lung Cancer. Clin Cancer Res 2018; 25:2523-2536. [PMID: 30538112 DOI: 10.1158/1078-0432.ccr-18-3094] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE ERCC1/XPF is a DNA endonuclease with variable expression in primary tumor specimens, and has been investigated as a predictive biomarker for efficacy of platinum-based chemotherapy. The failure of clinical trials utilizing ERCC1 expression to predict response to platinum-based chemotherapy suggests additional mechanisms underlying the basic biology of ERCC1 in the response to interstrand crosslinks (ICLs) remain unknown. We aimed to characterize a panel of ERCC1 knockout (Δ) cell lines, where we identified a synthetic viable phenotype in response to ICLs with ERCC1 deficiency. EXPERIMENTAL DESIGN We utilized the CRISPR-Cas9 system to create a panel of ERCC1Δ lung cancer cell lines which we characterized. RESULTS We observe that loss of ERCC1 hypersensitizes cells to cisplatin when wild-type (WT) p53 is retained, whereas there is only modest sensitivity in cell lines that are p53mutant/null. In addition, when p53 is disrupted by CRISPR-Cas9 (p53*) in ERCC1Δ/p53WT cells, there is reduced apoptosis and increased viability after platinum treatment. These results were recapitulated in 2 patient data sets utilizing p53 mutation analysis and ERCC1 expression to assess overall survival. We also show that kinetics of ICL-repair (ICL-R) differ between ERCC1Δ/p53WT and ERCC1Δ/p53* cells. Finally, we provide evidence that cisplatin tolerance in the context of ERCC1 deficiency relies on DNA-PKcs and BRCA1 function. CONCLUSIONS Our findings implicate p53 as a potential confounding variable in clinical assessments of ERCC1 as a platinum biomarker via promoting an environment in which error-prone mechanisms of ICL-R may be able to partially compensate for loss of ERCC1.See related commentary by Friboulet et al., p. 2369.
Collapse
Affiliation(s)
- Joshua R Heyza
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Wen Lei
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Donovan Watza
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Hao Zhang
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Wei Chen
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan.,Biostatistics Core, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Jessica B Back
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Ann G Schwartz
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan
| | - Gerold Bepler
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan.
| | - Steve M Patrick
- Department of Oncology, Karmanos Cancer Institute and Wayne State University, Detroit, Michigan.
| |
Collapse
|
42
|
Chernikova SB, Nguyen RB, Truong JT, Mello SS, Stafford JH, Hay MP, Olson A, Solow-Cordero DE, Wood DJ, Henry S, von Eyben R, Deng L, Gephart MH, Aroumougame A, Wiese C, Game JC, Győrffy B, Brown JM. Dynamin impacts homology-directed repair and breast cancer response to chemotherapy. J Clin Invest 2018; 128:5307-5321. [PMID: 30371505 PMCID: PMC6264728 DOI: 10.1172/jci87191] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/13/2018] [Indexed: 12/31/2022] Open
Abstract
After the initial responsiveness of triple-negative breast cancers (TNBCs) to chemotherapy, they often recur as chemotherapy-resistant tumors, and this has been associated with upregulated homology-directed repair (HDR). Thus, inhibitors of HDR could be a useful adjunct to chemotherapy treatment of these cancers. We performed a high-throughput chemical screen for inhibitors of HDR from which we obtained a number of hits that disrupted microtubule dynamics. We postulated that high levels of the target molecules of our screen in tumors would correlate with poor chemotherapy response. We found that inhibition or knockdown of dynamin 2 (DNM2), known for its role in endocytic cell trafficking and microtubule dynamics, impaired HDR and improved response to chemotherapy of cells and of tumors in mice. In a retrospective analysis, levels of DNM2 at the time of treatment strongly predicted chemotherapy outcome for estrogen receptor-negative and especially for TNBC patients. We propose that DNM2-associated DNA repair enzyme trafficking is important for HDR efficiency and is a powerful predictor of sensitivity to breast cancer chemotherapy and an important target for therapy.
Collapse
Affiliation(s)
- Sophia B. Chernikova
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Rochelle B. Nguyen
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Jessica T. Truong
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Stephano S. Mello
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Jason H. Stafford
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Michael P. Hay
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | | | | | - Douglas J. Wood
- Data Coordinating Center, Department of Biomedical Data Science, and
| | - Solomon Henry
- Data Coordinating Center, Department of Biomedical Data Science, and
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Lei Deng
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | | | - Asaithamby Aroumougame
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Claudia Wiese
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - John C. Game
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Budapest, Hungary
- Semmelweis University 2nd Department of Pediatrics, Budapest, Hungary
| | - J. Martin Brown
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| |
Collapse
|
43
|
Cole JM, Acott JD, Courcelle CT, Courcelle J. Limited Capacity or Involvement of Excision Repair, Double-Strand Breaks, or Translesion Synthesis for Psoralen Cross-Link Repair in Escherichia coli. Genetics 2018; 210:99-112. [PMID: 30045856 PMCID: PMC6116958 DOI: 10.1534/genetics.118.301239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
DNA interstrand cross-links are complex lesions that covalently bind complementary strands of DNA and whose mechanism of repair remains poorly understood. In Escherichia coli, several gene products have been proposed to be involved in cross-link repair based on the hypersensitivity of mutants to cross-linking agents. However, cross-linking agents induce several forms of DNA damage, making it challenging to attribute mutant hypersensitivity specifically to interstrand cross-links. To address this, we compared the survival of UVA-irradiated repair mutants in the presence of 8-methoxypsoralen-which forms interstrand cross-links and monoadducts-to that of angelicin-a congener forming only monoadducts. We show that incision by nucleotide excision repair is not required for resistance to interstrand cross-links. In addition, neither RecN nor DNA polymerases II, IV, or V is required for interstrand cross-link survival, arguing against models that involve critical roles for double-strand break repair or translesion synthesis in the repair process. Finally, estimates based on Southern analysis of DNA fragments in alkali agarose gels indicate that lethality occurs in wild-type cells at doses producing as few as one to two interstrand cross-links per genome. These observations suggest that E. coli may lack an efficient repair mechanism for this form of damage.
Collapse
Affiliation(s)
- Jessica M Cole
- Department of Biology, Portland State University, Oregon 97201
| | | | | | | |
Collapse
|
44
|
Potter EA, Proskurina AS, Ritter GS, Dolgova EV, Nikolin VP, Popova NA, Taranov OS, Efremov YR, Bayborodin SI, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. Efficacy of a new cancer treatment strategy based on eradication of tumor-initiating stem cells in a mouse model of Krebs-2 solid adenocarcinoma. Oncotarget 2018; 9:28486-28499. [PMID: 29983875 PMCID: PMC6033367 DOI: 10.18632/oncotarget.25503] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/14/2018] [Indexed: 11/25/2022] Open
Abstract
Krebs-2 solid carcinoma was cured using a new “3+1” strategy for eradication of Krebs-2 tumor-initiating stem cells. This strategy was based on synchronization of these cells in a treatment-sensitive phase of the cell cycle. The synchronization mechanism, subsequent destruction of Krebs-2 tumor-initiating stem cells, and cure of mice from a solid graft were found to depend on the temporal profile of the interstrand cross-link repair cycle. Also, the temporal profile of the Krebs-2 interstrand repair cycle was found to have a pronounced seasonal cyclicity at the place of experiments (Novosibirsk, Russia). As a result, the therapeutic effect that is based on application of the described strategy, originally developed for the “winter repair cycle” (November−April), is completely eliminated in the summer period (June−September). We conclude that оne of the possible and the likeliest reasons for our failure to observe the therapeutic effects was the seasonal cyclicity in the duration of the interstrand repair cycle, the parameter that is central to our strategy.
Collapse
Affiliation(s)
- Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Genrikh S Ritter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Valeriy P Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nelly A Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Oleg S Taranov
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk, Russia
| | - Yaroslav R Efremov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Sergey I Bayborodin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Aleksandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
45
|
Distinct roles of XPF-ERCC1 and Rad1-Rad10-Saw1 in replication-coupled and uncoupled inter-strand crosslink repair. Nat Commun 2018; 9:2025. [PMID: 29795289 PMCID: PMC5966407 DOI: 10.1038/s41467-018-04327-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/20/2018] [Indexed: 01/17/2023] Open
Abstract
Yeast Rad1-Rad10 (XPF-ERCC1 in mammals) incises UV, oxidation, and cross-linking agent-induced DNA lesions, and contributes to multiple DNA repair pathways. To determine how Rad1-Rad10 catalyzes inter-strand crosslink repair (ICLR), we examined sensitivity to ICLs from yeast deleted for SAW1 and SLX4, which encode proteins that interact physically with Rad1-Rad10 and bind stalled replication forks. Saw1, Slx1, and Slx4 are critical for replication-coupled ICLR in mus81 deficient cells. Two rad1 mutations that disrupt interactions between Rpa1 and Rad1-Rad10 selectively disable non-nucleotide excision repair (NER) function, but retain UV lesion repair. Mutations in the analogous region of XPF also compromised XPF interactions with Rpa1 and Slx4, and are proficient in NER but deficient in ICLR and direct repeat recombination. We propose that Rad1-Rad10 makes distinct contributions to ICLR depending on cell cycle phase: in G1, Rad1-Rad10 removes ICL via NER, whereas in S/G2, Rad1-Rad10 facilitates NER-independent replication-coupled ICLR.
Collapse
|
46
|
Predictive value of excision repair cross-complementing group 2 gene Lys751Gln and Asp312Asn polymorphisms in melanoma risk. Melanoma Res 2018; 28:311-318. [PMID: 29768284 DOI: 10.1097/cmr.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Epidemiological studies have assessed the association between excision repair cross-complementing group 2 (ERCC2) Lys751Gln and Asp312Asn polymorphisms and melanoma risk with conflicting results. Relevant articles were searched from PubMed, Embase, and Web of Science with a time limit of 3 September 2016. Pooled odds ratio (OR) with 95% confidence interval (CI) was used to assess the strength of the association. We performed this meta-analysis with 12 studies including 6157 cases and 8873 controls for Lys751Gln and nine studies including 5037 cases and 7542 controls for Asp312Asn polymorphism. Overall, no significant associations were found under all the models for Lys751Gln polymorphism, and significant associations were found for Asp312Asn polymorphism for AA versus GG (OR=1.12, 95% CI=1.00-1.26) and for the recessive model (OR=1.11, 95% CI=1.00-1.24). In the stratification analyses by source of control: for Lys751Gln polymorphism, significant associations were found for CC versus AA (OR=1.19, 95% CI=1.04-1.36) and the recessive model (OR=1.15, 95% CI=1.02-1.30); for Asp312Asn polymorphism, significant associations were found for AA versus GG (OR=1.31, 95% CI=1.11-1.53) and the recessive model (OR=1.29, 95% CI=1.11-1.50). This meta-analysis suggested that both the Lys751Gln and Asp312Asn polymorphisms were risk factors for melanoma risk in population-based subgroup.
Collapse
|
47
|
Genome instability syndromes caused by impaired DNA repair and aberrant DNA damage responses. Cell Biol Toxicol 2018; 34:337-350. [DOI: 10.1007/s10565-018-9429-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/25/2018] [Indexed: 11/25/2022]
|
48
|
Lehmann J, Schubert S, Seebode C, Apel A, Ohlenbusch A, Emmert S. Splice variants of the endonucleases XPF and XPG contain residual DNA repair capabilities and could be a valuable tool for personalized medicine. Oncotarget 2018; 9:1012-1027. [PMID: 29416673 PMCID: PMC5787415 DOI: 10.18632/oncotarget.23105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/15/2017] [Indexed: 11/25/2022] Open
Abstract
The two endonucleases XPF and XPG are essentially involved in nucleotide excision repair (NER) and interstrand crosslink (ICL) repair. Defects in these two proteins result in severe diseases like xeroderma pigmentosum (XP). We applied our newly CRISPR/Cas9 generated human XPF knockout cell line with complete loss of XPF and primary fibroblasts from an XP-G patient (XP20BE) to analyze until now uncharacterized spontaneous mRNA splice variants of these two endonucleases. Functional analyses of these variants were performed using luciferase-based reporter gene assays. Two XPF and XPG splice variants with residual repair capabilities in NER, as well as ICL repair could be identified. Almost all variants are severely C-terminally truncated and lack important protein-protein interaction domains. Interestingly, XPF-202, differing to XPF-003 in the first 12 amino acids only, had no repair capability at all, suggesting an important role of this region during DNA repair, potentially concerning protein-protein interaction. We also identified splice variants of XPF and XPG exerting inhibitory effects on NER. Moreover, we showed that the XPF and XPG splice variants presented with different inter-individual expression patterns in healthy donors, as well as in various tissues. With regard to their residual repair capability and dominant-negative effects, functionally relevant spontaneous XPF and XPG splice variants present promising prognostic marker candidates for individual cancer risk, disease outcome, or therapeutic success. This merits further investigations, large association studies, and translational research within clinical trials in the future.
Collapse
Affiliation(s)
- Janin Lehmann
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Steffen Schubert
- Information Network of Departments of Dermatology (IVDK), University Medical Center Goettingen, Goettingen, Germany
| | - Christina Seebode
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
| | - Antje Apel
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany
| | - Andreas Ohlenbusch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Neurology, University Medical Center Goettingen, Goettingen, Germany
| | - Steffen Emmert
- Clinic and Policlinic for Dermatology and Venereology, University Medical Center Rostock, Rostock, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
49
|
Wu Y, Lu ZP, Zhang JJ, Liu DF, Shi GD, Zhang C, Qin ZQ, Zhang JZ, He Y, Wu PF, Miao Y, Jiang KR. Association between ERCC2 Lys751Gln polymorphism and the risk of pancreatic cancer, especially among Asians: evidence from a meta-analysis. Oncotarget 2017; 8:50124-50132. [PMID: 28223548 PMCID: PMC5564835 DOI: 10.18632/oncotarget.15394] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/29/2017] [Indexed: 12/21/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) of Excision repair cross-complementing group 2 (ERCC2) gene are suspected to affect the risk of pancreatic cancer. Many studies have reported the association between ERCC2 Lys751Gln polymorphism (rs13181) and the susceptibility to pancreatic cancer, but the outcomes remained controversial. To comprehensively determine this association, we conducted a meta-analysis based on a total of eight studies. Evidence for this association was obtained from the PubMed, EMBASE, Web of Science and Chinese National Knowledge Infrastructure (CNKI) databases. In general, a significant association was found between ERCC2 rs13181 polymorphism and the susceptibility to pancreatic cancer in four genetic models [CC vs. AA: OR = 1.56, (95% CI: 1.28-1.90), P = 0.470; AC/CC vs. AA: OR=1.20, (95% CI: 1.06-1.36), P = 0.396; CC vs. AC/CC OR = 1.50; (95% CI: 1.24-1.81), P = 0.530; C vs. A: OR=1.22, (95%CI:1.11-1.34), P = 0.159]. Furthermore, stratified analyses by ethnicity indicated a significant association only in the Asian population. Our results indicate that the ERCC2 Lys751Gln polymorphism might be important in stimulating the development of pancreatic cancer, especially for Asians.
Collapse
Affiliation(s)
- Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Zi-Peng Lu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Jing-Jing Zhang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Dong-Fang Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Guo-Dong Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Chun Zhang
- Department of Digestive Diseases, Songjiang Branch Hospital of Shanghai First People's Hospital, Nanjing Medical University, Shanghai, China
| | - Zhi-Qiang Qin
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Zhong Zhang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan He
- Pancreas Institute, Nanjing Medical University, Nanjing, China.,Department of Gastrointestinal Surgery, Huai'an Affiliated to Xuzhou Medical University and Huai'an Second People's Hospital, Huai'an, China
| | - Peng-Fei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Yi Miao
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| | - Kui-Rong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Pancreas Institute, Nanjing Medical University, Nanjing, China
| |
Collapse
|
50
|
Abdullah UB, McGouran JF, Brolih S, Ptchelkine D, El-Sagheer AH, Brown T, McHugh PJ. RPA activates the XPF-ERCC1 endonuclease to initiate processing of DNA interstrand crosslinks. EMBO J 2017; 36:2047-2060. [PMID: 28607004 PMCID: PMC5510000 DOI: 10.15252/embj.201796664] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 04/13/2017] [Accepted: 05/19/2017] [Indexed: 12/11/2022] Open
Abstract
During replication-coupled DNA interstrand crosslink (ICL) repair, the XPF-ERCC1 endonuclease is required for the incisions that release, or "unhook", ICLs, but the mechanism of ICL unhooking remains largely unknown. Incisions are triggered when the nascent leading strand of a replication fork strikes the ICL Here, we report that while purified XPF-ERCC1 incises simple ICL-containing model replication fork structures, the presence of a nascent leading strand, modelling the effects of replication arrest, inhibits this activity. Strikingly, the addition of the single-stranded DNA (ssDNA)-binding replication protein A (RPA) selectively restores XPF-ERCC1 endonuclease activity on this structure. The 5'-3' exonuclease SNM1A can load from the XPF-ERCC1-RPA-induced incisions and digest past the crosslink to quantitatively complete the unhooking reaction. We postulate that these collaborative activities of XPF-ERCC1, RPA and SNM1A might explain how ICL unhooking is achieved in vivo.
Collapse
Affiliation(s)
- Ummi B Abdullah
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | - Sanja Brolih
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Denis Ptchelkine
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, UK
| | | | - Tom Brown
- Department of Chemistry, University of Oxford, Oxford, UK.,Department of Oncology, University of Oxford, Oxford, UK
| | - Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|